eb7500atx_machdep.c revision 1.6.26.1 1 /* $NetBSD: eb7500atx_machdep.c,v 1.6.26.1 2007/08/16 11:02:08 jmcneill Exp $ */
2
3 /*
4 * Copyright (c) 2000-2002 Reinoud Zandijk.
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by Brini.
22 * 4. The name of the company nor the name of the author may be used to
23 * endorse or promote products derived from this software without specific
24 * prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
27 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
30 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * RiscBSD kernel project
39 *
40 * machdep.c
41 *
42 * Machine dependant functions for kernel setup
43 *
44 * This file still needs a lot of work
45 *
46 * Created : 17/09/94
47 * Updated for yet another new bootloader 28/12/02
48 */
49
50 #include "opt_ddb.h"
51 #include "opt_pmap_debug.h"
52 #include "vidcvideo.h"
53 #include "pckbc.h"
54
55 #include <sys/param.h>
56
57 __KERNEL_RCSID(0, "$NetBSD: eb7500atx_machdep.c,v 1.6.26.1 2007/08/16 11:02:08 jmcneill Exp $");
58
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/reboot.h>
62 #include <sys/proc.h>
63 #include <sys/msgbuf.h>
64 #include <sys/exec.h>
65 #include <sys/ksyms.h>
66
67 #include <dev/cons.h>
68
69 #include <machine/db_machdep.h>
70 #include <ddb/db_sym.h>
71 #include <ddb/db_extern.h>
72
73 #include <uvm/uvm.h>
74
75 #include <machine/signal.h>
76 #include <machine/frame.h>
77 #include <machine/bootconfig.h>
78 #include <machine/cpu.h>
79 #include <machine/io.h>
80 #include <machine/intr.h>
81 #include <arm/cpuconf.h>
82 #include <arm/arm32/katelib.h>
83 #include <arm/arm32/machdep.h>
84 #include <arm/undefined.h>
85 #include <machine/rtc.h>
86 #include <machine/bus.h>
87
88 #include <arm/iomd/vidc.h>
89 #include <arm/iomd/iomdreg.h>
90 #include <arm/iomd/iomdvar.h>
91
92 #include <arm/iomd/vidcvideo.h>
93
94 #include <sys/device.h>
95 #include <dev/ic/pckbcvar.h>
96
97 #include <dev/i2c/i2cvar.h>
98 #include <dev/i2c/pcf8583var.h>
99 #include <arm/iomd/iomdiicvar.h>
100
101 /* static i2c_tag_t acorn32_i2c_tag;*/
102
103 #include "opt_ipkdb.h"
104 #include "ksyms.h"
105
106 /* Kernel text starts at the base of the kernel address space. */
107 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000)
108 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
109
110 /*
111 * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space
112 * Fixed mappings exist from 0xf6000000 - 0xffffffff
113 */
114 #define KERNEL_VM_SIZE 0x05000000
115
116 /*
117 * Address to call from cpu_reset() to reset the machine.
118 * This is machine architecture dependant as it varies depending
119 * on where the ROM appears when you turn the MMU off.
