1 1.37 andvar /* $NetBSD: eb7500atx_machdep.c,v 1.37 2022/05/15 20:37:51 andvar Exp $ */ 2 1.1 chris 3 1.1 chris /* 4 1.1 chris * Copyright (c) 2000-2002 Reinoud Zandijk. 5 1.1 chris * Copyright (c) 1994-1998 Mark Brinicombe. 6 1.1 chris * Copyright (c) 1994 Brini. 7 1.1 chris * All rights reserved. 8 1.1 chris * 9 1.1 chris * This code is derived from software written for Brini by Mark Brinicombe 10 1.1 chris * 11 1.1 chris * Redistribution and use in source and binary forms, with or without 12 1.1 chris * modification, are permitted provided that the following conditions 13 1.1 chris * are met: 14 1.1 chris * 1. Redistributions of source code must retain the above copyright 15 1.1 chris * notice, this list of conditions and the following disclaimer. 16 1.1 chris * 2. Redistributions in binary form must reproduce the above copyright 17 1.1 chris * notice, this list of conditions and the following disclaimer in the 18 1.1 chris * documentation and/or other materials provided with the distribution. 19 1.1 chris * 3. All advertising materials mentioning features or use of this software 20 1.1 chris * must display the following acknowledgement: 21 1.1 chris * This product includes software developed by Brini. 22 1.1 chris * 4. The name of the company nor the name of the author may be used to 23 1.1 chris * endorse or promote products derived from this software without specific 24 1.1 chris * prior written permission. 25 1.1 chris * 26 1.1 chris * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED 27 1.1 chris * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 28 1.1 chris * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 29 1.1 chris * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 30 1.1 chris * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 31 1.1 chris * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 32 1.1 chris * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 1.1 chris * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 1.1 chris * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 1.1 chris * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 1.1 chris * SUCH DAMAGE. 37 1.1 chris * 38 1.1 chris * RiscBSD kernel project 39 1.1 chris * 40 1.1 chris * machdep.c 41 1.1 chris * 42 1.20 wiz * Machine dependent functions for kernel setup 43 1.1 chris * 44 1.1 chris * This file still needs a lot of work 45 1.1 chris * 46 1.1 chris * Created : 17/09/94 47 1.1 chris * Updated for yet another new bootloader 28/12/02 48 1.1 chris */ 49 1.1 chris 50 1.1 chris #include "opt_ddb.h" 51 1.14 apb #include "opt_modular.h" 52 1.1 chris #include "vidcvideo.h" 53 1.1 chris #include "pckbc.h" 54 1.1 chris 55 1.1 chris #include <sys/param.h> 56 1.1 chris 57 1.37 andvar __KERNEL_RCSID(0, "$NetBSD: eb7500atx_machdep.c,v 1.37 2022/05/15 20:37:51 andvar Exp $"); 58 1.1 chris 59 1.1 chris #include <sys/systm.h> 60 1.1 chris #include <sys/kernel.h> 61 1.1 chris #include <sys/reboot.h> 62 1.1 chris #include <sys/proc.h> 63 1.1 chris #include <sys/msgbuf.h> 64 1.1 chris #include <sys/exec.h> 65 1.16 tsutsui #include <sys/exec_aout.h> 66 1.1 chris #include <sys/ksyms.h> 67 1.21 dyoung #include <sys/bus.h> 68 1.26 matt #include <sys/cpu.h> 69 1.26 matt #include <sys/intr.h> 70 1.26 matt #include <sys/device.h> 71 1.1 chris 72 1.1 chris #include <dev/cons.h> 73 1.1 chris 74 1.26 matt #include <dev/ic/pckbcvar.h> 75 1.26 matt 76 1.26 matt #include <dev/i2c/i2cvar.h> 77 1.26 matt #include <dev/i2c/pcf8583var.h> 78 1.26 matt 79 1.1 chris #include <machine/db_machdep.h> 80 1.1 chris #include <ddb/db_sym.h> 81 1.1 chris #include <ddb/db_extern.h> 82 1.1 chris 83 1.1 chris #include <uvm/uvm.h> 84 1.1 chris 85 1.26 matt #include <arm/locore.h> 86 1.26 matt #include <arm/undefined.h> 87 1.26 matt 88 1.1 chris #include <machine/signal.h> 89 1.1 chris #include <machine/bootconfig.h> 90 1.1 chris #include <machine/io.h> 91 1.1 chris #include <arm/arm32/machdep.h> 92 1.1 chris #include <machine/rtc.h> 93 1.1 chris 94 1.1 chris #include <arm/iomd/vidc.h> 95 1.1 chris #include <arm/iomd/iomdreg.h> 96 1.1 chris #include <arm/iomd/iomdvar.h> 97 1.1 chris #include <arm/iomd/vidcvideo.h> 98 1.1 chris #include <arm/iomd/iomdiicvar.h> 99 1.1 chris 100 1.1 chris /* static i2c_tag_t acorn32_i2c_tag;*/ 101 1.1 chris 102 1.1 chris #include "ksyms.h" 103 1.1 chris 104 1.1 chris /* Kernel text starts at the base of the kernel address space. */ 105 1.1 chris #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000) 106 1.1 chris #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 107 1.1 chris 108 1.1 chris /* 109 1.1 chris * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space 110 1.1 chris * Fixed mappings exist from 0xf6000000 - 0xffffffff 111 1.1 chris */ 112 1.1 chris #define KERNEL_VM_SIZE 0x05000000 113 1.1 chris 114 1.1 chris /* 115 1.1 chris * Address to call from cpu_reset() to reset the machine. 