Home | History | Annotate | Line # | Download | only in boot32
boot32.c revision 1.23
      1 /*	$NetBSD: boot32.c,v 1.23 2006/03/23 22:27:22 bjh21 Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  *
     29  * Thanks a bunch for Ben's framework for the bootloader and its suporting
     30  * libs. This file tries to actually boot NetBSD/acorn32 !
     31  *
     32  * XXX eventually to be partly merged back with boot26 ? XXX
     33  */
     34 
     35 #include <lib/libsa/stand.h>
     36 #include <lib/libsa/loadfile.h>
     37 #include <lib/libkern/libkern.h>
     38 #include <riscoscalls.h>
     39 #include <srt0.h>
     40 #include <sys/boot_flag.h>
     41 #include <machine/vmparam.h>
     42 #include <arm/arm32/pte.h>
     43 #include <machine/bootconfig.h>
     44 
     45 extern char end[];
     46 
     47 /* debugging flags */
     48 int debug = 1;
     49 
     50 
     51 /* constants */
     52 #define PODRAM_START   (512*1024*1024)		/* XXX Kinetic cards XXX */
     53 
     54 #define MAX_RELOCPAGES	4096
     55 
     56 #define DEFAULT_ROOT	"/dev/wd0a"
     57 
     58 
     59 #define IO_BLOCKS	 16	/* move these to the bootloader structure? */
     60 #define ROM_BLOCKS	 16
     61 #define PODRAM_BLOCKS	 16
     62 
     63 
     64 /* booter variables */
     65 char	 scrap[80], twirl_cnt;		/* misc				*/
     66 char	 booted_file[80];
     67 
     68 struct bootconfig *bconfig;		/* bootconfig passing		*/
     69 u_long	 bconfig_new_phys;		/* physical address its bound	*/
     70 
     71 /* computer knowledge		*/
     72 u_int	 monitor_type, monitor_sync, ioeb_flags, lcd_flags;
     73 u_int	 superio_flags, superio_flags_basic, superio_flags_extra;
     74 
     75 /* sizes			*/
     76 int	 nbpp, memory_table_size, memory_image_size;
     77 /* relocate info		*/
     78 u_long	 reloc_tablesize, *reloc_instruction_table;
     79 u_long	*reloc_pos;			/* current empty entry		*/
     80 int	 reloc_entries;			/* number of relocations	*/
     81 int	 first_mapped_DRAM_page_index;	/* offset in RISC OS blob	*/
     82 int	 first_mapped_PODRAM_page_index;/* offset in RISC OS blob	*/
     83 
     84 struct page_info *mem_pages_info;	/* {nr, virt, phys}*		*/
     85 struct page_info *free_relocation_page;	/* points to the page_info chain*/
     86 struct page_info *relocate_table_pages;	/* points to seq. relocate info */
     87 struct page_info *relocate_code_page;	/* points to the copied code	*/
     88 struct page_info *bconfig_page;		/* page for passing on settings	*/
     89 
     90 unsigned char *memory_page_types;	/* packed array of 4 bit typeId	*/
     91 
     92 u_long	*initial_page_tables;		/* pagetables to be booted from	*/
     93 
     94 
     95 /* XXX rename *_BLOCKS to MEM_BLOCKS */
     96 /* DRAM/VRAM/ROM/IO info */
     97 /* where the display is		*/
     98 u_long	 videomem_start, videomem_pages, display_size;
     99 
    100 u_long	 pv_offset, top_physdram;	/* kernel_base - phys. diff	*/
    101 u_long	 top_1Mb_dram;			/* the lower mapped top 1Mb	*/
    102 u_long	 new_L1_pages_phys;		/* physical address of L1 pages	*/
    103 
    104 /* for bootconfig passing	*/
    105 u_long	 total_podram_pages, total_dram_pages, total_vram_pages;
    106 int	 dram_blocks, podram_blocks;	/* number of mem. objects/type  */
    107 int	 vram_blocks, rom_blocks, io_blocks;
    108 
    109 u_long	 DRAM_addr[DRAM_BLOCKS],     DRAM_pages[DRAM_BLOCKS];
    110 /* processor only RAM	*/
    111 u_long	 PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS];
    112 u_long	 VRAM_addr[VRAM_BLOCKS],     VRAM_pages[VRAM_BLOCKS];
    113 u_long	 ROM_addr[ROM_BLOCKS],       ROM_pages[ROM_BLOCKS];
    114 u_long	 IO_addr[IO_BLOCKS],         IO_pages[IO_BLOCKS];
    115 
    116 
    117 /* RISC OS memory pages we claimed */
    118 u_long	 firstpage, lastpage, totalpages; /* RISC OS pagecounters	*/
    119 /* RISC OS memory		*/
    120 char	*memory_image, *bottom_memory, *top_memory;
    121 
    122 u_long	 videomem_start_ro;		/* for debugging mainly		*/
    123 
    124 /* kernel info */
    125 u_long	 marks[MARK_MAX];		/* loader mark pointers 	*/
    126 u_long	 kernel_physical_start;		/* where does it get relocated	*/
    127 u_long	 kernel_free_vm_start;		/* where does the free VM start	*/
    128 /* some free space to mess with	*/
    129 u_long	 scratch_virtualbase, scratch_physicalbase;
    130 
    131 
    132 /* bootprogram identifiers */
