eb7500atx_machdep.c revision 1.7.2.3 1 /* $NetBSD: eb7500atx_machdep.c,v 1.7.2.3 2008/01/20 16:04:14 chris Exp $ */
2
3 /*
4 * Copyright (c) 2000-2002 Reinoud Zandijk.
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by Brini.
22 * 4. The name of the company nor the name of the author may be used to
23 * endorse or promote products derived from this software without specific
24 * prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
27 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
30 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * RiscBSD kernel project
39 *
40 * machdep.c
41 *
42 * Machine dependant functions for kernel setup
43 *
44 * This file still needs a lot of work
45 *
46 * Created : 17/09/94
47 * Updated for yet another new bootloader 28/12/02
48 */
49
50 #include "opt_ddb.h"
51 #include "opt_pmap_debug.h"
52 #include "vidcvideo.h"
53 #include "pckbc.h"
54
55 #include <sys/param.h>
56
57 __KERNEL_RCSID(0, "$NetBSD: eb7500atx_machdep.c,v 1.7.2.3 2008/01/20 16:04:14 chris Exp $");
58
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/reboot.h>
62 #include <sys/proc.h>
63 #include <sys/msgbuf.h>
64 #include <sys/exec.h>
65 #include <sys/ksyms.h>
66
67 #include <dev/cons.h>
68
69 #include <machine/db_machdep.h>
70 #include <ddb/db_sym.h>
71 #include <ddb/db_extern.h>
72
73 #include <uvm/uvm.h>
74
75 #include <machine/signal.h>
76 #include <machine/frame.h>
77 #include <machine/bootconfig.h>
78 #include <machine/cpu.h>
79 #include <machine/io.h>
80 #include <machine/intr.h>
81 #include <arm/cpuconf.h>
82 #include <arm/arm32/katelib.h>
83 #include <arm/arm32/machdep.h>
84 #include <arm/undefined.h>
85 #include <machine/rtc.h>
86 #include <machine/bus.h>
87
88 #include <arm/iomd/vidc.h>
89 #include <arm/iomd/iomdreg.h>
90 #include <arm/iomd/iomdvar.h>
91
92 #include <arm/iomd/vidcvideo.h>
93
94 #include <sys/device.h>
95 #include <dev/ic/pckbcvar.h>
96
97 #include <dev/i2c/i2cvar.h>
98 #include <dev/i2c/pcf8583var.h>
99 #include <arm/iomd/iomdiicvar.h>
100
101 /* static i2c_tag_t acorn32_i2c_tag;*/
102
103 #include "ksyms.h"
104
105 /* Kernel text starts at the base of the kernel address space. */
106 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000)
107 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
108
109 /*
110 * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space
111 * Fixed mappings exist from 0xf6000000 - 0xffffffff
112 */
113 #define KERNEL_VM_SIZE 0x05000000
114
115 /*
116 * Address to call from cpu_reset() to reset the machine.
117 * This is machine architecture dependant as it varies depending
118 * on where the ROM appears when you turn the MMU off.
