Home | History | Annotate | Line # | Download | only in boot32
boot32.c revision 1.24
      1 /*	$NetBSD: boot32.c,v 1.24 2006/03/23 22:38:08 bjh21 Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  *
     29  * Thanks a bunch for Ben's framework for the bootloader and its suporting
     30  * libs. This file tries to actually boot NetBSD/acorn32 !
     31  *
     32  * XXX eventually to be partly merged back with boot26 ? XXX
     33  */
     34 
     35 #include <lib/libsa/stand.h>
     36 #include <lib/libsa/loadfile.h>
     37 #include <lib/libkern/libkern.h>
     38 #include <riscoscalls.h>
     39 #include <srt0.h>
     40 #include <sys/boot_flag.h>
     41 #include <machine/vmparam.h>
     42 #include <arm/arm32/pte.h>
     43 #include <machine/bootconfig.h>
     44 
     45 extern char end[];
     46 
     47 /* debugging flags */
     48 int debug = 1;
     49 
     50 
     51 /* constants */
     52 #define PODRAM_START   (512*1024*1024)		/* XXX Kinetic cards XXX */
     53 
     54 #define MAX_RELOCPAGES	4096
     55 
     56 #define DEFAULT_ROOT	"/dev/wd0a"
     57 
     58 
     59 #define IO_BLOCKS	 16	/* move these to the bootloader structure? */
     60 #define ROM_BLOCKS	 16
     61 #define PODRAM_BLOCKS	 16
     62 
     63 
     64 /* booter variables */
     65 char	 scrap[80], twirl_cnt;		/* misc				*/
     66 char	 booted_file[80];
     67 
     68 struct bootconfig *bconfig;		/* bootconfig passing		*/
     69 u_long	 bconfig_new_phys;		/* physical address its bound	*/
     70 
     71 /* computer knowledge		*/
     72 u_int	 monitor_type, monitor_sync, ioeb_flags, lcd_flags;
     73 u_int	 superio_flags, superio_flags_basic, superio_flags_extra;
     74 
     75 /* sizes			*/
     76 int	 nbpp, memory_table_size, memory_image_size;
     77 /* relocate info		*/
     78 u_long	 reloc_tablesize, *reloc_instruction_table;
     79 u_long	*reloc_pos;			/* current empty entry		*/
     80 int	 reloc_entries;			/* number of relocations	*/
     81 int	 first_mapped_DRAM_page_index;	/* offset in RISC OS blob	*/
     82 int	 first_mapped_PODRAM_page_index;/* offset in RISC OS blob	*/
     83 
     84 struct page_info *mem_pages_info;	/* {nr, virt, phys}*		*/
     85 struct page_info *free_relocation_page;	/* points to the page_info chain*/
     86 struct page_info *relocate_table_pages;	/* points to seq. relocate info */
     87 struct page_info *relocate_code_page;	/* points to the copied code	*/
     88 struct page_info *bconfig_page;		/* page for passing on settings	*/
     89 
     90 unsigned char *memory_page_types;	/* packed array of 4 bit typeId	*/
     91 
     92 u_long	*initial_page_tables;		/* pagetables to be booted from	*/
     93 
     94 
     95 /* XXX rename *_BLOCKS to MEM_BLOCKS */
     96 /* DRAM/VRAM/ROM/IO info */
     97 /* where the display is		*/
     98 u_long	 videomem_start, videomem_pages, display_size;
     99 
    100 u_long	 pv_offset, top_physdram;	/* kernel_base - phys. diff	*/
    101 u_long	 top_1Mb_dram;			/* the lower mapped top 1Mb	*/
    102 u_long	 new_L1_pages_phys;		/* physical address of L1 pages	*/
    103 
    104 /* for bootconfig passing	*/
    105 u_long	 total_podram_pages, total_dram_pages, total_vram_pages;
    106 int	 dram_blocks, podram_blocks;	/* number of mem. objects/type  */
    107 int	 vram_blocks, rom_blocks, io_blocks;
    108 
    109 u_long	 DRAM_addr[DRAM_BLOCKS],     DRAM_pages[DRAM_BLOCKS];
    110 /* processor only RAM	*/
    111 u_long	 PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS];
    112 u_long	 VRAM_addr[VRAM_BLOCKS],     VRAM_pages[VRAM_BLOCKS];
    113 u_long	 ROM_addr[ROM_BLOCKS],       ROM_pages[ROM_BLOCKS];
    114 u_long	 IO_addr[IO_BLOCKS],         IO_pages[IO_BLOCKS];
    115 
    116 
    117 /* RISC OS memory pages we claimed */
    118 u_long	 firstpage, lastpage, totalpages; /* RISC OS pagecounters	*/
    119 /* RISC OS memory		*/
    120 char	*memory_image, *bottom_memory, *top_memory;
    121 
    122 u_long	 videomem_start_ro;		/* for debugging mainly		*/
    123 
    124 /* kernel info */
