eb7500atx_machdep.c revision 1.28 1 /* $NetBSD: eb7500atx_machdep.c,v 1.28 2014/10/25 10:58:12 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2000-2002 Reinoud Zandijk.
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by Brini.
22 * 4. The name of the company nor the name of the author may be used to
23 * endorse or promote products derived from this software without specific
24 * prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
27 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
30 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * RiscBSD kernel project
39 *
40 * machdep.c
41 *
42 * Machine dependent functions for kernel setup
43 *
44 * This file still needs a lot of work
45 *
46 * Created : 17/09/94
47 * Updated for yet another new bootloader 28/12/02
48 */
49
50 #include "opt_ddb.h"
51 #include "opt_modular.h"
52 #include "opt_pmap_debug.h"
53 #include "vidcvideo.h"
54 #include "pckbc.h"
55
56 #include <sys/param.h>
57
58 __KERNEL_RCSID(0, "$NetBSD: eb7500atx_machdep.c,v 1.28 2014/10/25 10:58:12 skrll Exp $");
59
60 #include <sys/systm.h>
61 #include <sys/kernel.h>
62 #include <sys/reboot.h>
63 #include <sys/proc.h>
64 #include <sys/msgbuf.h>
65 #include <sys/exec.h>
66 #include <sys/exec_aout.h>
67 #include <sys/ksyms.h>
68 #include <sys/bus.h>
69 #include <sys/cpu.h>
70 #include <sys/intr.h>
71 #include <sys/device.h>
72
73 #include <dev/cons.h>
74
75 #include <dev/ic/pckbcvar.h>
76
77 #include <dev/i2c/i2cvar.h>
78 #include <dev/i2c/pcf8583var.h>
79
80 #include <machine/db_machdep.h>
81 #include <ddb/db_sym.h>
82 #include <ddb/db_extern.h>
83
84 #include <uvm/uvm.h>
85
86 #include <arm/locore.h>
87 #include <arm/undefined.h>
88
89 #include <machine/signal.h>
90 #include <machine/bootconfig.h>
91 #include <machine/io.h>
92 #include <arm/arm32/machdep.h>
93 #include <machine/rtc.h>
94
95 #include <arm/iomd/vidc.h>
96 #include <arm/iomd/iomdreg.h>
97 #include <arm/iomd/iomdvar.h>
98 #include <arm/iomd/vidcvideo.h>
99 #include <arm/iomd/iomdiicvar.h>
100
101 /* static i2c_tag_t acorn32_i2c_tag;*/
102
103 #include "ksyms.h"
104
105 /* Kernel text starts at the base of the kernel address space. */
106 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000)
107 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
108
109 /*
110 * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space
111 * Fixed mappings exist from 0xf6000000 - 0xffffffff
112 */
113 #define KERNEL_VM_SIZE 0x05000000
114
115 /*
116 * Address to call from cpu_reset() to reset the machine.
117 * This is machine architecture dependent as it varies depending
118 * on where the ROM appears when you turn the MMU off.
119 */
120
121 #define VERBOSE_INIT_ARM
122
123 struct bootconfig bootconfig; /* Boot config storage */
124 videomemory_t videomemory; /* Video memory descriptor */
125
126 char *boot_args = NULL; /* holds the pre-processed boot arguments */
127 extern char *booted_kernel; /* used for ioctl to retrieve booted kernel */
128
129 extern int *vidc_base;
130 extern uint32_t iomd_base;
131 extern struct bus_space iomd_bs_tag;
132
133 paddr_t physical_start;
134 paddr_t physical_freestart;
135 paddr_t physical_freeend;
136 paddr_t physical_end;
137 paddr_t dma_range_begin;
138 paddr_t dma_range_end;
139
140 u_int free_pages;
141 paddr_t memoryblock_end;
142
143 #ifndef PMAP_STATIC_L1S
144 int max_processes = 64; /* Default number */
145 #endif /* !PMAP_STATIC_L1S */
146
147 u_int videodram_size = 0; /* Amount of DRAM to reserve for video */
148
149 paddr_t msgbufphys;
150
151 #ifdef PMAP_DEBUG
152 extern int pmap_debug_level;
153 #endif /* PMAP_DEBUG */
154
155 #define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */
156 #define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */
157 #define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel */
158 #define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */
159 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
160 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
161
162 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
163
164
165 #ifdef CPU_SA110
166 #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
167 static vaddr_t sa110_cc_base;
168 #endif /* CPU_SA110 */
169
170 /* Prototypes */
171 void physcon_display_base(u_int);
172 extern void consinit(void);
173
174 void data_abort_handler(trapframe_t *);
175 void prefetch_abort_handler(trapframe_t *);
176 void undefinedinstruction_bounce(trapframe_t *frame);
177
178 static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *);
179 static void process_kernel_args(void);
180
181 extern void dump_spl_masks(void);
182
183 void rpc_sa110_cc_setup(void);
184
185 void parse_rpc_bootargs(char *args);
186
187 extern void dumpsys(void);
188
189
190 # define console_flush() /* empty */
191
192
193 #define panic2(a) do { \
194 memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024); \
195 consinit(); \
196 panic a; \
197 } while (/* CONSTCOND */ 0)
198
199 /*
200 * void cpu_reboot(int howto, char *bootstr)
201 *
202 * Reboots the system
203 *
204 * Deal with any syncing, unmounting, dumping and shutdown hooks,
205 * then reset the CPU.
