altq_subr.c revision 1.5.2.2 1 /* $NetBSD: altq_subr.c,v 1.5.2.2 2002/01/10 19:35:58 thorpej Exp $ */
2 /* $KAME: altq_subr.c,v 1.9 2001/09/04 06:31:15 kjc Exp $ */
3
4 /*
5 * Copyright (C) 1997-2000
6 * Sony Computer Science Laboratories Inc. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: altq_subr.c,v 1.5.2.2 2002/01/10 19:35:58 thorpej Exp $");
32
33 #if defined(__FreeBSD__) || defined(__NetBSD__)
34 #include "opt_altq.h"
35 #if (__FreeBSD__ != 2)
36 #include "opt_inet.h"
37 #ifdef __FreeBSD__
38 #include "opt_inet6.h"
39 #endif
40 #endif
41 #endif /* __FreeBSD__ || __NetBSD__ */
42
43 #include <sys/param.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/kernel.h>
51 #include <sys/errno.h>
52 #include <sys/syslog.h>
53 #include <sys/sysctl.h>
54 #include <sys/queue.h>
55
56 #include <net/if.h>
57 #include <net/if_dl.h>
58 #include <net/if_types.h>
59
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/ip.h>
63 #ifdef INET6
64 #include <netinet/ip6.h>
65 #endif
66 #include <netinet/tcp.h>
67 #include <netinet/udp.h>
68
69 #include <altq/altq.h>
70 #include <altq/altq_conf.h>
71
72 #ifdef __FreeBSD__
73 #include "opt_cpu.h" /* for FreeBSD-2.2.8 to get i586_ctr_freq */
74 #include <machine/clock.h>
75 #endif
76
77 /*
78 * internal function prototypes
79 */
80 static void tbr_timeout __P((void *));
81 static int extract_ports4 __P((struct mbuf *, struct ip *,
82 struct flowinfo_in *));
83 #ifdef INET6
84 static int extract_ports6 __P((struct mbuf *, struct ip6_hdr *,
85 struct flowinfo_in6 *));
86 #endif
87 static int apply_filter4 __P((u_int32_t, struct flow_filter *,
88 struct flowinfo_in *));
89 static int apply_ppfilter4 __P((u_int32_t, struct flow_filter *,
90 struct flowinfo_in *));
91 #ifdef INET6
92 static int apply_filter6 __P((u_int32_t, struct flow_filter6 *,
93 struct flowinfo_in6 *));
94 #endif
95 static int apply_tosfilter4 __P((u_int32_t, struct flow_filter *,
96 struct flowinfo_in *));
97 static u_long get_filt_handle __P((struct acc_classifier *, int));
98 static struct acc_filter *filth_to_filtp __P((struct acc_classifier *,
99 u_long));
100 static u_int32_t filt2fibmask __P((struct flow_filter *));
101
102 static void ip4f_cache __P((struct ip *, struct flowinfo_in *));
103 static int ip4f_lookup __P((struct ip *, struct flowinfo_in *));
104 static int ip4f_init __P((void));
105 static struct ip4_frag *ip4f_alloc __P((void));
106 static void ip4f_free __P((struct ip4_frag *));
107
108 int (*altq_input) __P((struct mbuf *, int)) = NULL;
109 static int tbr_timer = 0; /* token bucket regulator timer */
110 static struct callout tbr_callout = CALLOUT_INITIALIZER;
111
112 /*
113 * alternate queueing support routines
114 */
115
116 /* look up the queue state by the interface name and the queuing type. */
117 void *
118 altq_lookup(name, type)
119 char *name;
120 int type;
121 {
122 struct ifnet *ifp;
123
124 if ((ifp = ifunit(name)) != NULL) {
125 if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
126 return (ifp->if_snd.altq_disc);
127 }
128
129 return NULL;
130 }
131
132 int
133 altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify)
134 struct ifaltq *ifq;
135 int type;
136 void *discipline;
137 int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
138 struct mbuf *(*dequeue)(struct ifaltq *, int);
139 int (*request)(struct ifaltq *, int, void *);
140 void *clfier;
141 void *(*classify)(void *, struct mbuf *, int);
142 {
143 if (!ALTQ_IS_READY(ifq))
144 return ENXIO;
145 if (ALTQ_IS_ENABLED(ifq))
146 return EBUSY;
147 if (ALTQ_IS_ATTACHED(ifq))
148 return EEXIST;
149 ifq->altq_type = type;
150 ifq->altq_disc = discipline;
151 ifq->altq_enqueue = enqueue;
152 ifq->altq_dequeue = dequeue;
153 ifq->altq_request = request;
154 ifq->altq_clfier = clfier;
155 ifq->altq_classify = classify;
156 ifq->altq_flags &= ALTQF_CANTCHANGE;
157 #ifdef ALTQ_KLD
158 altq_module_incref(type);
159 #endif
160 return 0;
161 }
162
163 int
164 altq_detach(ifq)
165 struct ifaltq *ifq;
166 {
167 if (!ALTQ_IS_READY(ifq))
168 return ENXIO;
169 if (ALTQ_IS_ENABLED(ifq))
170 return EBUSY;
171 if (!ALTQ_IS_ATTACHED(ifq))
172 return (0);
173
174 #ifdef ALTQ_KLD
175 altq_module_declref(ifq->altq_type);
176 #endif
177 ifq->altq_type = ALTQT_NONE;
178 ifq->altq_disc = NULL;
179 ifq->altq_enqueue = NULL;
180 ifq->altq_dequeue = NULL;
181 ifq->altq_request = NULL;
182 ifq->altq_clfier = NULL;
183 ifq->altq_classify = NULL;
184 ifq->altq_flags &= ALTQF_CANTCHANGE;
185 return 0;
186 }
187
188 int
189 altq_enable(ifq)
190 struct ifaltq *ifq;
191 {
192 int s;
193
194 if (!ALTQ_IS_READY(ifq))
195 return ENXIO;
196 if (ALTQ_IS_ENABLED(ifq))
197 return 0;
198
199 s = splnet();
200 IFQ_PURGE(ifq);