116 1.20 wiz * This is machine architecture dependent as it varies depending 117 1.1 chris * on where the ROM appears when you turn the MMU off. 118 1.1 chris */ 119 1.1 chris 120 1.1 chris #define VERBOSE_INIT_ARM 121 1.1 chris 122 1.1 chris struct bootconfig bootconfig; /* Boot config storage */ 123 1.1 chris videomemory_t videomemory; /* Video memory descriptor */ 124 1.1 chris 125 1.1 chris char *boot_args = NULL; /* holds the pre-processed boot arguments */ 126 1.1 chris extern char *booted_kernel; /* used for ioctl to retrieve booted kernel */ 127 1.1 chris 128 1.1 chris extern int *vidc_base; 129 1.22 skrll extern uint32_t iomd_base; 130 1.1 chris extern struct bus_space iomd_bs_tag; 131 1.1 chris 132 1.1 chris paddr_t physical_start; 133 1.1 chris paddr_t physical_freestart; 134 1.1 chris paddr_t physical_freeend; 135 1.1 chris paddr_t physical_end; 136 1.1 chris paddr_t dma_range_begin; 137 1.1 chris paddr_t dma_range_end; 138 1.1 chris 139 1.1 chris u_int free_pages; 140 1.1 chris paddr_t memoryblock_end; 141 1.1 chris 142 1.1 chris #ifndef PMAP_STATIC_L1S 143 1.1 chris int max_processes = 64; /* Default number */ 144 1.1 chris #endif /* !PMAP_STATIC_L1S */ 145 1.1 chris 146 1.1 chris u_int videodram_size = 0; /* Amount of DRAM to reserve for video */ 147 1.1 chris 148 1.1 chris paddr_t msgbufphys; 149 1.1 chris 150 1.1 chris #define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */ 151 1.1 chris #define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */ 152 1.1 chris #define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel */ 153 1.1 chris #define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */ 154 1.33 skrll #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 155 1.1 chris #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 156 1.1 chris 157 1.1 chris pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 158 1.1 chris 159 1.1 chris 160 1.1 chris #ifdef CPU_SA110 161 1.1 chris #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2) 162 1.1 chris static vaddr_t sa110_cc_base; 163 1.1 chris #endif /* CPU_SA110 */ 164 1.1 chris 165 1.1 chris /* Prototypes */ 166 1.1 chris void physcon_display_base(u_int); 167 1.1 chris extern void consinit(void); 168 1.1 chris 169 1.1 chris void data_abort_handler(trapframe_t *); 170 1.1 chris void prefetch_abort_handler(trapframe_t *); 171 1.1 chris void undefinedinstruction_bounce(trapframe_t *frame); 172 1.1 chris 173 1.1 chris static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *); 174 1.1 chris static void process_kernel_args(void); 175 1.1 chris 176 1.1 chris extern void dump_spl_masks(void); 177 1.1 chris 178 1.1 chris void rpc_sa110_cc_setup(void); 179 1.1 chris 180 1.1 chris void parse_rpc_bootargs(char *args); 181 1.1 chris 182 1.1 chris extern void dumpsys(void); 183 1.1 chris 184 1.1 chris 185 1.1 chris # define console_flush() /* empty */ 186 1.1 chris 187 1.1 chris 188 1.1 chris #define panic2(a) do { \ 189 1.1 chris memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024); \ 190 1.1 chris consinit(); \ 191 1.1 chris panic a; \ 192 1.1 chris } while (/* CONSTCOND */ 0) 193 1.1 chris 194 1.1 chris /* 195 1.1 chris * void cpu_reboot(int howto, char *bootstr) 196 1.1 chris * 197 1.1 chris * Reboots the system 198 1.1 chris * 199 1.1 chris * Deal with any syncing, unmounting, dumping and shutdown hooks, 200 1.1 chris * then reset the CPU. 201 1.1 chris */ 202 1.1 chris 203 1.1 chris /* NOTE: These variables will be removed, well some of them */ 204 1.1 chris 205 1.1 chris extern u_int current_mask; 206 1.1 chris 207 1.1 chris void 208 1.1 chris cpu_reboot(int howto, char *bootstr) 209 1.1 chris { 210 1.1 chris 211 1.1 chris #ifdef DIAGNOSTIC 212 1.1 chris printf("boot: howto=%08x curlwp=%p\n", howto, curlwp); 213 1.1 chris 214 1.1 chris printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n", 215 1.1 chris irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY], 216 1.1 chris irqmasks[IPL_VM]); 217 1.1 chris printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n", 218 1.1 chris irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]); 219 1.1 chris 220 1.1 chris /* dump_spl_masks(); */ 221 1.1 chris #endif /* DIAGNOSTIC */ 222 1.1 chris 223 1.1 chris /* 224 1.1 chris * If we are still cold then hit the air brakes 225 1.1 chris * and crash to earth fast 226 1.1 chris */ 227 1.1 chris if (cold) { 228 1.1 chris doshutdownhooks(); 229 1.10 dyoung pmf_system_shutdown(boothowto); 230 1.1 chris printf("Halted while still in the ICE age.\n"); 231 1.1 chris printf("The operating system has halted.\n"); 232 1.1 chris printf("Please press any key to reboot.\n\n"); 233 1.1 chris cngetc(); 234 1.1 chris printf("rebooting...\n"); 235 1.1 chris cpu_reset(); 236 1.1 chris /*NOTREACHED*/ 237 1.1 chris } 238 1.1 chris 239 1.1 chris /* Disable console buffering */ 240 1.1 chris cnpollc(1); 241 1.1 chris 242 1.1 chris /* 243 1.1 chris * If RB_NOSYNC was not specified sync the discs. 244 1.1 chris * Note: Unless cold is set to 1 here, syslogd will die during 245 1.1 chris * the unmount. It looks like syslogd is getting woken up 246 1.1 chris * only to find that it cannot page part of the binary in as 247 1.1 chris * the filesystem has been unmounted. 248 1.1 chris */ 249 1.1 chris if (!