206 */
207
208 /* NOTE: These variables will be removed, well some of them */
209
210 extern u_int current_mask;
211
212 void
213 cpu_reboot(int howto, char *bootstr)
214 {
215
216 #ifdef DIAGNOSTIC
217 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
218
219 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
220 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
221 irqmasks[IPL_VM]);
222 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
223 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
224
225 /* dump_spl_masks(); */
226 #endif /* DIAGNOSTIC */
227
228 /*
229 * If we are still cold then hit the air brakes
230 * and crash to earth fast
231 */
232 if (cold) {
233 doshutdownhooks();
234 pmf_system_shutdown(boothowto);
235 printf("Halted while still in the ICE age.\n");
236 printf("The operating system has halted.\n");
237 printf("Please press any key to reboot.\n\n");
238 cngetc();
239 printf("rebooting...\n");
240 cpu_reset();
241 /*NOTREACHED*/
242 }
243
244 /* Disable console buffering */
245 cnpollc(1);
246
247 /*
248 * If RB_NOSYNC was not specified sync the discs.
249 * Note: Unless cold is set to 1 here, syslogd will die during
250 * the unmount. It looks like syslogd is getting woken up
251 * only to find that it cannot page part of the binary in as
252 * the filesystem has been unmounted.
253 */
254 if (!(howto & RB_NOSYNC))
255 bootsync();
256
257 /* Say NO to interrupts */
258 splhigh();
259
260 /* Do a dump if requested. */
261 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
262 dumpsys();
263
264 /*
265 * Auto reboot overload protection
266 *
267 * This code stops the kernel entering an endless loop of reboot
268 * - panic cycles. This will have the effect of stopping further
269 * reboots after it has rebooted 8 times after panics. A clean
270 * halt or reboot will reset the counter.
271 */
272
273 /* Run any shutdown hooks */
274 doshutdownhooks();
275
276 pmf_system_shutdown(boothowto);
277
278 /* Make sure IRQ's are disabled */
279 IRQdisable;
280
281 if (howto & RB_HALT) {
282 printf("The operating system has halted.\n");
283 printf("Please press any key to reboot.\n\n");
284 cngetc();
285 }
286
287 printf("rebooting...\n");
288 cpu_reset();
289 /*NOTREACHED*/
290 }
291
292
293 /*
294 * u_int initarm(BootConfig *bootconf)
295 *
296 * Initial entry point on startup. This gets called before main() is
297 * entered.
298 * It should be responsible for setting up everything that must be
299 * in place when main is called.
300 * This includes
301 * Taking a copy of the boot configuration structure.
302 * Initialising the physical console so characters can be printed.
303 * Setting up page tables for the kernel
304 * Relocating the kernel to the bottom of physical memory
305 */
306
307 /*
308 * this part is completely rewritten for the new bootloader ... It features
309 * a flat memory map with a mapping comparable to the EBSA arm32 machine
310 * to boost the portability and likeness of the code
311 */
312
313 /*
314 * Mapping table for core kernel memory. This memory is mapped at init
315 * time with section mappings.
316 *
317 * XXX One big assumption in the current architecture seems that the kernel is
318 * XXX supposed to be mapped into bootconfig.dram[0].