201 ASSERT(ifq->ifq_len == 0);
202 ifq->altq_flags |= ALTQF_ENABLED;
203 if (ifq->altq_clfier != NULL)
204 ifq->altq_flags |= ALTQF_CLASSIFY;
205 splx(s);
206
207 return 0;
208 }
209
210 int
211 altq_disable(ifq)
212 struct ifaltq *ifq;
213 {
214 int s;
215
216 if (!ALTQ_IS_ENABLED(ifq))
217 return 0;
218
219 s = splnet();
220 IFQ_PURGE(ifq);
221 ASSERT(ifq->ifq_len == 0);
222 ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
223 splx(s);
224 return 0;
225 }
226
227 void
228 altq_assert(file, line, failedexpr)
229 const char *file, *failedexpr;
230 int line;
231 {
232 (void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
233 failedexpr, file, line);
234 panic("altq assertion");
235 /* NOTREACHED */
236 }
237
238 /*
239 * internal representation of token bucket parameters
240 * rate: byte_per_unittime << 32
241 * (((bits_per_sec) / 8) << 32) / machclk_freq
242 * depth: byte << 32
243 *
244 */
245 #define TBR_SHIFT 32
246 #define TBR_SCALE(x) ((int64_t)(x) << TBR_SHIFT)
247 #define TBR_UNSCALE(x) ((x) >> TBR_SHIFT)
248
249 struct mbuf *
250 tbr_dequeue(ifq, op)
251 struct ifaltq *ifq;
252 int op;
253 {
254 struct tb_regulator *tbr;
255 struct mbuf *m;
256 int64_t interval;
257 u_int64_t now;
258
259 tbr = ifq->altq_tbr;
260 if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
261 /* if this is a remove after poll, bypass tbr check */
262 } else {
263 /* update token only when it is negative */
264 if (tbr->tbr_token <= 0) {
265 now = read_machclk();
266 interval = now - tbr->tbr_last;
267 if (interval >= tbr->tbr_filluptime)
268 tbr->tbr_token = tbr->tbr_depth;
269 else {
270 tbr->tbr_token += interval * tbr->tbr_rate;
271 if (tbr->tbr_token > tbr->tbr_depth)
272 tbr->tbr_token = tbr->tbr_depth;
273 }
274 tbr->tbr_last = now;
275 }
276 /* if token is still negative, don't allow dequeue */
277 if (tbr->tbr_token <= 0)
278 return (NULL);
279 }
280
281 if (ALTQ_IS_ENABLED(ifq))
282 m = (*ifq->altq_dequeue)(ifq, op);
283 else {
284 if (op == ALTDQ_POLL)
285 IF_POLL(ifq, m);
286 else
287 IF_DEQUEUE(ifq, m);
288 }
289
290 if (m != NULL && op == ALTDQ_REMOVE)
291 tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
292 tbr->tbr_lastop = op;
293 return (m);
294 }
295
296 /*
297 * set a token bucket regulator.
298 * if the specified rate is zero, the token bucket regulator is deleted.
299 */
300 int
301 tbr_set(ifq, profile)
302 struct ifaltq *ifq;
303 struct tb_profile *profile;
304 {
305 struct tb_regulator *tbr, *otbr;
306
307 if (machclk_freq == 0)
308 init_machclk();
309 if (machclk_freq == 0) {
310 printf("tbr_set: no cpu clock available!\n");
311 return (ENXIO);
312 }
313
314 if (profile->rate == 0) {
315 /* delete this tbr */
316 if ((tbr = ifq->altq_tbr) == NULL)
317 return (ENOENT);
318 ifq->altq_tbr = NULL;
319 FREE(tbr, M_DEVBUF);
320 return (0);
321 }
322
323 MALLOC(tbr, struct tb_regulator *, sizeof(struct tb_regulator),
324 M_DEVBUF, M_WAITOK);
325 if (tbr == NULL)
326 return (ENOMEM);
327 bzero(tbr, sizeof(struct tb_regulator));
328
329 tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
330 tbr->tbr_depth = TBR_SCALE(profile->depth);
331 if (tbr->tbr_rate > 0)
332 tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
333 else
334 tbr->tbr_filluptime = 0xffffffffffffffffLL;
335 tbr->tbr_token = tbr->tbr_depth;
336 tbr->tbr_last = read_machclk();
337 tbr->tbr_lastop = ALTDQ_REMOVE;
338
339 otbr = ifq->altq_tbr;
340 ifq->altq_tbr = tbr; /* set the new tbr */
341
342 if (otbr != NULL)
343 FREE(otbr, M_DEVBUF);
344 else {
345 if (tbr_timer == 0) {
346 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
347 tbr_timer = 1;
348 }
349 }
350 return (0);
351 }
352
353 /*
354 * tbr_timeout goes through the interface list, and kicks the drivers
355 * if necessary.
356 */
357 static void
358 tbr_timeout(arg)
359 void *arg;
360 {
361 struct ifnet *ifp;
362 int active, s;
363
364 active = 0;
365 s = splnet();
366 #ifdef __FreeBSD__
367 #if (__FreeBSD_version < 300000)
368 for (ifp = ifnet; ifp; ifp = ifp->if_next)
369 #else
370 for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_link.tqe_next)
371 #endif
372 #else /* !FreeBSD */
373 for (ifp = ifnet.tqh_first; ifp != NULL; ifp = ifp->if_list.tqe_next)
374 #endif
375 {
376 if (!TBR_IS_ENABLED(&ifp->if_snd))
377 continue;
378 active++;
379 if (!IFQ_IS_EMPTY(&ifp->if_snd) && ifp->if_start != NULL)
380 (*ifp->if_start)(ifp);
381 }
382 splx(s);
383 if (active > 0)
384 CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
385 else
386 tbr_timer = 0; /* don't need tbr_timer anymore */
387 #if defined(__alpha__) && !defined(ALTQ_NOPCC)
388 {
389 /*
390 * XXX read out the machine dependent clock once a second
391 * to detect counter wrap-around.
