eb7500atx_machdep.c revision 1.9.18.2 1 /* $NetBSD: eb7500atx_machdep.c,v 1.9.18.2 2009/03/03 18:28:49 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2000-2002 Reinoud Zandijk.
5 * Copyright (c) 1994-1998 Mark Brinicombe.
6 * Copyright (c) 1994 Brini.
7 * All rights reserved.
8 *
9 * This code is derived from software written for Brini by Mark Brinicombe
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by Brini.
22 * 4. The name of the company nor the name of the author may be used to
23 * endorse or promote products derived from this software without specific
24 * prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
27 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
28 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
30 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
31 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
32 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * RiscBSD kernel project
39 *
40 * machdep.c
41 *
42 * Machine dependant functions for kernel setup
43 *
44 * This file still needs a lot of work
45 *
46 * Created : 17/09/94
47 * Updated for yet another new bootloader 28/12/02
48 */
49
50 #include "opt_ddb.h"
51 #include "opt_modular.h"
52 #include "opt_pmap_debug.h"
53 #include "vidcvideo.h"
54 #include "pckbc.h"
55
56 #include <sys/param.h>
57
58 __KERNEL_RCSID(0, "$NetBSD: eb7500atx_machdep.c,v 1.9.18.2 2009/03/03 18:28:49 skrll Exp $");
59
60 #include <sys/systm.h>
61 #include <sys/kernel.h>
62 #include <sys/reboot.h>
63 #include <sys/proc.h>
64 #include <sys/msgbuf.h>
65 #include <sys/exec.h>
66 #include <sys/ksyms.h>
67
68 #include <dev/cons.h>
69
70 #include <machine/db_machdep.h>
71 #include <ddb/db_sym.h>
72 #include <ddb/db_extern.h>
73
74 #include <uvm/uvm.h>
75
76 #include <machine/signal.h>
77 #include <machine/frame.h>
78 #include <machine/bootconfig.h>
79 #include <machine/cpu.h>
80 #include <machine/io.h>
81 #include <machine/intr.h>
82 #include <arm/cpuconf.h>
83 #include <arm/arm32/katelib.h>
84 #include <arm/arm32/machdep.h>
85 #include <arm/undefined.h>
86 #include <machine/rtc.h>
87 #include <machine/bus.h>
88
89 #include <arm/iomd/vidc.h>
90 #include <arm/iomd/iomdreg.h>
91 #include <arm/iomd/iomdvar.h>
92
93 #include <arm/iomd/vidcvideo.h>
94
95 #include <sys/device.h>
96 #include <dev/ic/pckbcvar.h>
97
98 #include <dev/i2c/i2cvar.h>
99 #include <dev/i2c/pcf8583var.h>
100 #include <arm/iomd/iomdiicvar.h>
101
102 /* static i2c_tag_t acorn32_i2c_tag;*/
103
104 #include "ksyms.h"
105
106 /* Kernel text starts at the base of the kernel address space. */
107 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00000000)
108 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
109
110 /*
111 * The range 0xf1000000 - 0xf5ffffff is available for kernel VM space
112 * Fixed mappings exist from 0xf6000000 - 0xffffffff
113 */
114 #define KERNEL_VM_SIZE 0x05000000
115
116 /*
117 * Address to call from cpu_reset() to reset the machine.
118 * This is machine architecture dependant as it varies depending
119 * on where the ROM appears when you turn the MMU off.