319 */
320
321 #define ONE_MB 0x100000
322
323 struct l1_sec_map {
324 vaddr_t va;
325 paddr_t pa;
326 vsize_t size;
327 vm_prot_t prot;
328 int cache;
329 } l1_sec_table[] = {
330 /* Map 1Mb section for VIDC20 */
331 { VIDC_BASE, VIDC_HW_BASE,
332 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
333 PTE_NOCACHE },
334
335 /* Map 1Mb section from IOMD */
336 { IOMD_BASE, IOMD_HW_BASE,
337 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
338 PTE_NOCACHE },
339
340 /* Map 1Mb of COMBO (and module space) */
341 { IO_BASE, IO_HW_BASE,
342 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
343 PTE_NOCACHE },
344 { 0, 0, 0, 0, 0 }
345 };
346
347
348 static void
349 canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf)
350 {
351 /* check for bootconfig v2+ structure */
352 if (raw_bootconf->magic == BOOTCONFIG_MAGIC) {
353 /* v2+ cleaned up structure found */
354 *bootconf = *raw_bootconf;
355 return;
356 } else {
357 panic2(("Internal error: no valid bootconfig block found"));
358 }
359 }
360
361
362 u_int
363 initarm(void *cookie)
364 {
365 struct bootconfig *raw_bootconf = cookie;
366 int loop;
367 int loop1;
368 u_int logical;
369 u_int kerneldatasize;
370 u_int l1pagetable;
371 struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
372
373 /*
374 * Heads up ... Setup the CPU / MMU / TLB functions
375 */
376 set_cpufuncs();
377
378 /* canonicalise the boot configuration structure to alow versioning */
379 canonicalise_bootconfig(&bootconfig, raw_bootconf);
380 booted_kernel = bootconfig.kernelname;
381
382 /* if the wscons interface is used, switch off VERBOSE booting :( */
383 #if NVIDCVIDEO>0
384 # undef VERBOSE_INIT_ARM
385 # undef PMAP_DEBUG
386 #endif
387
388 /*
389 * Initialise the video memory descriptor
390 *
391 * Note: all references to the video memory virtual/physical address
392 * should go via this structure.
393 */
394
395 /* Hardwire it on the place the bootloader tells us */
396 videomemory.vidm_vbase = bootconfig.display_start;
397 videomemory.vidm_pbase = bootconfig.display_phys;
398 videomemory.vidm_size = bootconfig.display_size;
399 if (bootconfig.vram[0].pages)
400 videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
401 else
402 videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
403 vidc_base = (int *) VIDC_HW_BASE;
404 iomd_base = IOMD_HW_BASE;
405
406 /*
407 * Initialise the physical console
408 * This is done in main() but for the moment we do it here so that
409 * we can use printf in initarm() before main() has been called.
410 * only for `vidcconsole!' ... not wscons
411 */
412 #if NVIDCVIDEO == 0
413 consinit();
414 #endif
415
416 /*
417 * Initialise the diagnostic serial console
418 * This allows a means of generating output during initarm().
419 * Once all the memory map changes are complete we can call consinit()
420 * and not have to worry about things moving.
421 */
422 /* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */
423 /* XXX snif .... i am still not able to this */
424
425 /*
426 * We have the following memory map (derived from EBSA)
427 *
428 * virtual address == physical address apart from the areas:
429 * 0x00000000 -> 0x000fffff which is mapped to
430 * top 1MB of physical memory
431 * 0xf0000000 -> 0xf0ffffff wich is mapped to
432 * physical address 0x01000000 -> 0x01ffffff (DRAM0a, dram[0])
433 *
434 * This means that the kernel is mapped suitably for continuing
435 * execution, all I/O is mapped 1:1 virtual to physical and
436 * physical memory is accessible.
437 *
438 * The initarm() has the responsibility for creating the kernel
439 * page tables.
440 * It must also set up various memory pointers that are used
441 * by pmap etc.
442 */
443
444 /* START OF REAL NEW STUFF */
445
446 /* Check to make sure the page size is correct */
447 if (PAGE_SIZE != bootconfig.pagesize)
448 panic2(("Page size is %d bytes instead of %d !! (huh?)\n",
449 bootconfig.pagesize, PAGE_SIZE));
450
451 /* process arguments */
452 process_kernel_args();
453
454
455 /*
456 * Now set up the page tables for the kernel ... this part is copied
457 * in a (modified?) way from the EBSA machine port....