392 */
393 static u_int cnt;
394
395 if (++cnt >= hz) {
396 (void)read_machclk();
397 cnt = 0;
398 }
399 }
400 #endif /* __alpha__ && !ALTQ_NOPCC */
401 }
402
403 /*
404 * get token bucket regulator profile
405 */
406 int
407 tbr_get(ifq, profile)
408 struct ifaltq *ifq;
409 struct tb_profile *profile;
410 {
411 struct tb_regulator *tbr;
412
413 if ((tbr = ifq->altq_tbr) == NULL) {
414 profile->rate = 0;
415 profile->depth = 0;
416 } else {
417 profile->rate =
418 (u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
419 profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
420 }
421 return (0);
422 }
423
424
425 #ifndef IPPROTO_ESP
426 #define IPPROTO_ESP 50 /* encapsulating security payload */
427 #endif
428 #ifndef IPPROTO_AH
429 #define IPPROTO_AH 51 /* authentication header */
430 #endif
431
432 /*
433 * extract flow information from a given packet.
434 * filt_mask shows flowinfo fields required.
435 * we assume the ip header is in one mbuf, and addresses and ports are
436 * in network byte order.
437 */
438 int
439 altq_extractflow(m, af, flow, filt_bmask)
440 struct mbuf *m;
441 int af;
442 struct flowinfo *flow;
443 u_int32_t filt_bmask;
444 {
445
446 switch (af) {
447 case PF_INET: {
448 struct flowinfo_in *fin;
449 struct ip *ip;
450
451 ip = mtod(m, struct ip *);
452
453 if (ip->ip_v != 4)
454 break;
455
456 fin = (struct flowinfo_in *)flow;
457 fin->fi_len = sizeof(struct flowinfo_in);
458 fin->fi_family = AF_INET;
459
460 fin->fi_proto = ip->ip_p;
461 fin->fi_tos = ip->ip_tos;
462
463 fin->fi_src.s_addr = ip->ip_src.s_addr;
464 fin->fi_dst.s_addr = ip->ip_dst.s_addr;
465
466 if (filt_bmask & FIMB4_PORTS)
467 /* if port info is required, extract port numbers */
468 extract_ports4(m, ip, fin);
469 else {
470 fin->fi_sport = 0;
471 fin->fi_dport = 0;
472 fin->fi_gpi = 0;
473 }
474 return (1);
475 }
476
477 #ifdef INET6
478 case PF_INET6: {
479 struct flowinfo_in6 *fin6;
480 struct ip6_hdr *ip6;
481
482 ip6 = mtod(m, struct ip6_hdr *);
483 /* should we check the ip version? */
484
485 fin6 = (struct flowinfo_in6 *)flow;
486 fin6->fi6_len = sizeof(struct flowinfo_in6);
487 fin6->fi6_family = AF_INET6;
488
489 fin6->fi6_proto = ip6->ip6_nxt;
490 fin6->fi6_tclass = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
491
492 fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
493 fin6->fi6_src = ip6->ip6_src;
494 fin6->fi6_dst = ip6->ip6_dst;
495
496 if ((filt_bmask & FIMB6_PORTS) ||
497 ((filt_bmask & FIMB6_PROTO)
498 && ip6->ip6_nxt > IPPROTO_IPV6))
499 /*
500 * if port info is required, or proto is required
501 * but there are option headers, extract port
502 * and protocol numbers.
503 */
504 extract_ports6(m, ip6, fin6);
505 else {
506 fin6->fi6_sport = 0;
507 fin6->fi6_dport = 0;
508 fin6->fi6_gpi = 0;
509 }
510 return (1);
511 }
512 #endif /* INET6 */
513
514 default:
515 break;
516 }
517
518 /* failed */
519 flow->fi_len = sizeof(struct flowinfo);
520 flow->fi_family = AF_UNSPEC;
521 return (0);
522 }
523
524 /*
525 * helper routine to extract port numbers
526 */
527 /* structure for ipsec and ipv6 option header template */
528 struct _opt6 {
529 u_int8_t opt6_nxt; /* next header */
530 u_int8_t opt6_hlen; /* header extension length */
531 u_int16_t _pad;
532 u_int32_t ah_spi; /* security parameter index
533 for authentication header */
534 };
535
536 /*
537 * extract port numbers from a ipv4 packet.
538 */
539 static int
540 extract_ports4(m, ip, fin)
541 struct mbuf *m;
542 struct ip *ip;
543 struct flowinfo_in *fin;
544 {
545 struct mbuf *m0;
546 u_short ip_off;
547 u_int8_t proto;
548 int off;
549
550 fin->fi_sport = 0;
551 fin->fi_dport = 0;
552 fin->fi_gpi = 0;
553
554 ip_off = ntohs(ip->ip_off);
555 /* if it is a fragment, try cached fragment info */
556 if (ip_off & IP_OFFMASK) {
557 ip4f_lookup(ip, fin);
558 return (1);
559 }
560
561 /* locate the mbuf containing the protocol header */
562 for (m0 = m; m0 != NULL; m0 = m0->m_next)
563 if (((caddr_t)ip >= m0->m_data) &&
564 ((caddr_t)ip < m0->m_data + m0->m_len))
565 break;
566 if (m0 == NULL) {
567 #ifdef ALTQ_DEBUG
568 printf("extract_ports4: can't locate header! ip=%p\n", ip);
569 #endif
570 return (0);
571 }
572 off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
573 proto = ip->ip_p;
574
575 #ifdef ALTQ_IPSEC
576 again:
577 #endif
578 while (off >= m0->m_len) {
579 off -= m0->m_len;
580 m0 = m0->m_next;
581 }
582 ASSERT(m0->m_len >= off + 4);
583
584 switch (proto) {
585 case IPPROTO_TCP:
586 case IPPROTO_UDP: {
587 struct udphdr *udp;
588
589 udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
590 fin->fi_sport = udp->uh_sport;
591 fin->fi_dport = udp->uh_dport;
592 fin->fi_proto = proto;