    133 extern const char bootprog_rev[];
    134 extern const char bootprog_name[];
    135 extern const char bootprog_date[];
    136 extern const char bootprog_maker[];
    137 
    138 
    139 /* predefines / prototypes */
    140 void	 init_datastructures(void);
    141 void	 get_memory_configuration(void);
    142 void	 get_memory_map(void);
    143 void	 create_initial_page_tables(void);
    144 void	 add_pagetables_at_top(void);
    145 int	 page_info_cmp(const void *a, const void *);
    146 void	 add_initvectors(void);
    147 void	 create_configuration(int argc, char **argv, int start_args);
    148 void	 prepare_and_check_relocation_system(void);
    149 void	 twirl(void);
    150 int	 vdu_var(int);
    151 void	 process_args(int argc, char **argv, int *howto, char *file,
    152     int *start_args);
    153 
    154 struct page_info *get_relocated_page(u_long destination, int size);
    155 
    156 extern void start_kernel(
    157 		int relocate_code_page,
    158 		int relocation_pv_offset,
    159 		int configuration_structure_in_flat_physical_space,
    160 		int physical_address_of_relocation_tables,
    161 		int physical_address_of_new_L1_pages,
    162 		int kernel_entry_point
    163 		);	/* asm */
    164 
    165 
    166 /* the loader itself */
    167 void
    168 init_datastructures(void)
    169 {
    170 
    171 	/* Get number of pages and the memorytablesize */
    172 	osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
    173 
    174 	/* Allocate 99% - (small fixed amount) of the heap for memory_image */
    175 	memory_image_size = (int)HIMEM - (int)end - 512 * 1024;
    176 	memory_image_size /= 100;
    177 	memory_image_size *= 99;
    178 	if (memory_image_size <= 256*1024)
    179 		panic("Insufficient memory");
    180 
    181 	memory_image = alloc(memory_image_size);
    182 	if (!memory_image)
    183 		panic("Can't alloc get my memory image ?");
    184 
    185 	bottom_memory = memory_image;
    186 	top_memory    = memory_image + memory_image_size;
    187 
    188 	firstpage  = ((int)bottom_memory / nbpp) + 1;	/* safety */
    189 	lastpage   = ((int)top_memory    / nbpp) - 1;
    190 	totalpages = lastpage - firstpage;
    191 
    192 	printf("Allocated %ld memory pages, each of %d kilobytes.\n\n",
    193 			totalpages, nbpp>>10 );
    194 
    195 	/*
    196 	 * Setup the relocation table. Its a simple array of 3 * 32 bit
    197 	 * entries. The first word in the array is the number of relocations
    198 	 * to be done
    199 	 */
    200 	reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(u_long);
    201 	reloc_instruction_table = alloc(reloc_tablesize);
    202 	if (!reloc_instruction_table)
    203 		panic("Can't alloc my relocate instructions pages");
    204 
    205 	reloc_entries = 0;
    206 	reloc_pos     = reloc_instruction_table;
    207 	*reloc_pos++  = 0;
    208 
    209 	/*
    210 	 * Set up the memory translation info structure. We need to allocate
    211 	 * one more for the end of list marker. See get_memory_map.
    212 	 */
    213 	mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
    214 	if (!mem_pages_info)
    215 		panic("Can't alloc my phys->virt page info");
    216 
    217 	/*
    218 	 * Allocate memory for the memory arrangement table. We use this
    219 	 * structure to retrieve memory page properties to clasify them.
    220 	 */
    221 	memory_page_types = alloc(memory_table_size);
    222 	if (!memory_page_types)
    223 		panic("Can't alloc my memory page type block");
    224 
    225 	/*
    226 	 * Initial page tables is 16 kb per definition since only sections are
    227 	 * used.
    228 	 */
    229 	initial_page_tables = alloc(16*1024);
    230 	if (!initial_page_tables)
    231 		panic("Can't alloc my initial page tables");
    232 }
    233 
    234 
    235 void
    236 prepare_and_check_relocation_system(void)
    237 {
    238 	int     relocate_size, relocate_pages;
    239 	int     bank, pages, found;
    240 	u_long  dst, src, base, destination, extend;
    241 	u_long *reloc_entry, last_src, length;
    242 
    243 	/* set the number of relocation entries in the 1st word */
    244 	*reloc_instruction_table = reloc_entries;
    245 
    246 	/*
    247 	 * The relocate information needs to be in one sequential physical
    248 	 * space in order to be able to access it as one stream when the MMU
    249 	 * is switched off later.