458 */
459
460 #ifdef VERBOSE_INIT_ARM
461 printf("Allocating page tables\n");
462 #endif
463 /*
464 * Set up the variables that define the availablilty of physical
465 * memory
466 */
467 physical_start = 0xffffffff;
468 physical_end = 0;
469 for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) {
470 if (bootconfig.dram[loop].address < physical_start)
471 physical_start = bootconfig.dram[loop].address;
472 memoryblock_end = bootconfig.dram[loop].address +
473 bootconfig.dram[loop].pages * PAGE_SIZE;
474 if (memoryblock_end > physical_end)
475 physical_end = memoryblock_end;
476 physmem += bootconfig.dram[loop].pages;
477 };
478 /* constants for now, but might be changed/configured */
479 dma_range_begin = (paddr_t) physical_start;
480 dma_range_end = (paddr_t) MIN(physical_end, 512*1024*1024);
481 /* XXX HACK HACK XXX */
482 /* dma_range_end = 0x18000000; */
483
484 if (physical_start != bootconfig.dram[0].address) {
485 int oldblocks = 0;
486
487 /*
488 * must be a kinetic, as it's the only thing to shuffle memory
489 * around
490 */
491 /* hack hack - throw away the slow dram */
492 for (loop = 0; loop < bootconfig.dramblocks; ++loop) {
493 if (bootconfig.dram[loop].address <
494 bootconfig.dram[0].address) {
495 /* non kinetic ram */
496 bootconfig.dram[loop].address = 0;
497 physmem -= bootconfig.dram[loop].pages;
498 bootconfig.drampages -=
499 bootconfig.dram[loop].pages;
500 bootconfig.dram[loop].pages = 0;
501 oldblocks++;
502 }
503 }
504 physical_start = bootconfig.dram[0].address;
505 bootconfig.dramblocks -= oldblocks;
506 }
507
508 physical_freestart = physical_start;
509 free_pages = bootconfig.drampages;
510 physical_freeend = physical_end;
511
512
513 /*
514 * AHUM !! set this variable ... it was set up in the old 1st
515 * stage bootloader
516 */
517 kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize;
518
519 /* Update the address of the first free page of physical memory */
520 /* XXX Assumption that the kernel and stuff is at the LOWEST physical memory address? XXX */
521 physical_freestart +=
522 bootconfig.kernsize + bootconfig.MDFsize + bootconfig.scratchsize;
523 free_pages -= (physical_freestart - physical_start) / PAGE_SIZE;
524
525 /* Define a macro to simplify memory allocation */
526 #define valloc_pages(var, np) \
527 alloc_pages((var).pv_pa, (np)); \
528 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
529
530 #define alloc_pages(var, np) \
531 (var) = physical_freestart; \
532 physical_freestart += ((np) * PAGE_SIZE); \
533 free_pages -= (np); \
534 memset((char *)(var), 0, ((np) * PAGE_SIZE));
535
536 loop1 = 0;
537 kernel_l1pt.pv_pa = 0;
538 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
539 /* Are we 16KB aligned for an L1 ? */
540 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
541 && kernel_l1pt.pv_pa == 0) {
542 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
543 } else {
544 valloc_pages(kernel_pt_table[loop1],
545 L2_TABLE_SIZE / PAGE_SIZE);
546 ++loop1;
547 }
548 }
549
550
551 #ifdef DIAGNOSTIC
552 /* This should never be able to happen but better confirm that. */
553 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
554 panic2(("initarm: Failed to align the kernel page "
555 "directory\n"));
556 #endif
557
558 /*
559 * Allocate a page for the system page mapped to V0x00000000
560 * This page will just contain the system vectors and can be
561 * shared by all processes.
562 */
563 alloc_pages(systempage.pv_pa, 1);
564
565 /* Allocate stacks for all modes */
566 valloc_pages(irqstack, IRQ_STACK_SIZE);
567 valloc_pages(abtstack, ABT_STACK_SIZE);
568 valloc_pages(undstack, UND_STACK_SIZE);
569 valloc_pages(kernelstack, UPAGES);
570
571 #ifdef VERBOSE_INIT_ARM
572 printf("Setting up stacks :\n");
573 printf("IRQ stack: p0x%08lx v0x%08lx\n",
574 irqstack.pv_pa, irqstack.pv_va);
575 printf("ABT stack: p0x%08lx v0x%08lx\n",
576 abtstack.pv_pa, abtstack.pv_va);
577 printf("UND stack: p0x%08lx v0x%08lx\n",
578 undstack.pv_pa, undstack.pv_va);
579 printf("SVC stack: p0x%08lx v0x%08lx\n",
580 kernelstack.pv_pa, kernelstack.pv_va);
581 printf("\n");
582 #endif
583
584 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
585
586 #ifdef CPU_SA110
587 /*
588 * XXX totally stuffed hack to work round problems introduced
589 * in recent versions of the pmap code. Due to the calls used there
590 * we cannot allocate virtual memory during bootstrap.