120 */
121 u_int cpu_reset_address = 0x0; /* XXX 0x3800000 too for rev0 RiscPC 600 */
122
123
124 #define VERBOSE_INIT_ARM
125
126
127 /* Define various stack sizes in pages */
128 #define IRQ_STACK_SIZE 1
129 #define ABT_STACK_SIZE 1
130 #define UND_STACK_SIZE 1
131
132
133 struct bootconfig bootconfig; /* Boot config storage */
134 videomemory_t videomemory; /* Video memory descriptor */
135
136 char *boot_args = NULL; /* holds the pre-processed boot arguments */
137 extern char *booted_kernel; /* used for ioctl to retrieve booted kernel */
138
139 extern int *vidc_base;
140 extern u_int32_t iomd_base;
141 extern struct bus_space iomd_bs_tag;
142
143 paddr_t physical_start;
144 paddr_t physical_freestart;
145 paddr_t physical_freeend;
146 paddr_t physical_end;
147 paddr_t dma_range_begin;
148 paddr_t dma_range_end;
149
150 u_int free_pages;
151 int physmem = 0;
152 paddr_t memoryblock_end;
153
154 #ifndef PMAP_STATIC_L1S
155 int max_processes = 64; /* Default number */
156 #endif /* !PMAP_STATIC_L1S */
157
158 u_int videodram_size = 0; /* Amount of DRAM to reserve for video */
159
160 /* Physical and virtual addresses for some global pages */
161 pv_addr_t systempage;
162 pv_addr_t irqstack;
163 pv_addr_t undstack;
164 pv_addr_t abtstack;
165 pv_addr_t kernelstack;
166
167 paddr_t msgbufphys;
168
169 extern u_int data_abort_handler_address;
170 extern u_int prefetch_abort_handler_address;
171 extern u_int undefined_handler_address;
172
173 #ifdef PMAP_DEBUG
174 extern int pmap_debug_level;
175 #endif /* PMAP_DEBUG */
176
177 #define KERNEL_PT_VMEM 0 /* Page table for mapping video memory */
178 #define KERNEL_PT_SYS 1 /* Page table for mapping proc0 zero page */
179 #define KERNEL_PT_KERNEL 2 /* Page table for mapping kernel */
180 #define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */
181 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
182 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
183
184 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
185
186 struct user *proc0paddr;
187
188 #ifdef CPU_SA110
189 #define CPU_SA110_CACHE_CLEAN_SIZE (0x4000 * 2)
190 static vaddr_t sa110_cc_base;
191 #endif /* CPU_SA110 */
192
193 /* Prototypes */
194 void physcon_display_base(u_int);
195 extern void consinit(void);
196
197 void data_abort_handler(trapframe_t *);
198 void prefetch_abort_handler(trapframe_t *);
199 void undefinedinstruction_bounce(trapframe_t *frame);
200
201 static void canonicalise_bootconfig(struct bootconfig *, struct bootconfig *);
202 static void process_kernel_args(void);
203
204 extern void dump_spl_masks(void);
205
206 void rpc_sa110_cc_setup(void);
207
208 void parse_rpc_bootargs(char *args);
209
210 extern void dumpsys(void);
211
212
213 # define console_flush() /* empty */
214
215
216 #define panic2(a) do { \
217 memset((void *) (videomemory.vidm_vbase), 0x55, 50*1024); \
218 consinit(); \
219 panic a; \
220 } while (/* CONSTCOND */ 0)
221
222 /*
223 * void cpu_reboot(int howto, char *bootstr)
224 *
225 * Reboots the system
226 *
227 * Deal with any syncing, unmounting, dumping and shutdown hooks,
228 * then reset the CPU.
229 */
230
231 /* NOTE: These variables will be removed, well some of them */
232
233 extern u_int current_mask;
234
235 void
236 cpu_reboot(int howto, char *bootstr)
237 {
238
239 #ifdef DIAGNOSTIC
240 printf("boot: howto=%08x curlwp=%p\n", howto, curlwp);
241
242 printf("ipl_bio=%08x ipl_net=%08x ipl_tty=%08x ipl_vm=%08x\n",
243 irqmasks[IPL_BIO], irqmasks[IPL_NET], irqmasks[IPL_TTY],
244 irqmasks[IPL_VM]);
245 printf("ipl_audio=%08x ipl_clock=%08x ipl_none=%08x\n",
246 irqmasks[IPL_AUDIO], irqmasks[IPL_CLOCK], irqmasks[IPL_NONE]);
247
248 /* dump_spl_masks(); */
249 #endif /* DIAGNOSTIC */
250
251 /*
252 * If we are still cold then hit the air brakes
253 * and crash to earth fast
254 */
255 if (cold) {
256 doshutdownhooks();
257 pmf_system_shutdown(boothowto);
258 printf("Halted while still in the ICE age.\n");
259 printf("The operating system has halted.\n");
260 printf("Please press any key to reboot.\n\n");
261 cngetc();
262 printf("rebooting...\n");
263 cpu_reset();
264 /*NOTREACHED*/
265 }
266
267 /* Disable console buffering */
268 cnpollc(1);
269
270 /*
271 * If RB_NOSYNC was not specified sync the discs.