    125 u_long	 marks[MARK_MAX];		/* loader mark pointers 	*/
    126 u_long	 kernel_physical_start;		/* where does it get relocated	*/
    127 u_long	 kernel_free_vm_start;		/* where does the free VM start	*/
    128 /* some free space to mess with	*/
    129 u_long	 scratch_virtualbase, scratch_physicalbase;
    130 
    131 
    132 /* bootprogram identifiers */
    133 extern const char bootprog_rev[];
    134 extern const char bootprog_name[];
    135 extern const char bootprog_date[];
    136 extern const char bootprog_maker[];
    137 
    138 
    139 /* predefines / prototypes */
    140 void	 init_datastructures(void);
    141 void	 get_memory_configuration(void);
    142 void	 get_memory_map(void);
    143 void	 create_initial_page_tables(void);
    144 void	 add_pagetables_at_top(void);
    145 int	 page_info_cmp(const void *a, const void *);
    146 void	 add_initvectors(void);
    147 void	 create_configuration(int argc, char **argv, int start_args);
    148 void	 prepare_and_check_relocation_system(void);
    149 void	 twirl(void);
    150 int	 vdu_var(int);
    151 void	 process_args(int argc, char **argv, int *howto, char *file,
    152     int *start_args);
    153 
    154 char		 *sprint0(int width, char prefix, char base, int value);
    155 struct page_info *get_relocated_page(u_long destination, int size);
    156 
    157 extern void start_kernel(
    158 		int relocate_code_page,
    159 		int relocation_pv_offset,
    160 		int configuration_structure_in_flat_physical_space,
    161 		int physical_address_of_relocation_tables,
    162 		int physical_address_of_new_L1_pages,
    163 		int kernel_entry_point
    164 		);	/* asm */
    165 
    166 
    167 /* the loader itself */
    168 void
    169 init_datastructures(void)
    170 {
    171 
    172 	/* Get number of pages and the memorytablesize */
    173 	osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
    174 
    175 	/* Allocate 99% - (small fixed amount) of the heap for memory_image */
    176 	memory_image_size = (int)HIMEM - (int)end - 512 * 1024;
    177 	memory_image_size /= 100;
    178 	memory_image_size *= 99;
    179 	if (memory_image_size <= 256*1024)
    180 		panic("Insufficient memory");
    181 
    182 	memory_image = alloc(memory_image_size);
    183 	if (!memory_image)
    184 		panic("Can't alloc get my memory image ?");
    185 
    186 	bottom_memory = memory_image;
    187 	top_memory    = memory_image + memory_image_size;
    188 
    189 	firstpage  = ((int)bottom_memory / nbpp) + 1;	/* safety */
    190 	lastpage   = ((int)top_memory    / nbpp) - 1;
    191 	totalpages = lastpage - firstpage;
    192 
    193 	printf("Allocated %ld memory pages, each of %d kilobytes.\n\n",
    194 			totalpages, nbpp>>10 );
    195 
    196 	/*
    197 	 * Setup the relocation table. Its a simple array of 3 * 32 bit
    198 	 * entries. The first word in the array is the number of relocations
    199 	 * to be done
    200 	 */
    201 	reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(u_long);
    202 	reloc_instruction_table = alloc(reloc_tablesize);
    203 	if (!reloc_instruction_table)
    204 		panic("Can't alloc my relocate instructions pages");
    205 
    206 	reloc_entries = 0;
    207 	reloc_pos     = reloc_instruction_table;
    208 	*reloc_pos++  = 0;
    209 
    210 	/*
    211 	 * Set up the memory translation info structure. We need to allocate
    212 	 * one more for the end of list marker. See get_memory_map.
    213 	 */
    214 	mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
    215 	if (!mem_pages_info)
    216 		panic("Can't alloc my phys->virt page info");
    217 
    218 	/*
    219 	 * Allocate memory for the memory arrangement table. We use this
    220 	 * structure to retrieve memory page properties to clasify them.
    221 	 */
    222 	memory_page_types = alloc(memory_table_size);
    223 	if (!memory_page_types)
    224 		panic("Can't alloc my memory page type block");
    225 
    226 	/*
    227 	 * Initial page tables is 16 kb per definition since only sections are
    228 	 * used.