591 */
592 sa110_cc_base = (KERNEL_BASE + (physical_freestart - physical_start)
593 + (CPU_SA110_CACHE_CLEAN_SIZE - 1))
594 & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1);
595 #endif /* CPU_SA110 */
596
597 /*
598 * Ok we have allocated physical pages for the primary kernel
599 * page tables
600 */
601
602 #ifdef VERBOSE_INIT_ARM
603 printf("Creating L1 page table\n");
604 #endif
605
606 /*
607 * Now we start construction of the L1 page table
608 * We start by mapping the L2 page tables into the L1.
609 * This means that we can replace L1 mappings later on if necessary
610 */
611 l1pagetable = kernel_l1pt.pv_pa;
612
613 /* Map the L2 pages tables in the L1 page table */
614 pmap_link_l2pt(l1pagetable, 0x00000000,
615 &kernel_pt_table[KERNEL_PT_SYS]);
616 pmap_link_l2pt(l1pagetable, KERNEL_BASE,
617 &kernel_pt_table[KERNEL_PT_KERNEL]);
618 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
619 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
620 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
621 pmap_link_l2pt(l1pagetable, VMEM_VBASE,
622 &kernel_pt_table[KERNEL_PT_VMEM]);
623
624 /* update the top of the kernel VM */
625 pmap_curmaxkvaddr =
626 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
627
628 #ifdef VERBOSE_INIT_ARM
629 printf("Mapping kernel\n");
630 #endif
631
632 /* Now we fill in the L2 pagetable for the kernel code/data */
633 /* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */
634 /*
635 * The defines are a workaround for a recent problem that occurred
636 * with ARM 610 processors and some ARM 710 processors
637 * Other ARM 710 and StrongARM processors don't have a problem.
638 */
639 if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
640 #if defined(CPU_ARM6) || defined(CPU_ARM7)
641 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
642 physical_start, kernexec->a_text,
643 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
644 #else /* CPU_ARM6 || CPU_ARM7 */
645 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
646 physical_start, kernexec->a_text,
647 VM_PROT_READ, PTE_CACHE);
648 #endif /* CPU_ARM6 || CPU_ARM7 */
649 logical += pmap_map_chunk(l1pagetable,
650 KERNEL_TEXT_BASE + logical, physical_start + logical,
651 kerneldatasize - kernexec->a_text,
652 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
653 } else { /* !ZMAGIC */
654 /*
655 * Most likely an ELF kernel ...
656 * XXX no distinction yet between read only and
657 * read/write area's ...
658 */
659 pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
660 physical_start, kerneldatasize,
661 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
662 };
663
664
665 #ifdef VERBOSE_INIT_ARM
666 printf("Constructing L2 page tables\n");
667 #endif
668
669 /* Map the stack pages */
670 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
671 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
672 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
673 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
674 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
675 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
676 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
677 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
678
679 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
680 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
681
682 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
683 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
684 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
685 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
686 }
687
688 /* Now we fill in the L2 pagetable for the VRAM */
689 /*
690 * Current architectures mean that the VRAM is always in 1
691 * continuous bank. This means that we can just map the 2 meg
692 * that the VRAM would occupy. In theory we don't need a page
693 * table for VRAM, we could section map it but we would need
694 * the page tables if DRAM was in use.
695 * XXX please map two adjacent virtual areas to ONE physical
696 * area
697 */
698 pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase,
699 videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
700 pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size,
701 videomemory.vidm_pbase, videomemory.vidm_size,
702 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
703
704 /* Map the vector page. */
705 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
706 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
707
708 /* Map the core memory needed before autoconfig */
709 loop = 0;
710 while (l1_sec_table[loop].size) {
711 vsize_t sz;
712
713 #ifdef VERBOSE_INIT_ARM
714 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
715 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
716 l1_sec_table[loop].va);
717 #endif
718 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
719 pmap_map_section(l1pagetable,
720 l1_sec_table[loop].va + sz,
721 l1_sec_table[loop].pa + sz,
722 l1_sec_table[loop].prot,
723 l1_sec_table[loop].cache);
724 ++loop;
725 }
726
727 /*
728 * Now we have the real page tables in place so we can switch
729 * to them. Once this is done we will be running with the
730 * REAL kernel page tables.