272 * Note: Unless cold is set to 1 here, syslogd will die during
273 * the unmount. It looks like syslogd is getting woken up
274 * only to find that it cannot page part of the binary in as
275 * the filesystem has been unmounted.
276 */
277 if (!(howto & RB_NOSYNC))
278 bootsync();
279
280 /* Say NO to interrupts */
281 splhigh();
282
283 /* Do a dump if requested. */
284 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
285 dumpsys();
286
287 /*
288 * Auto reboot overload protection
289 *
290 * This code stops the kernel entering an endless loop of reboot
291 * - panic cycles. This will have the effect of stopping further
292 * reboots after it has rebooted 8 times after panics. A clean
293 * halt or reboot will reset the counter.
294 */
295
296 /* Run any shutdown hooks */
297 doshutdownhooks();
298
299 pmf_system_shutdown(boothowto);
300
301 /* Make sure IRQ's are disabled */
302 IRQdisable;
303
304 if (howto & RB_HALT) {
305 printf("The operating system has halted.\n");
306 printf("Please press any key to reboot.\n\n");
307 cngetc();
308 }
309
310 printf("rebooting...\n");
311 cpu_reset();
312 /*NOTREACHED*/
313 }
314
315
316 /*
317 * u_int initarm(BootConfig *bootconf)
318 *
319 * Initial entry point on startup. This gets called before main() is
320 * entered.
321 * It should be responsible for setting up everything that must be
322 * in place when main is called.
323 * This includes
324 * Taking a copy of the boot configuration structure.
325 * Initialising the physical console so characters can be printed.
326 * Setting up page tables for the kernel
327 * Relocating the kernel to the bottom of physical memory
328 */
329
330 /*
331 * this part is completely rewritten for the new bootloader ... It features
332 * a flat memory map with a mapping comparable to the EBSA arm32 machine
333 * to boost the portability and likeness of the code
334 */
335
336 /*
337 * Mapping table for core kernel memory. This memory is mapped at init
338 * time with section mappings.
339 *
340 * XXX One big assumption in the current architecture seems that the kernel is
341 * XXX supposed to be mapped into bootconfig.dram[0].
342 */
343
344 #define ONE_MB 0x100000
345
346 struct l1_sec_map {
347 vaddr_t va;
348 paddr_t pa;
349 vsize_t size;
350 vm_prot_t prot;
351 int cache;
352 } l1_sec_table[] = {
353 /* Map 1Mb section for VIDC20 */
354 { VIDC_BASE, VIDC_HW_BASE,
355 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
356 PTE_NOCACHE },
357
358 /* Map 1Mb section from IOMD */
359 { IOMD_BASE, IOMD_HW_BASE,
360 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
361 PTE_NOCACHE },
362
363 /* Map 1Mb of COMBO (and module space) */
364 { IO_BASE, IO_HW_BASE,
365 ONE_MB, VM_PROT_READ|VM_PROT_WRITE,
366 PTE_NOCACHE },
367 { 0, 0, 0, 0, 0 }
368 };
369
370
371 static void
372 canonicalise_bootconfig(struct bootconfig *bootconf, struct bootconfig *raw_bootconf)
373 {
374 /* check for bootconfig v2+ structure */
375 if (raw_bootconf->magic == BOOTCONFIG_MAGIC) {
376 /* v2+ cleaned up structure found */
377 *bootconf = *raw_bootconf;
378 return;
379 } else {
380 panic2(("Internal error: no valid bootconfig block found"));
381 }
382 }
383
384
385 u_int
386 initarm(void *cookie)
387 {
388 struct bootconfig *raw_bootconf = cookie;
389 int loop;
390 int loop1;
391 u_int logical;
392 u_int kerneldatasize;
393 u_int l1pagetable;
394 struct exec *kernexec = (struct exec *)KERNEL_TEXT_BASE;
395
396 /*
397 * Heads up ... Setup the CPU / MMU / TLB functions
398 */
399 set_cpufuncs();
400
401 /* canonicalise the boot configuration structure to alow versioning */
402 canonicalise_bootconfig(&bootconfig, raw_bootconf);
403 booted_kernel = bootconfig.kernelname;
404
405 /* if the wscons interface is used, switch off VERBOSE booting :( */
406 #if NVIDCVIDEO>0
407 # undef VERBOSE_INIT_ARM
408 # undef PMAP_DEBUG
409 #endif
410
411 /*
412 * Initialise the video memory descriptor
413 *
414 * Note: all references to the video memory virtual/physical address
415 * should go via this structure.