120 */
121 u_int cpu_reset_address = 0x0; /* XXX 0x3800000 too for rev0 RiscPC 600 */
122
123
124 #define VERBOSE_INIT_ARM
125
126
127 /* Define various stack sizes in pages */
128 #define IRQ_STACK_SIZE 1
129 #define ABT_STACK_SIZE 1
130 #ifdef IPKDB
131 #define UND_STACK_SIZE 2
132 #else
133 #define UND_STACK_SIZE 1
134 #endif
135
136
137 struct bootconfig bootconfig; /* Boot config storage */
138 videomemory_t videomemory; /* Video memory descriptor */
139
140 char *boot_args = NULL; /* holds the pre-processed boot arguments */
141 extern char *booted_kernel; /* used for ioctl to retrieve booted kernel */
142
143 extern int *vidc_base;
144 extern u_int32_t iomd_base;
145 extern struct bus_space iomd_bs_tag;
146
147 paddr_t physical_start;
148 paddr_t physical_freestart;
149 paddr_t physical_freeend;
150 paddr_t physical_end;
151 paddr_t dma_range_begin;
152 paddr_t dma_range_end;
153
154 u_int free_pages;
155 int physmem = 0;
156 paddr_t memoryblock_end;
157
158 #ifndef PMAP_STATIC_L1S
159 int max_processes = 64; /* Default number */
160 #endif /* !PMAP_STATIC_L1S */
161
162 u_int videodram_size = 0; /* Amount of DRAM to reserve for video */
163
164 /* Physical and virtual addresses for some global pages */
165 pv_addr_t systempage;
166 pv_addr_t irqstack;
167 pv_addr_t undstack;
168 pv_addr_t abtstack;
169 pv_addr_t kernelstack;
170
171 paddr_t msgbufphys;
172
173 extern u_int data_abort_handler_address;
174 extern u_int prefetch_abort_handler_address;
175 extern u_int undefined_handler_address;
176
177 #ifdef PMAP_DEBUG
178 extern int pmap_debug_level;
179 #endif /* PMAP_DEBUG */
180
181 #define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */
182 #define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */
183 #define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel */
184 #define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */
185 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
186 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
187
188 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
189
190 struct user *proc0paddr;
191
192 #ifdef CPU_SA110
193 #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
194 static vaddr_t sa110_cc_base;
195 #endif /* CPU_SA110 */
196
197 /* Prototypes */
198 void physcon_display_base(u_int);
199 extern void consinit(void);
200
201 void data_abort_handler(trapframe_t *);
202 void prefetch_abort_handler(trapframe_t *);
203 void undefinedinstruction_bounce(trapframe_t *frame);
204
205 static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *);
206 static void process_kernel_args(void);
207
208 extern void dump_spl_masks(void);
209
210 void rpc_sa110_cc_setup(void);
211
212 void parse_rpc_bootargs(char *args);
213
214 extern void dumpsys(void);
215
216
217 # define console_flush() /* empty */
218
219
220 #define panic2(a) do { \
221 memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024); \
222 consinit(); \
223 panic a; \
224 } while (/* CONSTCOND */ 0)
225
226 /*
227 * void cpu_reboot(int howto, char *bootstr)
228 *
229 * Reboots the system
230 *
231 * Deal with any syncing, unmounting, dumping and shutdown hooks,
232 * then reset the CPU.
233 */
234
235 /* NOTE: These variables will be removed, well some of them */
236
237 extern u_int current_mask;
238
239 void
240 cpu_reboot(int howto, char *bootstr)
241 {
242
243 #ifdef DIAGNOSTIC
244 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
245
246 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
247 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
248 irqmasks[IPL_VM]);
249 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
250 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
251
252 /* dump_spl_masks(); */
253 #endif /* DIAGNOSTIC */
254
255 /*
256 * If we are still cold then hit the air brakes
257 * and crash to earth fast
258 */
259 if (cold) {
260 doshutdownhooks();
261 printf("Halted while still in the ICE age.\n");
262 printf("The operating system has halted.\n");
263 printf("Please press any key to reboot.\n\n");
264 cngetc();
265 printf("rebooting...\n");
266 cpu_reset();
267 /*NOTREACHED*/
268 }
269
270 /* Disable console buffering */
271 cnpollc(1);
272
273 /*
274 * If RB_NOSYNC was not specified sync the discs.
275 * Note: Unless cold is set to 1 here, syslogd will die during
276 * the unmount. It looks like syslogd is getting woken up
277 * only to find that it cannot page part of the binary in as
278 * the filesystem has been unmounted.
279 */
280 if (!(howto & RB_NOSYNC))
281 bootsync();
282
283 /* Say NO to interrupts */
284 splhigh();
285
286 /* Do a dump if requested. */
287 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
288 dumpsys();
289
290 /*
291 * Auto reboot overload protection
292 *
293 * This code stops the kernel entering an endless loop of reboot
294 * - panic cycles. This will have the effect of stopping further
295 * reboots after it has rebooted 8 times after panics. A clean
296 * halt or reboot will reset the counter.