731 */
732
733 #ifdef VERBOSE_INIT_ARM
734 printf("switching domains\n");
735 #endif
736 /* be a client to all domains */
737 cpu_domains(0x55555555);
738
739 /* Switch tables */
740 #ifdef VERBOSE_INIT_ARM
741 printf("switching to new L1 page table\n");
742 #endif
743 cpu_setttb(kernel_l1pt.pv_pa, true);
744
745 /*
746 * We must now clean the cache again....
747 * Cleaning may be done by reading new data to displace any
748 * dirty data in the cache. This will have happened in cpu_setttb()
749 * but since we are boot strapping the addresses used for the read
750 * may have just been remapped and thus the cache could be out
751 * of sync. A re-clean after the switch will cure this.
752 * After booting there are no gross reloations of the kernel thus
753 * this problem will not occur after initarm().
754 */
755 cpu_idcache_wbinv_all();
756 cpu_tlb_flushID();
757 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
758
759 /*
760 * Moved from cpu_startup() as data_abort_handler() references
761 * this during uvm init
762 */
763 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
764
765 /*
766 * if there is support for a serial console ...we should now
767 * reattach it
768 */
769 /* fcomcndetach();*/
770
771 /*
772 * Reflect videomemory relocation in the videomemory structure
773 * and reinit console
774 */
775 if (bootconfig.vram[0].pages == 0) {
776 videomemory.vidm_vbase = VMEM_VBASE;
777 } else {
778 videomemory.vidm_vbase = VMEM_VBASE;
779 bootconfig.display_start = VMEM_VBASE;
780 };
781 vidc_base = (int *) VIDC_BASE;
782 iomd_base = IOMD_BASE;
783
784 #ifdef VERBOSE_INIT_ARM
785 printf("running on the new L1 page table!\n");
786 printf("done.\n");
787 #endif
788
789 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
790
791 #ifdef VERBOSE_INIT_ARM
792 printf("\n");
793 #endif
794
795 /*
796 * Pages were allocated during the secondary bootstrap for the
797 * stacks for different CPU modes.
798 * We must now set the r13 registers in the different CPU modes to
799 * point to these stacks.
800 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
801 * of the stack memory.
802 */
803 #ifdef VERBOSE_INIT_ARM
804 printf("init subsystems: stacks ");
805 console_flush();
806 #endif
807
808 set_stackptr(PSR_IRQ32_MODE,
809 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
810 set_stackptr(PSR_ABT32_MODE,
811 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
812 set_stackptr(PSR_UND32_MODE,
813 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
814 #ifdef PMAP_DEBUG
815 if (pmap_debug_level >= 0)
816 printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
817 kernelstack.pv_pa);
818 #endif /* PMAP_DEBUG */
819
820 /*
821 * Well we should set a data abort handler.
822 * Once things get going this will change as we will need a proper
823 * handler. Until then we will use a handler that just panics but
824 * tells us why.
825 * Initialisation of the vectors will just panic on a data abort.
826 * This just fills in a slightly better one.
827 */
828 #ifdef VERBOSE_INIT_ARM
829 printf("vectors ");
830 #endif
831 data_abort_handler_address = (u_int)data_abort_handler;
832 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
833 undefined_handler_address = (u_int)undefinedinstruction_bounce;
834 console_flush();
835
836
837 /*
838 * At last !
839 * We now have the kernel in physical memory from the bottom upwards.
840 * Kernel page tables are physically above this.
841 * The kernel is mapped to 0xf0000000
842 * The kernel data PTs will handle the mapping of
843 * 0xf1000000-0xf5ffffff (80 Mb)
844 * 2Meg of VRAM is mapped to 0xf7000000
845 * The page tables are mapped to 0xefc00000
846 * The IOMD is mapped to 0xf6000000
847 * The VIDC is mapped to 0xf6100000
848 * The IOMD/VIDC could be pushed up higher but i havent got
849 * sufficient documentation to do so; the addresses are not
850 * parametized yet and hard to read... better fix this before;
851 * its pretty unforgiving.