    250 	 */
    251 	relocate_size = (reloc_tablesize + nbpp-1) & ~(nbpp-1);  /* round up */
    252 	printf("\nPreparing for booting %s ... ", booted_file);
    253 	relocate_pages = relocate_size / nbpp;
    254 
    255 	relocate_table_pages = free_relocation_page;
    256 	pages = 0;
    257 	while (pages < relocate_pages) {
    258 		src = (u_long)reloc_instruction_table + pages*nbpp;
    259 		dst = (relocate_table_pages + pages)->logical;
    260 		memcpy((void *)dst, (void *)src, nbpp);
    261 
    262 		if (pages < relocate_pages - 1) {
    263 			/* check if next page is sequential physically */
    264 			if ((relocate_table_pages+pages+1)->physical -
    265 			    (relocate_table_pages+pages)->physical != nbpp) {
    266 				/*
    267 				 * Non contigunous relocate area ->
    268 				 * try again
    269 				 */
    270 				printf("*");
    271 				relocate_table_pages += pages;
    272 				continue;	/* while */
    273 			}
    274 		}
    275 		pages++;
    276 	}
    277 	free_relocation_page = relocate_table_pages + pages;
    278 
    279 	/* copy the relocation code into this page in start_kernel */
    280 	relocate_code_page = free_relocation_page++;
    281 
    282 	/*
    283 	 * All relocations are pages allocated in one big strict increasing
    284 	 * physical DRAM address sequence. When the MMU is switched off all
    285 	 * code and data is in this increasing order but not at the right
    286 	 * place. This is where the relocation code kicks in; relocation is
    287 	 * done in flat physical memory without MMU.
    288 	 */
    289 
    290 	printf("shift and check ... ");
    291 	reloc_entry = reloc_instruction_table + 1;
    292 	last_src = -1;
    293 	while (reloc_entry < reloc_pos) {
    294 		src         = reloc_entry[0];
    295 		destination = reloc_entry[1];
    296 		length      = reloc_entry[2];
    297 
    298 		/* paranoia check */
    299 		if ((long) (src - last_src) <= 0)
    300 			printf("relocation sequence challenged -- "
    301 			    "booting might fail ");
    302 		last_src = src;
    303 
    304 		/* check if its gonna be relocated into (PO)DRAM ! */
    305 		extend = destination + length;
    306 		found = 0;
    307 		for (bank = 0; (bank < dram_blocks) && !found; bank++) {
    308 			base   = DRAM_addr[bank];
    309 			found = (destination >= base) &&
    310 			    (extend <= base + DRAM_pages[bank]*nbpp);
    311 		}
    312 		for (bank = 0; (bank < podram_blocks) && !found; bank++) {
    313 			base = PODRAM_addr[bank];
    314 			found = (destination >= base) &&
    315 			    (extend <= base + PODRAM_pages[bank]*nbpp);
    316 		}
    317 		if (!found || (extend > top_physdram)) {
    318 			panic("Internal error: relocating range "
    319 			    "[%lx +%lx => %lx] outside (PO)DRAM banks!",
    320 			    src, length, destination);
    321 		}
    322 
    323 		reloc_entry += 3;
    324 	}
    325 	if (reloc_entry != reloc_pos)
    326 		panic("Relocation instruction table is corrupted");
    327 
    328 	printf("OK!\n");
    329 }
    330 
    331 
    332 void
    333 get_memory_configuration(void)
    334 {
    335 	int loop, current_page_type, page_count, phys_page;
    336 	int page, count, bank, top_bank, video_bank;
    337 	int mapped_screen_memory;
    338 	int one_mb_pages;
    339 	u_long top;
    340 
    341 	printf("Getting memory configuration ");
    342 
    343 	osmemory_read_arrangement_table(memory_page_types);
    344 
    345 	/* init counters */
    346 	bank = vram_blocks = dram_blocks = rom_blocks = io_blocks =
    347 	    podram_blocks = 0;
    348 
    349 	current_page_type = -1;
    350 	phys_page = 0;			/* physical address in pages	*/
    351 	page_count = 0;			/* page counter in this block	*/
    352 	loop = 0;			/* loop variable over entries	*/
    353 
    354 	/* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
    355 	while (loop < 2*memory_table_size) {
    356 		page = memory_page_types[loop / 2];	/* read	twice */
    357 		if (loop & 1) page >>= 4;		/* take other nibble */
    358 
    359 		/*
    360 		 * bits 0-2 give type, bit3 means the bit page is
    361 		 * allocatable
    362 		 */
    363 		page &= 0x7;			/* only take bottom 3 bits */
    364 		if (page != current_page_type) {
    365 			/* passed a boundary ... note this block	   */
    366 			/*
    367 			 * splitting in different vars is for
    368 			 * compatability reasons
    369 			 */
    370 			switch (current_page_type) {
    371 			case -1:
    372 			case  0:
    373 				break;
    374 			case osmemory_TYPE_DRAM:
    375 				if (phys_page < PODRAM_START) {
    376 					DRAM_addr[dram_blocks]  =
