eb7500atx_machdep.c revision 1.9.16.1 1 /* $NetBSD: eb7500atx_machdep.c,v 1.9.16.1 2008/12/13 01:12:56 haad Exp $ */
2
3 /*
4 * Copyright (c) 2000-2002 Reinoud Zandijk.
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by Brini.
22 * 4. The name of the company nor the name of the author may be used to
23 * endorse or promote products derived from this software without specific
24 * prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
27 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
30 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * RiscBSD kernel project
39 *
40 * machdep.c
41 *
42 * Machine dependant functions for kernel setup
43 *
44 * This file still needs a lot of work
45 *
46 * Created : 17/09/94
47 * Updated for yet another new bootloader 28/12/02
48 */
49
50 #include "opt_ddb.h"
51 #include "opt_pmap_debug.h"
52 #include "vidcvideo.h"
53 #include "pckbc.h"
54
55 #include <sys/param.h>
56
57 __KERNEL_RCSID(0, "$NetBSD: eb7500atx_machdep.c,v 1.9.16.1 2008/12/13 01:12:56 haad Exp $");
58
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/reboot.h>
62 #include <sys/proc.h>
63 #include <sys/msgbuf.h>
64 #include <sys/exec.h>
65 #include <sys/ksyms.h>
66
67 #include <dev/cons.h>
68
69 #include <machine/db_machdep.h>
70 #include <ddb/db_sym.h>
71 #include <ddb/db_extern.h>
72
73 #include <uvm/uvm.h>
74
75 #include <machine/signal.h>
76 #include <machine/frame.h>
77 #include <machine/bootconfig.h>
78 #include <machine/cpu.h>
79 #include <machine/io.h>
80 #include <machine/intr.h>
81 #include <arm/cpuconf.h>
82 #include <arm/arm32/katelib.h>
83 #include <arm/arm32/machdep.h>
84 #include <arm/undefined.h>
85 #include <machine/rtc.h>
86 #include <machine/bus.h>
87
88 #include <arm/iomd/vidc.h>
89 #include <arm/iomd/iomdreg.h>
90 #include <arm/iomd/iomdvar.h>
91
92 #include <arm/iomd/vidcvideo.h>
93
94 #include <sys/device.h>
95 #include <dev/ic/pckbcvar.h>
96
97 #include <dev/i2c/i2cvar.h>
98 #include <dev/i2c/pcf8583var.h>
99 #include <arm/iomd/iomdiicvar.h>
100
101 /* static i2c_tag_t acorn32_i2c_tag;*/
102
103 #include "ksyms.h"
104
105 /* Kernel text starts at the base of the kernel address space. */
106 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000)
107 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
108
109 /*
110 * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space
111 * Fixed mappings exist from 0xf6000000 - 0xffffffff
112 */
113 #define KERNEL_VM_SIZE 0x05000000
114
115 /*
116 * Address to call from cpu_reset() to reset the machine.
117 * This is machine architecture dependant as it varies depending
118 * on where the ROM appears when you turn the MMU off.