(howto & RB_NOSYNC)) 250 1.1 chris bootsync(); 251 1.1 chris 252 1.1 chris /* Say NO to interrupts */ 253 1.1 chris splhigh(); 254 1.1 chris 255 1.1 chris /* Do a dump if requested. */ 256 1.1 chris if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 257 1.1 chris dumpsys(); 258 1.1 chris 259 1.1 chris /* 260 1.1 chris * Auto reboot overload protection 261 1.1 chris * 262 1.1 chris * This code stops the kernel entering an endless loop of reboot 263 1.1 chris * - panic cycles. This will have the effect of stopping further 264 1.1 chris * reboots after it has rebooted 8 times after panics. A clean 265 1.1 chris * halt or reboot will reset the counter. 266 1.1 chris */ 267 1.1 chris 268 1.1 chris /* Run any shutdown hooks */ 269 1.1 chris doshutdownhooks(); 270 1.1 chris 271 1.10 dyoung pmf_system_shutdown(boothowto); 272 1.10 dyoung 273 1.1 chris /* Make sure IRQ's are disabled */ 274 1.1 chris IRQdisable; 275 1.1 chris 276 1.1 chris if (howto & RB_HALT) { 277 1.1 chris printf("The operating system has halted.\n"); 278 1.1 chris printf("Please press any key to reboot.\n\n"); 279 1.1 chris cngetc(); 280 1.1 chris } 281 1.1 chris 282 1.1 chris printf("rebooting...\n"); 283 1.1 chris cpu_reset(); 284 1.1 chris /*NOTREACHED*/ 285 1.1 chris } 286 1.1 chris 287 1.1 chris 288 1.1 chris /* 289 1.1 chris * u_int initarm(BootConfig *bootconf) 290 1.1 chris * 291 1.1 chris * Initial entry point on startup. This gets called before main() is 292 1.1 chris * entered. 293 1.1 chris * It should be responsible for setting up everything that must be 294 1.1 chris * in place when main is called. 295 1.1 chris * This includes 296 1.1 chris * Taking a copy of the boot configuration structure. 297 1.1 chris * Initialising the physical console so characters can be printed. 298 1.1 chris * Setting up page tables for the kernel 299 1.1 chris * Relocating the kernel to the bottom of physical memory 300 1.1 chris */ 301 1.1 chris 302 1.1 chris /* 303 1.1 chris * this part is completely rewritten for the new bootloader ... It features 304 1.1 chris * a flat memory map with a mapping comparable to the EBSA arm32 machine 305 1.1 chris * to boost the portability and likeness of the code 306 1.1 chris */ 307 1.1 chris 308 1.1 chris /* 309 1.1 chris * Mapping table for core kernel memory. This memory is mapped at init 310 1.1 chris * time with section mappings. 311 1.33 skrll * 312 1.1 chris * XXX One big assumption in the current architecture seems that the kernel is 313 1.1 chris * XXX supposed to be mapped into bootconfig.dram[0]. 314 1.1 chris */ 315 1.1 chris 316 1.1 chris #define ONE_MB 0x100000 317 1.1 chris 318 1.1 chris struct l1_sec_map { 319 1.1 chris vaddr_t va; 320 1.1 chris paddr_t pa; 321 1.1 chris vsize_t size; 322 1.1 chris vm_prot_t prot; 323 1.1 chris int cache; 324 1.1 chris } l1_sec_table[] = { 325 1.1 chris /* Map 1Mb section for VIDC20 */ 326 1.1 chris { VIDC_BASE, VIDC_HW_BASE, 327 1.1 chris ONE_MB, VM_PROT_READ|VM_PROT_WRITE, 328 1.1 chris PTE_NOCACHE }, 329 1.1 chris 330 1.1 chris /* Map 1Mb section from IOMD */ 331 1.1 chris { IOMD_BASE, IOMD_HW_BASE, 332 1.1 chris ONE_MB, VM_PROT_READ|VM_PROT_WRITE, 333 1.1 chris PTE_NOCACHE }, 334 1.1 chris 335 1.1 chris /* Map 1Mb of COMBO (and module space) */ 336 1.1 chris { IO_BASE, IO_HW_BASE, 337 1.1 chris ONE_MB, VM_PROT_READ|VM_PROT_WRITE, 338 1.1 chris PTE_NOCACHE }, 339 1.1 chris { 0, 0, 0, 0, 0 } 340 1.1 chris }; 341 1.1 chris 342 1.1 chris 343 1.1 chris static void 344 1.1 chris canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf) 345 1.1 chris { 346 1.1 chris /* check for bootconfig v2+ structure */ 347 1.1 chris if (raw_bootconf->magic == BOOTCONFIG_MAGIC) { 348 1.1 chris /* v2+ cleaned up structure found */ 349 1.1 chris *bootconf = *raw_bootconf; 350 1.1 chris return; 351 1.1 chris } else { 352 1.1 chris panic2(("Internal error: no valid bootconfig block found")); 353 1.1 chris } 354 1.1 chris } 355 1.1 chris 356 1.1 chris 357 1.31 skrll vaddr_t 358 1.1 chris initarm(void *cookie) 359 1.1 chris { 360 1.1 chris struct bootconfig *raw_bootconf = cookie; 361 1.1 chris int loop; 362 1.1 chris int loop1; 363 1.1 chris u_int logical; 364 1.1 chris u_int kerneldatasize; 365 1.1 chris u_int l1pagetable; 366 1.1 chris struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE; 367 1.1 chris 368 1.1 chris /* 369 1.1 chris * Heads up ... Setup the CPU / MMU / TLB functions 370 1.1 chris */ 371 1.1 chris set_cpufuncs(); 372 1.1 chris 373 1.36 andvar /* canonicalise the boot configuration structure to allow versioning */ 374 1.1 chris canonicalise_bootconfig(&bootconfig, raw_bootconf); 375 1.1 chris booted_kernel = bootconfig.kernelname; 376 1.1 chris 377 1.1 chris /* if the wscons interface is used, switch off VERBOSE booting :( */ 378 1.1 chris #if NVIDCVIDEO>0 379 1.1 chris # undef VERBOSE_INIT_ARM 380 1.1 chris #endif 381 1.1 chris 382 1.1 chris /* 383 1.1 chris * Initialise the video memory descriptor 384 1.1 chris * 385 1.1 chris * Note: all references to the video memory virtual/physical address 386 1.1 chris * should go via this structure. 