593 }
594 break;
595
596 #ifdef ALTQ_IPSEC
597 case IPPROTO_ESP:
598 if (fin->fi_gpi == 0){
599 u_int32_t *gpi;
600
601 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
602 fin->fi_gpi = *gpi;
603 }
604 fin->fi_proto = proto;
605 break;
606
607 case IPPROTO_AH: {
608 /* get next header and header length */
609 struct _opt6 *opt6;
610
611 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
612 proto = opt6->opt6_nxt;
613 off += 8 + (opt6->opt6_hlen * 4);
614 if (fin->fi_gpi == 0)
615 fin->fi_gpi = opt6->ah_spi;
616 }
617 /* goto the next header */
618 goto again;
619 #endif /* ALTQ_IPSEC */
620
621 default:
622 fin->fi_proto = proto;
623 return (0);
624 }
625
626 /* if this is a first fragment, cache it. */
627 if (ip_off & IP_MF)
628 ip4f_cache(ip, fin);
629
630 return (1);
631 }
632
633 #ifdef INET6
634 static int
635 extract_ports6(m, ip6, fin6)
636 struct mbuf *m;
637 struct ip6_hdr *ip6;
638 struct flowinfo_in6 *fin6;
639 {
640 struct mbuf *m0;
641 int off;
642 u_int8_t proto;
643
644 fin6->fi6_gpi = 0;
645 fin6->fi6_sport = 0;
646 fin6->fi6_dport = 0;
647
648 /* locate the mbuf containing the protocol header */
649 for (m0 = m; m0 != NULL; m0 = m0->m_next)
650 if (((caddr_t)ip6 >= m0->m_data) &&
651 ((caddr_t)ip6 < m0->m_data + m0->m_len))
652 break;
653 if (m0 == NULL) {
654 #ifdef ALTQ_DEBUG
655 printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
656 #endif
657 return (0);
658 }
659 off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
660
661 proto = ip6->ip6_nxt;
662 do {
663 while (off >= m0->m_len) {
664 off -= m0->m_len;
665 m0 = m0->m_next;
666 }
667 ASSERT(m0->m_len >= off + 4);
668
669 switch (proto) {
670 case IPPROTO_TCP:
671 case IPPROTO_UDP: {
672 struct udphdr *udp;
673
674 udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
675 fin6->fi6_sport = udp->uh_sport;
676 fin6->fi6_dport = udp->uh_dport;
677 fin6->fi6_proto = proto;
678 }
679 return (1);
680
681 case IPPROTO_ESP:
682 if (fin6->fi6_gpi == 0) {
683 u_int32_t *gpi;
684
685 gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
686 fin6->fi6_gpi = *gpi;
687 }
688 fin6->fi6_proto = proto;
689 return (1);
690
691 case IPPROTO_AH: {
692 /* get next header and header length */
693 struct _opt6 *opt6;
694
695 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
696 if (fin6->fi6_gpi == 0)
697 fin6->fi6_gpi = opt6->ah_spi;
698 proto = opt6->opt6_nxt;
699 off += 8 + (opt6->opt6_hlen * 4);
700 /* goto the next header */
701 break;
702 }
703
704 case IPPROTO_HOPOPTS:
705 case IPPROTO_ROUTING:
706 case IPPROTO_DSTOPTS: {
707 /* get next header and header length */
708 struct _opt6 *opt6;
709
710 opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
711 proto = opt6->opt6_nxt;
712 off += (opt6->opt6_hlen + 1) * 8;
713 /* goto the next header */
714 break;
715 }
716
717 case IPPROTO_FRAGMENT:
718 /* ipv6 fragmentations are not supported yet */
719 default:
720 fin6->fi6_proto = proto;
721 return (0);
722 }
723 } while (1);
724 /*NOTREACHED*/
725 }
726 #endif /* INET6 */
727
728 /*
729 * altq common classifier
730 */
731 int
732 acc_add_filter(classifier, filter, class, phandle)
733 struct acc_classifier *classifier;
734 struct flow_filter *filter;
735 void *class;
736 u_long *phandle;
737 {
738 struct acc_filter *afp, *prev, *tmp;
739 int i, s;
740
741 #ifdef INET6
742 if (filter->ff_flow.fi_family != AF_INET &&
743 filter->ff_flow.fi_family != AF_INET6)
744 return (EINVAL);
745 #else
746 if (filter->ff_flow.fi_family != AF_INET)
747 return (EINVAL);
748 #endif
749
750 MALLOC(afp, struct acc_filter *, sizeof(struct acc_filter),
751 M_DEVBUF, M_WAITOK);
752 if (afp == NULL)
753 return (ENOMEM);
754 bzero(afp, sizeof(struct acc_filter));
755
756 afp->f_filter = *filter;
757 afp->f_class = class;
758
759 i = ACC_WILDCARD_INDEX;
760 if (filter->ff_flow.fi_family == AF_INET) {
761 struct flow_filter *filter4 = &afp->f_filter;
762
763 /*
764 * if address is 0, it's a wildcard. if address mask
765 * isn't set, use full mask.
766 */
767 if (filter4->ff_flow.fi_dst.s_addr == 0)
768 filter4->ff_mask.mask_dst.s_addr = 0;
769 else if (filter4->ff_mask.mask_dst.s_addr == 0)
770 filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
771 if (filter4->ff_flow.fi_src.s_addr == 0)
772 filter4->ff_mask.mask_src.s_addr = 0;
773 else if (filter4->ff_mask.mask_src.s_addr == 0)
774 filter4->ff_mask.mask_src.s_addr = 0xffffffff;
775
776 /* clear extra bits in addresses */
777 filter4->ff_flow.fi_dst.s_addr &=
778 filter4->ff_mask.mask_dst.s_addr;
779 filter4->ff_flow.fi_src.s_addr &=
780 filter4->ff_mask.mask_src.s_addr;
781
782 /*
783 * if dst address is a wildcard, use hash-entry
784 * ACC_WILDCARD_INDEX.