297 */
298
299 /* Run any shutdown hooks */
300 doshutdownhooks();
301
302 /* Make sure IRQ's are disabled */
303 IRQdisable;
304
305 if (howto & RB_HALT) {
306 printf("The operating system has halted.\n");
307 printf("Please press any key to reboot.\n\n");
308 cngetc();
309 }
310
311 printf("rebooting...\n");
312 cpu_reset();
313 /*NOTREACHED*/
314 }
315
316
317 /*
318 * u_int initarm(BootConfig *bootconf)
319 *
320 * Initial entry point on startup. This gets called before main() is
321 * entered.
322 * It should be responsible for setting up everything that must be
323 * in place when main is called.
324 * This includes
325 * Taking a copy of the boot configuration structure.
326 * Initialising the physical console so characters can be printed.
327 * Setting up page tables for the kernel
328 * Relocating the kernel to the bottom of physical memory
329 */
330
331 /*
332 * this part is completely rewritten for the new bootloader ... It features
333 * a flat memory map with a mapping comparable to the EBSA arm32 machine
334 * to boost the portability and likeness of the code
335 */
336
337 /*
338 * Mapping table for core kernel memory. This memory is mapped at init
339 * time with section mappings.
340 *
341 * XXX One big assumption in the current architecture seems that the kernel is
342 * XXX supposed to be mapped into bootconfig.dram[0].
343 */
344
345 #define ONE_MB 0x100000
346
347 struct l1_sec_map {
348 vaddr_t va;
349 paddr_t pa;
350 vsize_t size;
351 vm_prot_t prot;
352 int cache;
353 } l1_sec_table[] = {
354 /* Map 1Mb section for VIDC20 */
355 { VIDC_BASE, VIDC_HW_BASE,
356 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
357 PTE_NOCACHE },
358
359 /* Map 1Mb section from IOMD */
360 { IOMD_BASE, IOMD_HW_BASE,
361 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
362 PTE_NOCACHE },
363
364 /* Map 1Mb of COMBO (and module space) */
365 { IO_BASE, IO_HW_BASE,
366 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
367 PTE_NOCACHE },
368 { 0, 0, 0, 0, 0 }
369 };
370
371
372 static void
373 canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf)
374 {
375 /* check for bootconfig v2+ structure */
376 if (raw_bootconf->magic == BOOTCONFIG_MAGIC) {
377 /* v2+ cleaned up structure found */
378 *bootconf = *raw_bootconf;
379 return;
380 } else {
381 panic2(("Internal error: no valid bootconfig block found"));
382 }
383 }
384
385
386 u_int
387 initarm(void *cookie)
388 {
389 struct bootconfig *raw_bootconf = cookie;
390 int loop;
391 int loop1;
392 u_int logical;
393 u_int kerneldatasize;
394 u_int l1pagetable;
395 struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
396 pv_addr_t kernel_l1pt = { {0} };
397
398 /*
399 * Heads up ... Setup the CPU / MMU / TLB functions
400 */
401 set_cpufuncs();
402
403 /* canonicalise the boot configuration structure to alow versioning */
404 canonicalise_bootconfig(&bootconfig, raw_bootconf);
405 booted_kernel = bootconfig.kernelname;
406
407 /* if the wscons interface is used, switch off VERBOSE booting :( */
408 #if NVIDCVIDEO>0
409 # undef VERBOSE_INIT_ARM
410 # undef PMAP_DEBUG
411 #endif
412
413 /*
414 * Initialise the video memory descriptor
415 *
416 * Note: all references to the video memory virtual/physical address
417 * should go via this structure.