387 1.1 chris */ 388 1.1 chris 389 1.1 chris /* Hardwire it on the place the bootloader tells us */ 390 1.1 chris videomemory.vidm_vbase = bootconfig.display_start; 391 1.1 chris videomemory.vidm_pbase = bootconfig.display_phys; 392 1.1 chris videomemory.vidm_size = bootconfig.display_size; 393 1.33 skrll if (bootconfig.vram[0].pages) 394 1.1 chris videomemory.vidm_type = VIDEOMEM_TYPE_VRAM; 395 1.33 skrll else 396 1.1 chris videomemory.vidm_type = VIDEOMEM_TYPE_DRAM; 397 1.1 chris vidc_base = (int *) VIDC_HW_BASE; 398 1.1 chris iomd_base = IOMD_HW_BASE; 399 1.1 chris 400 1.1 chris /* 401 1.1 chris * Initialise the physical console 402 1.1 chris * This is done in main() but for the moment we do it here so that 403 1.1 chris * we can use printf in initarm() before main() has been called. 404 1.1 chris * only for `vidcconsole!' ... not wscons 405 1.1 chris */ 406 1.1 chris #if NVIDCVIDEO == 0 407 1.1 chris consinit(); 408 1.1 chris #endif 409 1.1 chris 410 1.1 chris /* 411 1.1 chris * Initialise the diagnostic serial console 412 1.1 chris * This allows a means of generating output during initarm(). 413 1.1 chris * Once all the memory map changes are complete we can call consinit() 414 1.1 chris * and not have to worry about things moving. 415 1.1 chris */ 416 1.1 chris /* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */ 417 1.1 chris /* XXX snif .... i am still not able to this */ 418 1.1 chris 419 1.1 chris /* 420 1.1 chris * We have the following memory map (derived from EBSA) 421 1.1 chris * 422 1.1 chris * virtual address == physical address apart from the areas: 423 1.1 chris * 0x00000000 -> 0x000fffff which is mapped to 424 1.1 chris * top 1MB of physical memory 425 1.37 andvar * 0xf0000000 -> 0xf0ffffff which is mapped to 426 1.1 chris * physical address 0x01000000 -> 0x01ffffff (DRAM0a, dram[0]) 427 1.1 chris * 428 1.1 chris * This means that the kernel is mapped suitably for continuing 429 1.1 chris * execution, all I/O is mapped 1:1 virtual to physical and 430 1.1 chris * physical memory is accessible. 431 1.1 chris * 432 1.1 chris * The initarm() has the responsibility for creating the kernel 433 1.1 chris * page tables. 434 1.1 chris * It must also set up various memory pointers that are used 435 1.33 skrll * by pmap etc. 436 1.1 chris */ 437 1.1 chris 438 1.1 chris /* START OF REAL NEW STUFF */ 439 1.1 chris 440 1.1 chris /* Check to make sure the page size is correct */ 441 1.1 chris if (PAGE_SIZE != bootconfig.pagesize) 442 1.1 chris panic2(("Page size is %d bytes instead of %d !! (huh?)\n", 443 1.1 chris bootconfig.pagesize, PAGE_SIZE)); 444 1.1 chris 445 1.1 chris /* process arguments */ 446 1.1 chris process_kernel_args(); 447 1.1 chris 448 1.1 chris 449 1.1 chris /* 450 1.1 chris * Now set up the page tables for the kernel ... this part is copied 451 1.33 skrll * in a (modified?) way from the EBSA machine port.... 452 1.1 chris */ 453 1.1 chris 454 1.1 chris #ifdef VERBOSE_INIT_ARM 455 1.1 chris printf("Allocating page tables\n"); 456 1.1 chris #endif 457 1.1 chris /* 458 1.35 andvar * Set up the variables that define the availability of physical 459 1.1 chris * memory 460 1.1 chris */ 461 1.1 chris physical_start = 0xffffffff; 462 1.33 skrll physical_end = 0; 463 1.1 chris for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) { 464 1.1 chris if (bootconfig.dram[loop].address < physical_start) 465 1.1 chris physical_start = bootconfig.dram[loop].address; 466 1.1 chris memoryblock_end = bootconfig.dram[loop].address + 467 1.1 chris bootconfig.dram[loop].pages * PAGE_SIZE; 468 1.1 chris if (memoryblock_end > physical_end) 469 1.1 chris physical_end = memoryblock_end; 470 1.1 chris physmem += bootconfig.dram[loop].pages; 471 1.1 chris }; 472 1.1 chris /* constants for now, but might be changed/configured */ 473 1.1 chris dma_range_begin = (paddr_t) physical_start; 474 1.1 chris dma_range_end = (paddr_t) MIN(physical_end, 512*1024*1024); 475 1.1 chris /* XXX HACK HACK XXX */ 476 1.1 chris /* dma_range_end = 0x18000000; */ 477 1.1 chris 478 1.1 chris if (physical_start != bootconfig.dram[0].address) { 479 1.1 chris int oldblocks = 0; 480 1.1 chris 481 1.33 skrll /* 482 1.1 chris * must be a kinetic, as it's the only thing to shuffle memory 483 1.1 chris * around 484 1.1 chris */ 485 1.1 chris /* hack hack - throw away the slow dram */ 486 1.1 chris for (loop = 0; loop < bootconfig.dramblocks; ++loop) { 487 1.1 chris if (bootconfig.dram[loop].address < 488 1.1 chris bootconfig.dram[0].address) { 489 1.1 chris /* non kinetic ram */ 490 1.1 chris bootconfig.dram[loop].address = 0; 491 1.1 chris physmem -= bootconfig.dram[loop].pages; 492 1.1 chris bootconfig.drampages -= 493 1.1 chris bootconfig.dram[loop].pages; 494 1.1 chris bootconfig.dram[loop].pages = 0; 495 1.1 chris oldblocks++; 496 1.1 chris } 497 1.1 chris } 498 1.1 chris physical_start = bootconfig.dram[0].address; 499 1.33 skrll bootconfig.dramblocks -= oldblocks; 500 1.1 chris } 501 1.33 skrll 502 1.1 chris physical_freestart = physical_start; 503 1.1 chris free_pages = bootconfig.drampages; 504 1.1 chris physical_freeend = physical_end; 505 1.33 skrll 506 1.1 