    377 					    phys_page * nbpp;
    378 					DRAM_pages[dram_blocks] =
    379 					    page_count;
    380 					dram_blocks++;
    381 				} else {
    382 					PODRAM_addr[podram_blocks]  =
    383 					    phys_page * nbpp;
    384 					PODRAM_pages[podram_blocks] =
    385 					    page_count;
    386 					podram_blocks++;
    387 				}
    388 				break;
    389 			case osmemory_TYPE_VRAM:
    390 				VRAM_addr[vram_blocks]  = phys_page * nbpp;
    391 				VRAM_pages[vram_blocks] = page_count;
    392 				vram_blocks++;
    393 				break;
    394 			case osmemory_TYPE_ROM:
    395 				ROM_addr[rom_blocks]  = phys_page * nbpp;
    396 				ROM_pages[rom_blocks] = page_count;
    397 				rom_blocks++;
    398 				break;
    399 			case osmemory_TYPE_IO:
    400 				IO_addr[io_blocks]  = phys_page * nbpp;
    401 				IO_pages[io_blocks] = page_count;
    402 				io_blocks++;
    403 				break;
    404 			default:
    405 				printf("WARNING : found unknown "
    406 				    "memory object %d ", current_page_type);
    407 				printf(" at 0x%08x", phys_page * nbpp);
    408 				printf(" for %5d k\n", (page_count*nbpp)>>10);
    409 				break;
    410 			}
    411 			current_page_type = page;
    412 			phys_page = loop;
    413 			page_count = 0;
    414 		}
    415 		/*
    416 		 * smallest unit we recognise is one page ... silly
    417 		 * could be upto 64 pages i.e. 256 kb
    418 		 */
    419 		page_count += 1;
    420 		loop       += 1;
    421 		if ((loop & 31) == 0) twirl();
    422 	}
    423 
    424 	printf(" \n\n");
    425 
    426 	if (VRAM_pages[0] == 0) {
    427 		/* map DRAM as video memory */
    428 		display_size	 =
    429 		    vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1);
    430 #if 0
    431 		mapped_screen_memory = 1024 * 1024; /* max allowed on RiscPC */
    432 		videomem_pages   = (mapped_screen_memory / nbpp);
    433 		videomem_start   = DRAM_addr[0];
    434 		DRAM_addr[0]	+= videomem_pages * nbpp;
    435 		DRAM_pages[0]	-= videomem_pages;
    436 #else
    437 		mapped_screen_memory = display_size;
    438 		videomem_pages   = mapped_screen_memory / nbpp;
    439 		one_mb_pages	 = (1024*1024)/nbpp;
    440 
    441 		/*
    442 		 * OK... we need one Mb at the top for compliance with current
    443 		 * kernel structure. This ought to be abolished one day IMHO.
    444 		 * Also we have to take care that the kernel needs to be in
    445 		 * DRAM0a and even has to start there.
    446 		 * XXX one Mb simms are the smallest supported XXX
    447 		 */
    448 		top_bank = dram_blocks-1;
    449 		video_bank = top_bank;
    450 		if (DRAM_pages[top_bank] == one_mb_pages) video_bank--;
    451 
    452 		if (DRAM_pages[video_bank] < videomem_pages)
    453 			panic("Weird memory configuration found; please "
    454 			    "contact acorn32 portmaster.");
    455 
    456 		/* split off the top 1Mb */
    457 		DRAM_addr [top_bank+1]  = DRAM_addr[top_bank] +
    458 		    (DRAM_pages[top_bank] - one_mb_pages)*nbpp;
    459 		DRAM_pages[top_bank+1]  = one_mb_pages;
    460 		DRAM_pages[top_bank  ] -= one_mb_pages;
    461 		dram_blocks++;
    462 
    463 		/* Map video memory at the end of the choosen DIMM */
    464 		videomem_start          = DRAM_addr[video_bank] +
    465 		    (DRAM_pages[video_bank] - videomem_pages)*nbpp;
    466 		DRAM_pages[video_bank] -= videomem_pages;
    467 
    468 		/* sanity */
    469 		if (DRAM_pages[top_bank] == 0) {
    470 			DRAM_addr [top_bank] = DRAM_addr [top_bank+1];
    471 			DRAM_pages[top_bank] = DRAM_pages[top_bank+1];
    472 			dram_blocks--;
    473 		}
    474 #endif
    475 	} else {
    476 		/* use VRAM */
    477 		mapped_screen_memory = 0;
    478 		videomem_start	 = VRAM_addr[0];
    479 		videomem_pages	 = VRAM_pages[0];
    480 		display_size	 = videomem_pages * nbpp;
    481 	}
    482 
    483 	if (mapped_screen_memory) {
    484 		printf("Used %d kb DRAM ", mapped_screen_memory / 1024);
    485 		printf("at 0x%08lx for video memory\n", videomem_start);
    486 	}
    487 
    488 	/* find top of (PO)DRAM pages */
    489 	top_physdram = 0;
    490 	for (loop = 0; loop < podram_blocks; loop++) {
    491 		top = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
    492 		if (top > top_physdram) top_physdram = top;
    493 	}
    494 	for (loop = 0; loop < dram_blocks; loop++) {
    495 		top = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
    496 		if (top > top_physdram) top_physdram = top;
    497 	}
    498 	if (top_physdram == 0)
    499 		panic("reality check: No DRAM in this machine?");
    500 	if (((top_physdram >> 20) << 20) != top_physdram)
