Home | History | Annotate | Line # | Download | only in boot32
boot32.c revision 1.16.2.2
      1 /*	$NetBSD: boot32.c,v 1.16.2.2 2004/05/22 17:11:58 he Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  *
     29  * Thanks a bunch for Ben's framework for the bootloader and its suporting
     30  * libs. This file tries to actually boot NetBSD/acorn32 !
     31  *
     32  * XXX eventually to be partly merged back with boot26 ? XXX
     33  */
     34 
     35 #include <lib/libsa/stand.h>
     36 #include <lib/libsa/loadfile.h>
     37 #include <lib/libkern/libkern.h>
     38 #include <riscoscalls.h>
     39 #include <srt0.h>
     40 #include <sys/boot_flag.h>
     41 #include <machine/vmparam.h>
     42 #include <arm/arm32/pte.h>
     43 #include <machine/bootconfig.h>
     44 
     45 
     46 /* debugging flags */
     47 int debug = 1;
     48 
     49 
     50 /* constants */
     51 #define PODRAM_START   (512*1024*1024)				/* XXX Kinetic cards XXX	*/
     52 
     53 #define MAX_RELOCPAGES	4096
     54 
     55 #define DEFAULT_ROOT	"/dev/wd0a"
     56 
     57 
     58 #define IO_BLOCKS	 16	/* move these to the bootloader structure? */
     59 #define ROM_BLOCKS	 16
     60 #define PODRAM_BLOCKS	 16
     61 
     62 
     63 /* booter variables */
     64 char	 scrap[80], twirl_cnt;					/* misc				*/
     65 char	 booted_file[80];
     66 
     67 struct bootconfig *bconfig;					/* bootconfig passing		*/
     68 u_long	 bconfig_new_phys;					/* physical address its bound	*/
     69 
     70 u_int	 monitor_type, monitor_sync, ioeb_flags, lcd_flags;	/* computer knowledge		*/
     71 u_int	 superio_flags, superio_flags_basic, superio_flags_extra;
     72 
     73 int	 nbpp, memory_table_size, memory_image_size;		/* sizes			*/
     74 u_long	 reloc_tablesize, *reloc_instruction_table;		/* relocate info		*/
     75 u_long	*reloc_pos;						/* current empty entry		*/
     76 int	 reloc_entries;						/* number of relocations	*/
     77 int	 first_mapped_DRAM_page_index;				/* offset in RISC OS blob	*/
     78 int	 first_mapped_PODRAM_page_index;			/* offset in RISC OS blob	*/
     79 
     80 struct page_info *mem_pages_info;				/* {nr, virt, phys}*		*/
     81 struct page_info *free_relocation_page;				/* points to the page_info chain*/
     82 struct page_info *relocate_table_pages;				/* points to seq. relocate info */
     83 struct page_info *relocate_code_page;				/* points to the copied code	*/
     84 struct page_info *bconfig_page;					/* page for passing on settings	*/
     85 
     86 unsigned char *memory_page_types;				/* packed array of 4 bit typeId	*/
     87 
     88 u_long	*initial_page_tables;					/* pagetables to be booted from	*/
     89 
     90 
     91 /* XXX rename *_BLOCKS to MEM_BLOCKS */
     92 /* DRAM/VRAM/ROM/IO info */
     93 u_long	 videomem_start, videomem_pages, display_size;		/* where the display is		*/
     94 
     95 u_long	 pv_offset, top_physdram;				/* kernel_base - phys. diff	*/
     96 u_long	 top_1Mb_dram;						/* the lower mapped top 1Mb	*/
     97 u_long	 new_L1_pages_phys;					/* physical address of L1 pages	*/
     98 
     99 u_long	 total_podram_pages, total_dram_pages, total_vram_pages;/* for bootconfig passing	*/
    100 int	 dram_blocks, podram_blocks;				/* number of mem. objects/type  */
    101 int	 vram_blocks, rom_blocks, io_blocks;
    102 
    103 u_long	 DRAM_addr[DRAM_BLOCKS],     DRAM_pages[DRAM_BLOCKS];
    104 u_long	 PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS];	/* processor only RAM	*/
    105 u_long	 VRAM_addr[VRAM_BLOCKS],     VRAM_pages[VRAM_BLOCKS];
    106 u_long	 ROM_addr[ROM_BLOCKS],       ROM_pages[ROM_BLOCKS];
    107 u_long	 IO_addr[IO_BLOCKS],         IO_pages[IO_BLOCKS];
    108 
    109 
    110 /* RISC OS memory pages we claimed */
    111 u_long	 firstpage, lastpage, totalpages;			/* RISC OS pagecounters		*/
    112 char	*memory_image, *bottom_memory, *top_memory;		/* RISC OS memory		*/
    113 
    114 u_long	 videomem_start_ro;					/* for debugging mainly		*/
    115 
    116 /* kernel info */
    117 u_long	 marks[MARK_MAX];					/* loader mark pointers 	*/
    118 u_long	 kernel_physical_start;					/* where does it get relocated	*/
    119 u_long	 kernel_free_vm_start;					/* where does the free VM start	*/
    120 u_long	 scratch_virtualbase, scratch_physicalbase;		/* some free space to mess with	*/
    121 
    122 