chris 507 1.1 chris /* 508 1.1 chris * AHUM !! set this variable ... it was set up in the old 1st 509 1.1 chris * stage bootloader 510 1.1 chris */ 511 1.1 chris kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize; 512 1.1 chris 513 1.1 chris /* Update the address of the first free page of physical memory */ 514 1.1 chris /* XXX Assumption that the kernel and stuff is at the LOWEST physical memory address? XXX */ 515 1.1 chris physical_freestart += 516 1.1 chris bootconfig.kernsize + bootconfig.MDFsize + bootconfig.scratchsize; 517 1.1 chris free_pages -= (physical_freestart - physical_start) / PAGE_SIZE; 518 1.33 skrll 519 1.1 chris /* Define a macro to simplify memory allocation */ 520 1.1 chris #define valloc_pages(var, np) \ 521 1.1 chris alloc_pages((var).pv_pa, (np)); \ 522 1.1 chris (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 523 1.1 chris 524 1.1 chris #define alloc_pages(var, np) \ 525 1.1 chris (var) = physical_freestart; \ 526 1.1 chris physical_freestart += ((np) * PAGE_SIZE); \ 527 1.1 chris free_pages -= (np); \ 528 1.1 chris memset((char *)(var), 0, ((np) * PAGE_SIZE)); 529 1.1 chris 530 1.1 chris loop1 = 0; 531 1.1 chris kernel_l1pt.pv_pa = 0; 532 1.1 chris for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 533 1.1 chris /* Are we 16KB aligned for an L1 ? */ 534 1.1 chris if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0 535 1.1 chris && kernel_l1pt.pv_pa == 0) { 536 1.1 chris valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 537 1.1 chris } else { 538 1.1 chris valloc_pages(kernel_pt_table[loop1], 539 1.1 chris L2_TABLE_SIZE / PAGE_SIZE); 540 1.1 chris ++loop1; 541 1.1 chris } 542 1.1 chris } 543 1.1 chris 544 1.1 chris 545 1.1 chris #ifdef DIAGNOSTIC 546 1.1 chris /* This should never be able to happen but better confirm that. */ 547 1.1 chris if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 548 1.1 chris panic2(("initarm: Failed to align the kernel page " 549 1.1 chris "directory\n")); 550 1.1 chris #endif 551 1.1 chris 552 1.1 chris /* 553 1.1 chris * Allocate a page for the system page mapped to V0x00000000 554 1.1 chris * This page will just contain the system vectors and can be 555 1.1 chris * shared by all processes. 556 1.1 chris */ 557 1.1 chris alloc_pages(systempage.pv_pa, 1); 558 1.1 chris 559 1.1 chris /* Allocate stacks for all modes */ 560 1.1 chris valloc_pages(irqstack, IRQ_STACK_SIZE); 561 1.1 chris valloc_pages(abtstack, ABT_STACK_SIZE); 562 1.1 chris valloc_pages(undstack, UND_STACK_SIZE); 563 1.1 chris valloc_pages(kernelstack, UPAGES); 564 1.1 chris 565 1.1 chris #ifdef VERBOSE_INIT_ARM 566 1.1 chris printf("Setting up stacks :\n"); 567 1.1 chris printf("IRQ stack: p0x%08lx v0x%08lx\n", 568 1.33 skrll irqstack.pv_pa, irqstack.pv_va); 569 1.1 chris printf("ABT stack: p0x%08lx v0x%08lx\n", 570 1.33 skrll abtstack.pv_pa, abtstack.pv_va); 571 1.1 chris printf("UND stack: p0x%08lx v0x%08lx\n", 572 1.33 skrll undstack.pv_pa, undstack.pv_va); 573 1.1 chris printf("SVC stack: p0x%08lx v0x%08lx\n", 574 1.33 skrll kernelstack.pv_pa, kernelstack.pv_va); 575 1.1 chris printf("\n"); 576 1.1 chris #endif 577 1.1 chris 578 1.1 chris alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 579 1.1 chris 580 1.1 chris #ifdef CPU_SA110 581 1.1 chris /* 582 1.1 chris * XXX totally stuffed hack to work round problems introduced 583 1.1 chris * in recent versions of the pmap code. Due to the calls used there 584 1.1 chris * we cannot allocate virtual memory during bootstrap. 585 1.1 chris */ 586 1.1 chris sa110_cc_base = (KERNEL_BASE + (physical_freestart - physical_start) 587 1.1 chris + (CPU_SA110_CACHE_CLEAN_SIZE - 1)) 588 1.1 chris & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1); 589 1.1 chris #endif /* CPU_SA110 */ 590 1.1 chris 591 1.1 chris /* 592 1.1 chris * Ok we have allocated physical pages for the primary kernel 593 1.1 chris * page tables 594 1.1 chris */ 595 1.1 chris 596 1.1 chris #ifdef VERBOSE_INIT_ARM 597 1.1 chris printf("Creating L1 page table\n"); 598 1.1 chris #endif 599 1.1 chris 600 1.1 chris /* 601 1.1 chris * Now we start construction of the L1 page table 602 1.1 chris * We start by mapping the L2 page tables into the L1. 603 1.1 chris * This means that we can replace L1 mappings later on if necessary 604 1.1 chris */ 605 1.1 chris l1pagetable = kernel_l1pt.pv_pa; 606 1.1 chris 607 1.1 chris /* Map the L2 pages tables in the L1 page table */ 608 1.1 chris pmap_link_l2pt(l1pagetable, 0x00000000, 609 1.1 chris &kernel_pt_table[KERNEL_PT_SYS]); 610 1.1 chris pmap_link_l2pt(l1pagetable, KERNEL_BASE, 611 1.1 chris &kernel_pt_table[KERNEL_PT_KERNEL]); 612 1.1 chris for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) 613 1.1 chris pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 614 1.1 chris &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 615 1.1 chris pmap_link_l2pt(l1pagetable, VMEM_VBASE, 616 1.1 chris &kernel_pt_table[KERNEL_PT_VMEM]); 617 1.1 chris 618 1.1 chris /* update the top of the kernel VM */ 619 1.1 chris pmap_curmaxkvaddr = 620 1.1 chris KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 621 1.1 chris 622 1.1 chris #ifdef VERBOSE_INIT_ARM 623 1.1 chris printf("Mapping kernel\n"); 624 1.1 chris #endif 625 1.1 chris 626 1.1 chris /* Now we fill in the L2 pagetable for the kernel code/data */ 627 1.1 chris /* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */ 628 1.1 chris /* 629 1.1 chris * The defines are a workaround for a recent problem that occurred 630 1.1 chris * with ARM 610 processors and some ARM 710 processors 631 1.1 chris * Other ARM 710 and StrongARM processors don't have a problem. 