119 */
120 u_int cpu_reset_address = 0x0; /* XXX 0x3800000 too for rev0 RiscPC 600 */
121
122
123 #define VERBOSE_INIT_ARM
124
125
126 /* Define various stack sizes in pages */
127 #define IRQ_STACK_SIZE 1
128 #define ABT_STACK_SIZE 1
129 #define UND_STACK_SIZE 1
130
131
132 struct bootconfig bootconfig; /* Boot config storage */
133 videomemory_t videomemory; /* Video memory descriptor */
134
135 char *boot_args = NULL; /* holds the pre-processed boot arguments */
136 extern char *booted_kernel; /* used for ioctl to retrieve booted kernel */
137
138 extern int *vidc_base;
139 extern u_int32_t iomd_base;
140 extern struct bus_space iomd_bs_tag;
141
142 paddr_t physical_start;
143 paddr_t physical_freestart;
144 paddr_t physical_freeend;
145 paddr_t physical_end;
146 paddr_t dma_range_begin;
147 paddr_t dma_range_end;
148
149 u_int free_pages;
150 int physmem = 0;
151 paddr_t memoryblock_end;
152
153 #ifndef PMAP_STATIC_L1S
154 int max_processes = 64; /* Default number */
155 #endif /* !PMAP_STATIC_L1S */
156
157 u_int videodram_size = 0; /* Amount of DRAM to reserve for video */
158
159 /* Physical and virtual addresses for some global pages */
160 pv_addr_t systempage;
161 pv_addr_t irqstack;
162 pv_addr_t undstack;
163 pv_addr_t abtstack;
164 pv_addr_t kernelstack;
165
166 paddr_t msgbufphys;
167
168 extern u_int data_abort_handler_address;
169 extern u_int prefetch_abort_handler_address;
170 extern u_int undefined_handler_address;
171
172 #ifdef PMAP_DEBUG
173 extern int pmap_debug_level;
174 #endif /* PMAP_DEBUG */
175
176 #define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */
177 #define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */
178 #define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel */
179 #define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */
180 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
181 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
182
183 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
184
185 struct user *proc0paddr;
186
187 #ifdef CPU_SA110
188 #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
189 static vaddr_t sa110_cc_base;
190 #endif /* CPU_SA110 */
191
192 /* Prototypes */
193 void physcon_display_base(u_int);
194 extern void consinit(void);
195
196 void data_abort_handler(trapframe_t *);
197 void prefetch_abort_handler(trapframe_t *);
198 void undefinedinstruction_bounce(trapframe_t *frame);
199
200 static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *);
201 static void process_kernel_args(void);
202
203 extern void dump_spl_masks(void);
204
205 void rpc_sa110_cc_setup(void);
206
207 void parse_rpc_bootargs(char *args);
208
209 extern void dumpsys(void);
210
211
212 # define console_flush() /* empty */
213
214
215 #define panic2(a) do { \
216 memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024); \
217 consinit(); \
218 panic a; \
219 } while (/* CONSTCOND */ 0)
220
221 /*
222 * void cpu_reboot(int howto, char *bootstr)
223 *
224 * Reboots the system
225 *
226 * Deal with any syncing, unmounting, dumping and shutdown hooks,
227 * then reset the CPU.
228 */
229
230 /* NOTE: These variables will be removed, well some of them */
231
232 extern u_int current_mask;
233
234 void
235 cpu_reboot(int howto, char *bootstr)
236 {
237
238 #ifdef DIAGNOSTIC
239 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
240
241 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
242 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
243 irqmasks[IPL_VM]);
244 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
245 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
246
247 /* dump_spl_masks(); */
248 #endif /* DIAGNOSTIC */
249
250 /*
251 * If we are still cold then hit the air brakes
252 * and crash to earth fast
253 */
254 if (cold) {
255 doshutdownhooks();
256 printf("Halted while still in the ICE age.\n");
257 printf("The operating system has halted.\n");
258 printf("Please press any key to reboot.\n\n");
259 cngetc();
260 printf("rebooting...\n");
261 cpu_reset();
262 /*NOTREACHED*/
263 }
264
265 /* Disable console buffering */
266 cnpollc(1);
267
268 /*
269 * If RB_NOSYNC was not specified sync the discs.
270 * Note: Unless cold is set to 1 here, syslogd will die during
271 * the unmount. It looks like syslogd is getting woken up
272 * only to find that it cannot page part of the binary in as
273 * the filesystem has been unmounted.
274 */
275 if (!(howto & RB_NOSYNC))
276 bootsync();
277
278 /* Say NO to interrupts */
279 splhigh();
280
281 /* Do a dump if requested. */
282 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
283 dumpsys();
284
285 /*
286 * Auto reboot overload protection
287 *
288 * This code stops the kernel entering an endless loop of reboot
289 * - panic cycles. This will have the effect of stopping further
290 * reboots after it has rebooted 8 times after panics. A clean
291 * halt or reboot will reset the counter.