    501 		panic("Top is not not aligned on a Mb; "
    502 		    "remove very small DIMMS?");
    503 
    504 	videomem_start_ro = vdu_var(os_VDUVAR_DISPLAY_START);
    505 
    506 	/* pretty print the individual page types */
    507 	for (count = 0; count < rom_blocks; count++) {
    508 		printf("Found ROM  (%d)", count);
    509 		printf(" at 0x%08lx", ROM_addr[count]);
    510 		printf(" for %5lu k\n", (ROM_pages[count]*nbpp)>>10);
    511 	}
    512 
    513 	for (count = 0; count < io_blocks; count++) {
    514 		printf("Found I/O  (%d)", count);
    515 		printf(" at 0x%08lx", IO_addr[count]);
    516 		printf(" for %5lu k\n", (IO_pages[count]*nbpp)>>10);
    517 	}
    518 
    519 	/* for DRAM/VRAM also count the number of pages */
    520 	total_dram_pages = 0;
    521 	for (count = 0; count < dram_blocks; count++) {
    522 		total_dram_pages += DRAM_pages[count];
    523 		printf("Found DRAM (%d)", count);
    524 		printf(" at 0x%08lx", DRAM_addr[count]);
    525 		printf(" for %5lu k\n", (DRAM_pages[count]*nbpp)>>10);
    526 	}
    527 
    528 	total_vram_pages = 0;
    529 	for (count = 0; count < vram_blocks; count++) {
    530 		total_vram_pages += VRAM_pages[count];
    531 		printf("Found VRAM (%d)", count);
    532 		printf(" at 0x%08lx", VRAM_addr[count]);
    533 		printf(" for %5lu k\n", (VRAM_pages[count]*nbpp)>>10);
    534 	}
    535 
    536 	total_podram_pages = 0;
    537 	for (count = 0; count < podram_blocks; count++) {
    538 		total_podram_pages += PODRAM_pages[count];
    539 		printf("Found Processor only (S)DRAM (%d)", count);
    540 		printf(" at 0x%08lx", PODRAM_addr[count]);
    541 		printf(" for %5lu k\n", (PODRAM_pages[count]*nbpp)>>10);
    542 	}
    543 }
    544 
    545 
    546 void
    547 get_memory_map(void)
    548 {
    549 	struct page_info *page_info;
    550 	int	page, inout;
    551 	int	phys_addr;
    552 
    553 	printf("\nGetting actual memorymapping");
    554 	for (page = 0, page_info = mem_pages_info;
    555 	     page < totalpages;
    556 	     page++, page_info++) {
    557 		page_info->pagenumber = 0;	/* not used */
    558 		page_info->logical    = (firstpage + page) * nbpp;
    559 		page_info->physical   = 0;	/* result comes here */
    560 		/* to avoid triggering a `bug' in RISC OS 4, page it in */
    561 		*((int *)page_info->logical) = 0;
    562 	}
    563 	/* close list */
    564 	page_info->pagenumber = -1;
    565 
    566 	inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO |
    567 	    osmemory_RETURN_PHYS_ADDR;
    568 	osmemory_page_op(inout, mem_pages_info, totalpages);
    569 
    570 	printf(" ; sorting ");
    571 	qsort(mem_pages_info, totalpages, sizeof(struct page_info),
    572 	    &page_info_cmp);
    573 	printf(".\n");
    574 
    575 	/*
    576 	 * get the first DRAM index and show the physical memory
    577 	 * fragments we got
    578 	 */
    579 	printf("\nFound physical memory blocks :\n");
    580 	first_mapped_DRAM_page_index = -1;
    581 	first_mapped_PODRAM_page_index = -1;
    582 	for (page=0; page < totalpages; page++) {
    583 		phys_addr = mem_pages_info[page].physical;
    584 		printf("[0x%x", phys_addr);
    585 		while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
    586 			if (first_mapped_DRAM_page_index < 0 &&
    587 			    phys_addr >= DRAM_addr[0])
    588 				first_mapped_DRAM_page_index = page;
    589 			if (first_mapped_PODRAM_page_index < 0 &&
    590 			    phys_addr >= PODRAM_addr[0])
    591 				first_mapped_PODRAM_page_index = page;
    592 			page++;
    593 			phys_addr = mem_pages_info[page].physical;
    594 		}
    595 		printf("-0x%x]  ", phys_addr + nbpp -1);
    596 	}
    597 	printf("\n\n");
    598 	if (first_mapped_PODRAM_page_index < 0 && PODRAM_addr[0])
    599 		panic("Found no (S)DRAM mapped in the bootloader");
    600 	if (first_mapped_DRAM_page_index < 0)
    601 		panic("No DRAM mapped in the bootloader");
    602 }
    603 
    604 
    605 void
    606 create_initial_page_tables(void)
    607 {
    608 	u_long page, section, addr, kpage;
    609 
    610 	/* mark a section by the following bits and domain 0, AP=01, CB=0 */
    611 	/*         A         P         C        B        section
    612 	           domain		*/
    613 	section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) |
    614 	    (0) | (0 << 5);
    615 
    616 	/* first of all a full 1:1 mapping */
    617 	for (page = 0; page < 4*1024; page++)
    618 		initial_page_tables[page] = (page<<20) | section;
    619 
    620 	/*
    621 	 * video memory is mapped 1:1 in the DRAM section or in VRAM
    622 	 * section
    623 	 *