418 */
419
420 /* Hardwire it on the place the bootloader tells us */
421 videomemory.vidm_vbase = bootconfig.display_start;
422 videomemory.vidm_pbase = bootconfig.display_phys;
423 videomemory.vidm_size = bootconfig.display_size;
424 if (bootconfig.vram[0].pages)
425 videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
426 else
427 videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
428 vidc_base = (int *) VIDC_HW_BASE;
429 iomd_base = IOMD_HW_BASE;
430
431 /*
432 * Initialise the physical console
433 * This is done in main() but for the moment we do it here so that
434 * we can use printf in initarm() before main() has been called.
435 * only for `vidcconsole!' ... not wscons
436 */
437 #if NVIDCVIDEO == 0
438 consinit();
439 #endif
440
441 /*
442 * Initialise the diagnostic serial console
443 * This allows a means of generating output during initarm().
444 * Once all the memory map changes are complete we can call consinit()
445 * and not have to worry about things moving.
446 */
447 /* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */
448 /* XXX snif .... i am still not able to this */
449
450 /*
451 * We have the following memory map (derived from EBSA)
452 *
453 * virtual address == physical address apart from the areas:
454 * 0x00000000 -> 0x000fffff which is mapped to
455 * top 1MB of physical memory
456 * 0xf0000000 -> 0xf0ffffff wich is mapped to
457 * physical address 0x01000000 -> 0x01ffffff (DRAM0a, dram[0])
458 *
459 * This means that the kernel is mapped suitably for continuing
460 * execution, all I/O is mapped 1:1 virtual to physical and
461 * physical memory is accessible.
462 *
463 * The initarm() has the responsibility for creating the kernel
464 * page tables.
465 * It must also set up various memory pointers that are used
466 * by pmap etc.
467 */
468
469 /* START OF REAL NEW STUFF */
470
471 /* Check to make sure the page size is correct */
472 if (PAGE_SIZE != bootconfig.pagesize)
473 panic2(("Page size is %d bytes instead of %d !! (huh?)\n",
474 bootconfig.pagesize, PAGE_SIZE));
475
476 /* process arguments */
477 process_kernel_args();
478
479
480 /*
481 * Now set up the page tables for the kernel ... this part is copied
482 * in a (modified?) way from the EBSA machine port....
483 */
484
485 #ifdef VERBOSE_INIT_ARM
486 printf("Allocating page tables\n");
487 #endif
488 /*
489 * Set up the variables that define the availablilty of physical
490 * memory
491 */
492 physical_start = 0xffffffff;
493 physical_end = 0;
494 for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) {
495 if (bootconfig.dram[loop].address < physical_start)
496 physical_start = bootconfig.dram[loop].address;
497 memoryblock_end = bootconfig.dram[loop].address +
498 bootconfig.dram[loop].pages * PAGE_SIZE;
499 if (memoryblock_end > physical_end)
500 physical_end = memoryblock_end;
501 physmem += bootconfig.dram[loop].pages;
502 };
503 /* constants for now, but might be changed/configured */
504 dma_range_begin = (paddr_t) physical_start;
505 dma_range_end = (paddr_t) MIN(physical_end, 512*1024*1024);
506 /* XXX HACK HACK XXX */
507 /* dma_range_end = 0x18000000; */
508
509 if (physical_start != bootconfig.dram[0].address) {
510 int oldblocks = 0;
511
512 /*
513 * must be a kinetic, as it's the only thing to shuffle memory
514 * around
515 */
516 /* hack hack - throw away the slow dram */
517 for (loop = 0; loop < bootconfig.dramblocks; ++loop) {
518 if (bootconfig.dram[loop].address <
519 bootconfig.dram[0].address) {
520 /* non kinetic ram */
521 bootconfig.dram[loop].address = 0;