632 1.1 chris */ 633 1.1 chris if (N_GETMAGIC(kernexec[0]) == ZMAGIC) { 634 1.1 chris #if defined(CPU_ARM6) || defined(CPU_ARM7) 635 1.1 chris logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, 636 1.1 chris physical_start, kernexec->a_text, 637 1.1 chris VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 638 1.1 chris #else /* CPU_ARM6 || CPU_ARM7 */ 639 1.1 chris logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, 640 1.1 chris physical_start, kernexec->a_text, 641 1.1 chris VM_PROT_READ, PTE_CACHE); 642 1.1 chris #endif /* CPU_ARM6 || CPU_ARM7 */ 643 1.1 chris logical += pmap_map_chunk(l1pagetable, 644 1.1 chris KERNEL_TEXT_BASE + logical, physical_start + logical, 645 1.1 chris kerneldatasize - kernexec->a_text, 646 1.1 chris VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 647 1.1 chris } else { /* !ZMAGIC */ 648 1.1 chris /* 649 1.1 chris * Most likely an ELF kernel ... 650 1.1 chris * XXX no distinction yet between read only and 651 1.1 chris * read/write area's ... 652 1.1 chris */ 653 1.1 chris pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, 654 1.1 chris physical_start, kerneldatasize, 655 1.1 chris VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 656 1.1 chris }; 657 1.1 chris 658 1.1 chris 659 1.1 chris #ifdef VERBOSE_INIT_ARM 660 1.1 chris printf("Constructing L2 page tables\n"); 661 1.1 chris #endif 662 1.1 chris 663 1.1 chris /* Map the stack pages */ 664 1.1 chris pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 665 1.1 chris IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 666 1.1 chris pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 667 1.1 chris ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 668 1.1 chris pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 669 1.1 chris UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 670 1.1 chris pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 671 1.1 chris UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 672 1.1 chris 673 1.1 chris pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 674 1.1 chris L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 675 1.1 chris 676 1.1 chris for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 677 1.1 chris pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 678 1.1 chris kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 679 1.1 chris VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 680 1.1 chris } 681 1.1 chris 682 1.1 chris /* Now we fill in the L2 pagetable for the VRAM */ 683 1.1 chris /* 684 1.1 chris * Current architectures mean that the VRAM is always in 1 685 1.1 chris * continuous bank. This means that we can just map the 2 meg 686 1.1 chris * that the VRAM would occupy. In theory we don't need a page 687 1.1 chris * table for VRAM, we could section map it but we would need 688 1.1 chris * the page tables if DRAM was in use. 689 1.1 chris * XXX please map two adjacent virtual areas to ONE physical 690 1.1 chris * area 691 1.1 chris */ 692 1.1 chris pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase, 693 1.1 chris videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 694 1.1 chris pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size, 695 1.1 chris videomemory.vidm_pbase, videomemory.vidm_size, 696 1.1 chris VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 697 1.1 chris 698 1.1 chris /* Map the vector page. */ 699 1.1 chris pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 700 1.1 chris VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 701 1.1 chris 702 1.1 chris /* Map the core memory needed before autoconfig */ 703 1.1 chris loop = 0; 704 1.1 chris while (l1_sec_table[loop].size) { 705 1.27 matt vsize_t sz; 706 1.1 chris 707 1.1 chris #ifdef VERBOSE_INIT_ARM 708 1.1 chris printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa, 709 1.1 chris l1_sec_table[loop].pa + l1_sec_table[loop].size - 1, 710 1.1 chris l1_sec_table[loop].va); 711 1.1 chris #endif 712 1.1 chris for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE) 713 1.1 chris pmap_map_section(l1pagetable, 714 1.1 chris l1_sec_table[loop].va + sz, 715 1.1 chris l1_sec_table[loop].pa + sz, 716 1.1 chris l1_sec_table[loop].prot, 717 1.1 chris l1_sec_table[loop].cache); 718 1.1 chris ++loop; 719 1.1 chris } 720 1.1 chris 721 1.1 chris /* 722 1.1 chris * Now we have the real page tables in place so we can switch 723 1.1 chris * to them. Once this is done we will be running with the 724 1.1 chris * REAL kernel page tables. 