292 */
293
294 /* Run any shutdown hooks */
295 doshutdownhooks();
296
297 /* Make sure IRQ's are disabled */
298 IRQdisable;
299
300 if (howto & RB_HALT) {
301 printf("The operating system has halted.\n");
302 printf("Please press any key to reboot.\n\n");
303 cngetc();
304 }
305
306 printf("rebooting...\n");
307 cpu_reset();
308 /*NOTREACHED*/
309 }
310
311
312 /*
313 * u_int initarm(BootConfig *bootconf)
314 *
315 * Initial entry point on startup. This gets called before main() is
316 * entered.
317 * It should be responsible for setting up everything that must be
318 * in place when main is called.
319 * This includes
320 * Taking a copy of the boot configuration structure.
321 * Initialising the physical console so characters can be printed.
322 * Setting up page tables for the kernel
323 * Relocating the kernel to the bottom of physical memory
324 */
325
326 /*
327 * this part is completely rewritten for the new bootloader ... It features
328 * a flat memory map with a mapping comparable to the EBSA arm32 machine
329 * to boost the portability and likeness of the code
330 */
331
332 /*
333 * Mapping table for core kernel memory. This memory is mapped at init
334 * time with section mappings.
335 *
336 * XXX One big assumption in the current architecture seems that the kernel is
337 * XXX supposed to be mapped into bootconfig.dram[0].
338 */
339
340 #define ONE_MB 0x100000
341
342 struct l1_sec_map {
343 vaddr_t va;
344 paddr_t pa;
345 vsize_t size;
346 vm_prot_t prot;
347 int cache;
348 } l1_sec_table[] = {
349 /* Map 1Mb section for VIDC20 */
350 { VIDC_BASE, VIDC_HW_BASE,
351 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
352 PTE_NOCACHE },
353
354 /* Map 1Mb section from IOMD */
355 { IOMD_BASE, IOMD_HW_BASE,
356 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
357 PTE_NOCACHE },
358
359 /* Map 1Mb of COMBO (and module space) */
360 { IO_BASE, IO_HW_BASE,
361 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
362 PTE_NOCACHE },
363 { 0, 0, 0, 0, 0 }
364 };
365
366
367 static void
368 canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf)
369 {
370 /* check for bootconfig v2+ structure */
371 if (raw_bootconf->magic == BOOTCONFIG_MAGIC) {
372 /* v2+ cleaned up structure found */
373 *bootconf = *raw_bootconf;
374 return;
375 } else {
376 panic2(("Internal error: no valid bootconfig block found"));
377 }
378 }
379
380
381 u_int
382 initarm(void *cookie)
383 {
384 struct bootconfig *raw_bootconf = cookie;
385 int loop;
386 int loop1;
387 u_int logical;
388 u_int kerneldatasize;
389 u_int l1pagetable;
390 struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
391 pv_addr_t kernel_l1pt = { {0} };
392
393 /*
394 * Heads up ... Setup the CPU / MMU / TLB functions
395 */
396 set_cpufuncs();
397
398 /* canonicalise the boot configuration structure to alow versioning */
399 canonicalise_bootconfig(&bootconfig, raw_bootconf);
400 booted_kernel = bootconfig.kernelname;
401
402 /* if the wscons interface is used, switch off VERBOSE booting :( */
403 #if NVIDCVIDEO>0
404 # undef VERBOSE_INIT_ARM
405 # undef PMAP_DEBUG
406 #endif
407
408 /*
409 * Initialise the video memory descriptor
410 *
411 * Note: all references to the video memory virtual/physical address
412 * should go via this structure.