852 */
853
854 /* Initialise the undefined instruction handlers */
855 #ifdef VERBOSE_INIT_ARM
856 printf("undefined ");
857 #endif
858 undefined_init();
859 console_flush();
860
861 /* Load memory into UVM. */
862 #ifdef VERBOSE_INIT_ARM
863 printf("page ");
864 #endif
865 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
866 for (loop = 0; loop < bootconfig.dramblocks; loop++) {
867 paddr_t start = (paddr_t)bootconfig.dram[loop].address;
868 paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE);
869
870 if (start < physical_freestart)
871 start = physical_freestart;
872 if (end > physical_freeend)
873 end = physical_freeend;
874
875 /* XXX Consider DMA range intersection checking. */
876
877 uvm_page_physload(atop(start), atop(end),
878 atop(start), atop(end), VM_FREELIST_DEFAULT);
879 }
880
881 /* Boot strap pmap telling it where the kernel page table is */
882 #ifdef VERBOSE_INIT_ARM
883 printf("pmap ");
884 #endif
885 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
886 console_flush();
887
888 /* Setup the IRQ system */
889 #ifdef VERBOSE_INIT_ARM
890 printf("irq ");
891 #endif
892 console_flush();
893 irq_init();
894 #ifdef VERBOSE_INIT_ARM
895 printf("done.\n\n");
896 #endif
897
898 #if NVIDCVIDEO>0
899 consinit(); /* necessary ? */
900 #endif
901
902 /* Talk to the user */
903 printf("NetBSD/evbarm booting ... \n");
904
905 /* Tell the user if his boot loader is too old */
906 if ((bootconfig.magic < BOOTCONFIG_MAGIC) ||
907 (bootconfig.version != BOOTCONFIG_VERSION)) {
908 printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n");
909 delay(5000000);
910 }
911
912 printf("Kernel loaded from file %s\n", bootconfig.kernelname);
913 printf("Kernel arg string (@%p) %s\n",
914 bootconfig.args, bootconfig.args);
915 printf("\nBoot configuration structure reports the following "
916 "memory\n");
917
918 printf(" DRAM block 0a at %08x size %08x "
919 "DRAM block 0b at %08x size %08x\n\r",
920 bootconfig.dram[0].address,
921 bootconfig.dram[0].pages * bootconfig.pagesize,
922 bootconfig.dram[1].address,
923 bootconfig.dram[1].pages * bootconfig.pagesize);
924 printf(" DRAM block 1a at %08x size %08x "
925 "DRAM block 1b at %08x size %08x\n\r",
926 bootconfig.dram[2].address,
927 bootconfig.dram[2].pages * bootconfig.pagesize,
928 bootconfig.dram[3].address,
929 bootconfig.dram[3].pages * bootconfig.pagesize);
930 printf(" VRAM block 0 at %08x size %08x\n\r",
931 bootconfig.vram[0].address,
932 bootconfig.vram[0].pages * bootconfig.pagesize);
933
934 #if NKSYMS || defined(DDB) || defined(MODULAR)
935 ksyms_addsyms_elf(bootconfig.ksym_end - bootconfig.ksym_start,
936 (void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end);
937 #endif
938
939
940 #ifdef DDB
941 db_machine_init();
942 if (boothowto & RB_KDB)
943 Debugger();
944 #endif /* DDB */
945
946 /* We return the new stack pointer address */
947 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
948 }
949
950
951 static void
952 process_kernel_args(void)
953 {
954 char *args;
955
956 /* Ok now we will check the arguments for interesting parameters. */
957 args = bootconfig.args;
958 boothowto = 0;
959
960 /* Only arguments itself are passed from the new bootloader */
961 while (*args == ' ')
962 ++args;
963
964 boot_args = args;
965 parse_mi_bootargs(boot_args);
966 parse_rpc_bootargs(boot_args);
967 }
968
969
970 void
971 parse_rpc_bootargs(char *args)
972 {
973 int integer;
974
975 if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT,
976 &integer)) {
977 videodram_size = integer;
978 /* Round to 4K page */
979 videodram_size *= 1024;
980 videodram_size = round_page(videodram_size);
981 if (videodram_size > 1024*1024)
982 videodram_size = 1024*1024;
983 }
984 }
985 /* End of machdep.c */
986