eb7500atx_machdep.c revision 1.1.4.5 1 /* $NetBSD: eb7500atx_machdep.c,v 1.1.4.5 2004/12/18 09:31:00 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2000-2002 Reinoud Zandijk.
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by Brini.
22 * 4. The name of the company nor the name of the author may be used to
23 * endorse or promote products derived from this software without specific
24 * prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
27 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
30 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * RiscBSD kernel project
39 *
40 * machdep.c
41 *
42 * Machine dependant functions for kernel setup
43 *
44 * This file still needs a lot of work
45 *
46 * Created : 17/09/94
47 * Updated for yet another new bootloader 28/12/02
48 */
49
50 #include "opt_ddb.h"
51 #include "opt_pmap_debug.h"
52 #include "vidcvideo.h"
53 #include "rpckbd.h"
54 #include "pckbc.h"
55
56 #include <sys/param.h>
57
58 __KERNEL_RCSID(0, "$NetBSD: eb7500atx_machdep.c,v 1.1.4.5 2004/12/18 09:31:00 skrll Exp $");
59
60 #include <sys/systm.h>
61 #include <sys/kernel.h>
62 #include <sys/reboot.h>
63 #include <sys/proc.h>
64 #include <sys/msgbuf.h>
65 #include <sys/exec.h>
66 #include <sys/ksyms.h>
67
68 #include <dev/cons.h>
69
70 #include <machine/db_machdep.h>
71 #include <ddb/db_sym.h>
72 #include <ddb/db_extern.h>
73
74 #include <uvm/uvm.h>
75
76 #include <machine/signal.h>
77 #include <machine/frame.h>
78 #include <machine/bootconfig.h>
79 #include <machine/cpu.h>
80 #include <machine/io.h>
81 #include <machine/intr.h>
82 #include <arm/cpuconf.h>
83 #include <arm/arm32/katelib.h>
84 #include <arm/arm32/machdep.h>
85 #include <machine/vconsole.h>
86 #include <arm/undefined.h>
87 #include <machine/rtc.h>
88 #include <machine/bus.h>
89
90 #include <arm/iomd/vidc.h>
91 #include <arm/iomd/iomdreg.h>
92 #include <arm/iomd/iomdvar.h>
93
94 #include <arm/iomd/vidcvideo.h>
95
96 #include <sys/device.h>
97 #include <arm/iomd/rpckbdvar.h>
98 #include <dev/ic/pckbcvar.h>
99
100 #include <dev/i2c/i2cvar.h>
101 #include <dev/i2c/pcf8583var.h>
102 #include <arm/iomd/iomdiicvar.h>
103
104 /* static i2c_tag_t acorn32_i2c_tag;*/
105
106 #include "opt_ipkdb.h"
107 #include "ksyms.h"
108
109 /* Kernel text starts at the base of the kernel address space. */
110 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000)
111 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
112
113 /*
114 * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space
115 * Fixed mappings exist from 0xf6000000 - 0xffffffff
116 */
117 #define KERNEL_VM_SIZE 0x05000000
118
119 /*
120 * Address to call from cpu_reset() to reset the machine.
121 * This is machine architecture dependant as it varies depending
122 * on where the ROM appears when you turn the MMU off.