413 */
414
415 /* Hardwire it on the place the bootloader tells us */
416 videomemory.vidm_vbase = bootconfig.display_start;
417 videomemory.vidm_pbase = bootconfig.display_phys;
418 videomemory.vidm_size = bootconfig.display_size;
419 if (bootconfig.vram[0].pages)
420 videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
421 else
422 videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
423 vidc_base = (int *) VIDC_HW_BASE;
424 iomd_base = IOMD_HW_BASE;
425
426 /*
427 * Initialise the physical console
428 * This is done in main() but for the moment we do it here so that
429 * we can use printf in initarm() before main() has been called.
430 * only for `vidcconsole!' ... not wscons
431 */
432 #if NVIDCVIDEO == 0
433 consinit();
434 #endif
435
436 /*
437 * Initialise the diagnostic serial console
438 * This allows a means of generating output during initarm().
439 * Once all the memory map changes are complete we can call consinit()
440 * and not have to worry about things moving.
441 */
442 /* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */
443 /* XXX snif .... i am still not able to this */
444
445 /*
446 * We have the following memory map (derived from EBSA)
447 *
448 * virtual address == physical address apart from the areas:
449 * 0x00000000 -> 0x000fffff which is mapped to
450 * top 1MB of physical memory
451 * 0xf0000000 -> 0xf0ffffff wich is mapped to
452 * physical address 0x01000000 -> 0x01ffffff (DRAM0a, dram[0])
453 *
454 * This means that the kernel is mapped suitably for continuing
455 * execution, all I/O is mapped 1:1 virtual to physical and
456 * physical memory is accessible.
457 *
458 * The initarm() has the responsibility for creating the kernel
459 * page tables.
460 * It must also set up various memory pointers that are used
461 * by pmap etc.
462 */
463
464 /* START OF REAL NEW STUFF */
465
466 /* Check to make sure the page size is correct */
467 if (PAGE_SIZE != bootconfig.pagesize)
468 panic2(("Page size is %d bytes instead of %d !! (huh?)\n",
469 bootconfig.pagesize, PAGE_SIZE));
470
471 /* process arguments */
472 process_kernel_args();
473
474
475 /*
476 * Now set up the page tables for the kernel ... this part is copied
477 * in a (modified?) way from the EBSA machine port....
478 */
479
480 #ifdef VERBOSE_INIT_ARM
481 printf("Allocating page tables\n");
482 #endif
483 /*
484 * Set up the variables that define the availablilty of physical
485 * memory
486 */
487 physical_start = 0xffffffff;
488 physical_end = 0;
489 for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) {
490 if (bootconfig.dram[loop].address < physical_start)
491 physical_start = bootconfig.dram[loop].address;
492 memoryblock_end = bootconfig.dram[loop].address +
493 bootconfig.dram[loop].pages * PAGE_SIZE;
494 if (memoryblock_end > physical_end)
495 physical_end = memoryblock_end;
496 physmem += bootconfig.dram[loop].pages;
497 };
498 /* constants for now, but might be changed/configured */
499 dma_range_begin = (paddr_t) physical_start;
500 dma_range_end = (paddr_t) MIN(physical_end, 512*1024*1024);
501 /* XXX HACK HACK XXX */
502 /* dma_range_end = 0x18000000; */
503
504 if (physical_start != bootconfig.dram[0].address) {
505 int oldblocks = 0;
506
507 /*
508 * must be a kinetic, as it's the only thing to shuffle memory
509 * around
510 */
511 /* hack hack - throw away the slow dram */
512 for (loop = 0; loop < bootconfig.dramblocks; ++loop) {
513 if (bootconfig.dram[loop].address <
514 bootconfig.dram[0].address) {
515 /* non kinetic ram */
516 bootconfig.dram[loop].address = 0;