    123 /* bootprogram identifiers */
    124 extern const char bootprog_rev[];
    125 extern const char bootprog_name[];
    126 extern const char bootprog_date[];
    127 extern const char bootprog_maker[];
    128 
    129 
    130 /* predefines / prototypes */
    131 void	 init_datastructures(void);
    132 void	 get_memory_configuration(void);
    133 void	 get_memory_map(void);
    134 void	 create_initial_page_tables(void);
    135 void	 add_pagetables_at_top(void);
    136 int	 page_info_cmp(const void *a, const void *);
    137 void	 add_initvectors(void);
    138 void	 create_configuration(int argc, char **argv, int start_args);
    139 void	 prepare_and_check_relocation_system(void);
    140 void	 twirl(void);
    141 int	 vdu_var(int);
    142 void	 process_args(int argc, char **argv, int *howto, char *file, int *start_args);
    143 
    144 char		 *sprint0(int width, char prefix, char base, int value);
    145 struct page_info *get_relocated_page(u_long destination, int size);
    146 
    147 extern void start_kernel(
    148 		int relocate_code_page,
    149 		int relocation_pv_offset,
    150 		int configuration_structure_in_flat_physical_space,
    151 		int physical_address_of_relocation_tables,
    152 		int physical_address_of_new_L1_pages,
    153 		int kernel_entry_point
    154 		);	/* asm */
    155 
    156 
    157 /* the loader itself */
    158 void init_datastructures(void) {
    159 	/* Get number of pages and the memorytablesize */
    160 	osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
    161 
    162 	/* reserve some space for heap etc... 512 might be bigish though */
    163 	memory_image_size = (int) HIMEM - 512*1024;
    164 	if (memory_image_size <= 256*1024)
    165 		panic("Insufficient memory");
    166 
    167 	memory_image = alloc(memory_image_size);
    168 	if (!memory_image)
    169 		panic("Can't alloc get my memory image ?");
    170 
    171 	bottom_memory = memory_image;
    172 	top_memory    = memory_image + memory_image_size;
    173 
    174 	firstpage  = ((int) bottom_memory / nbpp) + 1;	/* safety */
    175 	lastpage   = ((int) top_memory    / nbpp) - 1;
    176 	totalpages = lastpage - firstpage;
    177 
    178 	printf("Got %ld memory pages each %d kilobytes to mess with.\n\n",
    179 			totalpages, nbpp>>10
    180 		);
    181 
    182 	/*
    183 	 * Setup the relocation table. Its a simple array of 3 * 32 bit
    184 	 * entries. The first word in the array is the number of relocations
    185 	 * to be done
    186 	 */
    187 	reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(u_long);
    188 	reloc_instruction_table = alloc(reloc_tablesize);
    189 	if (!reloc_instruction_table)
    190 		panic("Can't alloc my relocate instructions pages");
    191 
    192 	reloc_entries = 0;
    193 	reloc_pos     = reloc_instruction_table;
    194 	*reloc_pos++  = 0;
    195 
    196 	/*
    197 	 * Set up the memory translation info structure. We need to allocate
    198 	 * one more for the end of list marker. See get_memory_map.
    199 	 */
    200 	mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
    201 	if (!mem_pages_info)
    202 		panic("Can't alloc my phys->virt page info");
    203 
    204 	/*
    205 	 * Allocate memory for the memory arrangement table. We use this
    206 	 * structure to retrieve memory page properties to clasify them.
    207 	 */
    208 	memory_page_types = alloc(memory_table_size);
    209 	if (!memory_page_types)
    210 		panic("Can't alloc my memory page type block");
    211 
    212 	/*
    213 	 * Initial page tables is 16 kb per definition since only sections are
    214 	 * used.
    215 	 */
    216 	initial_page_tables = alloc(16*1024);
    217 	if (!initial_page_tables)
    218 		panic("Can't alloc my initial page tables");
    219 }
    220 
    221 
    222 void prepare_and_check_relocation_system(void) {
    223 	int     relocate_size, relocate_pages;
    224 	int     bank, pages, found;
    225 	u_long  dst, src, base, destination, extend;
    226 	u_long *reloc_entry, last_src, length;
    227 
    228 	/* set the number of relocation entries in the 1st word */
    229 	*reloc_instruction_table = reloc_entries;
    230 
    231 	/*
    232 	 * The relocate information needs to be in one sequential physical
    233 	 * space in order to be able to access it as one stream when the MMU
    234 	 * is switched off later.