123 */
124 u_int cpu_reset_address = 0x0; /* XXX 0x3800000 too for rev0 RiscPC 600 */
125
126
127 #define VERBOSE_INIT_ARM
128
129
130 /* Define various stack sizes in pages */
131 #define IRQ_STACK_SIZE 1
132 #define ABT_STACK_SIZE 1
133 #ifdef IPKDB
134 #define UND_STACK_SIZE 2
135 #else
136 #define UND_STACK_SIZE 1
137 #endif
138
139
140 struct bootconfig bootconfig; /* Boot config storage */
141 videomemory_t videomemory; /* Video memory descriptor */
142
143 char *boot_args = NULL; /* holds the pre-processed boot arguments */
144 extern char *booted_kernel; /* used for ioctl to retrieve booted kernel */
145
146 extern int *vidc_base;
147 extern u_int32_t iomd_base;
148 extern struct bus_space iomd_bs_tag;
149
150 paddr_t physical_start;
151 paddr_t physical_freestart;
152 paddr_t physical_freeend;
153 paddr_t physical_end;
154 paddr_t dma_range_begin;
155 paddr_t dma_range_end;
156
157 u_int free_pages;
158 int physmem = 0;
159 paddr_t memoryblock_end;
160
161 #ifndef PMAP_STATIC_L1S
162 int max_processes = 64; /* Default number */
163 #endif /* !PMAP_STATIC_L1S */
164
165 u_int videodram_size = 0; /* Amount of DRAM to reserve for video */
166
167 /* Physical and virtual addresses for some global pages */
168 pv_addr_t systempage;
169 pv_addr_t irqstack;
170 pv_addr_t undstack;
171 pv_addr_t abtstack;
172 pv_addr_t kernelstack;
173
174 paddr_t msgbufphys;
175
176 extern u_int data_abort_handler_address;
177 extern u_int prefetch_abort_handler_address;
178 extern u_int undefined_handler_address;
179
180 #ifdef PMAP_DEBUG
181 extern int pmap_debug_level;
182 #endif /* PMAP_DEBUG */
183
184 #define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */
185 #define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */
186 #define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel */
187 #define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */
188 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
189 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
190
191 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
192
193 struct user *proc0paddr;
194
195 #ifdef CPU_SA110
196 #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
197 static vaddr_t sa110_cc_base;
198 #endif /* CPU_SA110 */
199
200 /* Prototypes */
201 void physcon_display_base(u_int);
202 extern void consinit(void);
203
204 void data_abort_handler(trapframe_t *);
205 void prefetch_abort_handler(trapframe_t *);
206 void undefinedinstruction_bounce(trapframe_t *frame);
207
208 static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *);
209 static void process_kernel_args(void);
210
211 extern void dump_spl_masks(void);
212 extern void vidcrender_reinit(void);
213 extern int vidcrender_blank(struct vconsole *, int);
214
215 void rpc_sa110_cc_setup(void);
216
217 extern void parse_mi_bootargs(char *args);
218 void parse_rpc_bootargs(char *args);
219
220 extern void dumpsys(void);
221
222
223 #if NVIDCVIDEO > 0
224 # define console_flush() /* empty */
225 #else
226 extern void console_flush(void);
227 #endif
228
229
230 #define panic2(a) do { \
231 memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024); \
232 consinit(); \
233 panic a; \
234 } while (/* CONSTCOND */ 0)
235
236 /*
237 * void cpu_reboot(int howto, char *bootstr)
238 *
239 * Reboots the system
240 *
241 * Deal with any syncing, unmounting, dumping and shutdown hooks,
242 * then reset the CPU.
243 */
244
245 /* NOTE: These variables will be removed, well some of them */
246
247 extern u_int spl_mask;
248 extern u_int current_mask;
249
250 void
251 cpu_reboot(int howto, char *bootstr)
252 {
253
254 #ifdef DIAGNOSTIC
255 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
256
257 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
258 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
259 irqmasks[IPL_VM]);
260 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
261 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
262
263 /* dump_spl_masks(); */
264 #endif /* DIAGNOSTIC */
265
266 /*
267 * If we are still cold then hit the air brakes
268 * and crash to earth fast
269 */
270 if (cold) {
271 doshutdownhooks();
272 printf("Halted while still in the ICE age.\n");
273 printf("The operating system has halted.\n");
274 printf("Please press any key to reboot.\n\n");
275 cngetc();
276 printf("rebooting...\n");
277 cpu_reset();
278 /*NOTREACHED*/
279 }
280
281 /* Disable console buffering */
282 cnpollc(1);
283
284 /*
285 * If RB_NOSYNC was not specified sync the discs.
286 * Note: Unless cold is set to 1 here, syslogd will die during
287 * the unmount. It looks like syslogd is getting woken up
288 * only to find that it cannot page part of the binary in as
289 * the filesystem has been unmounted.