    229 	 */
    230 	initial_page_tables = alloc(16*1024);
    231 	if (!initial_page_tables)
    232 		panic("Can't alloc my initial page tables");
    233 }
    234 
    235 
    236 void
    237 prepare_and_check_relocation_system(void)
    238 {
    239 	int     relocate_size, relocate_pages;
    240 	int     bank, pages, found;
    241 	u_long  dst, src, base, destination, extend;
    242 	u_long *reloc_entry, last_src, length;
    243 
    244 	/* set the number of relocation entries in the 1st word */
    245 	*reloc_instruction_table = reloc_entries;
    246 
    247 	/*
    248 	 * The relocate information needs to be in one sequential physical
    249 	 * space in order to be able to access it as one stream when the MMU
    250 	 * is switched off later.
    251 	 */
    252 	relocate_size = (reloc_tablesize + nbpp-1) & ~(nbpp-1);  /* round up */
    253 	printf("\nPreparing for booting %s ... ", booted_file);
    254 	relocate_pages = relocate_size / nbpp;
    255 
    256 	relocate_table_pages = free_relocation_page;
    257 	pages = 0;
    258 	while (pages < relocate_pages) {
    259 		src = (u_long)reloc_instruction_table + pages*nbpp;
    260 		dst = (relocate_table_pages + pages)->logical;
    261 		memcpy((void *)dst, (void *)src, nbpp);
    262 
    263 		if (pages < relocate_pages - 1) {
    264 			/* check if next page is sequential physically */
    265 			if ((relocate_table_pages+pages+1)->physical -
    266 			    (relocate_table_pages+pages)->physical != nbpp) {
    267 				/*
    268 				 * Non contigunous relocate area ->
    269 				 * try again
    270 				 */
    271 				printf("*");
    272 				relocate_table_pages += pages;
    273 				continue;	/* while */
    274 			}
    275 		}
    276 		pages++;
    277 	}
    278 	free_relocation_page = relocate_table_pages + pages;
    279 
    280 	/* copy the relocation code into this page in start_kernel */
    281 	relocate_code_page = free_relocation_page++;
    282 
    283 	/*
    284 	 * All relocations are pages allocated in one big strict increasing
    285 	 * physical DRAM address sequence. When the MMU is switched off all
    286 	 * code and data is in this increasing order but not at the right
    287 	 * place. This is where the relocation code kicks in; relocation is
    288 	 * done in flat physical memory without MMU.
    289 	 */
    290 
    291 	printf("shift and check ... ");
    292 	reloc_entry = reloc_instruction_table + 1;
    293 	last_src = -1;
    294 	while (reloc_entry < reloc_pos) {
    295 		src         = reloc_entry[0];
    296 		destination = reloc_entry[1];
    297 		length      = reloc_entry[2];
    298 
    299 		/* paranoia check */
    300 		if ((long) (src - last_src) <= 0)
    301 			printf("relocation sequence challenged -- "
    302 			    "booting might fail ");
    303 		last_src = src;
    304 
    305 		/* check if its gonna be relocated into (PO)DRAM ! */
    306 		extend = destination + length;
    307 		found = 0;
    308 		for (bank = 0; (bank < dram_blocks) && !found; bank++) {
    309 			base   = DRAM_addr[bank];
    310 			found = (destination >= base) &&
    311 			    (extend <= base + DRAM_pages[bank]*nbpp);
    312 		}
    313 		for (bank = 0; (bank < podram_blocks) && !found; bank++) {
    314 			base = PODRAM_addr[bank];
    315 			found = (destination >= base) &&
    316 			    (extend <= base + PODRAM_pages[bank]*nbpp);
    317 		}
    318 		if (!found || (extend > top_physdram)) {
    319 			panic("Internal error: relocating range "
    320 			    "[%lx +%lx => %lx] outside (PO)DRAM banks!",
    321 			    src, length, destination);
    322 		}
    323 
    324 		reloc_entry += 3;
    325 	}
    326 	if (reloc_entry != reloc_pos)
    327 		panic("Relocation instruction table is corrupted");
    328 
    329 	printf("OK!\n");
    330 }
    331 
    332 
    333 void
    334 get_memory_configuration(void)
    335 {
    336 	int loop, current_page_type, page_count, phys_page;