    235 	 */
    236 	relocate_size = (reloc_tablesize + nbpp-1) & ~(nbpp-1);  /* round up */
    237 	printf("\nPreparing for booting %s ... ", booted_file);
    238 	relocate_pages = relocate_size / nbpp;
    239 
    240 	relocate_table_pages = free_relocation_page;
    241 	pages = 0;
    242 	while (pages < relocate_pages) {
    243 		src = (u_long) reloc_instruction_table + pages*nbpp;
    244 		dst = (relocate_table_pages + pages)->logical;
    245 		memcpy((void *) dst, (void *) src, nbpp);
    246 
    247 		if (pages < relocate_pages-1) {
    248 			/* check if next page is sequential physically */
    249 			if ((relocate_table_pages+pages+1)->physical - (relocate_table_pages+pages)->physical != nbpp) {
    250 				/* Non contigunous relocate area -> try again */
    251 				printf("*");
    252 				relocate_table_pages += pages;
    253 				continue;	/* while */
    254 			};
    255 		};
    256 		pages++;
    257 	};
    258 	free_relocation_page = relocate_table_pages + pages;
    259 
    260 	/* copy the relocation code into this page in start_kernel */
    261 	relocate_code_page = free_relocation_page++;
    262 
    263 	/*
    264 	 * All relocations are pages allocated in one big strict increasing
    265 	 * physical DRAM address sequence. When the MMU is switched off all
    266 	 * code and data is in this increasing order but not at the right
    267 	 * place. This is where the relocation code kicks in; relocation is
    268 	 * done in flat physical memory without MMU.
    269 	 */
    270 
    271 	printf("shift and check ... ");
    272 	reloc_entry = reloc_instruction_table + 1;
    273 	last_src = -1;
    274 	while (reloc_entry < reloc_pos) {
    275 		src         = reloc_entry[0];
    276 		destination = reloc_entry[1];
    277 		length      = reloc_entry[2];
    278 
    279 		/* paranoia check */
    280 		if ((long) (src - last_src) <= 0) printf("relocation sequence challenged -- booting might fail ");
    281 		last_src = src;
    282 
    283 		/* check if its gonna be relocated into (PO)DRAM ! */
    284 		extend = destination + length;
    285 		found = 0;
    286 		for (bank = 0; (bank < dram_blocks) && !found; bank++) {
    287 			base   = DRAM_addr[bank];
    288 			found = (destination >= base) && (extend <= base + DRAM_pages[bank]*nbpp);
    289 		};
    290 		for (bank = 0; (bank < podram_blocks) && !found; bank++) {
    291 			base = PODRAM_addr[bank];
    292 			found = (destination >= base) && (extend <= base + PODRAM_pages[bank]*nbpp);
    293 		};
    294 		if (!found || (extend > top_physdram)) {
    295 			panic( "Internal error: relocating range [%lx +%lx => %lx] outside (PO)DRAM banks!",
    296 				src, length, destination
    297 			);
    298 		};
    299 
    300 		reloc_entry+=3;
    301 	};
    302 	if (reloc_entry != reloc_pos) panic("Relocation instruction table is corrupted");
    303 
    304 	printf("OK!\n");
    305 }
    306 
    307 
    308 void get_memory_configuration(void) {
    309 	int loop, current_page_type, page_count, phys_page;
    310 	int page, count, bank, top_bank, video_bank;
    311 	int mapped_screen_memory;
    312 	int one_mb_pages;
    313 	u_long top;
    314 
    315 	printf("Getting memory configuration ");
    316 
    317 	osmemory_read_arrangement_table(memory_page_types);
    318 
    319 	/* init counters */
    320 	bank = vram_blocks = dram_blocks = rom_blocks = io_blocks = podram_blocks = 0;
    321 
    322 	current_page_type = -1;
    323 	phys_page = 0;			/* physical address in pages	*/
    324 	page_count = 0;			/* page counter in this block	*/
    325 	loop = 0;			/* loop variable over entries	*/
    326 
    327 	/* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
    328 	while (loop < 2*memory_table_size) {
    329 		page = (memory_page_types[loop / 2]);	/* read	twice       	   */
    330 		if (loop & 1) page >>= 4;		/* take other nibble	   */
    331 
    332 		/* bits 0-2 give type, bit3 means the bit page is allocatable 	   */
    333 		page &= 0x7;				/* only take bottom 3 bits */
    334 		if (page != current_page_type) {
    335 			/* passed a boundary ... note this block		   */
    336 			/* splitting in different vars is for compatability reasons*/
    337 			switch (current_page_type) {
    338 				case -1 :
    339 				case  0 :
    340 					break;
    341 				case osmemory_TYPE_DRAM :
    342 					if (phys_page < PODRAM_START) {
    343 						DRAM_addr[dram_blocks]  = phys_page * nbpp;
    344 						DRAM_pages[dram_blocks] = page_count;
    345 						dram_blocks++;
    346 					} else {