290 */
291 if (!(howto & RB_NOSYNC))
292 bootsync();
293
294 /* Say NO to interrupts */
295 splhigh();
296
297 /* Do a dump if requested. */
298 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
299 dumpsys();
300
301 /*
302 * Auto reboot overload protection
303 *
304 * This code stops the kernel entering an endless loop of reboot
305 * - panic cycles. This will have the effect of stopping further
306 * reboots after it has rebooted 8 times after panics. A clean
307 * halt or reboot will reset the counter.
308 */
309
310 /* Run any shutdown hooks */
311 doshutdownhooks();
312
313 /* Make sure IRQ's are disabled */
314 IRQdisable;
315
316 if (howto & RB_HALT) {
317 printf("The operating system has halted.\n");
318 printf("Please press any key to reboot.\n\n");
319 cngetc();
320 }
321
322 printf("rebooting...\n");
323 cpu_reset();
324 /*NOTREACHED*/
325 }
326
327
328 /*
329 * u_int initarm(BootConfig *bootconf)
330 *
331 * Initial entry point on startup. This gets called before main() is
332 * entered.
333 * It should be responsible for setting up everything that must be
334 * in place when main is called.
335 * This includes
336 * Taking a copy of the boot configuration structure.
337 * Initialising the physical console so characters can be printed.
338 * Setting up page tables for the kernel
339 * Relocating the kernel to the bottom of physical memory
340 */
341
342 /*
343 * this part is completely rewritten for the new bootloader ... It features
344 * a flat memory map with a mapping comparable to the EBSA arm32 machine
345 * to boost the portability and likeness of the code
346 */
347
348 /*
349 * Mapping table for core kernel memory. This memory is mapped at init
350 * time with section mappings.
351 *
352 * XXX One big assumption in the current architecture seems that the kernel is
353 * XXX supposed to be mapped into bootconfig.dram[0].
354 */
355
356 #define ONE_MB 0x100000
357
358 struct l1_sec_map {
359 vaddr_t va;
360 paddr_t pa;
361 vsize_t size;
362 vm_prot_t prot;
363 int cache;
364 } l1_sec_table[] = {
365 /* Map 1Mb section for VIDC20 */
366 { VIDC_BASE, VIDC_HW_BASE,
367 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
368 PTE_NOCACHE },
369
370 /* Map 1Mb section from IOMD */
371 { IOMD_BASE, IOMD_HW_BASE,
372 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
373 PTE_NOCACHE },
374
375 /* Map 1Mb of COMBO (and module space) */
376 { IO_BASE, IO_HW_BASE,
377 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
378 PTE_NOCACHE },
379 { 0, 0, 0, 0, 0 }
380 };
381
382
383 static void
384 canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf)
385 {
386 /* check for bootconfig v2+ structure */
387 if (raw_bootconf->magic == BOOTCONFIG_MAGIC) {
388 /* v2+ cleaned up structure found */
389 *bootconf = *raw_bootconf;
390 return;
391 } else {
392 panic2(("Internal error: no valid bootconfig block found"));
393 }
394 }
395
396
397 u_int
398 initarm(void *cookie)
399 {
400 struct bootconfig *raw_bootconf = cookie;
401 int loop;
402 int loop1;
403 u_int logical;
404 u_int kerneldatasize;
405 u_int l1pagetable;
406 struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
407 pv_addr_t kernel_l1pt;
408
409 /*
410 * Heads up ... Setup the CPU / MMU / TLB functions
411 */
412 set_cpufuncs();
413
414 /* canonicalise the boot configuration structure to alow versioning */
415 canonicalise_bootconfig(&bootconfig, raw_bootconf);
416 booted_kernel = bootconfig.kernelname;
417
418 /* if the wscons interface is used, switch off VERBOSE booting :( */
419 #if NVIDCVIDEO>0
420 # undef VERBOSE_INIT_ARM
421 # undef PMAP_DEBUG
422 #endif
423
424 /*
425 * Initialise the video memory descriptor
426 *
427 * Note: all references to the video memory virtual/physical address
428 * should go via this structure.