416 */
417
418 /* Hardwire it on the place the bootloader tells us */
419 videomemory.vidm_vbase = bootconfig.display_start;
420 videomemory.vidm_pbase = bootconfig.display_phys;
421 videomemory.vidm_size = bootconfig.display_size;
422 if (bootconfig.vram[0].pages)
423 videomemory.vidm_type = VIDEOMEM_TYPE_VRAM;
424 else
425 videomemory.vidm_type = VIDEOMEM_TYPE_DRAM;
426 vidc_base = (int *) VIDC_HW_BASE;
427 iomd_base = IOMD_HW_BASE;
428
429 /*
430 * Initialise the physical console
431 * This is done in main() but for the moment we do it here so that
432 * we can use printf in initarm() before main() has been called.
433 * only for `vidcconsole!' ... not wscons
434 */
435 #if NVIDCVIDEO == 0
436 consinit();
437 #endif
438
439 /*
440 * Initialise the diagnostic serial console
441 * This allows a means of generating output during initarm().
442 * Once all the memory map changes are complete we can call consinit()
443 * and not have to worry about things moving.
444 */
445 /* fcomcnattach(DC21285_ARMCSR_BASE, comcnspeed, comcnmode); */
446 /* XXX snif .... i am still not able to this */
447
448 /*
449 * We have the following memory map (derived from EBSA)
450 *
451 * virtual address == physical address apart from the areas:
452 * 0x00000000 -> 0x000fffff which is mapped to
453 * top 1MB of physical memory
454 * 0xf0000000 -> 0xf0ffffff wich is mapped to
455 * physical address 0x01000000 -> 0x01ffffff (DRAM0a, dram[0])
456 *
457 * This means that the kernel is mapped suitably for continuing
458 * execution, all I/O is mapped 1:1 virtual to physical and
459 * physical memory is accessible.
460 *
461 * The initarm() has the responsibility for creating the kernel
462 * page tables.
463 * It must also set up various memory pointers that are used
464 * by pmap etc.
465 */
466
467 /* START OF REAL NEW STUFF */
468
469 /* Check to make sure the page size is correct */
470 if (PAGE_SIZE != bootconfig.pagesize)
471 panic2(("Page size is %d bytes instead of %d !! (huh?)\n",
472 bootconfig.pagesize, PAGE_SIZE));
473
474 /* process arguments */
475 process_kernel_args();
476
477
478 /*
479 * Now set up the page tables for the kernel ... this part is copied
480 * in a (modified?) way from the EBSA machine port....
481 */
482
483 #ifdef VERBOSE_INIT_ARM
484 printf("Allocating page tables\n");
485 #endif
486 /*
487 * Set up the variables that define the availablilty of physical
488 * memory
489 */
490 physical_start = 0xffffffff;
491 physical_end = 0;
492 for (loop = 0, physmem = 0; loop < bootconfig.dramblocks; ++loop) {
493 if (bootconfig.dram[loop].address < physical_start)
494 physical_start = bootconfig.dram[loop].address;
495 memoryblock_end = bootconfig.dram[loop].address +
496 bootconfig.dram[loop].pages * PAGE_SIZE;
497 if (memoryblock_end > physical_end)
498 physical_end = memoryblock_end;
499 physmem += bootconfig.dram[loop].pages;
500 };
501 /* constants for now, but might be changed/configured */
502 dma_range_begin = (paddr_t) physical_start;
503 dma_range_end = (paddr_t) MIN(physical_end, 512*1024*1024);
504 /* XXX HACK HACK XXX */
505 /* dma_range_end = 0x18000000; */
506
507 if (physical_start != bootconfig.dram[0].address) {
508 int oldblocks = 0;
509
510 /*
511 * must be a kinetic, as it's the only thing to shuffle memory
512 * around
513 */
514 /* hack hack - throw away the slow dram */
515 for (loop = 0; loop < bootconfig.dramblocks; ++loop) {
516 if (bootconfig.dram[loop].address <
517 bootconfig.dram[0].address) {
518 /* non kinetic ram */
519 bootconfig.dram[loop].address = 0;