    347 						PODRAM_addr[podram_blocks]  = phys_page * nbpp;
    348 						PODRAM_pages[podram_blocks] = page_count;
    349 						podram_blocks++;
    350 					};
    351 					break;
    352 				case osmemory_TYPE_VRAM :
    353 					VRAM_addr[vram_blocks]  = phys_page * nbpp;
    354 					VRAM_pages[vram_blocks] = page_count;
    355 					vram_blocks++;
    356 					break;
    357 				case osmemory_TYPE_ROM :
    358 					ROM_addr[rom_blocks]  = phys_page * nbpp;
    359 					ROM_pages[rom_blocks] = page_count;
    360 					rom_blocks++;
    361 					break;
    362 				case osmemory_TYPE_IO :
    363 					IO_addr[io_blocks]  = phys_page * nbpp;
    364 					IO_pages[io_blocks] = page_count;
    365 					io_blocks++;
    366 					break;
    367 				default :
    368 					printf("WARNING : found unknown memory object %d ", current_page_type);
    369 					printf(" at 0x%s", sprint0(8,'0','x', phys_page * nbpp));
    370 					printf(" for %s k\n", sprint0(5,' ','d', (page_count*nbpp)>>10));
    371 					break;
    372 			};
    373 			current_page_type = page;
    374 			phys_page = loop;
    375 			page_count = 0;
    376 		};
    377 		/* smallest unit we recognise is one page ... silly could be upto 64 pages i.e. 256 kb */
    378 		page_count += 1;
    379 		loop       += 1;
    380 		if ((loop & 31) == 0) twirl();
    381 	};
    382 
    383 	printf(" \n\n");
    384 
    385 	if (VRAM_pages[0] == 0) {
    386 		/* map DRAM as video memory */
    387 		display_size	 = (vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1));
    388 #if 0
    389 		mapped_screen_memory = 1024 * 1024;		/* max allowed on RiscPC	*/
    390 		videomem_pages   = (mapped_screen_memory / nbpp);
    391 		videomem_start   = DRAM_addr[0];
    392 		DRAM_addr[0]	+= videomem_pages * nbpp;
    393 		DRAM_pages[0]	-= videomem_pages;
    394 #else
    395 		mapped_screen_memory = display_size;
    396 		videomem_pages   = (mapped_screen_memory / nbpp);
    397 		one_mb_pages	 = (1024*1024)/nbpp;
    398 
    399 		/*
    400 		 * OK... we need one Mb at the top for compliance with current
    401 		 * kernel structure. This ought to be abolished one day IMHO.
    402 		 * Also we have to take care that the kernel needs to be in
    403 		 * DRAM0a and even has to start there.
    404 		 * XXX one Mb simms are the smallest supported XXX
    405 		 */
    406 		top_bank = dram_blocks-1;
    407 		video_bank = top_bank;
    408 		if (DRAM_pages[top_bank] == one_mb_pages) video_bank--;
    409 
    410 		if (DRAM_pages[video_bank] < videomem_pages)
    411 			panic("Weird memory configuration found; please contact acorn32 portmaster.");
    412 
    413 		/* split off the top 1Mb */
    414 		DRAM_addr [top_bank+1]  = DRAM_addr[top_bank] + (DRAM_pages[top_bank] - one_mb_pages)*nbpp;
    415 		DRAM_pages[top_bank+1]  = one_mb_pages;
    416 		DRAM_pages[top_bank  ] -= one_mb_pages;
    417 		dram_blocks++;
    418 
    419 		/* Map video memory at the end of the choosen DIMM */
    420 		videomem_start          = DRAM_addr[video_bank] + (DRAM_pages[video_bank] - videomem_pages)*nbpp;
    421 		DRAM_pages[video_bank] -= videomem_pages;
    422 
    423 		/* sanity */
    424 		if (DRAM_pages[top_bank] == 0) {
    425 			DRAM_addr [top_bank] = DRAM_addr [top_bank+1];
    426 			DRAM_pages[top_bank] = DRAM_pages[top_bank+1];
    427 			dram_blocks--;
    428 		};
    429 #endif
    430 	} else {
    431 		/* use VRAM */
    432 		mapped_screen_memory = 0;
    433 		videomem_start	 = VRAM_addr[0];
    434 		videomem_pages	 = VRAM_pages[0];
    435 		display_size	 = videomem_pages * nbpp;
    436 	};
    437 
    438 	if (mapped_screen_memory) {
    439 		printf("Used %d kb DRAM ", (mapped_screen_memory)/1024);
    440 		printf("at 0x%s for video memory\n", sprint0(8,'0','x', videomem_start));
    441 	};
    442 
    443 	/* find top of (PO)DRAM pages */
    444 	top_physdram = 0;
    445 	for (loop = 0; loop < podram_blocks; loop++) {
    446 		top = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
    447 		if (top > top_physdram) top_physdram = top;
    448 	};
    449 	for (loop = 0; loop < dram_blocks; loop++) {
    450 		top = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
    451 		if (top > top_physdram) top_physdram = top;
    452 	};
    453 	if (top_physdram == 0) panic("reality check: No DRAM in this machine?");
    454 	if (((top_physdram >> 20) << 20) != top_physdram)
    455 		panic("Top is not not aligned on a Mb; remove very small DIMMS?");
    456 
    457 	videomem_start_ro = vdu_var(os_VDUVAR_DISPLAY_START);
    458 
    459 	/* pretty print the individual page types */