429 */
430
431 /* Hardwire it on the place the bootloader tells us */
432 videomemory.vidm_vbase = bootconfig.display_start;
433 videomemory.vidm_pbase = bootconfig.display_phys;
434 videomemory.vidm_size = bootconfig.display_size;
435 if (bootconfig.vram[0].pages)
436 videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
437 else
438 videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
439 vidc_base = (int *) VIDC_HW_BASE;
440 iomd_base = IOMD_HW_BASE;
441
442 /*
443 * Initialise the physical console
444 * This is done in main() but for the moment we do it here so that
445 * we can use printf in initarm() before main() has been called.
446 * only for `vidcconsole!' ... not wscons
447 */
448 #if NVIDCVIDEO == 0
449 consinit();
450 #endif
451
452 /*
453 * Initialise the diagnostic serial console
454 * This allows a means of generating output during initarm().
455 * Once all the memory map changes are complete we can call consinit()
456 * and not have to worry about things moving.
457 */
458 /* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */
459 /* XXX snif .... i am still not able to this */
460
461 /*
462 * We have the following memory map (derived from EBSA)
463 *
464 * virtual address == physical address apart from the areas:
465 * 0x00000000 -> 0x000fffff which is mapped to
466 * top 1MB of physical memory
467 * 0xf0000000 -> 0xf0ffffff wich is mapped to
468 * physical address 0x01000000 -> 0x01ffffff (DRAM0a, dram[0])
469 *
470 * This means that the kernel is mapped suitably for continuing
471 * execution, all I/O is mapped 1:1 virtual to physical and
472 * physical memory is accessible.
473 *
474 * The initarm() has the responsibility for creating the kernel
475 * page tables.
476 * It must also set up various memory pointers that are used
477 * by pmap etc.
478 */
479
480 /* START OF REAL NEW STUFF */
481
482 /* Check to make sure the page size is correct */
483 if (PAGE_SIZE != bootconfig.pagesize)
484 panic2(("Page size is %d bytes instead of %d !! (huh?)\n",
485 bootconfig.pagesize, PAGE_SIZE));
486
487 /* process arguments */
488 process_kernel_args();
489
490
491 /*
492 * Now set up the page tables for the kernel ... this part is copied
493 * in a (modified?) way from the EBSA machine port....
494 */
495
496 #ifdef VERBOSE_INIT_ARM
497 printf("Allocating page tables\n");
498 #endif
499 /*
500 * Set up the variables that define the availablilty of physical
501 * memory
502 */
503 physical_start = 0xffffffff;
504 physical_end = 0;
505 for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) {
506 if (bootconfig.dram[loop].address < physical_start)
507 physical_start = bootconfig.dram[loop].address;
508 memoryblock_end = bootconfig.dram[loop].address +
509 bootconfig.dram[loop].pages * PAGE_SIZE;
510 if (memoryblock_end > physical_end)
511 physical_end = memoryblock_end;
512 physmem += bootconfig.dram[loop].pages;
513 };
514 /* constants for now, but might be changed/configured */
515 dma_range_begin = (paddr_t) physical_start;
516 dma_range_end = (paddr_t) MIN(physical_end, 512*1024*1024);
517 /* XXX HACK HACK XXX */
518 /* dma_range_end = 0x18000000; */
519
520 if (physical_start != bootconfig.dram[0].address) {
521 int oldblocks = 0;
522
523 /*
524 * must be a kinetic, as it's the only thing to shuffle memory
525 * around
526 */
527 /* hack hack - throw away the slow dram */
528 for (loop = 0; loop < bootconfig.dramblocks; ++loop) {
529 if (bootconfig.dram[loop].address <
530 bootconfig.dram[0].address) {
531 /* non kinetic ram */
532 bootconfig.dram[loop].address = 0;