520 physmem -= bootconfig.dram[loop].pages;
521 bootconfig.drampages -=
522 bootconfig.dram[loop].pages;
523 bootconfig.dram[loop].pages = 0;
524 oldblocks++;
525 }
526 }
527 physical_start = bootconfig.dram[0].address;
528 bootconfig.dramblocks -= oldblocks;
529 }
530
531 physical_freestart = physical_start;
532 free_pages = bootconfig.drampages;
533 physical_freeend = physical_end;
534
535
536 /*
537 * AHUM !! set this variable ... it was set up in the old 1st
538 * stage bootloader
539 */
540 kerneldatasize = bootconfig.kernsize + bootconfig.MDFsize;
541
542 /* Update the address of the first free page of physical memory */
543 /* XXX Assumption that the kernel and stuff is at the LOWEST physical memory address? XXX */
544 physical_freestart +=
545 bootconfig.kernsize + bootconfig.MDFsize + bootconfig.scratchsize;
546 free_pages -= (physical_freestart - physical_start) / PAGE_SIZE;
547
548 /* Define a macro to simplify memory allocation */
549 #define valloc_pages(var, np) \
550 alloc_pages((var).pv_pa, (np)); \
551 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
552
553 #define alloc_pages(var, np) \
554 (var) = physical_freestart; \
555 physical_freestart += ((np) * PAGE_SIZE); \
556 free_pages -= (np); \
557 memset((char *)(var), 0, ((np) * PAGE_SIZE));
558
559 loop1 = 0;
560 kernel_l1pt.pv_pa = 0;
561 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
562 /* Are we 16KB aligned for an L1 ? */
563 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
564 && kernel_l1pt.pv_pa == 0) {
565 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
566 } else {
567 valloc_pages(kernel_pt_table[loop1],
568 L2_TABLE_SIZE / PAGE_SIZE);
569 ++loop1;
570 }
571 }
572
573
574 #ifdef DIAGNOSTIC
575 /* This should never be able to happen but better confirm that. */
576 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
577 panic2(("initarm: Failed to align the kernel page "
578 "directory\n"));
579 #endif
580
581 /*
582 * Allocate a page for the system page mapped to V0x00000000
583 * This page will just contain the system vectors and can be
584 * shared by all processes.
585 */
586 alloc_pages(systempage.pv_pa, 1);
587
588 /* Allocate stacks for all modes */
589 valloc_pages(irqstack, IRQ_STACK_SIZE);
590 valloc_pages(abtstack, ABT_STACK_SIZE);
591 valloc_pages(undstack, UND_STACK_SIZE);
592 valloc_pages(kernelstack, UPAGES);
593
594 #ifdef VERBOSE_INIT_ARM
595 printf("Setting up stacks :\n");
596 printf("IRQ stack: p0x%08lx v0x%08lx\n",
597 irqstack.pv_pa, irqstack.pv_va);
598 printf("ABT stack: p0x%08lx v0x%08lx\n",
599 abtstack.pv_pa, abtstack.pv_va);
600 printf("UND stack: p0x%08lx v0x%08lx\n",
601 undstack.pv_pa, undstack.pv_va);
602 printf("SVC stack: p0x%08lx v0x%08lx\n",
603 kernelstack.pv_pa, kernelstack.pv_va);
604 printf("\n");
605 #endif
606
607 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
608
609 #ifdef CPU_SA110
610 /*
611 * XXX totally stuffed hack to work round problems introduced
612 * in recent versions of the pmap code. Due to the calls used there
613 * we cannot allocate virtual memory during bootstrap.
614 */
615 sa110_cc_base = (KERNEL_BASE + (physical_freestart - physical_start)
616 + (CPU_SA110_CACHE_CLEAN_SIZE - 1))
617 & ~(CPU_SA110_CACHE_CLEAN_SIZE - 1);
618 #endif /* CPU_SA110 */
619
620 /*
621 * Ok we have allocated physical pages for the primary kernel
622 * page tables
623 */
624
625 #ifdef VERBOSE_INIT_ARM
626 printf("Creating L1 page table\n");
627 #endif
628
629 /*
630 * Now we start construction of the L1 page table
631 * We start by mapping the L2 page tables into the L1.