    337 	int page, count, bank, top_bank, video_bank;
    338 	int mapped_screen_memory;
    339 	int one_mb_pages;
    340 	u_long top;
    341 
    342 	printf("Getting memory configuration ");
    343 
    344 	osmemory_read_arrangement_table(memory_page_types);
    345 
    346 	/* init counters */
    347 	bank = vram_blocks = dram_blocks = rom_blocks = io_blocks =
    348 	    podram_blocks = 0;
    349 
    350 	current_page_type = -1;
    351 	phys_page = 0;			/* physical address in pages	*/
    352 	page_count = 0;			/* page counter in this block	*/
    353 	loop = 0;			/* loop variable over entries	*/
    354 
    355 	/* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
    356 	while (loop < 2*memory_table_size) {
    357 		page = memory_page_types[loop / 2];	/* read	twice */
    358 		if (loop & 1) page >>= 4;		/* take other nibble */
    359 
    360 		/*
    361 		 * bits 0-2 give type, bit3 means the bit page is
    362 		 * allocatable
    363 		 */
    364 		page &= 0x7;			/* only take bottom 3 bits */
    365 		if (page != current_page_type) {
    366 			/* passed a boundary ... note this block	   */
    367 			/*
    368 			 * splitting in different vars is for
    369 			 * compatability reasons
    370 			 */
    371 			switch (current_page_type) {
    372 			case -1:
    373 			case  0:
    374 				break;
    375 			case osmemory_TYPE_DRAM:
    376 				if (phys_page < PODRAM_START) {
    377 					DRAM_addr[dram_blocks]  =
    378 					    phys_page * nbpp;
    379 					DRAM_pages[dram_blocks] =
    380 					    page_count;
    381 					dram_blocks++;
    382 				} else {
    383 					PODRAM_addr[podram_blocks]  =
    384 					    phys_page * nbpp;
    385 					PODRAM_pages[podram_blocks] =
    386 					    page_count;
    387 					podram_blocks++;
    388 				}
    389 				break;
    390 			case osmemory_TYPE_VRAM:
    391 				VRAM_addr[vram_blocks]  = phys_page * nbpp;
    392 				VRAM_pages[vram_blocks] = page_count;
    393 				vram_blocks++;
    394 				break;
    395 			case osmemory_TYPE_ROM:
    396 				ROM_addr[rom_blocks]  = phys_page * nbpp;
    397 				ROM_pages[rom_blocks] = page_count;
    398 				rom_blocks++;
    399 				break;
    400 			case osmemory_TYPE_IO:
    401 				IO_addr[io_blocks]  = phys_page * nbpp;
    402 				IO_pages[io_blocks] = page_count;
    403 				io_blocks++;
    404 				break;
    405 			default:
    406 				printf("WARNING : found unknown "
    407 				    "memory object %d ", current_page_type);
    408 				printf(" at 0x%s",
    409 				    sprint0(8,'0','x', phys_page * nbpp));
    410 				printf(" for %s k\n",
    411 				    sprint0(5,' ','d', (page_count*nbpp)>>10));
    412 				break;
    413 			}
    414 			current_page_type = page;
    415 			phys_page = loop;
    416 			page_count = 0;
    417 		}
    418 		/*
    419 		 * smallest unit we recognise is one page ... silly
    420 		 * could be upto 64 pages i.e. 256 kb
    421 		 */
    422 		page_count += 1;
    423 		loop       += 1;
    424 		if ((loop & 31) == 0) twirl();
    425 	}
    426 
    427 	printf(" \n\n");
    428 
    429 	if (VRAM_pages[0] == 0) {
    430 		/* map DRAM as video memory */
    431 		display_size	 =
    432 		    vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1);
    433 #if 0
    434 		mapped_screen_memory = 1024 * 1024; /* max allowed on RiscPC */
    435 		videomem_pages   = (mapped_screen_memory / nbpp);
    436 		videomem_start   = DRAM_addr[0];
    437 		DRAM_addr[0]	+= videomem_pages * nbpp;
    438 		DRAM_pages[0]	-= videomem_pages;
    439 #else
    440 		mapped_screen_memory = display_size;
    441 		videomem_pages   = mapped_screen_memory / nbpp;
    442 		one_mb_pages	 = (1024*1024)/nbpp;
    443 
    444 		/*
    445 		 * OK... we need one Mb at the top for compliance with current
    446 		 * kernel structure. This ought to be abolished one day IMHO.
    447 		 * Also we have to take care that the kernel needs to be in
    448 		 * DRAM0a and even has to start there.