533 physmem -= bootconfig.dram[loop].pages;
534 bootconfig.drampages -=
535 bootconfig.dram[loop].pages;
536 bootconfig.dram[loop].pages = 0;
537 oldblocks++;
538 }
539 }
540 physical_start = bootconfig.dram[0].address;
541 bootconfig.dramblocks -= oldblocks;
542 }
543
544 physical_freestart = physical_start;
545 free_pages = bootconfig.drampages;
546 physical_freeend = physical_end;
547
548
549 /*
550 * AHUM !! set this variable ... it was set up in the old 1st
551 * stage bootloader
552 */
553 kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize;
554
555 /* Update the address of the first free page of physical memory */
556 /* XXX Assumption that the kernel and stuff is at the LOWEST physical memory address? XXX */
557 physical_freestart +=
558 bootconfig.kernsize + bootconfig.MDFsize + bootconfig.scratchsize;
559 free_pages -= (physical_freestart - physical_start) / PAGE_SIZE;
560
561 /* Define a macro to simplify memory allocation */
562 #define valloc_pages(var, np) \
563 alloc_pages((var).pv_pa, (np)); \
564 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
565
566 #define alloc_pages(var, np) \
567 (var) = physical_freestart; \
568 physical_freestart += ((np) * PAGE_SIZE); \
569 free_pages -= (np); \
570 memset((char *)(var), 0, ((np) * PAGE_SIZE));
571
572 loop1 = 0;
573 kernel_l1pt.pv_pa = 0;
574 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
575 /* Are we 16KB aligned for an L1 ? */
576 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
577 && kernel_l1pt.pv_pa == 0) {
578 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
579 } else {
580 valloc_pages(kernel_pt_table[loop1],
581 L2_TABLE_SIZE / PAGE_SIZE);
582 ++loop1;
583 }
584 }
585
586
587 #ifdef DIAGNOSTIC
588 /* This should never be able to happen but better confirm that. */
589 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
590 panic2(("initarm: Failed to align the kernel page "
591 "directory\n"));
592 #endif
593
594 /*
595 * Allocate a page for the system page mapped to V0x00000000
596 * This page will just contain the system vectors and can be
597 * shared by all processes.
598 */
599 alloc_pages(systempage.pv_pa, 1);
600
601 /* Allocate stacks for all modes */
602 valloc_pages(irqstack, IRQ_STACK_SIZE);
603 valloc_pages(abtstack, ABT_STACK_SIZE);
604 valloc_pages(undstack, UND_STACK_SIZE);
605 valloc_pages(kernelstack, UPAGES);
606
607 #ifdef VERBOSE_INIT_ARM
608 printf("Setting up stacks :\n");
609 printf("IRQ stack: p0x%08lx v0x%08lx\n",
610 irqstack.pv_pa, irqstack.pv_va);
611 printf("ABT stack: p0x%08lx v0x%08lx\n",
612 abtstack.pv_pa, abtstack.pv_va);
613 printf("UND stack: p0x%08lx v0x%08lx\n",
614 undstack.pv_pa, undstack.pv_va);
615 printf("SVC stack: p0x%08lx v0x%08lx\n",
616 kernelstack.pv_pa, kernelstack.pv_va);
617 printf("\n");
618 #endif
619
620 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
621
622 #ifdef CPU_SA110
623 /*
624 * XXX totally stuffed hack to work round problems introduced
625 * in recent versions of the pmap code. Due to the calls used there
626 * we cannot allocate virtual memory during bootstrap.
627 */
628 sa110_cc_base = (KERNEL_BASE + (physical_freestart - physical_start)
629 + (CPU_SA110_CACHE_CLEAN_SIZE - 1))
630 & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1);
631 #endif /* CPU_SA110 */
632
633 /*
634 * Ok we have allocated physical pages for the primary kernel
635 * page tables
636 */
637
638 #ifdef VERBOSE_INIT_ARM
639 printf("Creating L1 page table\n");
640 #endif
641
642 /*
643 * Now we start construction of the L1 page table
644 * We start by mapping the L2 page tables into the L1.