632 * This means that we can replace L1 mappings later on if necessary
633 */
634 l1pagetable = kernel_l1pt.pv_pa;
635
636 /* Map the L2 pages tables in the L1 page table */
637 pmap_link_l2pt(l1pagetable, 0x00000000,
638 &kernel_pt_table[KERNEL_PT_SYS]);
639 pmap_link_l2pt(l1pagetable, KERNEL_BASE,
640 &kernel_pt_table[KERNEL_PT_KERNEL]);
641 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
642 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
643 &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
644 pmap_link_l2pt(l1pagetable, VMEM_VBASE,
645 &kernel_pt_table[KERNEL_PT_VMEM]);
646
647 /* update the top of the kernel VM */
648 pmap_curmaxkvaddr =
649 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
650
651 #ifdef VERBOSE_INIT_ARM
652 printf("Mapping kernel\n");
653 #endif
654
655 /* Now we fill in the L2 pagetable for the kernel code/data */
656 /* XXX Kernel doesn't have to be on physical_start (!) use bootconfig XXX */
657 /*
658 * The defines are a workaround for a recent problem that occurred
659 * with ARM 610 processors and some ARM 710 processors
660 * Other ARM 710 and StrongARM processors don't have a problem.
661 */
662 if (N_GETMAGIC(kernexec[0]) == ZMAGIC) {
663 #if defined(CPU_ARM6) || defined(CPU_ARM7)
664 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
665 physical_start, kernexec->a_text,
666 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
667 #else /* CPU_ARM6 || CPU_ARM7 */
668 logical = pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
669 physical_start, kernexec->a_text,
670 VM_PROT_READ, PTE_CACHE);
671 #endif /* CPU_ARM6 || CPU_ARM7 */
672 logical += pmap_map_chunk(l1pagetable,
673 KERNEL_TEXT_BASE + logical, physical_start + logical,
674 kerneldatasize - kernexec->a_text,
675 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
676 } else { /* !ZMAGIC */
677 /*
678 * Most likely an ELF kernel ...
679 * XXX no distinction yet between read only and
680 * read/write area's ...
681 */
682 pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE,
683 physical_start, kerneldatasize,
684 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
685 };
686
687
688 #ifdef VERBOSE_INIT_ARM
689 printf("Constructing L2 page tables\n");
690 #endif
691
692 /* Map the stack pages */
693 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
694 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
695 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
696 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
697 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
698 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
699 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
700 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
701
702 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
703 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
704
705 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
706 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
707 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
708 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
709 }
710
711 /* Now we fill in the L2 pagetable for the VRAM */
712 /*
713 * Current architectures mean that the VRAM is always in 1
714 * continuous bank. This means that we can just map the 2 meg
715 * that the VRAM would occupy. In theory we don't need a page
716 * table for VRAM, we could section map it but we would need
717 * the page tables if DRAM was in use.
718 * XXX please map two adjacent virtual areas to ONE physical
719 * area
720 */
721 pmap_map_chunk(l1pagetable, VMEM_VBASE, videomemory.vidm_pbase,
722 videomemory.vidm_size, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
723 pmap_map_chunk(l1pagetable, VMEM_VBASE + videomemory.vidm_size,
724 videomemory.vidm_pbase, videomemory.vidm_size,
725 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
726
727 /* Map the vector page. */
728 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
729 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
730
731 /* Map the core memory needed before autoconfig */
732 loop = 0;
733 while (l1_sec_table[loop].size) {
734 vm_size_t sz;
735
736 #ifdef VERBOSE_INIT_ARM
737 printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
738 l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
739 l1_sec_table[loop].va);
740 #endif
741 for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
742 pmap_map_section(l1pagetable,
743 l1_sec_table[loop].va + sz,
744 l1_sec_table[loop].pa + sz,
745 l1_sec_table[loop].prot,
746 l1_sec_table[loop].cache);
747 ++loop;
748 }
749
750 /*
751 * Now we have the real page tables in place so we can switch
752 * to them. Once this is done we will be running with the
753 * REAL kernel page tables.