517 physmem -= bootconfig.dram[loop].pages;
518 bootconfig.drampages -=
519 bootconfig.dram[loop].pages;
520 bootconfig.dram[loop].pages = 0;
521 oldblocks++;
522 }
523 }
524 physical_start = bootconfig.dram[0].address;
525 bootconfig.dramblocks -= oldblocks;
526 }
527
528 physical_freestart = physical_start;
529 free_pages = bootconfig.drampages;
530 physical_freeend = physical_end;
531
532
533 /*
534 * AHUM !! set this variable ... it was set up in the old 1st
535 * stage bootloader
536 */
537 kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize;
538
539 /* Update the address of the first free page of physical memory */
540 /* XXX Assumption that the kernel and stuff is at the LOWEST physical memory address? XXX */
541 physical_freestart +=
542 bootconfig.kernsize + bootconfig.MDFsize + bootconfig.scratchsize;
543 free_pages -= (physical_freestart - physical_start) / PAGE_SIZE;
544
545 /* Define a macro to simplify memory allocation */
546 #define valloc_pages(var, np) \
547 alloc_pages((var).pv_pa, (np)); \
548 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
549
550 #define alloc_pages(var, np) \
551 (var) = physical_freestart; \
552 physical_freestart += ((np) * PAGE_SIZE); \
553 free_pages -= (np); \
554 memset((char *)(var), 0, ((np) * PAGE_SIZE));
555
556 loop1 = 0;
557 kernel_l1pt.pv_pa = 0;
558 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
559 /* Are we 16KB aligned for an L1 ? */
560 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
561 && kernel_l1pt.pv_pa == 0) {
562 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
563 } else {
564 valloc_pages(kernel_pt_table[loop1],
565 L2_TABLE_SIZE / PAGE_SIZE);
566 ++loop1;
567 }
568 }
569
570
571 #ifdef DIAGNOSTIC
572 /* This should never be able to happen but better confirm that. */
573 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
574 panic2(("initarm: Failed to align the kernel page "
575 "directory\n"));
576 #endif
577
578 /*
579 * Allocate a page for the system page mapped to V0x00000000
580 * This page will just contain the system vectors and can be
581 * shared by all processes.
582 */
583 alloc_pages(systempage.pv_pa, 1);
584
585 /* Allocate stacks for all modes */
586 valloc_pages(irqstack, IRQ_STACK_SIZE);
587 valloc_pages(abtstack, ABT_STACK_SIZE);
588 valloc_pages(undstack, UND_STACK_SIZE);
589 valloc_pages(kernelstack, UPAGES);
590
591 #ifdef VERBOSE_INIT_ARM
592 printf("Setting up stacks :\n");
593 printf("IRQ stack: p0x%08lx v0x%08lx\n",
594 irqstack.pv_pa, irqstack.pv_va);
595 printf("ABT stack: p0x%08lx v0x%08lx\n",
596 abtstack.pv_pa, abtstack.pv_va);
597 printf("UND stack: p0x%08lx v0x%08lx\n",
598 undstack.pv_pa, undstack.pv_va);
599 printf("SVC stack: p0x%08lx v0x%08lx\n",
600 kernelstack.pv_pa, kernelstack.pv_va);
601 printf("\n");
602 #endif
603
604 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
605
606 #ifdef CPU_SA110
607 /*
608 * XXX totally stuffed hack to work round problems introduced
609 * in recent versions of the pmap code. Due to the calls used there
610 * we cannot allocate virtual memory during bootstrap.
611 */
612 sa110_cc_base = (KERNEL_BASE + (physical_freestart - physical_start)
613 + (CPU_SA110_CACHE_CLEAN_SIZE - 1))
614 & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1);
615 #endif /* CPU_SA110 */
616
617 /*
618 * Ok we have allocated physical pages for the primary kernel
619 * page tables
620 */
621
622 #ifdef VERBOSE_INIT_ARM
623 printf("Creating L1 page table\n");
624 #endif
625
626 /*
627 * Now we start construction of the L1 page table
628 * We start by mapping the L2 page tables into the L1.