    449 		 * XXX one Mb simms are the smallest supported XXX
    450 		 */
    451 		top_bank = dram_blocks-1;
    452 		video_bank = top_bank;
    453 		if (DRAM_pages[top_bank] == one_mb_pages) video_bank--;
    454 
    455 		if (DRAM_pages[video_bank] < videomem_pages)
    456 			panic("Weird memory configuration found; please "
    457 			    "contact acorn32 portmaster.");
    458 
    459 		/* split off the top 1Mb */
    460 		DRAM_addr [top_bank+1]  = DRAM_addr[top_bank] +
    461 		    (DRAM_pages[top_bank] - one_mb_pages)*nbpp;
    462 		DRAM_pages[top_bank+1]  = one_mb_pages;
    463 		DRAM_pages[top_bank  ] -= one_mb_pages;
    464 		dram_blocks++;
    465 
    466 		/* Map video memory at the end of the choosen DIMM */
    467 		videomem_start          = DRAM_addr[video_bank] +
    468 		    (DRAM_pages[video_bank] - videomem_pages)*nbpp;
    469 		DRAM_pages[video_bank] -= videomem_pages;
    470 
    471 		/* sanity */
    472 		if (DRAM_pages[top_bank] == 0) {
    473 			DRAM_addr [top_bank] = DRAM_addr [top_bank+1];
    474 			DRAM_pages[top_bank] = DRAM_pages[top_bank+1];
    475 			dram_blocks--;
    476 		}
    477 #endif
    478 	} else {
    479 		/* use VRAM */
    480 		mapped_screen_memory = 0;
    481 		videomem_start	 = VRAM_addr[0];
    482 		videomem_pages	 = VRAM_pages[0];
    483 		display_size	 = videomem_pages * nbpp;
    484 	}
    485 
    486 	if (mapped_screen_memory) {
    487 		printf("Used %d kb DRAM ", mapped_screen_memory / 1024);
    488 		printf("at 0x%s for video memory\n",
    489 		    sprint0(8,'0','x', videomem_start));
    490 	}
    491 
    492 	/* find top of (PO)DRAM pages */
    493 	top_physdram = 0;
    494 	for (loop = 0; loop < podram_blocks; loop++) {
    495 		top = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
    496 		if (top > top_physdram) top_physdram = top;
    497 	}
    498 	for (loop = 0; loop < dram_blocks; loop++) {
    499 		top = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
    500 		if (top > top_physdram) top_physdram = top;
    501 	}
    502 	if (top_physdram == 0)
    503 		panic("reality check: No DRAM in this machine?");
    504 	if (((top_physdram >> 20) << 20) != top_physdram)
    505 		panic("Top is not not aligned on a Mb; "
    506 		    "remove very small DIMMS?");
    507 
    508 	videomem_start_ro = vdu_var(os_VDUVAR_DISPLAY_START);
    509 
    510 	/* pretty print the individual page types */
    511 	for (count = 0; count < rom_blocks; count++) {
    512 		printf("Found ROM  (%d)", count);
    513 		printf(" at 0x%s", sprint0(8,'0','x', ROM_addr[count]));
    514 		printf(" for %s k\n",
    515 		    sprint0(5,' ','d', (ROM_pages[count]*nbpp)>>10));
    516 	}
    517 
    518 	for (count = 0; count < io_blocks; count++) {
    519 		printf("Found I/O  (%d)", count);
    520 		printf(" at 0x%s", sprint0(8,'0','x', IO_addr[count]));
    521 		printf(" for %s k\n",
    522 		    sprint0(5,' ','d', (IO_pages[count]*nbpp)>>10));
    523 	}
    524 
    525 	/* for DRAM/VRAM also count the number of pages */
    526 	total_dram_pages = 0;
    527 	for (count = 0; count < dram_blocks; count++) {
    528 		total_dram_pages += DRAM_pages[count];
    529 		printf("Found DRAM (%d)", count);
    530 		printf(" at 0x%s", sprint0(8,'0','x', DRAM_addr[count]));
    531 		printf(" for %s k\n",
    532 		    sprint0(5,' ','d', (DRAM_pages[count]*nbpp)>>10));
    533 	}
    534 
    535 	total_vram_pages = 0;
    536 	for (count = 0; count < vram_blocks; count++) {
    537 		total_vram_pages += VRAM_pages[count];
    538 		printf("Found VRAM (%d)", count);
    539 		printf(" at 0x%s", sprint0(8,'0','x', VRAM_addr[count]));
    540 		printf(" for %s k\n",
    541 		    sprint0(5,' ','d', (VRAM_pages[count]*nbpp)>>10));
    542 	}
    543 
    544 	total_podram_pages = 0;
    545 	for (count = 0; count < podram_blocks; count++) {
    546 		total_podram_pages += PODRAM_pages[count];
    547 		printf("Found Processor only (S)DRAM (%d)", count);
    548 		printf(" at 0x%s", sprint0(8,'0','x', PODRAM_addr[count]));
    549 		printf(" for %s k\n",
    550 		    sprint0(5,' ','d', (PODRAM_pages[count]*nbpp)>>10));
    551 	}
    552 }
    553 
    554 
    555 void
    556 get_memory_map(void)
    557 {
    558 	struct page_info *page_info;