754 */
755
756 #ifdef VERBOSE_INIT_ARM
757 printf("switching domains\n");
758 #endif
759 /* be a client to all domains */
760 cpu_domains(0x55555555);
761
762 /* Switch tables */
763 #ifdef VERBOSE_INIT_ARM
764 printf("switching to new L1 page table\n");
765 #endif
766 setttb(kernel_l1pt.pv_pa);
767
768 /*
769 * We must now clean the cache again....
770 * Cleaning may be done by reading new data to displace any
771 * dirty data in the cache. This will have happened in setttb()
772 * but since we are boot strapping the addresses used for the read
773 * may have just been remapped and thus the cache could be out
774 * of sync. A re-clean after the switch will cure this.
775 * After booting there are no gross reloations of the kernel thus
776 * this problem will not occur after initarm().
777 */
778 cpu_idcache_wbinv_all();
779 cpu_tlb_flushID();
780 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
781
782 /*
783 * Moved from cpu_startup() as data_abort_handler() references
784 * this during uvm init
785 */
786 proc0paddr = (struct user *)kernelstack.pv_va;
787 lwp0.l_addr = proc0paddr;
788
789 /*
790 * if there is support for a serial console ...we should now
791 * reattach it
792 */
793 /* fcomcndetach();*/
794
795 /*
796 * Reflect videomemory relocation in the videomemory structure
797 * and reinit console
798 */
799 if (bootconfig.vram[0].pages == 0) {
800 videomemory.vidm_vbase = VMEM_VBASE;
801 } else {
802 videomemory.vidm_vbase = VMEM_VBASE;
803 bootconfig.display_start = VMEM_VBASE;
804 };
805 vidc_base = (int *) VIDC_BASE;
806 iomd_base = IOMD_BASE;
807
808 #ifdef VERBOSE_INIT_ARM
809 printf("running on the new L1 page table!\n");
810 printf("done.\n");
811 #endif
812
813 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
814
815 #ifdef VERBOSE_INIT_ARM
816 printf("\n");
817 #endif
818
819 /*
820 * Pages were allocated during the secondary bootstrap for the
821 * stacks for different CPU modes.
822 * We must now set the r13 registers in the different CPU modes to
823 * point to these stacks.
824 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
825 * of the stack memory.
826 */
827 #ifdef VERBOSE_INIT_ARM
828 printf("init subsystems: stacks ");
829 console_flush();
830 #endif
831
832 set_stackptr(PSR_IRQ32_MODE,
833 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
834 set_stackptr(PSR_ABT32_MODE,
835 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
836 set_stackptr(PSR_UND32_MODE,
837 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
838 #ifdef PMAP_DEBUG
839 if (pmap_debug_level >= 0)
840 printf("kstack V%08lx P%08lx\n", kernelstack.pv_va,
841 kernelstack.pv_pa);
842 #endif /* PMAP_DEBUG */
843
844 /*
845 * Well we should set a data abort handler.
846 * Once things get going this will change as we will need a proper
847 * handler. Until then we will use a handler that just panics but
848 * tells us why.
849 * Initialisation of the vectors will just panic on a data abort.
850 * This just fills in a slightly better one.
851 */
852 #ifdef VERBOSE_INIT_ARM
853 printf("vectors ");
854 #endif
855 data_abort_handler_address = (u_int)data_abort_handler;
856 prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
857 undefined_handler_address = (u_int)undefinedinstruction_bounce;
858 console_flush();
859
860
861 /*
862 * At last !
863 * We now have the kernel in physical memory from the bottom upwards.
864 * Kernel page tables are physically above this.
865 * The kernel is mapped to 0xf0000000
866 * The kernel data PTs will handle the mapping of
867 * 0xf1000000-0xf5ffffff (80 Mb)
868 * 2Meg of VRAM is mapped to 0xf7000000
869 * The page tables are mapped to 0xefc00000
870 * The IOMD is mapped to 0xf6000000
871 * The VIDC is mapped to 0xf6100000
872 * The IOMD/VIDC could be pushed up higher but i havent got
873 * sufficient documentation to do so; the addresses are not
874 * parametized yet and hard to read... better fix this before;
875 * its pretty unforgiving.