119 */
120 u_int cpu_reset_address = 0x0; /* XXX 0x3800000 too for rev0 RiscPC 600 */
121
122
123 #define VERBOSE_INIT_ARM
124
125
126 /* Define various stack sizes in pages */
127 #define IRQ_STACK_SIZE 1
128 #define ABT_STACK_SIZE 1
129 #define UND_STACK_SIZE 1
130
131
132 struct bootconfig bootconfig; /* Boot config storage */
133 videomemory_t videomemory; /* Video memory descriptor */
134
135 char *boot_args = NULL; /* holds the pre-processed boot arguments */
136 extern char *booted_kernel; /* used for ioctl to retrieve booted kernel */
137
138 extern int *vidc_base;
139 extern u_int32_t iomd_base;
140 extern struct bus_space iomd_bs_tag;
141
142 paddr_t physical_start;
143 paddr_t physical_freestart;
144 paddr_t physical_freeend;
145 paddr_t physical_end;
146 paddr_t dma_range_begin;
147 paddr_t dma_range_end;
148
149 u_int free_pages;
150 int physmem = 0;
151 paddr_t memoryblock_end;
152
153 #ifndef PMAP_STATIC_L1S
154 int max_processes = 64; /* Default number */
155 #endif /* !PMAP_STATIC_L1S */
156
157 u_int videodram_size = 0; /* Amount of DRAM to reserve for video */
158
159 /* Physical and virtual addresses for some global pages */
160 pv_addr_t systempage;
161 pv_addr_t irqstack;
162 pv_addr_t undstack;
163 pv_addr_t abtstack;
164 pv_addr_t kernelstack;
165
166 paddr_t msgbufphys;
167
168 extern u_int data_abort_handler_address;
169 extern u_int prefetch_abort_handler_address;
170 extern u_int undefined_handler_address;
171
172 #ifdef PMAP_DEBUG
173 extern int pmap_debug_level;
174 #endif /* PMAP_DEBUG */
175
176 #define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */
177 #define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */
178 #define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel */
179 #define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */
180 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
181 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
182
183 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
184
185 struct user *proc0paddr;
186
187 #ifdef CPU_SA110
188 #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
189 static vaddr_t sa110_cc_base;
190 #endif /* CPU_SA110 */
191
192 /* Prototypes */
193 void physcon_display_base(u_int);
194 extern void consinit(void);
195
196 void data_abort_handler(trapframe_t *);
197 void prefetch_abort_handler(trapframe_t *);
198 void undefinedinstruction_bounce(trapframe_t *frame);
199
200 static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *);
201 static void process_kernel_args(void);
202
203 extern void dump_spl_masks(void);
204
205 void rpc_sa110_cc_setup(void);
206
207 void parse_rpc_bootargs(char *args);
208
209 extern void dumpsys(void);
210
211
212 # define console_flush() /* empty */
213
214
215 #define panic2(a) do { \
216 memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024); \
217 consinit(); \
218 panic a; \
219 } while (/* CONSTCOND */ 0)
220
221 /*
222 * void cpu_reboot(int howto, char *bootstr)
223 *
224 * Reboots the system
225 *
226 * Deal with any syncing, unmounting, dumping and shutdown hooks,
227 * then reset the CPU.
228 */
229
230 /* NOTE: These variables will be removed, well some of them */
231
232 extern u_int current_mask;
233
234 void
235 cpu_reboot(int howto, char *bootstr)
236 {
237
238 #ifdef DIAGNOSTIC
239 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
240
241 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
242 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
243 irqmasks[IPL_VM]);
244 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
245 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
246
247 /* dump_spl_masks(); */
248 #endif /* DIAGNOSTIC */
249
250 /*
251 * If we are still cold then hit the air brakes
252 * and crash to earth fast
253 */
254 if (cold) {
255 doshutdownhooks();
256 pmf_system_shutdown(boothowto);
257 printf("Halted while still in the ICE age.\n");
258 printf("The operating system has halted.\n");
259 printf("Please press any key to reboot.\n\n");
260 cngetc();
261 printf("rebooting...\n");
262 cpu_reset();
263 /*NOTREACHED*/
264 }
265
266 /* Disable console buffering */
267 cnpollc(1);
268
269 /*
270 * If RB_NOSYNC was not specified sync the discs.
271 * Note: Unless cold is set to 1 here, syslogd will die during
272 * the unmount. It looks like syslogd is getting woken up
273 * only to find that it cannot page part of the binary in as
274 * the filesystem has been unmounted.
275 */
276 if (!(howto & RB_NOSYNC))
277 bootsync();
278
279 /* Say NO to interrupts */
280 splhigh();
281
282 /* Do a dump if requested. */
283 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
284 dumpsys();
285
286 /*
287 * Auto reboot overload protection
288 *
289 * This code stops the kernel entering an endless loop of reboot
290 * - panic cycles. This will have the effect of stopping further
291 * reboots after it has rebooted 8 times after panics. A clean
292 * halt or reboot will reset the counter.