522 physmem -= bootconfig.dram[loop].pages;
523 bootconfig.drampages -=
524 bootconfig.dram[loop].pages;
525 bootconfig.dram[loop].pages = 0;
526 oldblocks++;
527 }
528 }
529 physical_start = bootconfig.dram[0].address;
530 bootconfig.dramblocks -= oldblocks;
531 }
532
533 physical_freestart = physical_start;
534 free_pages = bootconfig.drampages;
535 physical_freeend = physical_end;
536
537
538 /*
539 * AHUM !! set this variable ... it was set up in the old 1st
540 * stage bootloader
541 */
542 kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize;
543
544 /* Update the address of the first free page of physical memory */
545 /* XXX Assumption that the kernel and stuff is at the LOWEST physical memory address? XXX */
546 physical_freestart +=
547 bootconfig.kernsize + bootconfig.MDFsize + bootconfig.scratchsize;
548 free_pages -= (physical_freestart - physical_start) / PAGE_SIZE;
549
550 /* Define a macro to simplify memory allocation */
551 #define valloc_pages(var, np) \
552 alloc_pages((var).pv_pa, (np)); \
553 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
554
555 #define alloc_pages(var, np) \
556 (var) = physical_freestart; \
557 physical_freestart += ((np) * PAGE_SIZE); \
558 free_pages -= (np); \
559 memset((char *)(var), 0, ((np) * PAGE_SIZE));
560
561 loop1 = 0;
562 kernel_l1pt.pv_pa = 0;
563 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
564 /* Are we 16KB aligned for an L1 ? */
565 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
566 && kernel_l1pt.pv_pa == 0) {
567 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
568 } else {
569 valloc_pages(kernel_pt_table[loop1],
570 L2_TABLE_SIZE / PAGE_SIZE);
571 ++loop1;
572 }
573 }
574
575
576 #ifdef DIAGNOSTIC
577 /* This should never be able to happen but better confirm that. */
578 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
579 panic2(("initarm: Failed to align the kernel page "
580 "directory\n"));
581 #endif
582
583 /*
584 * Allocate a page for the system page mapped to V0x00000000
585 * This page will just contain the system vectors and can be
586 * shared by all processes.
587 */
588 alloc_pages(systempage.pv_pa, 1);
589
590 /* Allocate stacks for all modes */
591 valloc_pages(irqstack, IRQ_STACK_SIZE);
592 valloc_pages(abtstack, ABT_STACK_SIZE);
593 valloc_pages(undstack, UND_STACK_SIZE);
594 valloc_pages(kernelstack, UPAGES);
595
596 #ifdef VERBOSE_INIT_ARM
597 printf("Setting up stacks :\n");
598 printf("IRQ stack: p0x%08lx v0x%08lx\n",
599 irqstack.pv_pa, irqstack.pv_va);
600 printf("ABT stack: p0x%08lx v0x%08lx\n",
601 abtstack.pv_pa, abtstack.pv_va);
602 printf("UND stack: p0x%08lx v0x%08lx\n",
603 undstack.pv_pa, undstack.pv_va);
604 printf("SVC stack: p0x%08lx v0x%08lx\n",
605 kernelstack.pv_pa, kernelstack.pv_va);
606 printf("\n");
607 #endif
608
609 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
610
611 #ifdef CPU_SA110
612 /*
613 * XXX totally stuffed hack to work round problems introduced
614 * in recent versions of the pmap code. Due to the calls used there
615 * we cannot allocate virtual memory during bootstrap.
616 */
617 sa110_cc_base = (KERNEL_BASE + (physical_freestart - physical_start)
618 + (CPU_SA110_CACHE_CLEAN_SIZE - 1))
619 & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1);
620 #endif /* CPU_SA110 */
621
622 /*
623 * Ok we have allocated physical pages for the primary kernel
624 * page tables
625 */
626
627 #ifdef VERBOSE_INIT_ARM
628 printf("Creating L1 page table\n");
629 #endif
630
631 /*
632 * Now we start construction of the L1 page table
633 * We start by mapping the L2 page tables into the L1.