629 * This means that we can replace L1 mappings later on if necessary
630 */
631 l1pagetable = kernel_l1pt.pv_pa;
632
633 /* Map the L2 pages tables in the L1 page table */
634 pmap_link_l2pt(l1pagetable, 0x00000000,
635 &kernel_pt_table[KERNEL_PT_SYS]);
636 pmap_link_l2pt(l1pagetable, KERNEL_BASE,
637 &kernel_pt_table[KERNEL_PT_KERNEL]);
638 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
639 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
640 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
641 pmap_link_l2pt(l1pagetable, VMEM_VBASE,
642 &kernel_pt_table[KERNEL_PT_VMEM]);
643
644 /* update the top of the kernel VM */
645 pmap_curmaxkvaddr =
646 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
647
648 #ifdef VERBOSE_INIT_ARM
649 printf("Mapping kernel\n");
650 #endif
651
652 /* Now we fill in the L2 pagetable for the kernel code/data */
653 /* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */
654 /*
655 * The defines are a workaround for a recent problem that occurred
656 * with ARM 610 processors and some ARM 710 processors
657 * Other ARM 710 and StrongARM processors don't have a problem.
658 */
659 if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
660 #if defined(CPU_ARM6) || defined(CPU_ARM7)
661 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
662 physical_start, kernexec->a_text,
663 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
664 #else /* CPU_ARM6 || CPU_ARM7 */
665 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
666 physical_start, kernexec->a_text,
667 VM_PROT_READ, PTE_CACHE);
668 #endif /* CPU_ARM6 || CPU_ARM7 */
669 logical += pmap_map_chunk(l1pagetable,
670 KERNEL_TEXT_BASE + logical, physical_start + logical,
671 kerneldatasize - kernexec->a_text,
672 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
673 } else { /* !ZMAGIC */
674 /*
675 * Most likely an ELF kernel ...
676 * XXX no distinction yet between read only and
677 * read/write area's ...
678 */
679 pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
680 physical_start, kerneldatasize,
681 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
682 };
683
684
685 #ifdef VERBOSE_INIT_ARM
686 printf("Constructing L2 page tables\n");
687 #endif
688
689 /* Map the stack pages */
690 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
691 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
692 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
693 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
694 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
695 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
696 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
697 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
698
699 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
700 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
701
702 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
703 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
704 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
705 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
706 }
707
708 /* Now we fill in the L2 pagetable for the VRAM */
709 /*
710 * Current architectures mean that the VRAM is always in 1
711 * continuous bank. This means that we can just map the 2 meg
712 * that the VRAM would occupy. In theory we don't need a page
713 * table for VRAM, we could section map it but we would need
714 * the page tables if DRAM was in use.
715 * XXX please map two adjacent virtual areas to ONE physical
716 * area
717 */
718 pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase,
719 videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
720 pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size,
721 videomemory.vidm_pbase, videomemory.vidm_size,
722 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
723
724 /* Map the vector page. */
725 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
726 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
727
728 /* Map the core memory needed before autoconfig */
729 loop = 0;
730 while (l1_sec_table[loop].size) {
731 vm_size_t sz;
732
733 #ifdef VERBOSE_INIT_ARM
734 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
735 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
736 l1_sec_table[loop].va);
737 #endif
738 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
739 pmap_map_section(l1pagetable,
740 l1_sec_table[loop].va + sz,
741 l1_sec_table[loop].pa + sz,
742 l1_sec_table[loop].prot,
743 l1_sec_table[loop].cache);
744 ++loop;
745 }
746
747 /*
748 * Now we have the real page tables in place so we can switch
749 * to them. Once this is done we will be running with the
750 * REAL kernel page tables.
751 */
752
753 /* Switch tables */
754 #ifdef VERBOSE_INIT_ARM
755 printf("switching to new L1 page table\n");
756 #endif
757 #ifdef VERBOSE_INIT_ARM
758 printf("switching domains\n");
759 #endif
760 /* be a client to all domains */
761 cpu_domains(0x55555555);
762
763 setttb(kernel_l1pt.pv_pa);
764
765 /*
766 * We must now clean the cache again....