    460 	for (count = 0; count < rom_blocks; count++) {
    461 		printf("Found ROM  (%d)", count);
    462 		printf(" at 0x%s", sprint0(8,'0','x', ROM_addr[count]));
    463 		printf(" for %s k\n", sprint0(5,' ','d', (ROM_pages[count]*nbpp)>>10));
    464 	};
    465 
    466 	for (count = 0; count < io_blocks; count++) {
    467 		printf("Found I/O  (%d)", count);
    468 		printf(" at 0x%s", sprint0(8,'0','x', IO_addr[count]));
    469 		printf(" for %s k\n", sprint0(5,' ','d', (IO_pages[count]*nbpp)>>10));
    470 	};
    471 
    472 	/* for DRAM/VRAM also count the number of pages */
    473 	total_dram_pages = 0;
    474 	for (count = 0; count < dram_blocks; count++) {
    475 		total_dram_pages += DRAM_pages[count];
    476 		printf("Found DRAM (%d)", count);
    477 		printf(" at 0x%s", sprint0(8,'0','x', DRAM_addr[count]));
    478 		printf(" for %s k\n", sprint0(5,' ','d', (DRAM_pages[count]*nbpp)>>10));
    479 	};
    480 
    481 	total_vram_pages = 0;
    482 	for (count = 0; count < vram_blocks; count++) {
    483 		total_vram_pages += VRAM_pages[count];
    484 		printf("Found VRAM (%d)", count);
    485 		printf(" at 0x%s", sprint0(8,'0','x', VRAM_addr[count]));
    486 		printf(" for %s k\n", sprint0(5,' ','d', (VRAM_pages[count]*nbpp)>>10));
    487 	};
    488 
    489 	total_podram_pages = 0;
    490 	for (count = 0; count < podram_blocks; count++) {
    491 		total_podram_pages += PODRAM_pages[count];
    492 		printf("Found Processor only (S)DRAM (%d)", count);
    493 		printf(" at 0x%s", sprint0(8,'0','x', PODRAM_addr[count]));
    494 		printf(" for %s k\n", sprint0(5,' ','d', (PODRAM_pages[count]*nbpp)>>10));
    495 	};
    496 }
    497 
    498 
    499 void get_memory_map(void) {
    500 	struct page_info *page_info;
    501 	int	page, inout;
    502 	int	phys_addr;
    503 
    504 	printf("\nGetting actual memorymapping");
    505 	for (page = 0, page_info = mem_pages_info; page < totalpages; page++, page_info++) {
    506 		page_info->pagenumber = 0;	/* not used */
    507 		page_info->logical    = (firstpage + page) * nbpp;
    508 		page_info->physical   = 0;	/* result comes here */
    509 		/* to avoid triggering a `bug' in RISC OS 4, page it in */
    510 		*((int *) page_info->logical) = 0;
    511 	};
    512 	/* close list */
    513 	page_info->pagenumber = -1;
    514 
    515 	inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO | osmemory_RETURN_PHYS_ADDR;
    516 	osmemory_page_op(inout, mem_pages_info, totalpages);
    517 
    518 	printf(" ; sorting ");
    519 	qsort(mem_pages_info, totalpages, sizeof(struct page_info),
    520 	    &page_info_cmp);
    521 	printf(".\n");
    522 
    523 	/* get the first DRAM index and show the physical memory fragments we got */
    524 	printf("\nFound physical memory blocks :\n");
    525 	first_mapped_DRAM_page_index = -1;
    526 	first_mapped_PODRAM_page_index = -1;
    527 	for (page=0; page < totalpages; page++) {
    528 		phys_addr = mem_pages_info[page].physical;
    529 		printf("[0x%x", phys_addr);
    530 		while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
    531 			if ((first_mapped_DRAM_page_index<0) && (phys_addr >= DRAM_addr[0])) {
    532 				first_mapped_DRAM_page_index = page;
    533 			};
    534 			if ((first_mapped_PODRAM_page_index<0) && (phys_addr >= PODRAM_addr[0])) {
    535 				first_mapped_PODRAM_page_index = page;
    536 			};
    537 			page++;
    538 			phys_addr = mem_pages_info[page].physical;
    539 		};
    540 		printf("-0x%x]  ", (phys_addr + nbpp -1));
    541 	};
    542 	printf("\n\n");
    543 	if (first_mapped_PODRAM_page_index < 0) {
    544 		if (PODRAM_addr[0]) panic("Found no (S)DRAM mapped in the bootloader");
    545 	};
    546 	if (first_mapped_DRAM_page_index < 0) panic("No DRAM mapped in the bootloader");
    547 }
    548 
    549 
    550 void create_initial_page_tables(void) {
    551 	u_long page, section, addr, kpage;
    552 
    553 	/* mark a section by the following bits and domain 0, AP=01, CB=0 */
    554 	/*         A         P         C        B        section                 domain		*/
    555 	section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) | (0) | (0 << 5);
    556 
    557 	/* first of all a full 1:1 mapping */
    558 	for (page = 0; page < 4*1024; page++) {
    559 		initial_page_tables[page] = (page<<20) | section;
    560 	};
    561 
    562 	/* video memory is mapped 1:1 in the DRAM section or in VRAM section	*/
    563 
    564 	/* map 1Mb from top of DRAM memory to bottom 1Mb of virtual memmap	*/
    565 	top_1Mb_dram = (((top_physdram - 1024*1024) >> 20) << 20);