634 * This means that we can replace L1 mappings later on if necessary
635 */
636 l1pagetable = kernel_l1pt.pv_pa;
637
638 /* Map the L2 pages tables in the L1 page table */
639 pmap_link_l2pt(l1pagetable, 0x00000000,
640 &kernel_pt_table[KERNEL_PT_SYS]);
641 pmap_link_l2pt(l1pagetable, KERNEL_BASE,
642 &kernel_pt_table[KERNEL_PT_KERNEL]);
643 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
644 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
645 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
646 pmap_link_l2pt(l1pagetable, VMEM_VBASE,
647 &kernel_pt_table[KERNEL_PT_VMEM]);
648
649 /* update the top of the kernel VM */
650 pmap_curmaxkvaddr =
651 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
652
653 #ifdef VERBOSE_INIT_ARM
654 printf("Mapping kernel\n");
655 #endif
656
657 /* Now we fill in the L2 pagetable for the kernel code/data */
658 /* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */
659 /*
660 * The defines are a workaround for a recent problem that occurred
661 * with ARM 610 processors and some ARM 710 processors
662 * Other ARM 710 and StrongARM processors don't have a problem.
663 */
664 if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
665 #if defined(CPU_ARM6) || defined(CPU_ARM7)
666 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
667 physical_start, kernexec->a_text,
668 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
669 #else /* CPU_ARM6 || CPU_ARM7 */
670 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
671 physical_start, kernexec->a_text,
672 VM_PROT_READ, PTE_CACHE);
673 #endif /* CPU_ARM6 || CPU_ARM7 */
674 logical += pmap_map_chunk(l1pagetable,
675 KERNEL_TEXT_BASE + logical, physical_start + logical,
676 kerneldatasize - kernexec->a_text,
677 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
678 } else { /* !ZMAGIC */
679 /*
680 * Most likely an ELF kernel ...
681 * XXX no distinction yet between read only and
682 * read/write area's ...
683 */
684 pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
685 physical_start, kerneldatasize,
686 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
687 };
688
689
690 #ifdef VERBOSE_INIT_ARM
691 printf("Constructing L2 page tables\n");
692 #endif
693
694 /* Map the stack pages */
695 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
696 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
697 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
698 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
699 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
700 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
701 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
702 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
703
704 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
705 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
706
707 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
708 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
709 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
710 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
711 }
712
713 /* Now we fill in the L2 pagetable for the VRAM */
714 /*
715 * Current architectures mean that the VRAM is always in 1
716 * continuous bank. This means that we can just map the 2 meg
717 * that the VRAM would occupy. In theory we don't need a page
718 * table for VRAM, we could section map it but we would need
719 * the page tables if DRAM was in use.
720 * XXX please map two adjacent virtual areas to ONE physical
721 * area
722 */
723 pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase,
724 videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
725 pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size,
726 videomemory.vidm_pbase, videomemory.vidm_size,
727 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
728
729 /* Map the vector page. */
730 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
731 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
732
733 /* Map the core memory needed before autoconfig */
734 loop = 0;
735 while (l1_sec_table[loop].size) {
736 vm_size_t sz;
737
738 #ifdef VERBOSE_INIT_ARM
739 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
740 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
741 l1_sec_table[loop].va);
742 #endif
743 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
744 pmap_map_section(l1pagetable,
745 l1_sec_table[loop].va + sz,
746 l1_sec_table[loop].pa + sz,
747 l1_sec_table[loop].prot,
748 l1_sec_table[loop].cache);
749 ++loop;
750 }
751
752 /*
753 * Now we have the real page tables in place so we can switch
754 * to them. Once this is done we will be running with the
755 * REAL kernel page tables.
756 */
757
758 /* Switch tables */
759 #ifdef VERBOSE_INIT_ARM
760 printf("switching to new L1 page table\n");
761 #endif
762 #ifdef VERBOSE_INIT_ARM
763 printf("switching domains\n");
764 #endif
765 /* be a client to all domains */
766 cpu_domains(0x55555555);
767
768 setttb(kernel_l1pt.pv_pa);
769
770 /*
771 * We must now clean the cache again....
772 * Cleaning may be done by reading new data to displace any
773 * dirty data in the cache. This will have happened in setttb()
774 * but since we are boot strapping the addresses used for the read
775 * may have just been remapped and thus the cache could be out
776 * of sync. A re-clean after the switch will cure this.