    624 	 * map 1Mb from top of DRAM memory to bottom 1Mb of virtual memmap
    625 	 */
    626 	top_1Mb_dram = (((top_physdram - 1024*1024) >> 20) << 20);
    627 
    628 	initial_page_tables[0] = top_1Mb_dram | section;
    629 
    630 	/*
    631 	 * map 16 Mb of kernel space to KERNEL_BASE
    632 	 * i.e. marks[KERNEL_START]
    633 	 */
    634 	for (page = 0; page < 16; page++) {
    635 		addr  = (kernel_physical_start >> 20) + page;
    636 		kpage = (marks[MARK_START]     >> 20) + page;
    637 		initial_page_tables[kpage] = (addr << 20) | section;
    638 	}
    639 }
    640 
    641 
    642 void
    643 add_pagetables_at_top(void)
    644 {
    645 	int page;
    646 	u_long src, dst, fragaddr;
    647 
    648 	/* Special : destination must be on a 16 Kb boundary */
    649 	/* get 4 pages on the top of the physical memory and copy PT's in it */
    650 	new_L1_pages_phys = top_physdram - 4 * nbpp;
    651 
    652 	/*
    653 	 * If the L1 page tables are not 16 kb aligned, adjust base
    654 	 * until it is
    655 	 */
    656 	while (new_L1_pages_phys & (16*1024-1))
    657 		new_L1_pages_phys -= nbpp;
    658 	if (new_L1_pages_phys & (16*1024-1))
    659 		panic("Paranoia : L1 pages not on 16Kb boundary");
    660 
    661 	dst = new_L1_pages_phys;
    662 	src = (u_long)initial_page_tables;
    663 
    664 	for (page = 0; page < 4; page++) {
    665 		/* get a page for a fragment */
    666 		fragaddr = get_relocated_page(dst, nbpp)->logical;
    667 		memcpy((void *)fragaddr, (void *)src, nbpp);
    668 
    669 		src += nbpp;
    670 		dst += nbpp;
    671 	}
    672 }
    673 
    674 
    675 void
    676 add_initvectors(void)
    677 {
    678 	u_long *pos;
    679 	u_long  vectoraddr, count;
    680 
    681 	/* the top 1Mb of the physical DRAM pages is mapped at address 0 */
    682 	vectoraddr = get_relocated_page(top_1Mb_dram, nbpp)->logical;
    683 
    684 	/* fill the vectors with `movs pc, lr' opcodes */
    685 	pos = (u_long *)vectoraddr; memset(pos, 0, nbpp);
    686 	for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
    687 }
    688 
    689 
    690 void
    691 create_configuration(int argc, char **argv, int start_args)
    692 {
    693 	int   i, root_specified, id_low, id_high;
    694 	char *pos;
    695 
    696 	bconfig_new_phys = kernel_free_vm_start - pv_offset;
    697 	bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
    698 	bconfig = (struct bootconfig *)(bconfig_page->logical);
    699 	kernel_free_vm_start += nbpp;
    700 
    701 	/* get some miscelanious info for the bootblock */
    702 	os_readsysinfo_monitor_info(NULL, &monitor_type, &monitor_sync);
    703 	os_readsysinfo_chip_presence(&ioeb_flags, &superio_flags, &lcd_flags);
    704 	os_readsysinfo_superio_features(&superio_flags_basic,
    705 	    &superio_flags_extra);
    706 	os_readsysinfo_unique_id(&id_low, &id_high);
    707 
    708 	/* fill in the bootconfig *bconfig structure : generic version II */
    709 	memset(bconfig, 0, sizeof(bconfig));
    710 	bconfig->magic		= BOOTCONFIG_MAGIC;
    711 	bconfig->version	= BOOTCONFIG_VERSION;
    712 	strcpy(bconfig->kernelname, booted_file);
    713 
    714 	/*
    715 	 * get the kernel base name and update the RiscOS name to a
    716 	 * Unix name
    717 	 */
    718 	i = strlen(booted_file);
    719 	while (i >= 0 && booted_file[i] != '.') i--;
    720 	if (i) {
    721 		strcpy(bconfig->kernelname, "/");
    722 		strcat(bconfig->kernelname, booted_file+i+1);
    723 	}
    724 
    725 	pos = bconfig->kernelname+1;
    726 	while (*pos) {
    727 		if (*pos == '/') *pos = '.';
    728 		pos++;
    729 	}
    730 
    731 	/* set the machine_id */
    732 	memcpy(&(bconfig->machine_id), &id_low, 4);
    733 
    734 	/* check if the `root' is specified */
    735 	root_specified = 0;
    736 	strcpy(bconfig->args, "");
    737 	for (i = start_args; i < argc; i++) {
    738 		if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
    739 		strcat(bconfig->args, argv[i]);
    740 	}
    741 	if (!root_specified) {
    742 		strcat(bconfig->args, "root=");
    743 		strcat(bconfig->args, DEFAULT_ROOT);
    744 	}
    745 
    746 	/* mark kernel pointers */
    747 	bconfig->kernvirtualbase	= marks[MARK_START];
    748 	bconfig->kernphysicalbase	= kernel_physical_start;
    749 	bconfig->kernsize		= kernel_free_vm_start -
    750 					    marks[MARK_START];
    751 	bconfig->ksym_start		= marks[MARK_SYM];
    752 	bconfig->ksym_end		= marks[MARK_SYM] + marks[MARK_NSYM];
    753 
    754 	/* setup display info */
    755 	bconfig->display_phys		= videomem_start;
    756 	bconfig->display_start		= videomem_start;