293 */
294
295 /* Run any shutdown hooks */
296 doshutdownhooks();
297
298 pmf_system_shutdown(boothowto);
299
300 /* Make sure IRQ's are disabled */
301 IRQdisable;
302
303 if (howto & RB_HALT) {
304 printf("The operating system has halted.\n");
305 printf("Please press any key to reboot.\n\n");
306 cngetc();
307 }
308
309 printf("rebooting...\n");
310 cpu_reset();
311 /*NOTREACHED*/
312 }
313
314
315 /*
316 * u_int initarm(BootConfig *bootconf)
317 *
318 * Initial entry point on startup. This gets called before main() is
319 * entered.
320 * It should be responsible for setting up everything that must be
321 * in place when main is called.
322 * This includes
323 * Taking a copy of the boot configuration structure.
324 * Initialising the physical console so characters can be printed.
325 * Setting up page tables for the kernel
326 * Relocating the kernel to the bottom of physical memory
327 */
328
329 /*
330 * this part is completely rewritten for the new bootloader ... It features
331 * a flat memory map with a mapping comparable to the EBSA arm32 machine
332 * to boost the portability and likeness of the code
333 */
334
335 /*
336 * Mapping table for core kernel memory. This memory is mapped at init
337 * time with section mappings.
338 *
339 * XXX One big assumption in the current architecture seems that the kernel is
340 * XXX supposed to be mapped into bootconfig.dram[0].
341 */
342
343 #define ONE_MB 0x100000
344
345 struct l1_sec_map {
346 vaddr_t va;
347 paddr_t pa;
348 vsize_t size;
349 vm_prot_t prot;
350 int cache;
351 } l1_sec_table[] = {
352 /* Map 1Mb section for VIDC20 */
353 { VIDC_BASE, VIDC_HW_BASE,
354 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
355 PTE_NOCACHE },
356
357 /* Map 1Mb section from IOMD */
358 { IOMD_BASE, IOMD_HW_BASE,
359 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
360 PTE_NOCACHE },
361
362 /* Map 1Mb of COMBO (and module space) */
363 { IO_BASE, IO_HW_BASE,
364 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
365 PTE_NOCACHE },
366 { 0, 0, 0, 0, 0 }
367 };
368
369
370 static void
371 canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf)
372 {
373 /* check for bootconfig v2+ structure */
374 if (raw_bootconf->magic == BOOTCONFIG_MAGIC) {
375 /* v2+ cleaned up structure found */
376 *bootconf = *raw_bootconf;
377 return;
378 } else {
379 panic2(("Internal error: no valid bootconfig block found"));
380 }
381 }
382
383
384 u_int
385 initarm(void *cookie)
386 {
387 struct bootconfig *raw_bootconf = cookie;
388 int loop;
389 int loop1;
390 u_int logical;
391 u_int kerneldatasize;
392 u_int l1pagetable;
393 struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
394
395 /*
396 * Heads up ... Setup the CPU / MMU / TLB functions
397 */
398 set_cpufuncs();
399
400 /* canonicalise the boot configuration structure to alow versioning */
401 canonicalise_bootconfig(&bootconfig, raw_bootconf);
402 booted_kernel = bootconfig.kernelname;
403
404 /* if the wscons interface is used, switch off VERBOSE booting :( */
405 #if NVIDCVIDEO>0
406 # undef VERBOSE_INIT_ARM
407 # undef PMAP_DEBUG
408 #endif
409
410 /*
411 * Initialise the video memory descriptor
412 *
413 * Note: all references to the video memory virtual/physical address
414 * should go via this structure.