777 * After booting there are no gross reloations of the kernel thus
778 * this problem will not occur after initarm().
779 */
780 cpu_idcache_wbinv_all();
781 cpu_tlb_flushID();
782 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
783
784 /*
785 * Moved from cpu_startup() as data_abort_handler() references
786 * this during uvm init
787 */
788 proc0paddr = (struct user *)kernelstack.pv_va;
789 lwp0.l_addr = proc0paddr;
790
791 /*
792 * if there is support for a serial console ...we should now
793 * reattach it
794 */
795 /* fcomcndetach();*/
796
797 /*
798 * Reflect videomemory relocation in the videomemory structure
799 * and reinit console
800 */
801 if (bootconfig.vram[0].pages == 0) {
802 videomemory.vidm_vbase = VMEM_VBASE;
803 } else {
804 videomemory.vidm_vbase = VMEM_VBASE;
805 bootconfig.display_start = VMEM_VBASE;
806 };
807 vidc_base = (int *) VIDC_BASE;
808 iomd_base = IOMD_BASE;
809
810 #ifdef VERBOSE_INIT_ARM
811 printf("running on the new L1 page table!\n");
812 printf("done.\n");
813 #endif
814
815 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
816
817 #ifdef VERBOSE_INIT_ARM
818 printf("\n");
819 #endif
820
821 /*
822 * Pages were allocated during the secondary bootstrap for the
823 * stacks for different CPU modes.
824 * We must now set the r13 registers in the different CPU modes to
825 * point to these stacks.
826 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
827 * of the stack memory.
828 */
829 #ifdef VERBOSE_INIT_ARM
830 printf("init subsystems: stacks ");
831 console_flush();
832 #endif
833
834 set_stackptr(PSR_IRQ32_MODE,
835 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
836 set_stackptr(PSR_ABT32_MODE,
837 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
838 set_stackptr(PSR_UND32_MODE,
839 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
840 #ifdef PMAP_DEBUG
841 if (pmap_debug_level >= 0)
842 printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
843 kernelstack.pv_pa);
844 #endif /* PMAP_DEBUG */
845
846 /*
847 * Well we should set a data abort handler.
848 * Once things get going this will change as we will need a proper
849 * handler. Until then we will use a handler that just panics but
850 * tells us why.
851 * Initialisation of the vectors will just panic on a data abort.
852 * This just fills in a slightly better one.
853 */
854 #ifdef VERBOSE_INIT_ARM
855 printf("vectors ");
856 #endif
857 data_abort_handler_address = (u_int)data_abort_handler;
858 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
859 undefined_handler_address = (u_int)undefinedinstruction_bounce;
860 console_flush();
861
862
863 /*
864 * At last !
865 * We now have the kernel in physical memory from the bottom upwards.
866 * Kernel page tables are physically above this.
867 * The kernel is mapped to 0xf0000000
868 * The kernel data PTs will handle the mapping of
869 * 0xf1000000-0xf5ffffff (80 Mb)
870 * 2Meg of VRAM is mapped to 0xf7000000
871 * The page tables are mapped to 0xefc00000
872 * The IOMD is mapped to 0xf6000000
873 * The VIDC is mapped to 0xf6100000
874 * The IOMD/VIDC could be pushed up higher but i havent got
875 * sufficient documentation to do so; the addresses are not
876 * parametized yet and hard to read... better fix this before;
877 * its pretty unforgiving.