645 * This means that we can replace L1 mappings later on if necessary
646 */
647 l1pagetable = kernel_l1pt.pv_pa;
648
649 /* Map the L2 pages tables in the L1 page table */
650 pmap_link_l2pt(l1pagetable, 0x00000000,
651 &kernel_pt_table[KERNEL_PT_SYS]);
652 pmap_link_l2pt(l1pagetable, KERNEL_BASE,
653 &kernel_pt_table[KERNEL_PT_KERNEL]);
654 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
655 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
656 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
657 pmap_link_l2pt(l1pagetable, VMEM_VBASE,
658 &kernel_pt_table[KERNEL_PT_VMEM]);
659
660 /* update the top of the kernel VM */
661 pmap_curmaxkvaddr =
662 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
663
664 #ifdef VERBOSE_INIT_ARM
665 printf("Mapping kernel\n");
666 #endif
667
668 /* Now we fill in the L2 pagetable for the kernel code/data */
669 /* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */
670 /*
671 * The defines are a workaround for a recent problem that occurred
672 * with ARM 610 processors and some ARM 710 processors
673 * Other ARM 710 and StrongARM processors don't have a problem.
674 */
675 if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
676 #if defined(CPU_ARM6) || defined(CPU_ARM7)
677 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
678 physical_start, kernexec->a_text,
679 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
680 #else /* CPU_ARM6 || CPU_ARM7 */
681 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
682 physical_start, kernexec->a_text,
683 VM_PROT_READ, PTE_CACHE);
684 #endif /* CPU_ARM6 || CPU_ARM7 */
685 logical += pmap_map_chunk(l1pagetable,
686 KERNEL_TEXT_BASE + logical, physical_start + logical,
687 kerneldatasize - kernexec->a_text,
688 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
689 } else { /* !ZMAGIC */
690 /*
691 * Most likely an ELF kernel ...
692 * XXX no distinction yet between read only and
693 * read/write area's ...
694 */
695 pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
696 physical_start, kerneldatasize,
697 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
698 };
699
700
701 #ifdef VERBOSE_INIT_ARM
702 printf("Constructing L2 page tables\n");
703 #endif
704
705 /* Map the stack pages */
706 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
707 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
708 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
709 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
710 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
711 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
712 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
713 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
714
715 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
716 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
717
718 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
719 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
720 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
721 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
722 }
723
724 /* Now we fill in the L2 pagetable for the VRAM */
725 /*
726 * Current architectures mean that the VRAM is always in 1
727 * continuous bank. This means that we can just map the 2 meg
728 * that the VRAM would occupy. In theory we don't need a page
729 * table for VRAM, we could section map it but we would need
730 * the page tables if DRAM was in use.
731 * XXX please map two adjacent virtual areas to ONE physical
732 * area
733 */
734 pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase,
735 videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
736 pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size,
737 videomemory.vidm_pbase, videomemory.vidm_size,
738 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
739
740 /* Map the vector page. */
741 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
742 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
743
744 /* Map the core memory needed before autoconfig */
745 loop = 0;
746 while (l1_sec_table[loop].size) {
747 vm_size_t sz;
748
749 #ifdef VERBOSE_INIT_ARM
750 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
751 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
752 l1_sec_table[loop].va);
753 #endif
754 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
755 pmap_map_section(l1pagetable,
756 l1_sec_table[loop].va + sz,
757 l1_sec_table[loop].pa + sz,
758 l1_sec_table[loop].prot,
759 l1_sec_table[loop].cache);
760 ++loop;
761 }
762
763 /*
764 * Now we have the real page tables in place so we can switch
765 * to them. Once this is done we will be running with the
766 * REAL kernel page tables.
767 */
768
769 /* Switch tables */
770 #ifdef VERBOSE_INIT_ARM
771 printf("switching to new L1 page table\n");
772 #endif
773 #ifdef VERBOSE_INIT_ARM
774 printf("switching domains\n");
775 #endif
776 /* be a client to all domains */
777 cpu_domains(0x55555555);
778
779 setttb(kernel_l1pt.pv_pa);
780
781 /*
782 * We must now clean the cache again....
783 * Cleaning may be done by reading new data to displace any
784 * dirty data in the cache. This will have happened in setttb()
785 * but since we are boot strapping the addresses used for the read
786 * may have just been remapped and thus the cache could be out
787 * of sync. A re-clean after the switch will cure this.