785 */
786 if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
787 i = ACC_WILDCARD_INDEX;
788 else
789 i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
790 }
791 #ifdef INET6
792 else if (filter->ff_flow.fi_family == AF_INET6) {
793 struct flow_filter6 *filter6 =
794 (struct flow_filter6 *)&afp->f_filter;
795 #ifndef IN6MASK0 /* taken from kame ipv6 */
796 #define IN6MASK0 {{{ 0, 0, 0, 0 }}}
797 #define IN6MASK128 {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
798 const struct in6_addr in6mask0 = IN6MASK0;
799 const struct in6_addr in6mask128 = IN6MASK128;
800 #endif
801
802 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
803 filter6->ff_mask6.mask6_dst = in6mask0;
804 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
805 filter6->ff_mask6.mask6_dst = in6mask128;
806 if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
807 filter6->ff_mask6.mask6_src = in6mask0;
808 else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
809 filter6->ff_mask6.mask6_src = in6mask128;
810
811 /* clear extra bits in addresses */
812 for (i = 0; i < 16; i++)
813 filter6->ff_flow6.fi6_dst.s6_addr[i] &=
814 filter6->ff_mask6.mask6_dst.s6_addr[i];
815 for (i = 0; i < 16; i++)
816 filter6->ff_flow6.fi6_src.s6_addr[i] &=
817 filter6->ff_mask6.mask6_src.s6_addr[i];
818
819 if (filter6->ff_flow6.fi6_flowlabel == 0)
820 i = ACC_WILDCARD_INDEX;
821 else
822 i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
823 }
824 #endif /* INET6 */
825
826 afp->f_handle = get_filt_handle(classifier, i);
827
828 /* update filter bitmask */
829 afp->f_fbmask = filt2fibmask(filter);
830 classifier->acc_fbmask |= afp->f_fbmask;
831
832 /*
833 * add this filter to the filter list.
834 * filters are ordered from the highest rule number.
835 */
836 s = splnet();
837 prev = NULL;
838 LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
839 if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
840 prev = tmp;
841 else
842 break;
843 }
844 if (prev == NULL)
845 LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
846 else
847 LIST_INSERT_AFTER(prev, afp, f_chain);
848 splx(s);
849
850 *phandle = afp->f_handle;
851 return (0);
852 }
853
854 int
855 acc_delete_filter(classifier, handle)
856 struct acc_classifier *classifier;
857 u_long handle;
858 {
859 struct acc_filter *afp;
860 int s;
861
862 if ((afp = filth_to_filtp(classifier, handle)) == NULL)
863 return (EINVAL);
864
865 s = splnet();
866 LIST_REMOVE(afp, f_chain);
867 splx(s);
868
869 FREE(afp, M_DEVBUF);
870
871 /* todo: update filt_bmask */
872
873 return (0);
874 }
875
876 /*
877 * delete filters referencing to the specified class.
878 * if the all flag is not 0, delete all the filters.
879 */
880 int
881 acc_discard_filters(classifier, class, all)
882 struct acc_classifier *classifier;
883 void *class;
884 int all;
885 {
886 struct acc_filter *afp;
887 int i, s;
888
889 s = splnet();
890 for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
891 do {
892 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
893 if (all || afp->f_class == class) {
894 LIST_REMOVE(afp, f_chain);
895 FREE(afp, M_DEVBUF);
896 /* start again from the head */
897 break;
898 }
899 } while (afp != NULL);
900 }
901 splx(s);
902
903 if (all)
904 classifier->acc_fbmask = 0;
905
906 return (0);
907 }
908
909 void *
910 acc_classify(clfier, m, af)
911 void *clfier;
912 struct mbuf *m;
913 int af;
914 {
915 struct acc_classifier *classifier;
916 struct flowinfo flow;
917 struct acc_filter *afp;
918 int i;
919
920 classifier = (struct acc_classifier *)clfier;
921 altq_extractflow(m, af, &flow, classifier->acc_fbmask);
922
923 if (flow.fi_family == AF_INET) {
924 struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
925
926 if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
927 /* only tos is used */
928 LIST_FOREACH(afp,
929 &classifier->acc_filters[ACC_WILDCARD_INDEX],
930 f_chain)
931 if (apply_tosfilter4(afp->f_fbmask,
932 &afp->f_filter, fp))
933 /* filter matched */
934 return (afp->f_class);
935 } else if ((classifier->acc_fbmask &
936 (~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
937 == 0) {
938 /* only proto and ports are used */
939 LIST_FOREACH(afp,
940 &classifier->acc_filters[ACC_WILDCARD_INDEX],
941 f_chain)
942 if (apply_ppfilter4(afp->f_fbmask,
943 &afp->f_filter, fp))
944 /* filter matched */
945 return (afp->f_class);
946 } else {
947 /* get the filter hash entry from its dest address */
948 i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
949 do {
950 /*
951 * go through this loop twice. first for dst
952 * hash, second for wildcards.
953 */
954 LIST_FOREACH(afp, &classifier->acc_filters[i],
955 f_chain)
956 if (apply_filter4(afp->f_fbmask,
957 &afp->f_filter, fp))
958 /* filter matched */
959 return (afp->f_class);
960
961 /*
962 * check again for filters with a dst addr
963 * wildcard.
964 * (daddr == 0 || dmask != 0xffffffff).
965 */
966 if (i != ACC_WILDCARD_INDEX)
967 i = ACC_WILDCARD_INDEX;
968 else
969 break;
970 } while (1);
971 }
972 }
973 #ifdef INET6
974 else if (flow.fi_family == AF_INET6) {
975 struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
976
977 /* get the filter hash entry from its flow ID */
978 if (fp6->fi6_flowlabel != 0)
979 i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
980 else
981 /* flowlable can be zero */
982 i = ACC_WILDCARD_INDEX;
983
984 /* go through this loop twice. first for flow hash, second
985 for wildcards. */
986 do {
987 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
988 if (apply_filter6(afp->f_fbmask,
989 (struct flow_filter6 *)&afp->f_filter,
990 fp6))
991 /* filter matched */
992 return (afp->f_class);
993
994 /*
995 * check again for filters with a wildcard.