415 */
416
417 /* Hardwire it on the place the bootloader tells us */
418 videomemory.vidm_vbase = bootconfig.display_start;
419 videomemory.vidm_pbase = bootconfig.display_phys;
420 videomemory.vidm_size = bootconfig.display_size;
421 if (bootconfig.vram[0].pages)
422 videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
423 else
424 videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
425 vidc_base = (int *) VIDC_HW_BASE;
426 iomd_base = IOMD_HW_BASE;
427
428 /*
429 * Initialise the physical console
430 * This is done in main() but for the moment we do it here so that
431 * we can use printf in initarm() before main() has been called.
432 * only for `vidcconsole!' ... not wscons
433 */
434 #if NVIDCVIDEO == 0
435 consinit();
436 #endif
437
438 /*
439 * Initialise the diagnostic serial console
440 * This allows a means of generating output during initarm().
441 * Once all the memory map changes are complete we can call consinit()
442 * and not have to worry about things moving.
443 */
444 /* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */
445 /* XXX snif .... i am still not able to this */
446
447 /*
448 * We have the following memory map (derived from EBSA)
449 *
450 * virtual address == physical address apart from the areas:
451 * 0x00000000 -> 0x000fffff which is mapped to
452 * top 1MB of physical memory
453 * 0xf0000000 -> 0xf0ffffff wich is mapped to
454 * physical address 0x01000000 -> 0x01ffffff (DRAM0a, dram[0])
455 *
456 * This means that the kernel is mapped suitably for continuing
457 * execution, all I/O is mapped 1:1 virtual to physical and
458 * physical memory is accessible.
459 *
460 * The initarm() has the responsibility for creating the kernel
461 * page tables.
462 * It must also set up various memory pointers that are used
463 * by pmap etc.
464 */
465
466 /* START OF REAL NEW STUFF */
467
468 /* Check to make sure the page size is correct */
469 if (PAGE_SIZE != bootconfig.pagesize)
470 panic2(("Page size is %d bytes instead of %d !! (huh?)\n",
471 bootconfig.pagesize, PAGE_SIZE));
472
473 /* process arguments */
474 process_kernel_args();
475
476
477 /*
478 * Now set up the page tables for the kernel ... this part is copied
479 * in a (modified?) way from the EBSA machine port....
480 */
481
482 #ifdef VERBOSE_INIT_ARM
483 printf("Allocating page tables\n");
484 #endif
485 /*
486 * Set up the variables that define the availablilty of physical
487 * memory
488 */
489 physical_start = 0xffffffff;
490 physical_end = 0;
491 for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) {
492 if (bootconfig.dram[loop].address < physical_start)
493 physical_start = bootconfig.dram[loop].address;
494 memoryblock_end = bootconfig.dram[loop].address +
495 bootconfig.dram[loop].pages * PAGE_SIZE;
496 if (memoryblock_end > physical_end)
497 physical_end = memoryblock_end;
498 physmem += bootconfig.dram[loop].pages;
499 };
500 /* constants for now, but might be changed/configured */
501 dma_range_begin = (paddr_t) physical_start;
502 dma_range_end = (paddr_t) MIN(physical_end, 512*1024*1024);
503 /* XXX HACK HACK XXX */
504 /* dma_range_end = 0x18000000; */
505
506 if (physical_start != bootconfig.dram[0].address) {
507 int oldblocks = 0;
508
509 /*
510 * must be a kinetic, as it's the only thing to shuffle memory
511 * around
512 */
513 /* hack hack - throw away the slow dram */
514 for (loop = 0; loop < bootconfig.dramblocks; ++loop) {
515 if (bootconfig.dram[loop].address <
516 bootconfig.dram[0].address) {
517 /* non kinetic ram */
518 bootconfig.dram[loop].address = 0;