    559 	int	page, inout;
    560 	int	phys_addr;
    561 
    562 	printf("\nGetting actual memorymapping");
    563 	for (page = 0, page_info = mem_pages_info;
    564 	     page < totalpages;
    565 	     page++, page_info++) {
    566 		page_info->pagenumber = 0;	/* not used */
    567 		page_info->logical    = (firstpage + page) * nbpp;
    568 		page_info->physical   = 0;	/* result comes here */
    569 		/* to avoid triggering a `bug' in RISC OS 4, page it in */
    570 		*((int *)page_info->logical) = 0;
    571 	}
    572 	/* close list */
    573 	page_info->pagenumber = -1;
    574 
    575 	inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO |
    576 	    osmemory_RETURN_PHYS_ADDR;
    577 	osmemory_page_op(inout, mem_pages_info, totalpages);
    578 
    579 	printf(" ; sorting ");
    580 	qsort(mem_pages_info, totalpages, sizeof(struct page_info),
    581 	    &page_info_cmp);
    582 	printf(".\n");
    583 
    584 	/*
    585 	 * get the first DRAM index and show the physical memory
    586 	 * fragments we got
    587 	 */
    588 	printf("\nFound physical memory blocks :\n");
    589 	first_mapped_DRAM_page_index = -1;
    590 	first_mapped_PODRAM_page_index = -1;
    591 	for (page=0; page < totalpages; page++) {
    592 		phys_addr = mem_pages_info[page].physical;
    593 		printf("[0x%x", phys_addr);
    594 		while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
    595 			if (first_mapped_DRAM_page_index < 0 &&
    596 			    phys_addr >= DRAM_addr[0])
    597 				first_mapped_DRAM_page_index = page;
    598 			if (first_mapped_PODRAM_page_index < 0 &&
    599 			    phys_addr >= PODRAM_addr[0])
    600 				first_mapped_PODRAM_page_index = page;
    601 			page++;
    602 			phys_addr = mem_pages_info[page].physical;
    603 		}
    604 		printf("-0x%x]  ", phys_addr + nbpp -1);
    605 	}
    606 	printf("\n\n");
    607 	if (first_mapped_PODRAM_page_index < 0 && PODRAM_addr[0])
    608 		panic("Found no (S)DRAM mapped in the bootloader");
    609 	if (first_mapped_DRAM_page_index < 0)
    610 		panic("No DRAM mapped in the bootloader");
    611 }
    612 
    613 
    614 void
    615 create_initial_page_tables(void)
    616 {
    617 	u_long page, section, addr, kpage;
    618 
    619 	/* mark a section by the following bits and domain 0, AP=01, CB=0 */
    620 	/*         A         P         C        B        section
    621 	           domain		*/
    622 	section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) |
    623 	    (0) | (0 << 5);
    624 
    625 	/* first of all a full 1:1 mapping */
    626 	for (page = 0; page < 4*1024; page++)
    627 		initial_page_tables[page] = (page<<20) | section;
    628 
    629 	/*
    630 	 * video memory is mapped 1:1 in the DRAM section or in VRAM
    631 	 * section
    632 	 *
    633 	 * map 1Mb from top of DRAM memory to bottom 1Mb of virtual memmap
    634 	 */
    635 	top_1Mb_dram = (((top_physdram - 1024*1024) >> 20) << 20);
    636 
    637 	initial_page_tables[0] = top_1Mb_dram | section;
    638 
    639 	/*
    640 	 * map 16 Mb of kernel space to KERNEL_BASE
    641 	 * i.e. marks[KERNEL_START]
    642 	 */
    643 	for (page = 0; page < 16; page++) {
    644 		addr  = (kernel_physical_start >> 20) + page;
    645 		kpage = (marks[MARK_START]     >> 20) + page;
    646 		initial_page_tables[kpage] = (addr << 20) | section;
    647 	}
    648 }
    649 
    650 
    651 void
    652 add_pagetables_at_top(void)
    653 {
    654 	int page;
    655 	u_long src, dst, fragaddr;
    656 
    657 	/* Special : destination must be on a 16 Kb boundary */
    658 	/* get 4 pages on the top of the physical memory and copy PT's in it */
    659 	new_L1_pages_phys = top_physdram - 4 * nbpp;
    660 
    661 	/*
    662 	 * If the L1 page tables are not 16 kb aligned, adjust base
    663 	 * until it is
    664 	 */
    665 	while (new_L1_pages_phys & (16*1024-1))
    666 		new_L1_pages_phys -= nbpp;
    667 	if (new_L1_pages_phys & (16*1024-1))
    668 		panic("Paranoia : L1 pages not on 16Kb boundary");
    669 
    670 	dst = new_L1_pages_phys;
    671 	src = (u_long)initial_page_tables;
    672 
    673 	for (page = 0; page < 4; page++) {
    674 		/* get a page for a fragment */