767 * Cleaning may be done by reading new data to displace any
768 * dirty data in the cache. This will have happened in setttb()
769 * but since we are boot strapping the addresses used for the read
770 * may have just been remapped and thus the cache could be out
771 * of sync. A re-clean after the switch will cure this.
772 * After booting there are no gross reloations of the kernel thus
773 * this problem will not occur after initarm().
774 */
775 cpu_idcache_wbinv_all();
776 cpu_tlb_flushID();
777 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
778
779 /*
780 * Moved from cpu_startup() as data_abort_handler() references
781 * this during uvm init
782 */
783 proc0paddr = (struct user *)kernelstack.pv_va;
784 lwp0.l_addr = proc0paddr;
785
786 /*
787 * if there is support for a serial console ...we should now
788 * reattach it
789 */
790 /* fcomcndetach();*/
791
792 /*
793 * Reflect videomemory relocation in the videomemory structure
794 * and reinit console
795 */
796 if (bootconfig.vram[0].pages == 0) {
797 videomemory.vidm_vbase = VMEM_VBASE;
798 } else {
799 videomemory.vidm_vbase = VMEM_VBASE;
800 bootconfig.display_start = VMEM_VBASE;
801 };
802 vidc_base = (int *) VIDC_BASE;
803 iomd_base = IOMD_BASE;
804
805 #ifdef VERBOSE_INIT_ARM
806 printf("running on the new L1 page table!\n");
807 printf("done.\n");
808 #endif
809
810 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
811
812 #ifdef VERBOSE_INIT_ARM
813 printf("\n");
814 #endif
815
816 /*
817 * Pages were allocated during the secondary bootstrap for the
818 * stacks for different CPU modes.
819 * We must now set the r13 registers in the different CPU modes to
820 * point to these stacks.
821 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
822 * of the stack memory.
823 */
824 #ifdef VERBOSE_INIT_ARM
825 printf("init subsystems: stacks ");
826 console_flush();
827 #endif
828
829 set_stackptr(PSR_IRQ32_MODE,
830 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
831 set_stackptr(PSR_ABT32_MODE,
832 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
833 set_stackptr(PSR_UND32_MODE,
834 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
835 #ifdef PMAP_DEBUG
836 if (pmap_debug_level >= 0)
837 printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
838 kernelstack.pv_pa);
839 #endif /* PMAP_DEBUG */
840
841 /*
842 * Well we should set a data abort handler.
843 * Once things get going this will change as we will need a proper
844 * handler. Until then we will use a handler that just panics but
845 * tells us why.
846 * Initialisation of the vectors will just panic on a data abort.
847 * This just fills in a slightly better one.
848 */
849 #ifdef VERBOSE_INIT_ARM
850 printf("vectors ");
851 #endif
852 data_abort_handler_address = (u_int)data_abort_handler;
853 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
854 undefined_handler_address = (u_int)undefinedinstruction_bounce;
855 console_flush();
856
857
858 /*
859 * At last !
860 * We now have the kernel in physical memory from the bottom upwards.
861 * Kernel page tables are physically above this.
862 * The kernel is mapped to 0xf0000000
863 * The kernel data PTs will handle the mapping of
864 * 0xf1000000-0xf5ffffff (80 Mb)
865 * 2Meg of VRAM is mapped to 0xf7000000
866 * The page tables are mapped to 0xefc00000
867 * The IOMD is mapped to 0xf6000000
868 * The VIDC is mapped to 0xf6100000
869 * The IOMD/VIDC could be pushed up higher but i havent got
870 * sufficient documentation to do so; the addresses are not
871 * parametized yet and hard to read... better fix this before;
872 * its pretty unforgiving.