519 physmem -= bootconfig.dram[loop].pages;
520 bootconfig.drampages -=
521 bootconfig.dram[loop].pages;
522 bootconfig.dram[loop].pages = 0;
523 oldblocks++;
524 }
525 }
526 physical_start = bootconfig.dram[0].address;
527 bootconfig.dramblocks -= oldblocks;
528 }
529
530 physical_freestart = physical_start;
531 free_pages = bootconfig.drampages;
532 physical_freeend = physical_end;
533
534
535 /*
536 * AHUM !! set this variable ... it was set up in the old 1st
537 * stage bootloader
538 */
539 kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize;
540
541 /* Update the address of the first free page of physical memory */
542 /* XXX Assumption that the kernel and stuff is at the LOWEST physical memory address? XXX */
543 physical_freestart +=
544 bootconfig.kernsize + bootconfig.MDFsize + bootconfig.scratchsize;
545 free_pages -= (physical_freestart - physical_start) / PAGE_SIZE;
546
547 /* Define a macro to simplify memory allocation */
548 #define valloc_pages(var, np) \
549 alloc_pages((var).pv_pa, (np)); \
550 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
551
552 #define alloc_pages(var, np) \
553 (var) = physical_freestart; \
554 physical_freestart += ((np) * PAGE_SIZE); \
555 free_pages -= (np); \
556 memset((char *)(var), 0, ((np) * PAGE_SIZE));
557
558 loop1 = 0;
559 kernel_l1pt.pv_pa = 0;
560 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
561 /* Are we 16KB aligned for an L1 ? */
562 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
563 && kernel_l1pt.pv_pa == 0) {
564 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
565 } else {
566 valloc_pages(kernel_pt_table[loop1],
567 L2_TABLE_SIZE / PAGE_SIZE);
568 ++loop1;
569 }
570 }
571
572
573 #ifdef DIAGNOSTIC
574 /* This should never be able to happen but better confirm that. */
575 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
576 panic2(("initarm: Failed to align the kernel page "
577 "directory\n"));
578 #endif
579
580 /*
581 * Allocate a page for the system page mapped to V0x00000000
582 * This page will just contain the system vectors and can be
583 * shared by all processes.
584 */
585 alloc_pages(systempage.pv_pa, 1);
586
587 /* Allocate stacks for all modes */
588 valloc_pages(irqstack, IRQ_STACK_SIZE);
589 valloc_pages(abtstack, ABT_STACK_SIZE);
590 valloc_pages(undstack, UND_STACK_SIZE);
591 valloc_pages(kernelstack, UPAGES);
592
593 #ifdef VERBOSE_INIT_ARM
594 printf("Setting up stacks :\n");
595 printf("IRQ stack: p0x%08lx v0x%08lx\n",
596 irqstack.pv_pa, irqstack.pv_va);
597 printf("ABT stack: p0x%08lx v0x%08lx\n",
598 abtstack.pv_pa, abtstack.pv_va);
599 printf("UND stack: p0x%08lx v0x%08lx\n",
600 undstack.pv_pa, undstack.pv_va);
601 printf("SVC stack: p0x%08lx v0x%08lx\n",
602 kernelstack.pv_pa, kernelstack.pv_va);
603 printf("\n");
604 #endif
605
606 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
607
608 #ifdef CPU_SA110
609 /*
610 * XXX totally stuffed hack to work round problems introduced
611 * in recent versions of the pmap code. Due to the calls used there
612 * we cannot allocate virtual memory during bootstrap.
613 */
614 sa110_cc_base = (KERNEL_BASE + (physical_freestart - physical_start)
615 + (CPU_SA110_CACHE_CLEAN_SIZE - 1))
616 & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1);
617 #endif /* CPU_SA110 */
618
619 /*
620 * Ok we have allocated physical pages for the primary kernel
621 * page tables
622 */
623
624 #ifdef VERBOSE_INIT_ARM
625 printf("Creating L1 page table\n");
626 #endif
627
628 /*
629 * Now we start construction of the L1 page table
630 * We start by mapping the L2 page tables into the L1.