    566 
    567 	initial_page_tables[0] = top_1Mb_dram | section;
    568 
    569 	/* map 16 Mb of kernel space to KERNEL_BASE i.e. marks[KERNEL_START]	*/
    570 	for (page = 0; page < 16; page++) {
    571 		addr  = (kernel_physical_start >> 20) + page;
    572 		kpage = (marks[MARK_START]     >> 20) + page;
    573 		initial_page_tables[kpage] = (addr << 20) | section;
    574 	};
    575 }
    576 
    577 
    578 void add_pagetables_at_top(void) {
    579 	int page;
    580 	u_long src, dst, fragaddr;
    581 
    582 	/* Special : destination must be on a 16 Kb boundary			*/
    583 	/* get 4 pages on the top of the physical memory and copy PT's in it	*/
    584 	new_L1_pages_phys = top_physdram - 4*nbpp;
    585 
    586 	/* If the L1 page tables are not 16 kb aligned, adjust base until it is	*/
    587 	while (new_L1_pages_phys & (16*1024-1)) {
    588 		new_L1_pages_phys -= nbpp;
    589 	};
    590 	if (new_L1_pages_phys & (16*1024-1)) panic("Paranoia : L1 pages not on 16Kb boundary");
    591 
    592 	dst = new_L1_pages_phys;
    593 	src = (u_long) initial_page_tables;
    594 
    595 	for (page = 0; page < 4; page++) {
    596 		/* get a page for a fragment */
    597 		fragaddr = get_relocated_page(dst, nbpp)->logical;
    598 		memcpy((void *) fragaddr, (void *) src, nbpp);
    599 
    600 		src += nbpp;
    601 		dst += nbpp;
    602 	};
    603 }
    604 
    605 
    606 void add_initvectors(void) {
    607 	u_long *pos;
    608 	u_long  vectoraddr, count;
    609 
    610 	/* the top 1Mb of the physical DRAM pages is mapped at address 0 */
    611 	vectoraddr = get_relocated_page(top_1Mb_dram, nbpp)->logical;
    612 
    613 	/* fill the vectors with `movs pc, lr' opcodes */
    614 	pos = (u_long *) vectoraddr; memset(pos, 0, nbpp);
    615 	for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
    616 }
    617 
    618 
    619 void create_configuration(int argc, char **argv, int start_args) {
    620 	int   i, root_specified, id_low, id_high;
    621 	char *pos;
    622 
    623 	bconfig_new_phys = kernel_free_vm_start - pv_offset;
    624 	bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
    625 	bconfig = (struct bootconfig *) (bconfig_page->logical);
    626 	kernel_free_vm_start += nbpp;
    627 
    628 	/* get some miscelanious info for the bootblock */
    629 	os_readsysinfo_monitor_info(NULL, &monitor_type, &monitor_sync);
    630 	os_readsysinfo_chip_presence(&ioeb_flags, &superio_flags, &lcd_flags);
    631 	os_readsysinfo_superio_features(&superio_flags_basic, &superio_flags_extra);
    632 	os_readsysinfo_unique_id(&id_low, &id_high);
    633 
    634 	/* fill in the bootconfig *bconfig structure : generic version II */
    635 	memset(bconfig, 0, sizeof(bconfig));
    636 	bconfig->magic		= BOOTCONFIG_MAGIC;
    637 	bconfig->version	= BOOTCONFIG_VERSION;
    638 	strcpy(bconfig->kernelname, booted_file);
    639 
    640 	/* get the kernel base name and update the RiscOS name to a Unix name */
    641 	i = strlen(booted_file);
    642 	while ((i >= 0) && (booted_file[i] != '.')) i--;
    643 	if (i) {
    644 		strcpy(bconfig->kernelname, "/");
    645 		strcat(bconfig->kernelname, booted_file+i+1);
    646 	};
    647 
    648 	pos = bconfig->kernelname+1;
    649 	while (*pos) {
    650 		if (*pos == '/') *pos = '.';
    651 		pos++;
    652 	};
    653 
    654 	/* set the machine_id */
    655 	memcpy(&(bconfig->machine_id), &id_low, 4);
    656 
    657 	/* check if the `root' is specified */
    658 	root_specified = 0;
    659 	strcpy(bconfig->args, "");
    660 	for (i = start_args; i < argc; i++) {
    661 		if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
    662 		strcat(bconfig->args, argv[i]);
    663 	};
    664 	if (!root_specified) {
    665 		strcat(bconfig->args, "root=");
    666 		strcat(bconfig->args, DEFAULT_ROOT);
    667 	};
    668 
    669 	/* mark kernel pointers */
    670 	bconfig->kernvirtualbase	= marks[MARK_START];
    671 	bconfig->kernphysicalbase	= kernel_physical_start;
    672 	bconfig->kernsize		= kernel_free_vm_start - marks[MARK_START];
    673 	bconfig->ksym_start		= marks[MARK_SYM];
    674 	bconfig->ksym_end		= marks[MARK_SYM] + marks[MARK_NSYM];
    675 
    676 	/* setup display info */
    677 	bconfig->display_phys		= videomem_start;
    678 	bconfig->display_start		= videomem_start;
    679 	bconfig->display_size		= display_size;
    680 	bconfig->width			= vdu_var(os_MODEVAR_XWIND_LIMIT);
    681 	bconfig->height			= vdu_var(os_MODEVAR_YWIND_LIMIT);
    682 	bconfig->log2_bpp		= vdu_var(os_MODEVAR_LOG2_BPP);