996 */
997 if (i != ACC_WILDCARD_INDEX)
998 i = ACC_WILDCARD_INDEX;
999 else
1000 break;
1001 } while (1);
1002 }
1003 #endif /* INET6 */
1004
1005 /* no filter matched */
1006 return (NULL);
1007 }
1008
1009 static int
1010 apply_filter4(fbmask, filt, pkt)
1011 u_int32_t fbmask;
1012 struct flow_filter *filt;
1013 struct flowinfo_in *pkt;
1014 {
1015 if (filt->ff_flow.fi_family != AF_INET)
1016 return (0);
1017 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1018 return (0);
1019 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1020 return (0);
1021 if ((fbmask & FIMB4_DADDR) &&
1022 filt->ff_flow.fi_dst.s_addr !=
1023 (pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
1024 return (0);
1025 if ((fbmask & FIMB4_SADDR) &&
1026 filt->ff_flow.fi_src.s_addr !=
1027 (pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
1028 return (0);
1029 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1030 return (0);
1031 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1032 (pkt->fi_tos & filt->ff_mask.mask_tos))
1033 return (0);
1034 if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
1035 return (0);
1036 /* match */
1037 return (1);
1038 }
1039
1040 /*
1041 * filter matching function optimized for a common case that checks
1042 * only protocol and port numbers
1043 */
1044 static int
1045 apply_ppfilter4(fbmask, filt, pkt)
1046 u_int32_t fbmask;
1047 struct flow_filter *filt;
1048 struct flowinfo_in *pkt;
1049 {
1050 if (filt->ff_flow.fi_family != AF_INET)
1051 return (0);
1052 if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1053 return (0);
1054 if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1055 return (0);
1056 if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1057 return (0);
1058 /* match */
1059 return (1);
1060 }
1061
1062 /*
1063 * filter matching function only for tos field.
1064 */
1065 static int
1066 apply_tosfilter4(fbmask, filt, pkt)
1067 u_int32_t fbmask;
1068 struct flow_filter *filt;
1069 struct flowinfo_in *pkt;
1070 {
1071 if (filt->ff_flow.fi_family != AF_INET)
1072 return (0);
1073 if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1074 (pkt->fi_tos & filt->ff_mask.mask_tos))
1075 return (0);
1076 /* match */
1077 return (1);
1078 }
1079
1080 #ifdef INET6
1081 static int
1082 apply_filter6(fbmask, filt, pkt)
1083 u_int32_t fbmask;
1084 struct flow_filter6 *filt;
1085 struct flowinfo_in6 *pkt;
1086 {
1087 int i;
1088
1089 if (filt->ff_flow6.fi6_family != AF_INET6)
1090 return (0);
1091 if ((fbmask & FIMB6_FLABEL) &&
1092 filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
1093 return (0);
1094 if ((fbmask & FIMB6_PROTO) &&
1095 filt->ff_flow6.fi6_proto != pkt->fi6_proto)
1096 return (0);
1097 if ((fbmask & FIMB6_SPORT) &&
1098 filt->ff_flow6.fi6_sport != pkt->fi6_sport)
1099 return (0);
1100 if ((fbmask & FIMB6_DPORT) &&
1101 filt->ff_flow6.fi6_dport != pkt->fi6_dport)
1102 return (0);
1103 if (fbmask & FIMB6_SADDR) {
1104 for (i = 0; i < 4; i++)
1105 if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
1106 (pkt->fi6_src.s6_addr32[i] &
1107 filt->ff_mask6.mask6_src.s6_addr32[i]))
1108 return (0);
1109 }
1110 if (fbmask & FIMB6_DADDR) {
1111 for (i = 0; i < 4; i++)
1112 if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
1113 (pkt->fi6_dst.s6_addr32[i] &
1114 filt->ff_mask6.mask6_dst.s6_addr32[i]))
1115 return (0);
1116 }
1117 if ((fbmask & FIMB6_TCLASS) &&
1118 filt->ff_flow6.fi6_tclass !=
1119 (pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
1120 return (0);
1121 if ((fbmask & FIMB6_GPI) &&
1122 filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
1123 return (0);
1124 /* match */
1125 return (1);
1126 }
1127 #endif /* INET6 */
1128
1129 /*
1130 * filter handle:
1131 * bit 20-28: index to the filter hash table
1132 * bit 0-19: unique id in the hash bucket.
1133 */
1134 static u_long
1135 get_filt_handle(classifier, i)
1136 struct acc_classifier *classifier;
1137 int i;
1138 {
1139 static u_long handle_number = 1;
1140 u_long handle;
1141 struct acc_filter *afp;
1142
1143 while (1) {
1144 handle = handle_number++ & 0x000fffff;
1145
1146 if (LIST_EMPTY(&classifier->acc_filters[i]))
1147 break;
1148
1149 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1150 if ((afp->f_handle & 0x000fffff) == handle)
1151 break;
1152 if (afp == NULL)
1153 break;
1154 /* this handle is already used, try again */
1155 }
1156
1157 return ((i << 20) | handle);
1158 }
1159
1160 /* convert filter handle to filter pointer */
1161 static struct acc_filter *
1162 filth_to_filtp(classifier, handle)
1163 struct acc_classifier *classifier;
1164 u_long handle;
1165 {
1166 struct acc_filter *afp;
1167 int i;
1168
1169 i = ACC_GET_HINDEX(handle);
1170
1171 LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1172 if (afp->f_handle == handle)
1173 return (afp);
1174
1175 return (NULL);
1176 }
1177
1178 /* create flowinfo bitmask */
1179 static u_int32_t
1180 filt2fibmask(filt)
1181 struct flow_filter *filt;
1182 {
1183 u_int32_t mask = 0;
1184 #ifdef INET6
1185 struct flow_filter6 *filt6;
1186 #endif
1187
1188 switch (filt->ff_flow.fi_family) {
1189 case AF_INET:
1190 if (filt->ff_flow.fi_proto != 0)
1191 mask |= FIMB4_PROTO;
1192 if (filt->ff_flow.fi_tos != 0)
1193 mask |= FIMB4_TOS;
1194 if (filt->ff_flow.fi_dst.s_addr != 0)
1195 mask |= FIMB4_DADDR;
1196 if (filt->ff_flow.fi_src.s_addr != 0)
1197 mask |= FIMB4_SADDR;
1198 if (filt->ff_flow.fi_sport != 0)
1199 mask |= FIMB4_SPORT;
1200 if (filt->ff_flow.fi_dport != 0)
1201 mask |= FIMB4_DPORT;
1202 if (filt->ff_flow.fi_gpi != 0)
1203 mask |= FIMB4_GPI;
1204 break;
1205 #ifdef INET6
1206 case AF_INET6:
1207 filt6 = (struct flow_filter6 *)filt;
1208
1209 if (filt6->ff_flow6.fi6_proto != 0)
1210 mask |= FIMB6_PROTO;
1211 if (filt6->ff_flow6.fi6_tclass != 0)
1212 mask |= FIMB6_TCLASS;
1213 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
1214 mask |= FIMB6_DADDR;
1215 if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
1216 mask |= FIMB6_SADDR;
1217 if (filt6->ff_flow6.fi6_sport != 0)
1218 mask |= FIMB6_SPORT;
1219 if (filt6->ff_flow6.fi6_dport != 0)
1220 mask |= FIMB6_DPORT;
1221 if (filt6->ff_flow6.fi6_gpi != 0)
1222 mask |= FIMB6_GPI;
1223 if (filt6->ff_flow6.fi6_flowlabel != 0)
1224 mask |= FIMB6_FLABEL;
1225 break;
1226 #endif /* INET6 */
1227 }
1228 return (mask);
1229 }
1230
1231
1232 /*
1233 * helper functions to handle IPv4 fragments.