631 * This means that we can replace L1 mappings later on if necessary
632 */
633 l1pagetable = kernel_l1pt.pv_pa;
634
635 /* Map the L2 pages tables in the L1 page table */
636 pmap_link_l2pt(l1pagetable, 0x00000000,
637 &kernel_pt_table[KERNEL_PT_SYS]);
638 pmap_link_l2pt(l1pagetable, KERNEL_BASE,
639 &kernel_pt_table[KERNEL_PT_KERNEL]);
640 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
641 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
642 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
643 pmap_link_l2pt(l1pagetable, VMEM_VBASE,
644 &kernel_pt_table[KERNEL_PT_VMEM]);
645
646 /* update the top of the kernel VM */
647 pmap_curmaxkvaddr =
648 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
649
650 #ifdef VERBOSE_INIT_ARM
651 printf("Mapping kernel\n");
652 #endif
653
654 /* Now we fill in the L2 pagetable for the kernel code/data */
655 /* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */
656 /*
657 * The defines are a workaround for a recent problem that occurred
658 * with ARM 610 processors and some ARM 710 processors
659 * Other ARM 710 and StrongARM processors don't have a problem.
660 */
661 if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
662 #if defined(CPU_ARM6) || defined(CPU_ARM7)
663 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
664 physical_start, kernexec->a_text,
665 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
666 #else /* CPU_ARM6 || CPU_ARM7 */
667 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
668 physical_start, kernexec->a_text,
669 VM_PROT_READ, PTE_CACHE);
670 #endif /* CPU_ARM6 || CPU_ARM7 */
671 logical += pmap_map_chunk(l1pagetable,
672 KERNEL_TEXT_BASE + logical, physical_start + logical,
673 kerneldatasize - kernexec->a_text,
674 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
675 } else { /* !ZMAGIC */
676 /*
677 * Most likely an ELF kernel ...
678 * XXX no distinction yet between read only and
679 * read/write area's ...
680 */
681 pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
682 physical_start, kerneldatasize,
683 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
684 };
685
686
687 #ifdef VERBOSE_INIT_ARM
688 printf("Constructing L2 page tables\n");
689 #endif
690
691 /* Map the stack pages */
692 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
693 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
694 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
695 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
696 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
697 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
698 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
699 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
700
701 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
702 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
703
704 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
705 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
706 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
707 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
708 }
709
710 /* Now we fill in the L2 pagetable for the VRAM */
711 /*
712 * Current architectures mean that the VRAM is always in 1
713 * continuous bank. This means that we can just map the 2 meg
714 * that the VRAM would occupy. In theory we don't need a page
715 * table for VRAM, we could section map it but we would need
716 * the page tables if DRAM was in use.
717 * XXX please map two adjacent virtual areas to ONE physical
718 * area
719 */
720 pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase,
721 videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
722 pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size,
723 videomemory.vidm_pbase, videomemory.vidm_size,
724 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
725
726 /* Map the vector page. */
727 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
728 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
729
730 /* Map the core memory needed before autoconfig */
731 loop = 0;
732 while (l1_sec_table[loop].size) {
733 vm_size_t sz;
734
735 #ifdef VERBOSE_INIT_ARM
736 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
737 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
738 l1_sec_table[loop].va);
739 #endif
740 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
741 pmap_map_section(l1pagetable,
742 l1_sec_table[loop].va + sz,
743 l1_sec_table[loop].pa + sz,
744 l1_sec_table[loop].prot,
745 l1_sec_table[loop].cache);
746 ++loop;
747 }
748
749 /*
750 * Now we have the real page tables in place so we can switch
751 * to them. Once this is done we will be running with the
752 * REAL kernel page tables.
753 */
754
755 #ifdef VERBOSE_INIT_ARM
756 printf("switching domains\n");
757 #endif
758 /* be a client to all domains */
759 cpu_domains(0x55555555);
760
761 /* Switch tables */
762 #ifdef VERBOSE_INIT_ARM
763 printf("switching to new L1 page table\n");
764 #endif
765 setttb(kernel_l1pt.pv_pa);
766
767 /*
768 * We must now clean the cache again....