    683 	bconfig->framerate		= 56;		/* XXX why? better guessing possible? XXX */
    684 
    685 	/* fill in memory info */
    686 	bconfig->pagesize		= nbpp;
    687 	bconfig->drampages		= total_dram_pages + total_podram_pages;	/* XXX */
    688 	bconfig->vrampages		= total_vram_pages;
    689 	bconfig->dramblocks		= dram_blocks + podram_blocks;			/* XXX */
    690 	bconfig->vramblocks		= vram_blocks;
    691 
    692 	for (i = 0; i < dram_blocks; i++) {
    693 		bconfig->dram[i].address = DRAM_addr[i];
    694 		bconfig->dram[i].pages   = DRAM_pages[i];
    695 		bconfig->dram[i].flags   = PHYSMEM_TYPE_GENERIC;
    696 	};
    697 	for (; i < dram_blocks + podram_blocks; i++) {
    698 		bconfig->dram[i].address = PODRAM_addr[i];
    699 		bconfig->dram[i].pages   = PODRAM_pages[i];
    700 		bconfig->dram[i].flags   = PHYSMEM_TYPE_PROCESSOR_ONLY;
    701 	};
    702 	for (i = 0; i < vram_blocks; i++) {
    703 		bconfig->vram[i].address = VRAM_addr[i];
    704 		bconfig->vram[i].pages   = VRAM_pages[i];
    705 		bconfig->vram[i].flags   = PHYSMEM_TYPE_GENERIC;
    706 	};
    707 }
    708 
    709 
    710 int main(int argc, char **argv) {
    711 	int howto, start_args, ret;
    712 
    713 	printf("\n\n");
    714 	printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
    715 	printf(">> (%s, %s)\n", bootprog_maker, bootprog_date);
    716 	printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
    717 	printf("\n");
    718 
    719 	process_args(argc, argv, &howto, booted_file, &start_args);
    720 
    721 	printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
    722 
    723 	init_datastructures();
    724 	get_memory_configuration();
    725 	get_memory_map();
    726 
    727 	/* point to the first free DRAM page guaranteed to be in strict order up */
    728 	if (first_mapped_PODRAM_page_index) {
    729 		free_relocation_page = mem_pages_info + first_mapped_PODRAM_page_index;
    730 		kernel_physical_start = PODRAM_addr[0];
    731 	} else {
    732 		free_relocation_page = mem_pages_info + first_mapped_DRAM_page_index;
    733 		kernel_physical_start = DRAM_addr[0];
    734 	};
    735 
    736 	printf("\nLoading %s ", booted_file);
    737 
    738 	/* first count the kernel to get the markers */
    739 	ret = loadfile(booted_file, marks, COUNT_KERNEL);
    740 	if (ret == -1) panic("Kernel load failed");				/* lie to the user ...	*/
    741 	close(ret);
    742 
    743 	/* calculate how much the difference is between physical and virtual space for the kernel	*/
    744 	pv_offset = ((u_long) marks[MARK_START] - kernel_physical_start);
    745 	kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1);		/* round on a page	*/
    746 
    747 	/* we seem to be forced to clear the marks[] ? */
    748 	bzero(marks, sizeof(marks[MARK_MAX]));
    749 
    750 	/* really load it ! */
    751 	ret = loadfile(booted_file, marks, LOAD_KERNEL);
    752 	if (ret == -1) panic("Kernel load failed");
    753 	close(ret);
    754 
    755 	/* finish off the relocation information */
    756 	create_initial_page_tables();
    757 	add_initvectors();
    758 	add_pagetables_at_top();
    759 	create_configuration(argc, argv, start_args);
    760 
    761 	/* done relocating and creating information, now update and check the relocation mechanism */
    762 	prepare_and_check_relocation_system();
    763 
    764 	printf("\nStarting at 0x%lx\n", marks[MARK_ENTRY]);
    765 	printf("Will boot in a few secs due to relocation....\nbye bye from RISC OS!");
    766 
    767 	/* dismount all filesystems */
    768 	xosfscontrol_shutdown();
    769 
    770 	/* reset devices, well they try to anyway */
    771 	service_pre_reset();
    772 
    773 	start_kernel(
    774 		/* r0 relocation code page (V)	*/ relocate_code_page->logical,
    775 		/* r1 relocation pv offset	*/ relocate_code_page->physical-relocate_code_page->logical,
    776 		/* r2 configuration structure	*/ bconfig_new_phys,
    777 		/* r3 relocation table (P)	*/ relocate_table_pages->physical,	/* one piece! */
    778 		/* r4 L1 page descriptor (P)	*/ new_L1_pages_phys,
    779 		/* r5 kernel entry point	*/ marks[MARK_ENTRY]
    780 	);
    781 	return 0;
    782 }
    783 
    784 
    785 ssize_t boot32_read(int f, void *addr, size_t size) {
    786 	caddr_t fragaddr;
    787 	size_t fragsize;
    788 	ssize_t bytes_read, total;
    789 
    790 	/* printf("read at %p for %ld bytes\n", addr, size); */
    791 	total = 0;
    792 	while (size > 0) {
    793 		fragsize = nbpp;				/* select one page	*/
    794 		if (size < nbpp) fragsize = size;		/* clip to size left	*/