    757 	bconfig->display_size		= display_size;
    758 	bconfig->width			= vdu_var(os_MODEVAR_XWIND_LIMIT);
    759 	bconfig->height			= vdu_var(os_MODEVAR_YWIND_LIMIT);
    760 	bconfig->log2_bpp		= vdu_var(os_MODEVAR_LOG2_BPP);
    761 	/* XXX why? better guessing possible? XXX */
    762 	bconfig->framerate		= 56;
    763 
    764 	/* fill in memory info */
    765 	bconfig->pagesize		= nbpp;
    766 	bconfig->drampages		= total_dram_pages +
    767 					    total_podram_pages;	/* XXX */
    768 	bconfig->vrampages		= total_vram_pages;
    769 	bconfig->dramblocks		= dram_blocks + podram_blocks; /*XXX*/
    770 	bconfig->vramblocks		= vram_blocks;
    771 
    772 	for (i = 0; i < dram_blocks; i++) {
    773 		bconfig->dram[i].address = DRAM_addr[i];
    774 		bconfig->dram[i].pages   = DRAM_pages[i];
    775 		bconfig->dram[i].flags   = PHYSMEM_TYPE_GENERIC;
    776 	}
    777 	for (; i < dram_blocks + podram_blocks; i++) {
    778 		bconfig->dram[i].address = PODRAM_addr[i];
    779 		bconfig->dram[i].pages   = PODRAM_pages[i];
    780 		bconfig->dram[i].flags   = PHYSMEM_TYPE_PROCESSOR_ONLY;
    781 	}
    782 	for (i = 0; i < vram_blocks; i++) {
    783 		bconfig->vram[i].address = VRAM_addr[i];
    784 		bconfig->vram[i].pages   = VRAM_pages[i];
    785 		bconfig->vram[i].flags   = PHYSMEM_TYPE_GENERIC;
    786 	}
    787 }
    788 
    789 
    790 int
    791 main(int argc, char **argv)
    792 {
    793 	int howto, start_args, ret;
    794 
    795 	printf("\n\n");
    796 	printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
    797 	printf(">> (%s, %s)\n", bootprog_maker, bootprog_date);
    798 	printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
    799 	printf("\n");
    800 
    801 	process_args(argc, argv, &howto, booted_file, &start_args);
    802 
    803 	printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
    804 
    805 	init_datastructures();
    806 	get_memory_configuration();
    807 	get_memory_map();
    808 
    809 	/*
    810 	 * point to the first free DRAM page guaranteed to be in
    811 	 * strict order up
    812 	 */
    813 	if (first_mapped_PODRAM_page_index) {
    814 		free_relocation_page =
    815 		    mem_pages_info + first_mapped_PODRAM_page_index;
    816 		kernel_physical_start = PODRAM_addr[0];
    817 	} else {
    818 		free_relocation_page =
    819 		    mem_pages_info + first_mapped_DRAM_page_index;
    820 		kernel_physical_start = DRAM_addr[0];
    821 	}
    822 
    823 	printf("\nLoading %s ", booted_file);
    824 
    825 	/* first count the kernel to get the markers */
    826 	ret = loadfile(booted_file, marks, COUNT_KERNEL);
    827 	if (ret == -1) panic("Kernel load failed"); /* lie to the user ... */
    828 	close(ret);
    829 
    830 	/*
    831 	 * calculate how much the difference is between physical and
    832 	 * virtual space for the kernel
    833 	 */
    834 	pv_offset = ((u_long)marks[MARK_START] - kernel_physical_start);
    835 	/* round on a page	*/
    836 	kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1);
    837 
    838 	/* we seem to be forced to clear the marks[] ? */
    839 	bzero(marks, sizeof(marks[MARK_MAX]));
    840 
    841 	/* really load it ! */
    842 	ret = loadfile(booted_file, marks, LOAD_KERNEL);
    843 	if (ret == -1) panic("Kernel load failed");
    844 	close(ret);
    845 
    846 	/* finish off the relocation information */
    847 	create_initial_page_tables();
    848 	add_initvectors();
    849 	add_pagetables_at_top();
    850 	create_configuration(argc, argv, start_args);
    851 
    852 	/*
    853 	 * done relocating and creating information, now update and
    854 	 * check the relocation mechanism
    855 	 */
    856 	prepare_and_check_relocation_system();
    857 
    858 	printf("\nStarting at 0x%lx\n", marks[MARK_ENTRY]);
    859 	printf("Will boot in a few secs due to relocation....\n"
    860 	    "bye bye from RISC OS!");
    861 
    862 	/* dismount all filesystems */
    863 	xosfscontrol_shutdown();
    864 
    865 	/* reset devices, well they try to anyway */
    866 	service_pre_reset();
    867 
    868 	start_kernel(
    869 		/* r0 relocation code page (V)	*/ relocate_code_page->logical,
    870 		/* r1 relocation pv offset	*/
    871 		relocate_code_page->physical-relocate_code_page->logical,
    872 		/* r2 configuration structure	*/ bconfig_new_phys,
    873 		/* r3 relocation table (P)	*/
    874 		relocate_table_pages->physical,	/* one piece! */
    875 		/* r4 L1 page descriptor (P)	*/ new_L1_pages_phys,
    876 		/* r5 kernel entry point	*/ marks[MARK_ENTRY]
    877 	);
    878 	return 0;
    879 }
    880 
    881 
    882 ssize_t