1234 * currently only in-sequence fragments are handled.
1235 * - fragment info is cached in a LRU list.
1236 * - when a first fragment is found, cache its flow info.
1237 * - when a non-first fragment is found, lookup the cache.
1238 */
1239
1240 struct ip4_frag {
1241 TAILQ_ENTRY(ip4_frag) ip4f_chain;
1242 char ip4f_valid;
1243 u_short ip4f_id;
1244 struct flowinfo_in ip4f_info;
1245 };
1246
1247 static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
1248
1249 #define IP4F_TABSIZE 16 /* IPv4 fragment cache size */
1250
1251
1252 static void
1253 ip4f_cache(ip, fin)
1254 struct ip *ip;
1255 struct flowinfo_in *fin;
1256 {
1257 struct ip4_frag *fp;
1258
1259 if (TAILQ_EMPTY(&ip4f_list)) {
1260 /* first time call, allocate fragment cache entries. */
1261 if (ip4f_init() < 0)
1262 /* allocation failed! */
1263 return;
1264 }
1265
1266 fp = ip4f_alloc();
1267 fp->ip4f_id = ip->ip_id;
1268 fp->ip4f_info.fi_proto = ip->ip_p;
1269 fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
1270 fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
1271
1272 /* save port numbers */
1273 fp->ip4f_info.fi_sport = fin->fi_sport;
1274 fp->ip4f_info.fi_dport = fin->fi_dport;
1275 fp->ip4f_info.fi_gpi = fin->fi_gpi;
1276 }
1277
1278 static int
1279 ip4f_lookup(ip, fin)
1280 struct ip *ip;
1281 struct flowinfo_in *fin;
1282 {
1283 struct ip4_frag *fp;
1284
1285 for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
1286 fp = TAILQ_NEXT(fp, ip4f_chain))
1287 if (ip->ip_id == fp->ip4f_id &&
1288 ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
1289 ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
1290 ip->ip_p == fp->ip4f_info.fi_proto) {
1291
1292 /* found the matching entry */
1293 fin->fi_sport = fp->ip4f_info.fi_sport;
1294 fin->fi_dport = fp->ip4f_info.fi_dport;
1295 fin->fi_gpi = fp->ip4f_info.fi_gpi;
1296
1297 if ((ntohs(ip->ip_off) & IP_MF) == 0)
1298 /* this is the last fragment,
1299 release the entry. */
1300 ip4f_free(fp);
1301
1302 return (1);
1303 }
1304
1305 /* no matching entry found */
1306 return (0);
1307 }
1308
1309 static int
1310 ip4f_init(void)
1311 {
1312 struct ip4_frag *fp;
1313 int i;
1314
1315 TAILQ_INIT(&ip4f_list);
1316 for (i=0; i<IP4F_TABSIZE; i++) {
1317 MALLOC(fp, struct ip4_frag *, sizeof(struct ip4_frag),
1318 M_DEVBUF, M_NOWAIT);
1319 if (fp == NULL) {
1320 printf("ip4f_init: can't alloc %dth entry!\n", i);
1321 if (i == 0)
1322 return (-1);
1323 return (0);
1324 }
1325 fp->ip4f_valid = 0;
1326 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1327 }
1328 return (0);
1329 }
1330
1331 static struct ip4_frag *
1332 ip4f_alloc(void)
1333 {
1334 struct ip4_frag *fp;
1335
1336 /* reclaim an entry at the tail, put it at the head */
1337 fp = TAILQ_LAST(&ip4f_list, ip4f_list);
1338 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1339 fp->ip4f_valid = 1;
1340 TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
1341 return (fp);
1342 }
1343
1344 static void
1345 ip4f_free(fp)
1346 struct ip4_frag *fp;
1347 {
1348 TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1349 fp->ip4f_valid = 0;
1350 TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1351 }
1352
1353 /*
1354 * read and write diffserv field in IPv4 or IPv6 header
1355 */
1356 u_int8_t
1357 read_dsfield(m, pktattr)
1358 struct mbuf *m;
1359 struct altq_pktattr *pktattr;
1360 {
1361 struct mbuf *m0;
1362 u_int8_t ds_field = 0;
1363
1364 if (pktattr == NULL ||
1365 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
1366 return ((u_int8_t)0);
1367
1368 /* verify that pattr_hdr is within the mbuf data */
1369 for (m0 = m; m0 != NULL; m0 = m0->m_next)
1370 if ((pktattr->pattr_hdr >= m0->m_data) &&
1371 (pktattr->pattr_hdr < m0->m_data + m0->m_len))
1372 break;
1373 if (m0 == NULL) {
1374 /* ick, pattr_hdr is stale */
1375 pktattr->pattr_af = AF_UNSPEC;
1376 #ifdef ALTQ_DEBUG
1377 printf("read_dsfield: can't locate header!\n");
1378 #endif
1379 return ((u_int8_t)0);
1380 }
1381
1382 if (pktattr->pattr_af == AF_INET) {
1383 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
1384
1385 if (ip->ip_v != 4)
1386 return ((u_int8_t)0); /* version mismatch! */
1387 ds_field = ip->ip_tos;
1388 }
1389 #ifdef INET6
1390 else if (pktattr->pattr_af == AF_INET6) {
1391 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
1392 u_int32_t flowlabel;
1393
1394 flowlabel = ntohl(ip6->ip6_flow);
1395 if ((flowlabel >> 28) != 6)
1396 return ((u_int8_t)0); /* version mismatch! */
1397 ds_field = (flowlabel >> 20) & 0xff;