    795 
    796 		/* get a page for a fragment */
    797 		fragaddr = (caddr_t) get_relocated_page((u_long) addr - pv_offset, fragsize)->logical;
    798 
    799 		bytes_read = read(f, fragaddr, fragsize);
    800 		if (bytes_read < 0) return bytes_read;		/* error!		*/
    801 		total += bytes_read;				/* account read bytes	*/
    802 
    803 		if (bytes_read < fragsize) return total;	/* does this happen?	*/
    804 
    805 		size -= fragsize;				/* advance		*/
    806 		addr += fragsize;
    807 	};
    808 	return total;
    809 }
    810 
    811 
    812 void *boot32_memcpy(void *dst, const void *src, size_t size) {
    813 	caddr_t fragaddr;
    814 	size_t fragsize;
    815 
    816 	/* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
    817 	while (size > 0) {
    818 		fragsize = nbpp;				/* select one page	*/
    819 		if (size < nbpp) fragsize = size;		/* clip to size left	*/
    820 
    821 		/* get a page for a fragment */
    822 		fragaddr = (caddr_t) get_relocated_page((u_long) dst - pv_offset, fragsize)->logical;
    823 		memcpy(fragaddr, src, size);
    824 
    825 		src += fragsize;				/* account copy		*/
    826 		dst += fragsize;
    827 		size-= fragsize;
    828 	};
    829 	return dst;
    830 };
    831 
    832 
    833 void *boot32_memset(void *dst, int c, size_t size) {
    834 	caddr_t fragaddr;
    835 	size_t fragsize;
    836 
    837 	/* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
    838 	while (size > 0) {
    839 		fragsize = nbpp;				/* select one page	*/
    840 		if (size < nbpp) fragsize = size;		/* clip to size left	*/
    841 
    842 		/* get a page for a fragment */
    843 		fragaddr = (caddr_t) get_relocated_page((u_long) dst - pv_offset, fragsize)->logical;
    844 		memset(fragaddr, c, fragsize);
    845 
    846 		dst += fragsize;				/* account memsetting	*/
    847 		size-= fragsize;
    848 
    849 	};
    850 	return dst;
    851 }
    852 
    853 
    854 /* We can rely on the fact that two entries never have identical ->physical */
    855 int page_info_cmp(const void *a, const void *b) {
    856 	return (((struct page_info *)a)->physical <
    857 	    ((struct page_info *)b)->physical) ? -1 : 1;
    858 }
    859 
    860 struct page_info *get_relocated_page(u_long destination, int size) {
    861 	struct page_info *page;
    862 
    863 	/* get a page for a fragment */
    864 	page = free_relocation_page;
    865 	if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages");
    866 	reloc_entries++;
    867 	if (reloc_entries >= MAX_RELOCPAGES) panic("\n\nToo many relocations! What are you loading ??");
    868 
    869 	/* record the relocation */
    870 	*reloc_pos++ = free_relocation_page->physical;
    871 	*reloc_pos++ = destination;
    872 	*reloc_pos++ = size;
    873 	free_relocation_page++;				/* advance 		*/
    874 
    875 	return page;
    876 }
    877 
    878 
    879 int vdu_var(int var) {
    880 	int varlist[2], vallist[2];
    881 
    882 	varlist[0] = var;
    883 	varlist[1] = -1;
    884 	os_read_vdu_variables(varlist, vallist);
    885 	return vallist[0];
    886 }
    887 
    888 
    889 void twirl(void) {
    890 	printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
    891 	twirl_cnt++;
    892 	twirl_cnt &= 3;
    893 }
    894 
    895 
    896 void process_args(int argc, char **argv, int *howto, char *file, int *start_args) {
    897 	int i, j;
    898 	static char filename[80];
    899 
    900 	*howto = 0;
    901 	*file = NULL; *start_args = 1;
    902 	for (i = 1; i < argc; i++) {
    903 		if (argv[i][0] == '-')
    904 			for (j = 1; argv[i][j]; j++)
    905 				BOOT_FLAG(argv[i][j], *howto);
    906 		else {
    907 			if (*file)
    908 				*start_args = i;
    909 			else {
    910 				strcpy(file, argv[i]);
    911 				*start_args = i+1;
    912 			};
    913 			break;
    914 		};
    915 	};
    916 	if (*file == NULL) {
    917 		if (*howto & RB_ASKNAME) {
    918 			printf("boot: ");
    919 			gets(filename);
    920 			strcpy(file, filename);
    921 		} else
    922 			strcpy(file, "netbsd");
    923 	};
    924 }
    925 
    926 
    927 char *sprint0(int width, char prefix, char base, int value) {
    928 	static char format[50], scrap[50];
    929 	char *pos;
    930 	int length;
    931 
    932 	for (pos = format, length = 0; length<width; length++) *pos++ = prefix;
    933 	*pos++ = '%';
    934 	*pos++ = base;
    935 	*pos++ = (char) 0;
    936 
    937 	sprintf(scrap, format, value);
    938 	length = strlen(scrap);
    939 
    940 	return scrap+length-width;
    941 }
    942 
    943