873 */
874
875 /* Initialise the undefined instruction handlers */
876 #ifdef VERBOSE_INIT_ARM
877 printf("undefined ");
878 #endif
879 undefined_init();
880 console_flush();
881
882 /* Load memory into UVM. */
883 #ifdef VERBOSE_INIT_ARM
884 printf("page ");
885 #endif
886 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
887 for (loop = 0; loop < bootconfig.dramblocks; loop++) {
888 paddr_t start = (paddr_t)bootconfig.dram[loop].address;
889 paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE);
890
891 if (start < physical_freestart)
892 start = physical_freestart;
893 if (end > physical_freeend)
894 end = physical_freeend;
895
896 /* XXX Consider DMA range intersection checking. */
897
898 uvm_page_physload(atop(start), atop(end),
899 atop(start), atop(end), VM_FREELIST_DEFAULT);
900 }
901
902 /* Boot strap pmap telling it where the kernel page table is */
903 #ifdef VERBOSE_INIT_ARM
904 printf("pmap ");
905 #endif
906 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
907 KERNEL_VM_BASE + KERNEL_VM_SIZE);
908 console_flush();
909
910 /* Setup the IRQ system */
911 #ifdef VERBOSE_INIT_ARM
912 printf("irq ");
913 #endif
914 console_flush();
915 irq_init();
916 #ifdef VERBOSE_INIT_ARM
917 printf("done.\n\n");
918 #endif
919
920 #if NVIDCVIDEO>0
921 consinit(); /* necessary ? */
922 #endif
923
924 /* Talk to the user */
925 printf("NetBSD/evbarm booting ... \n");
926
927 /* Tell the user if his boot loader is too old */
928 if ((bootconfig.magic < BOOTCONFIG_MAGIC) ||
929 (bootconfig.version != BOOTCONFIG_VERSION)) {
930 printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n");
931 delay(5000000);
932 }
933
934 printf("Kernel loaded from file %s\n", bootconfig.kernelname);
935 printf("Kernel arg string (@%p) %s\n",
936 bootconfig.args, bootconfig.args);
937 printf("\nBoot configuration structure reports the following "
938 "memory\n");
939
940 printf(" DRAM block 0a at %08x size %08x "
941 "DRAM block 0b at %08x size %08x\n\r",
942 bootconfig.dram[0].address,
943 bootconfig.dram[0].pages * bootconfig.pagesize,
944 bootconfig.dram[1].address,
945 bootconfig.dram[1].pages * bootconfig.pagesize);
946 printf(" DRAM block 1a at %08x size %08x "
947 "DRAM block 1b at %08x size %08x\n\r",
948 bootconfig.dram[2].address,
949 bootconfig.dram[2].pages * bootconfig.pagesize,
950 bootconfig.dram[3].address,
951 bootconfig.dram[3].pages * bootconfig.pagesize);
952 printf(" VRAM block 0 at %08x size %08x\n\r",
953 bootconfig.vram[0].address,
954 bootconfig.vram[0].pages * bootconfig.pagesize);
955
956 #if NKSYMS || defined(DDB) || defined(LKM)
957 ksyms_init(bootconfig.ksym_end - bootconfig.ksym_start,
958 (void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end);
959 #endif
960
961
962 #ifdef DDB
963 db_machine_init();
964 if (boothowto & RB_KDB)
965 Debugger();
966 #endif /* DDB */
967
968 /* We return the new stack pointer address */
969 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
970 }
971
972
973 static void
974 process_kernel_args(void)
975 {
976 char *args;
977
978 /* Ok now we will check the arguments for interesting parameters. */
979 args = bootconfig.args;
980 boothowto = 0;
981
982 /* Only arguments itself are passed from the new bootloader */
983 while (*args == ' ')
984 ++args;
985
986 boot_args = args;
987 parse_mi_bootargs(boot_args);
988 parse_rpc_bootargs(boot_args);
989 }
990
991
992 void
993 parse_rpc_bootargs(char *args)
994 {
995 int integer;
996
997 if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT,
998 &integer)) {
999 videodram_size = integer;
1000 /* Round to 4K page */
1001 videodram_size *= 1024;
1002 videodram_size = round_page(videodram_size);
1003 if (videodram_size > 1024*1024)
1004 videodram_size = 1024*1024;
1005 }
1006 }
1007 /* End of machdep.c */
1008