769 * Cleaning may be done by reading new data to displace any
770 * dirty data in the cache. This will have happened in setttb()
771 * but since we are boot strapping the addresses used for the read
772 * may have just been remapped and thus the cache could be out
773 * of sync. A re-clean after the switch will cure this.
774 * After booting there are no gross reloations of the kernel thus
775 * this problem will not occur after initarm().
776 */
777 cpu_idcache_wbinv_all();
778 cpu_tlb_flushID();
779 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
780
781 /*
782 * Moved from cpu_startup() as data_abort_handler() references
783 * this during uvm init
784 */
785 proc0paddr = (struct user *)kernelstack.pv_va;
786 lwp0.l_addr = proc0paddr;
787
788 /*
789 * if there is support for a serial console ...we should now
790 * reattach it
791 */
792 /* fcomcndetach();*/
793
794 /*
795 * Reflect videomemory relocation in the videomemory structure
796 * and reinit console
797 */
798 if (bootconfig.vram[0].pages == 0) {
799 videomemory.vidm_vbase = VMEM_VBASE;
800 } else {
801 videomemory.vidm_vbase = VMEM_VBASE;
802 bootconfig.display_start = VMEM_VBASE;
803 };
804 vidc_base = (int *) VIDC_BASE;
805 iomd_base = IOMD_BASE;
806
807 #ifdef VERBOSE_INIT_ARM
808 printf("running on the new L1 page table!\n");
809 printf("done.\n");
810 #endif
811
812 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
813
814 #ifdef VERBOSE_INIT_ARM
815 printf("\n");
816 #endif
817
818 /*
819 * Pages were allocated during the secondary bootstrap for the
820 * stacks for different CPU modes.
821 * We must now set the r13 registers in the different CPU modes to
822 * point to these stacks.
823 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
824 * of the stack memory.
825 */
826 #ifdef VERBOSE_INIT_ARM
827 printf("init subsystems: stacks ");
828 console_flush();
829 #endif
830
831 set_stackptr(PSR_IRQ32_MODE,
832 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
833 set_stackptr(PSR_ABT32_MODE,
834 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
835 set_stackptr(PSR_UND32_MODE,
836 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
837 #ifdef PMAP_DEBUG
838 if (pmap_debug_level >= 0)
839 printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
840 kernelstack.pv_pa);
841 #endif /* PMAP_DEBUG */
842
843 /*
844 * Well we should set a data abort handler.
845 * Once things get going this will change as we will need a proper
846 * handler. Until then we will use a handler that just panics but
847 * tells us why.
848 * Initialisation of the vectors will just panic on a data abort.
849 * This just fills in a slightly better one.
850 */
851 #ifdef VERBOSE_INIT_ARM
852 printf("vectors ");
853 #endif
854 data_abort_handler_address = (u_int)data_abort_handler;
855 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
856 undefined_handler_address = (u_int)undefinedinstruction_bounce;
857 console_flush();
858
859
860 /*
861 * At last !
862 * We now have the kernel in physical memory from the bottom upwards.
863 * Kernel page tables are physically above this.
864 * The kernel is mapped to 0xf0000000
865 * The kernel data PTs will handle the mapping of
866 * 0xf1000000-0xf5ffffff (80 Mb)
867 * 2Meg of VRAM is mapped to 0xf7000000
868 * The page tables are mapped to 0xefc00000
869 * The IOMD is mapped to 0xf6000000
870 * The VIDC is mapped to 0xf6100000
871 * The IOMD/VIDC could be pushed up higher but i havent got
872 * sufficient documentation to do so; the addresses are not
873 * parametized yet and hard to read... better fix this before;
874 * its pretty unforgiving.