    675 		fragaddr = get_relocated_page(dst, nbpp)->logical;
    676 		memcpy((void *)fragaddr, (void *)src, nbpp);
    677 
    678 		src += nbpp;
    679 		dst += nbpp;
    680 	}
    681 }
    682 
    683 
    684 void
    685 add_initvectors(void)
    686 {
    687 	u_long *pos;
    688 	u_long  vectoraddr, count;
    689 
    690 	/* the top 1Mb of the physical DRAM pages is mapped at address 0 */
    691 	vectoraddr = get_relocated_page(top_1Mb_dram, nbpp)->logical;
    692 
    693 	/* fill the vectors with `movs pc, lr' opcodes */
    694 	pos = (u_long *)vectoraddr; memset(pos, 0, nbpp);
    695 	for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
    696 }
    697 
    698 
    699 void
    700 create_configuration(int argc, char **argv, int start_args)
    701 {
    702 	int   i, root_specified, id_low, id_high;
    703 	char *pos;
    704 
    705 	bconfig_new_phys = kernel_free_vm_start - pv_offset;
    706 	bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
    707 	bconfig = (struct bootconfig *)(bconfig_page->logical);
    708 	kernel_free_vm_start += nbpp;
    709 
    710 	/* get some miscelanious info for the bootblock */
    711 	os_readsysinfo_monitor_info(NULL, &monitor_type, &monitor_sync);
    712 	os_readsysinfo_chip_presence(&ioeb_flags, &superio_flags, &lcd_flags);
    713 	os_readsysinfo_superio_features(&superio_flags_basic,
    714 	    &superio_flags_extra);
    715 	os_readsysinfo_unique_id(&id_low, &id_high);
    716 
    717 	/* fill in the bootconfig *bconfig structure : generic version II */
    718 	memset(bconfig, 0, sizeof(bconfig));
    719 	bconfig->magic		= BOOTCONFIG_MAGIC;
    720 	bconfig->version	= BOOTCONFIG_VERSION;
    721 	strcpy(bconfig->kernelname, booted_file);
    722 
    723 	/*
    724 	 * get the kernel base name and update the RiscOS name to a
    725 	 * Unix name
    726 	 */
    727 	i = strlen(booted_file);
    728 	while (i >= 0 && booted_file[i] != '.') i--;
    729 	if (i) {
    730 		strcpy(bconfig->kernelname, "/");
    731 		strcat(bconfig->kernelname, booted_file+i+1);
    732 	}
    733 
    734 	pos = bconfig->kernelname+1;
    735 	while (*pos) {
    736 		if (*pos == '/') *pos = '.';
    737 		pos++;
    738 	}
    739 
    740 	/* set the machine_id */
    741 	memcpy(&(bconfig->machine_id), &id_low, 4);
    742 
    743 	/* check if the `root' is specified */
    744 	root_specified = 0;
    745 	strcpy(bconfig->args, "");
    746 	for (i = start_args; i < argc; i++) {
    747 		if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
    748 		strcat(bconfig->args, argv[i]);
    749 	}
    750 	if (!root_specified) {
    751 		strcat(bconfig->args, "root=");
    752 		strcat(bconfig->args, DEFAULT_ROOT);
    753 	}
    754 
    755 	/* mark kernel pointers */
    756 	bconfig->kernvirtualbase	= marks[MARK_START];
    757 	bconfig->kernphysicalbase	= kernel_physical_start;
    758 	bconfig->kernsize		= kernel_free_vm_start -
    759 					    marks[MARK_START];
    760 	bconfig->ksym_start		= marks[MARK_SYM];
    761 	bconfig->ksym_end		= marks[MARK_SYM] + marks[MARK_NSYM];
    762 
    763 	/* setup display info */
    764 	bconfig->display_phys		= videomem_start;
    765 	bconfig->display_start		= videomem_start;
    766 	bconfig->display_size		= display_size;
    767 	bconfig->width			= vdu_var(os_MODEVAR_XWIND_LIMIT);
    768 	bconfig->height			= vdu_var(os_MODEVAR_YWIND_LIMIT);
    769 	bconfig->log2_bpp		= vdu_var(os_MODEVAR_LOG2_BPP);
    770 	/* XXX why? better guessing possible? XXX */
    771 	bconfig->framerate		= 56;
    772 
    773 	/* fill in memory info */
    774 	bconfig->pagesize		= nbpp;
    775 	bconfig->drampages		= total_dram_pages +
    776 					    total_podram_pages;	/* XXX */
    777 	bconfig->vrampages		= total_vram_pages;
    778 	bconfig->dramblocks		= dram_blocks + podram_blocks; /*XXX*/
    779 	bconfig->vramblocks		= vram_blocks;
    780 
    781 	for (i = 0; i < dram_blocks; i++) {
    782 		bconfig->dram[i].address = DRAM_addr[i];
    783 		bconfig->dram[i].pages   = DRAM_pages[i];
    784 		bconfig->dram[i].flags   = PHYSMEM_TYPE_GENERIC;
    785 	}
    786 	for (; i < dram_blocks + podram_blocks; i++) {
    787 		bconfig->dram[i].address = PODRAM_addr[i];
    788 		bconfig->dram[i].pages   = PODRAM_pages[i];