878 */
879
880 /* Initialise the undefined instruction handlers */
881 #ifdef VERBOSE_INIT_ARM
882 printf("undefined ");
883 #endif
884 undefined_init();
885 console_flush();
886
887 /* Load memory into UVM. */
888 #ifdef VERBOSE_INIT_ARM
889 printf("page ");
890 #endif
891 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
892 for (loop = 0; loop < bootconfig.dramblocks; loop++) {
893 paddr_t start = (paddr_t)bootconfig.dram[loop].address;
894 paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE);
895
896 if (start < physical_freestart)
897 start = physical_freestart;
898 if (end > physical_freeend)
899 end = physical_freeend;
900
901 /* XXX Consider DMA range intersection checking. */
902
903 uvm_page_physload(atop(start), atop(end),
904 atop(start), atop(end), VM_FREELIST_DEFAULT);
905 }
906
907 /* Boot strap pmap telling it where the kernel page table is */
908 #ifdef VERBOSE_INIT_ARM
909 printf("pmap ");
910 #endif
911 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
912 KERNEL_VM_BASE + KERNEL_VM_SIZE);
913 console_flush();
914
915 /* Setup the IRQ system */
916 #ifdef VERBOSE_INIT_ARM
917 printf("irq ");
918 #endif
919 console_flush();
920 irq_init();
921 #ifdef VERBOSE_INIT_ARM
922 printf("done.\n\n");
923 #endif
924
925 #if NVIDCVIDEO>0
926 consinit(); /* necessary ? */
927 #endif
928
929 /* Talk to the user */
930 printf("NetBSD/evbarm booting ... \n");
931
932 /* Tell the user if his boot loader is too old */
933 if ((bootconfig.magic < BOOTCONFIG_MAGIC) ||
934 (bootconfig.version != BOOTCONFIG_VERSION)) {
935 printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n");
936 delay(5000000);
937 }
938
939 printf("Kernel loaded from file %s\n", bootconfig.kernelname);
940 printf("Kernel arg string (@%p) %s\n",
941 bootconfig.args, bootconfig.args);
942 printf("\nBoot configuration structure reports the following "
943 "memory\n");
944
945 printf(" DRAM block 0a at %08x size %08x "
946 "DRAM block 0b at %08x size %08x\n\r",
947 bootconfig.dram[0].address,
948 bootconfig.dram[0].pages * bootconfig.pagesize,
949 bootconfig.dram[1].address,
950 bootconfig.dram[1].pages * bootconfig.pagesize);
951 printf(" DRAM block 1a at %08x size %08x "
952 "DRAM block 1b at %08x size %08x\n\r",
953 bootconfig.dram[2].address,
954 bootconfig.dram[2].pages * bootconfig.pagesize,
955 bootconfig.dram[3].address,
956 bootconfig.dram[3].pages * bootconfig.pagesize);
957 printf(" VRAM block 0 at %08x size %08x\n\r",
958 bootconfig.vram[0].address,
959 bootconfig.vram[0].pages * bootconfig.pagesize);
960
961 #ifdef IPKDB
962 /* Initialise ipkdb */
963 ipkdb_init();
964 if (boothowto & RB_KDB)
965 ipkdb_connect(0);
966 #endif /* NIPKDB */
967
968 #if NKSYMS || defined(DDB) || defined(LKM)
969 ksyms_init(bootconfig.ksym_end - bootconfig.ksym_start,
970 (void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end);
971 #endif
972
973
974 #ifdef DDB
975 db_machine_init();
976 if (boothowto & RB_KDB)
977 Debugger();
978 #endif /* DDB */
979
980 /* We return the new stack pointer address */
981 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
982 }
983
984
985 static void
986 process_kernel_args(void)
987 {
988 char *args;
989
990 /* Ok now we will check the arguments for interesting parameters. */
991 args = bootconfig.args;
992 boothowto = 0;
993
994 /* Only arguments itself are passed from the new bootloader */
995 while (*args == ' ')
996 ++args;
997
998 boot_args = args;
999 parse_mi_bootargs(boot_args);
1000 parse_rpc_bootargs(boot_args);
1001 }
1002
1003
1004 void
1005 parse_rpc_bootargs(char *args)
1006 {
1007 int integer;
1008
1009 if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT,
1010 &integer)) {
1011 videodram_size = integer;
1012 /* Round to 4K page */
1013 videodram_size *= 1024;
1014 videodram_size = round_page(videodram_size);
1015 if (videodram_size > 1024*1024)
1016 videodram_size = 1024*1024;
1017 }
1018 }
1019 /* End of machdep.c */
1020