875 */
876
877 /* Initialise the undefined instruction handlers */
878 #ifdef VERBOSE_INIT_ARM
879 printf("undefined ");
880 #endif
881 undefined_init();
882 console_flush();
883
884 /* Load memory into UVM. */
885 #ifdef VERBOSE_INIT_ARM
886 printf("page ");
887 #endif
888 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
889 for (loop = 0; loop < bootconfig.dramblocks; loop++) {
890 paddr_t start = (paddr_t)bootconfig.dram[loop].address;
891 paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE);
892
893 if (start < physical_freestart)
894 start = physical_freestart;
895 if (end > physical_freeend)
896 end = physical_freeend;
897
898 /* XXX Consider DMA range intersection checking. */
899
900 uvm_page_physload(atop(start), atop(end),
901 atop(start), atop(end), VM_FREELIST_DEFAULT);
902 }
903
904 /* Boot strap pmap telling it where the kernel page table is */
905 #ifdef VERBOSE_INIT_ARM
906 printf("pmap ");
907 #endif
908 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
909 console_flush();
910
911 /* Setup the IRQ system */
912 #ifdef VERBOSE_INIT_ARM
913 printf("irq ");
914 #endif
915 console_flush();
916 irq_init();
917 #ifdef VERBOSE_INIT_ARM
918 printf("done.\n\n");
919 #endif
920
921 #if NVIDCVIDEO>0
922 consinit(); /* necessary ? */
923 #endif
924
925 /* Talk to the user */
926 printf("NetBSD/evbarm booting ... \n");
927
928 /* Tell the user if his boot loader is too old */
929 if ((bootconfig.magic < BOOTCONFIG_MAGIC) ||
930 (bootconfig.version != BOOTCONFIG_VERSION)) {
931 printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n");
932 delay(5000000);
933 }
934
935 printf("Kernel loaded from file %s\n", bootconfig.kernelname);
936 printf("Kernel arg string (@%p) %s\n",
937 bootconfig.args, bootconfig.args);
938 printf("\nBoot configuration structure reports the following "
939 "memory\n");
940
941 printf(" DRAM block 0a at %08x size %08x "
942 "DRAM block 0b at %08x size %08x\n\r",
943 bootconfig.dram[0].address,
944 bootconfig.dram[0].pages * bootconfig.pagesize,
945 bootconfig.dram[1].address,
946 bootconfig.dram[1].pages * bootconfig.pagesize);
947 printf(" DRAM block 1a at %08x size %08x "
948 "DRAM block 1b at %08x size %08x\n\r",
949 bootconfig.dram[2].address,
950 bootconfig.dram[2].pages * bootconfig.pagesize,
951 bootconfig.dram[3].address,
952 bootconfig.dram[3].pages * bootconfig.pagesize);
953 printf(" VRAM block 0 at %08x size %08x\n\r",
954 bootconfig.vram[0].address,
955 bootconfig.vram[0].pages * bootconfig.pagesize);
956
957 #if NKSYMS || defined(DDB) || defined(MODULAR)
958 ksyms_addsyms_elf(bootconfig.ksym_end - bootconfig.ksym_start,
959 (void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end);
960 #endif
961
962
963 #ifdef DDB
964 db_machine_init();
965 if (boothowto & RB_KDB)
966 Debugger();
967 #endif /* DDB */
968
969 /* We return the new stack pointer address */
970 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
971 }
972
973
974 static void
975 process_kernel_args(void)
976 {
977 char *args;
978
979 /* Ok now we will check the arguments for interesting parameters. */
980 args = bootconfig.args;
981 boothowto = 0;
982
983 /* Only arguments itself are passed from the new bootloader */
984 while (*args == ' ')
985 ++args;
986
987 boot_args = args;
988 parse_mi_bootargs(boot_args);
989 parse_rpc_bootargs(boot_args);
990 }
991
992
993 void
994 parse_rpc_bootargs(char *args)
995 {
996 int integer;
997
998 if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT,
999 &integer)) {
1000 videodram_size = integer;
1001 /* Round to 4K page */
1002 videodram_size *= 1024;
1003 videodram_size = round_page(videodram_size);
1004 if (videodram_size > 1024*1024)
1005 videodram_size = 1024*1024;
1006 }
1007 }
1008 /* End of machdep.c */
1009