788 * After booting there are no gross reloations of the kernel thus
789 * this problem will not occur after initarm().
790 */
791 cpu_idcache_wbinv_all();
792 cpu_tlb_flushID();
793 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
794
795 /*
796 * Moved from cpu_startup() as data_abort_handler() references
797 * this during uvm init
798 */
799 proc0paddr = (struct user *)kernelstack.pv_va;
800 lwp0.l_addr = proc0paddr;
801
802 /*
803 * if there is support for a serial console ...we should now
804 * reattach it
805 */
806 /* fcomcndetach();*/
807
808 /*
809 * Reflect videomemory relocation in the videomemory structure
810 * and reinit console
811 */
812 if (bootconfig.vram[0].pages == 0) {
813 videomemory.vidm_vbase = VMEM_VBASE;
814 } else {
815 videomemory.vidm_vbase = VMEM_VBASE;
816 bootconfig.display_start = VMEM_VBASE;
817 };
818 vidc_base = (int *) VIDC_BASE;
819 iomd_base = IOMD_BASE;
820
821 #if NVIDCVIDEO == 0
822 physcon_display_base(VMEM_VBASE);
823 vidcrender_reinit();
824 #endif
825
826 #ifdef VERBOSE_INIT_ARM
827 printf("running on the new L1 page table!\n");
828 printf("done.\n");
829 #endif
830
831 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
832
833 #ifdef VERBOSE_INIT_ARM
834 printf("\n");
835 #endif
836
837 /*
838 * Pages were allocated during the secondary bootstrap for the
839 * stacks for different CPU modes.
840 * We must now set the r13 registers in the different CPU modes to
841 * point to these stacks.
842 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
843 * of the stack memory.
844 */
845 #ifdef VERBOSE_INIT_ARM
846 printf("init subsystems: stacks ");
847 console_flush();
848 #endif
849
850 set_stackptr(PSR_IRQ32_MODE,
851 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
852 set_stackptr(PSR_ABT32_MODE,
853 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
854 set_stackptr(PSR_UND32_MODE,
855 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
856 #ifdef PMAP_DEBUG
857 if (pmap_debug_level >= 0)
858 printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
859 kernelstack.pv_pa);
860 #endif /* PMAP_DEBUG */
861
862 /*
863 * Well we should set a data abort handler.
864 * Once things get going this will change as we will need a proper
865 * handler. Until then we will use a handler that just panics but
866 * tells us why.
867 * Initialisation of the vectors will just panic on a data abort.
868 * This just fills in a slightly better one.
869 */
870 #ifdef VERBOSE_INIT_ARM
871 printf("vectors ");
872 #endif
873 data_abort_handler_address = (u_int)data_abort_handler;
874 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
875 undefined_handler_address = (u_int)undefinedinstruction_bounce;
876 console_flush();
877
878
879 /*
880 * At last !
881 * We now have the kernel in physical memory from the bottom upwards.
882 * Kernel page tables are physically above this.
883 * The kernel is mapped to 0xf0000000
884 * The kernel data PTs will handle the mapping of
885 * 0xf1000000-0xf5ffffff (80 Mb)
886 * 2Meg of VRAM is mapped to 0xf7000000
887 * The page tables are mapped to 0xefc00000
888 * The IOMD is mapped to 0xf6000000
889 * The VIDC is mapped to 0xf6100000
890 * The IOMD/VIDC could be pushed up higher but i havent got
891 * sufficient documentation to do so; the addresses are not
892 * parametized yet and hard to read... better fix this before;
893 * its pretty unforgiving.