725 1.1 chris */ 726 1.1 chris 727 1.1 chris #ifdef VERBOSE_INIT_ARM 728 1.1 chris printf("switching domains\n"); 729 1.1 chris #endif 730 1.1 chris /* be a client to all domains */ 731 1.1 chris cpu_domains(0x55555555); 732 1.1 chris 733 1.12 chris /* Switch tables */ 734 1.12 chris #ifdef VERBOSE_INIT_ARM 735 1.12 chris printf("switching to new L1 page table\n"); 736 1.12 chris #endif 737 1.25 matt cpu_setttb(kernel_l1pt.pv_pa, true); 738 1.1 chris 739 1.1 chris /* 740 1.1 chris * We must now clean the cache again.... 741 1.1 chris * Cleaning may be done by reading new data to displace any 742 1.19 uebayasi * dirty data in the cache. This will have happened in cpu_setttb() 743 1.1 chris * but since we are boot strapping the addresses used for the read 744 1.1 chris * may have just been remapped and thus the cache could be out 745 1.1 chris * of sync. A re-clean after the switch will cure this. 746 1.35 andvar * After booting there are no gross relocations of the kernel thus 747 1.1 chris * this problem will not occur after initarm(). 748 1.1 chris */ 749 1.1 chris cpu_idcache_wbinv_all(); 750 1.1 chris cpu_tlb_flushID(); 751 1.1 chris cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 752 1.1 chris 753 1.1 chris /* 754 1.1 chris * Moved from cpu_startup() as data_abort_handler() references 755 1.1 chris * this during uvm init 756 1.1 chris */ 757 1.18 rmind uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 758 1.1 chris 759 1.33 skrll /* 760 1.1 chris * if there is support for a serial console ...we should now 761 1.1 chris * reattach it 762 1.1 chris */ 763 1.1 chris /* fcomcndetach();*/ 764 1.1 chris 765 1.1 chris /* 766 1.1 chris * Reflect videomemory relocation in the videomemory structure 767 1.1 chris * and reinit console 768 1.1 chris */ 769 1.1 chris if (bootconfig.vram[0].pages == 0) { 770 1.1 chris videomemory.vidm_vbase = VMEM_VBASE; 771 1.1 chris } else { 772 1.1 chris videomemory.vidm_vbase = VMEM_VBASE; 773 1.1 chris bootconfig.display_start = VMEM_VBASE; 774 1.1 chris }; 775 1.1 chris vidc_base = (int *) VIDC_BASE; 776 1.1 chris iomd_base = IOMD_BASE; 777 1.1 chris 778 1.1 chris #ifdef VERBOSE_INIT_ARM 779 1.1 chris printf("running on the new L1 page table!\n"); 780 1.1 chris printf("done.\n"); 781 1.1 chris #endif 782 1.1 chris 783 1.1 chris arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); 784 1.1 chris 785 1.1 chris #ifdef VERBOSE_INIT_ARM 786 1.1 chris printf("\n"); 787 1.1 chris #endif 788 1.1 chris 789 1.1 chris /* 790 1.1 chris * Pages were allocated during the secondary bootstrap for the 791 1.1 chris * stacks for different CPU modes. 792 1.1 chris * We must now set the r13 registers in the different CPU modes to 793 1.1 chris * point to these stacks. 794 1.1 chris * Since the ARM stacks use STMFD etc. we must set r13 to the top end 795 1.1 chris * of the stack memory. 796 1.1 chris */ 797 1.1 chris #ifdef VERBOSE_INIT_ARM 798 1.1 chris printf("init subsystems: stacks "); 799 1.1 chris console_flush(); 800 1.1 chris #endif 801 1.1 chris 802 1.1 chris set_stackptr(PSR_IRQ32_MODE, 803 1.1 chris irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 804 1.1 chris set_stackptr(PSR_ABT32_MODE, 805 1.1 chris abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 806 1.1 chris set_stackptr(PSR_UND32_MODE, 807 1.1 chris undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 808 1.34 skrll #ifdef VERBOSE_INIT_ARM 809 1.34 skrll printf("kstack V%08lx P%08lx\n", kernelstack.pv_va, 810 1.34 skrll kernelstack.pv_pa); 811 1.34 skrll #endif /* VERBOSE_INIT_ARM */ 812 1.1 chris 813 1.1 chris /* 814 1.1 chris * Well we should set a data abort handler. 815 1.1 chris * Once things get going this will change as we will need a proper 816 1.1 chris * handler. Until then we will use a handler that just panics but 817 1.1 chris * tells us why. 818 1.1 chris * Initialisation of the vectors will just panic on a data abort. 819 1.2 abs * This just fills in a slightly better one. 820 1.1 chris */ 821 1.1 chris #ifdef VERBOSE_INIT_ARM 822 1.1 chris printf("vectors "); 823 1.1 chris #endif 824 1.1 chris data_abort_handler_address = (u_int)data_abort_handler; 825 1.1 chris prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 826 1.1 chris undefined_handler_address = (u_int)undefinedinstruction_bounce; 827 1.1 chris console_flush(); 828 1.1 chris 829 1.1 chris 830 1.1 chris /* 831 1.1 chris * At last ! 832 1.1 chris * We now have the kernel in physical memory from the bottom upwards. 833 1.1 chris * Kernel page tables are physically above this. 834 1.1 chris * The kernel is mapped to 0xf0000000 835 1.33 skrll * The kernel data PTs will handle the mapping of 836 1.1 chris * 0xf1000000-0xf5ffffff (80 Mb) 837 1.1 chris * 2Meg of VRAM is mapped to 0xf7000000 838 1.1 chris * The page tables are mapped to 0xefc00000 839 1.1 chris * The IOMD is mapped to 0xf6000000 840 1.1 chris * The VIDC is mapped to 0xf6100000 841 1.1 chris * The IOMD/VIDC could be pushed up higher but i havent got 842 1.1 chris * sufficient documentation to do so; the addresses are not 843 1.1 chris * parametized yet and hard to read... better fix this before; 844 1.1 chris * its pretty unforgiving. 