876 */
877
878 /* Initialise the undefined instruction handlers */
879 #ifdef VERBOSE_INIT_ARM
880 printf("undefined ");
881 #endif
882 undefined_init();
883 console_flush();
884
885 /* Load memory into UVM. */
886 #ifdef VERBOSE_INIT_ARM
887 printf("page ");
888 #endif
889 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
890 for (loop = 0; loop < bootconfig.dramblocks; loop++) {
891 paddr_t start = (paddr_t)bootconfig.dram[loop].address;
892 paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE);
893
894 if (start < physical_freestart)
895 start = physical_freestart;
896 if (end > physical_freeend)
897 end = physical_freeend;
898
899 /* XXX Consider DMA range intersection checking. */
900
901 uvm_page_physload(atop(start), atop(end),
902 atop(start), atop(end), VM_FREELIST_DEFAULT);
903 }
904
905 /* Boot strap pmap telling it where the kernel page table is */
906 #ifdef VERBOSE_INIT_ARM
907 printf("pmap ");
908 #endif
909 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
910 console_flush();
911
912 /* Setup the IRQ system */
913 #ifdef VERBOSE_INIT_ARM
914 printf("irq ");
915 #endif
916 console_flush();
917 irq_init();
918 #ifdef VERBOSE_INIT_ARM
919 printf("done.\n\n");
920 #endif
921
922 #if NVIDCVIDEO>0
923 consinit(); /* necessary ? */
924 #endif
925
926 /* Talk to the user */
927 printf("NetBSD/evbarm booting ... \n");
928
929 /* Tell the user if his boot loader is too old */
930 if ((bootconfig.magic < BOOTCONFIG_MAGIC) ||
931 (bootconfig.version != BOOTCONFIG_VERSION)) {
932 printf("\nDETECTED AN OLD BOOTLOADER. PLEASE UPGRADE IT\n\n");
933 delay(5000000);
934 }
935
936 printf("Kernel loaded from file %s\n", bootconfig.kernelname);
937 printf("Kernel arg string (@%p) %s\n",
938 bootconfig.args, bootconfig.args);
939 printf("\nBoot configuration structure reports the following "
940 "memory\n");
941
942 printf(" DRAM block 0a at %08x size %08x "
943 "DRAM block 0b at %08x size %08x\n\r",
944 bootconfig.dram[0].address,
945 bootconfig.dram[0].pages * bootconfig.pagesize,
946 bootconfig.dram[1].address,
947 bootconfig.dram[1].pages * bootconfig.pagesize);
948 printf(" DRAM block 1a at %08x size %08x "
949 "DRAM block 1b at %08x size %08x\n\r",
950 bootconfig.dram[2].address,
951 bootconfig.dram[2].pages * bootconfig.pagesize,
952 bootconfig.dram[3].address,
953 bootconfig.dram[3].pages * bootconfig.pagesize);
954 printf(" VRAM block 0 at %08x size %08x\n\r",
955 bootconfig.vram[0].address,
956 bootconfig.vram[0].pages * bootconfig.pagesize);
957
958 #if NKSYMS || defined(DDB) || defined(MODULAR)
959 ksyms_addsyms_elf(bootconfig.ksym_end - bootconfig.ksym_start,
960 (void *) bootconfig.ksym_start, (void *) bootconfig.ksym_end);
961 #endif
962
963
964 #ifdef DDB
965 db_machine_init();
966 if (boothowto & RB_KDB)
967 Debugger();
968 #endif /* DDB */
969
970 /* We return the new stack pointer address */
971 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
972 }
973
974
975 static void
976 process_kernel_args(void)
977 {
978 char *args;
979
980 /* Ok now we will check the arguments for interesting parameters. */
981 args = bootconfig.args;
982 boothowto = 0;
983
984 /* Only arguments itself are passed from the new bootloader */
985 while (*args == ' ')
986 ++args;
987
988 boot_args = args;
989 parse_mi_bootargs(boot_args);
990 parse_rpc_bootargs(boot_args);
991 }
992
993
994 void
995 parse_rpc_bootargs(char *args)
996 {
997 int integer;
998
999 if (get_bootconf_option(args, "videodram", BOOTOPT_TYPE_INT,
1000 &integer)) {
1001 videodram_size = integer;
1002 /* Round to 4K page */
1003 videodram_size *= 1024;
1004 videodram_size = round_page(videodram_size);
1005 if (videodram_size > 1024*1024)
1006 videodram_size = 1024*1024;
1007 }
1008 }
1009 /* End of machdep.c */
1010