894 */
895
896 /* Initialise the undefined instruction handlers */
897 #ifdef VERBOSE_INIT_ARM
898 printf("undefined ");
899 #endif
900 undefined_init();
901 console_flush();
902
903 /* Load memory into UVM. */
904 #ifdef VERBOSE_INIT_ARM
905 printf("page ");
906 #endif
907 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
908 for (loop = 0; loop < bootconfig.dramblocks; loop++) {
909 paddr_t start = (paddr_t)bootconfig.dram[loop].address;
910 paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE);
911
912 if (start < physical_freestart)
913 start = physical_freestart;
914 if (end > physical_freeend)
915 end = physical_freeend;
916
917 /* XXX Consider DMA range intersection checking. */
918
919 uvm_page_physload(atop(start), atop(end),
920 atop(start), atop(end), VM_FREELIST_DEFAULT);
921 }
922
923 /* Boot strap pmap telling it where the kernel page table is */
924 #ifdef VERBOSE_INIT_ARM
925 printf("pmap ");
926 #endif
927 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
928 KERNEL_VM_BASE + KERNEL_VM_SIZE);
929 console_flush();
930
931 /* Setup the IRQ system */
932 #ifdef VERBOSE_INIT_ARM
933 printf("irq ");
934 #endif
935 console_flush();
936 irq_init();
937 #ifdef VERBOSE_INIT_ARM
938 printf("done.\n\n");
939 #endif
940
941 #if NVIDCVIDEO>0
942 consinit(); /* necessary ? */
943 #endif
944
945 /* Talk to the user */
946 printf("NetBSD/evbarm booting ... \n");
947
948 /* Tell the user if his boot loader is too old */
949 if ((bootconfig.magic < BOOTCONFIG_MAGIC) ||
950 (bootconfig.version != BOOTCONFIG_VERSION)) {
951 printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n");
952 delay(5000000);
953 }
954
955 printf("Kernel loaded from file %s\n", bootconfig.kernelname);
956 printf("Kernel arg string (@%p) %s\n",
957 bootconfig.args, bootconfig.args);
958 printf("\nBoot configuration structure reports the following "
959 "memory\n");
960
961 printf(" DRAM block 0a at %08x size %08x "
962 "DRAM block 0b at %08x size %08x\n\r",
963 bootconfig.dram[0].address,
964 bootconfig.dram[0].pages * bootconfig.pagesize,
965 bootconfig.dram[1].address,
966 bootconfig.dram[1].pages * bootconfig.pagesize);
967 printf(" DRAM block 1a at %08x size %08x "
968 "DRAM block 1b at %08x size %08x\n\r",
969 bootconfig.dram[2].address,
970 bootconfig.dram[2].pages * bootconfig.pagesize,
971 bootconfig.dram[3].address,
972 bootconfig.dram[3].pages * bootconfig.pagesize);
973 printf(" VRAM block 0 at %08x size %08x\n\r",
974 bootconfig.vram[0].address,
975 bootconfig.vram[0].pages * bootconfig.pagesize);
976
977 #ifdef IPKDB
978 /* Initialise ipkdb */
979 ipkdb_init();
980 if (boothowto & RB_KDB)
981 ipkdb_connect(0);
982 #endif /* NIPKDB */
983
984 #if NKSYMS || defined(DDB) || defined(LKM)
985 ksyms_init(bootconfig.ksym_end - bootconfig.ksym_start,
986 (void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end);
987 #endif
988
989
990 #ifdef DDB
991 db_machine_init();
992 if (boothowto & RB_KDB)
993 Debugger();
994 #endif /* DDB */
995
996 /* We return the new stack pointer address */
997 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
998 }
999
1000
1001 static void
1002 process_kernel_args(void)
1003 {
1004 char *args;
1005
1006 /* Ok now we will check the arguments for interesting parameters. */
1007 args = bootconfig.args;
1008 boothowto = 0;
1009
1010 /* Only arguments itself are passed from the new bootloader */
1011 while (*args == ' ')
1012 ++args;
1013
1014 boot_args = args;
1015 parse_mi_bootargs(boot_args);
1016 parse_rpc_bootargs(boot_args);
1017 }
1018
1019
1020 void
1021 parse_rpc_bootargs(char *args)
1022 {
1023 int integer;
1024
1025 if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT,
1026 &integer)) {
1027 videodram_size = integer;
1028 /* Round to 4K page */
1029 videodram_size *= 1024;
1030 videodram_size = round_page(videodram_size);
1031 if (videodram_size > 1024*1024)
1032 videodram_size = 1024*1024;
1033 }
1034 }
1035 /* End of machdep.c */
1036