1398 }
1399 #endif
1400 return (ds_field);
1401 }
1402
1403 void
1404 write_dsfield(m, pktattr, dsfield)
1405 struct mbuf *m;
1406 struct altq_pktattr *pktattr;
1407 u_int8_t dsfield;
1408 {
1409 struct mbuf *m0;
1410
1411 if (pktattr == NULL ||
1412 (pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
1413 return;
1414
1415 /* verify that pattr_hdr is within the mbuf data */
1416 for (m0 = m; m0 != NULL; m0 = m0->m_next)
1417 if ((pktattr->pattr_hdr >= m0->m_data) &&
1418 (pktattr->pattr_hdr < m0->m_data + m0->m_len))
1419 break;
1420 if (m0 == NULL) {
1421 /* ick, pattr_hdr is stale */
1422 pktattr->pattr_af = AF_UNSPEC;
1423 #ifdef ALTQ_DEBUG
1424 printf("write_dsfield: can't locate header!\n");
1425 #endif
1426 return;
1427 }
1428
1429 if (pktattr->pattr_af == AF_INET) {
1430 struct ip *ip = (struct ip *)pktattr->pattr_hdr;
1431 u_int8_t old;
1432 int32_t sum;
1433
1434 if (ip->ip_v != 4)
1435 return; /* version mismatch! */
1436 old = ip->ip_tos;
1437 dsfield |= old & 3; /* leave CU bits */
1438 if (old == dsfield)
1439 return;
1440 ip->ip_tos = dsfield;
1441 /*
1442 * update checksum (from RFC1624)
1443 * HC' = ~(~HC + ~m + m')
1444 */
1445 sum = ~ntohs(ip->ip_sum) & 0xffff;
1446 sum += 0xff00 + (~old & 0xff) + dsfield;
1447 sum = (sum >> 16) + (sum & 0xffff);
1448 sum += (sum >> 16); /* add carry */
1449
1450 ip->ip_sum = htons(~sum & 0xffff);
1451 }
1452 #ifdef INET6
1453 else if (pktattr->pattr_af == AF_INET6) {
1454 struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
1455 u_int32_t flowlabel;
1456
1457 flowlabel = ntohl(ip6->ip6_flow);
1458 if ((flowlabel >> 28) != 6)
1459 return; /* version mismatch! */
1460 flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
1461 ip6->ip6_flow = htonl(flowlabel);
1462 }
1463 #endif
1464 return;
1465 }
1466
1467
1468 /*
1469 * high resolution clock support taking advantage of a machine dependent
1470 * high resolution time counter (e.g., timestamp counter of intel pentium).
1471 * we assume
1472 * - 64-bit-long monotonically-increasing counter
1473 * - frequency range is 100M-4GHz (CPU speed)
1474 */
1475 u_int32_t machclk_freq = 0;
1476 u_int32_t machclk_per_tick = 0;
1477
1478 #if (defined(__i386__) || defined(__alpha__)) && !defined(ALTQ_NOPCC)
1479 #ifdef __FreeBSD__
1480 /* freebsd makes clock frequency accessible */
1481 #ifdef __alpha__
1482 extern u_int32_t cycles_per_sec; /* alpha cpu clock frequency */
1483 #endif
1484 void
1485 init_machclk(void)
1486 {
1487 #if defined(__i386__)
1488 #if (__FreeBSD_version > 300000)
1489 machclk_freq = tsc_freq;
1490 #else
1491 machclk_freq = i586_ctr_freq;
1492 #endif
1493 #elif defined(__alpha__)
1494 machclk_freq = cycles_per_sec;
1495 #endif /* __alpha__ */
1496 machclk_per_tick = machclk_freq / hz;
1497 }
1498 #else /* !__FreeBSD__ */
1499 /*
1500 * measure Pentium TSC or Alpha PCC clock frequency
1501 */
1502 void
1503 init_machclk(void)
1504 {
1505 static int wait;
1506 struct timeval tv_start, tv_end;
1507 u_int64_t start, end, diff;
1508 int timo;
1509
1510 microtime(&tv_start);
1511 start = read_machclk();
1512 timo = hz; /* 1 sec */
1513 (void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
1514 microtime(&tv_end);
1515 end = read_machclk();
1516 diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
1517 + tv_end.tv_usec - tv_start.tv_usec;
1518 if (diff != 0)
1519 machclk_freq = (u_int)((end - start) * 1000000 / diff);
1520 machclk_per_tick = machclk_freq / hz;
1521
1522 printf("altq: CPU clock: %uHz\n", machclk_freq);
1523 }
1524 #endif /* !__FreeBSD__ */
1525 #ifdef __alpha__
1526 /*
1527 * make a 64bit counter value out of the 32bit alpha processor cycle counter.
1528 * read_machclk must be called within a half of its wrap-around cycle
1529 * (about 5 sec for 400MHz cpu) to properly detect a counter wrap-around.
1530 * tbr_timeout calls read_machclk once a second.
1531 */
1532 u_int64_t
1533 read_machclk(void)
1534 {
1535 static u_int32_t last_pcc, upper;
1536 u_int32_t pcc;
1537
1538 pcc = (u_int32_t)alpha_rpcc();
1539 if (pcc <= last_pcc)
1540 upper++;
1541 last_pcc = pcc;
1542 return (((u_int64_t)upper << 32) + pcc);
1543 }
1544 #endif /* __alpha__ */
1545 #else /* !i386 && !alpha */
1546 /* use microtime() for now */
1547 void
1548 init_machclk(void)
1549 {
1550 machclk_freq = 1000000 << MACHCLK_SHIFT;
1551 machclk_per_tick = machclk_freq / hz;
1552 printf("altq: emulate %uHz cpu clock\n", machclk_freq);
1553 }
1554 #endif /* !i386 && !alpha */
1555