845 1.1 chris */ 846 1.1 chris 847 1.1 chris /* Initialise the undefined instruction handlers */ 848 1.1 chris #ifdef VERBOSE_INIT_ARM 849 1.1 chris printf("undefined "); 850 1.1 chris #endif 851 1.1 chris undefined_init(); 852 1.1 chris console_flush(); 853 1.1 chris 854 1.1 chris /* Load memory into UVM. */ 855 1.1 chris #ifdef VERBOSE_INIT_ARM 856 1.1 chris printf("page "); 857 1.1 chris #endif 858 1.29 cherry uvm_md_init(); 859 1.29 cherry 860 1.1 chris for (loop = 0; loop < bootconfig.dramblocks; loop++) { 861 1.1 chris paddr_t start = (paddr_t)bootconfig.dram[loop].address; 862 1.1 chris paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE); 863 1.1 chris 864 1.1 chris if (start < physical_freestart) 865 1.1 chris start = physical_freestart; 866 1.1 chris if (end > physical_freeend) 867 1.1 chris end = physical_freeend; 868 1.1 chris 869 1.1 chris /* XXX Consider DMA range intersection checking. */ 870 1.1 chris 871 1.1 chris uvm_page_physload(atop(start), atop(end), 872 1.1 chris atop(start), atop(end), VM_FREELIST_DEFAULT); 873 1.1 chris } 874 1.1 chris 875 1.30 skrll /* Boot strap pmap telling it where managed kernel virtual memory is */ 876 1.1 chris #ifdef VERBOSE_INIT_ARM 877 1.1 chris printf("pmap "); 878 1.1 chris #endif 879 1.12 chris pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 880 1.1 chris console_flush(); 881 1.1 chris 882 1.1 chris /* Setup the IRQ system */ 883 1.1 chris #ifdef VERBOSE_INIT_ARM 884 1.1 chris printf("irq "); 885 1.1 chris #endif 886 1.1 chris console_flush(); 887 1.1 chris irq_init(); 888 1.1 chris #ifdef VERBOSE_INIT_ARM 889 1.1 chris printf("done.\n\n"); 890 1.1 chris #endif 891 1.1 chris 892 1.1 chris #if NVIDCVIDEO>0 893 1.1 chris consinit(); /* necessary ? */ 894 1.1 chris #endif 895 1.1 chris 896 1.1 chris /* Talk to the user */ 897 1.1 chris printf("NetBSD/evbarm booting ... \n"); 898 1.1 chris 899 1.1 chris /* Tell the user if his boot loader is too old */ 900 1.1 chris if ((bootconfig.magic < BOOTCONFIG_MAGIC) || 901 1.1 chris (bootconfig.version != BOOTCONFIG_VERSION)) { 902 1.1 chris printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n"); 903 1.1 chris delay(5000000); 904 1.1 chris } 905 1.1 chris 906 1.1 chris printf("Kernel loaded from file %s\n", bootconfig.kernelname); 907 1.1 chris printf("Kernel arg string (@%p) %s\n", 908 1.1 chris bootconfig.args, bootconfig.args); 909 1.1 chris printf("\nBoot configuration structure reports the following " 910 1.1 chris "memory\n"); 911 1.1 chris 912 1.1 chris printf(" DRAM block 0a at %08x size %08x " 913 1.1 chris "DRAM block 0b at %08x size %08x\n\r", 914 1.1 chris bootconfig.dram[0].address, 915 1.1 chris bootconfig.dram[0].pages * bootconfig.pagesize, 916 1.1 chris bootconfig.dram[1].address, 917 1.1 chris bootconfig.dram[1].pages * bootconfig.pagesize); 918 1.1 chris printf(" DRAM block 1a at %08x size %08x " 919 1.1 chris "DRAM block 1b at %08x size %08x\n\r", 920 1.1 chris bootconfig.dram[2].address, 921 1.1 chris bootconfig.dram[2].pages * bootconfig.pagesize, 922 1.1 chris bootconfig.dram[3].address, 923 1.1 chris bootconfig.dram[3].pages * bootconfig.pagesize); 924 1.1 chris printf(" VRAM block 0 at %08x size %08x\n\r", 925 1.1 chris bootconfig.vram[0].address, 926 1.1 chris bootconfig.vram[0].pages * bootconfig.pagesize); 927 1.1 chris 928 1.11 ad #if NKSYMS || defined(DDB) || defined(MODULAR) 929 1.13 martin ksyms_addsyms_elf(bootconfig.ksym_end - bootconfig.ksym_start, 930 1.1 chris (void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end); 931 1.1 chris #endif 932 1.1 chris 933 1.1 chris 934 1.1 chris #ifdef DDB 935 1.1 chris db_machine_init(); 936 1.1 chris if (boothowto & RB_KDB) 937 1.1 chris Debugger(); 938 1.1 chris #endif /* DDB */ 939 1.1 chris 940 1.1 chris /* We return the new stack pointer address */ 941 1.32 skrll return kernelstack.pv_va + USPACE_SVC_STACK_TOP; 942 1.1 chris } 943 1.1 chris 944 1.1 chris 945 1.1 chris static void 946 1.1 chris process_kernel_args(void) 947 1.1 chris { 948 1.1 chris char *args; 949 1.1 chris 950 1.1 chris /* Ok now we will check the arguments for interesting parameters. */ 951 1.1 chris args = bootconfig.args; 952 1.1 chris boothowto = 0; 953 1.1 chris 954 1.1 chris /* Only arguments itself are passed from the new bootloader */ 955 1.1 chris while (*args == ' ') 956 1.1 chris ++args; 957 1.1 chris 958 1.1 chris boot_args = args; 959 1.1 chris parse_mi_bootargs(boot_args); 960 1.1 chris parse_rpc_bootargs(boot_args); 961 1.1 chris } 962 1.1 chris 963 1.1 chris 964 1.1 chris void 965 1.1 chris parse_rpc_bootargs(char *args) 966 1.1 chris { 967 1.1 chris int integer; 968 1.1 chris 969 1.1 chris if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT, 970 1.1 chris &integer)) { 971 1.1 chris videodram_size = integer; 972 1.1 chris /* Round to 4K page */ 973 1.1 chris videodram_size *= 1024; 974 1.1 chris videodram_size = round_page(videodram_size); 975 1.1 chris if (videodram_size > 1024*1024) 976 1.1 chris videodram_size = 1024*1024; 977 1.1 chris } 978 1.1 chris } 979 1.1 chris /* End of machdep.c */ 980