    883 boot32_read(int f, void *addr, size_t size)
    884 {
    885 	caddr_t fragaddr;
    886 	size_t fragsize;
    887 	ssize_t bytes_read, total;
    888 
    889 	/* printf("read at %p for %ld bytes\n", addr, size); */
    890 	total = 0;
    891 	while (size > 0) {
    892 		fragsize = nbpp;		/* select one page	*/
    893 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    894 
    895 		/* get a page for a fragment */
    896 		fragaddr = (caddr_t)get_relocated_page((u_long) addr -
    897 		    pv_offset, fragsize)->logical;
    898 
    899 		bytes_read = read(f, fragaddr, fragsize);
    900 		if (bytes_read < 0) return bytes_read;	/* error!	*/
    901 		total += bytes_read;		/* account read bytes	*/
    902 
    903 		if (bytes_read < fragsize)
    904 			return total;		/* does this happen?	*/
    905 
    906 		size -= fragsize;		/* advance		*/
    907 		addr += fragsize;
    908 	}
    909 	return total;
    910 }
    911 
    912 
    913 void *
    914 boot32_memcpy(void *dst, const void *src, size_t size)
    915 {
    916 	caddr_t fragaddr;
    917 	size_t fragsize;
    918 
    919 	/* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
    920 	while (size > 0) {
    921 		fragsize = nbpp;		/* select one page	*/
    922 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    923 
    924 		/* get a page for a fragment */
    925 		fragaddr = (caddr_t)get_relocated_page((u_long) dst -
    926 		    pv_offset, fragsize)->logical;
    927 		memcpy(fragaddr, src, size);
    928 
    929 		src += fragsize;		/* account copy		*/
    930 		dst += fragsize;
    931 		size-= fragsize;
    932 	}
    933 	return dst;
    934 }
    935 
    936 
    937 void *
    938 boot32_memset(void *dst, int c, size_t size)
    939 {
    940 	caddr_t fragaddr;
    941 	size_t fragsize;
    942 
    943 	/* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
    944 	while (size > 0) {
    945 		fragsize = nbpp;		/* select one page	*/
    946 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    947 
    948 		/* get a page for a fragment */
    949 		fragaddr = (caddr_t)get_relocated_page((u_long)dst - pv_offset,
    950 		    fragsize)->logical;
    951 		memset(fragaddr, c, fragsize);
    952 
    953 		dst += fragsize;		/* account memsetting	*/
    954 		size-= fragsize;
    955 
    956 	}
    957 	return dst;
    958 }
    959 
    960 
    961 /* We can rely on the fact that two entries never have identical ->physical */
    962 int
    963 page_info_cmp(const void *a, const void *b)
    964 {
    965 
    966 	return (((struct page_info *)a)->physical <
    967 	    ((struct page_info *)b)->physical) ? -1 : 1;
    968 }
    969 
    970 struct page_info *
    971 get_relocated_page(u_long destination, int size)
    972 {
    973 	struct page_info *page;
    974 
    975 	/* get a page for a fragment */
    976 	page = free_relocation_page;
    977 	if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages");
    978 	reloc_entries++;
    979 	if (reloc_entries >= MAX_RELOCPAGES)
    980 		panic("\n\nToo many relocations! What are you loading ??");
    981 
    982 	/* record the relocation */
    983 	*reloc_pos++ = free_relocation_page->physical;
    984 	*reloc_pos++ = destination;
    985 	*reloc_pos++ = size;
    986 	free_relocation_page++;			/* advance 		*/
    987 
    988 	return page;
    989 }
    990 
    991 
    992 int
    993 vdu_var(int var)
    994 {
    995 	int varlist[2], vallist[2];
    996 
    997 	varlist[0] = var;
    998 	varlist[1] = -1;
    999 	os_read_vdu_variables(varlist, vallist);
   1000 	return vallist[0];
   1001 }
   1002 
   1003 
   1004 void
   1005 twirl(void)
   1006 {
   1007 
   1008 	printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
   1009 	twirl_cnt++;
   1010 	twirl_cnt &= 3;
   1011 }
   1012 
   1013 
   1014 void
   1015 process_args(int argc, char **argv, int *howto, char *file, int *start_args)
   1016 {
   1017 	int i, j;
   1018 	static char filename[80];
   1019 
   1020 	*howto = 0;
   1021 	*file = NULL; *start_args = 1;
   1022 	for (i = 1; i < argc; i++) {
   1023 		if (argv[i][0] == '-')
   1024 			for (j = 1; argv[i][j]; j++)
   1025 				BOOT_FLAG(argv[i][j], *howto);
   1026 		else {
   1027 			if (*file)
   1028 				*start_args = i;
   1029 			else {
   1030 				strcpy(file, argv[i]);
   1031 				*start_args = i+1;
   1032 			}
   1033 			break;
   1034 		}
   1035 	}
   1036 	if (*file == NULL) {
   1037 		if (*howto & RB_ASKNAME) {
   1038 			printf("boot: ");
   1039 			gets(filename);
   1040 			strcpy(file, filename);
   1041 		} else
   1042 			strcpy(file, "netbsd");
   1043 	}
   1044 }
   1045