    789 		bconfig->dram[i].flags   = PHYSMEM_TYPE_PROCESSOR_ONLY;
    790 	}
    791 	for (i = 0; i < vram_blocks; i++) {
    792 		bconfig->vram[i].address = VRAM_addr[i];
    793 		bconfig->vram[i].pages   = VRAM_pages[i];
    794 		bconfig->vram[i].flags   = PHYSMEM_TYPE_GENERIC;
    795 	}
    796 }
    797 
    798 
    799 int
    800 main(int argc, char **argv)
    801 {
    802 	int howto, start_args, ret;
    803 
    804 	printf("\n\n");
    805 	printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
    806 	printf(">> (%s, %s)\n", bootprog_maker, bootprog_date);
    807 	printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
    808 	printf("\n");
    809 
    810 	process_args(argc, argv, &howto, booted_file, &start_args);
    811 
    812 	printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
    813 
    814 	init_datastructures();
    815 	get_memory_configuration();
    816 	get_memory_map();
    817 
    818 	/*
    819 	 * point to the first free DRAM page guaranteed to be in
    820 	 * strict order up
    821 	 */
    822 	if (first_mapped_PODRAM_page_index) {
    823 		free_relocation_page =
    824 		    mem_pages_info + first_mapped_PODRAM_page_index;
    825 		kernel_physical_start = PODRAM_addr[0];
    826 	} else {
    827 		free_relocation_page =
    828 		    mem_pages_info + first_mapped_DRAM_page_index;
    829 		kernel_physical_start = DRAM_addr[0];
    830 	}
    831 
    832 	printf("\nLoading %s ", booted_file);
    833 
    834 	/* first count the kernel to get the markers */
    835 	ret = loadfile(booted_file, marks, COUNT_KERNEL);
    836 	if (ret == -1) panic("Kernel load failed"); /* lie to the user ... */
    837 	close(ret);
    838 
    839 	/*
    840 	 * calculate how much the difference is between physical and
    841 	 * virtual space for the kernel
    842 	 */
    843 	pv_offset = ((u_long)marks[MARK_START] - kernel_physical_start);
    844 	/* round on a page	*/
    845 	kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1);
    846 
    847 	/* we seem to be forced to clear the marks[] ? */
    848 	bzero(marks, sizeof(marks[MARK_MAX]));
    849 
    850 	/* really load it ! */
    851 	ret = loadfile(booted_file, marks, LOAD_KERNEL);
    852 	if (ret == -1) panic("Kernel load failed");
    853 	close(ret);
    854 
    855 	/* finish off the relocation information */
    856 	create_initial_page_tables();
    857 	add_initvectors();
    858 	add_pagetables_at_top();
    859 	create_configuration(argc, argv, start_args);
    860 
    861 	/*
    862 	 * done relocating and creating information, now update and
    863 	 * check the relocation mechanism
    864 	 */
    865 	prepare_and_check_relocation_system();
    866 
    867 	printf("\nStarting at 0x%lx\n", marks[MARK_ENTRY]);
    868 	printf("Will boot in a few secs due to relocation....\n"
    869 	    "bye bye from RISC OS!");
    870 
    871 	/* dismount all filesystems */
    872 	xosfscontrol_shutdown();
    873 
    874 	/* reset devices, well they try to anyway */
    875 	service_pre_reset();
    876 
    877 	start_kernel(
    878 		/* r0 relocation code page (V)	*/ relocate_code_page->logical,
    879 		/* r1 relocation pv offset	*/
    880 		relocate_code_page->physical-relocate_code_page->logical,
    881 		/* r2 configuration structure	*/ bconfig_new_phys,
    882 		/* r3 relocation table (P)	*/
    883 		relocate_table_pages->physical,	/* one piece! */
    884 		/* r4 L1 page descriptor (P)	*/ new_L1_pages_phys,
    885 		/* r5 kernel entry point	*/ marks[MARK_ENTRY]
    886 	);
    887 	return 0;
    888 }
    889 
    890 
    891 ssize_t
    892 boot32_read(int f, void *addr, size_t size)
    893 {
    894 	caddr_t fragaddr;
    895 	size_t fragsize;
    896 	ssize_t bytes_read, total;
    897 
    898 	/* printf("read at %p for %ld bytes\n", addr, size); */
    899 	total = 0;
    900 	while (size > 0) {
    901 		fragsize = nbpp;		/* select one page	*/
    902 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    903 
    904 		/* get a page for a fragment */
    905 		fragaddr = (caddr_t)get_relocated_page((u_long) addr -
    906 		    pv_offset, fragsize)->logical;
    907 
    908 		bytes_read = read(f, fragaddr, fragsize);
    909 		if (bytes_read < 0) return bytes_read;	/* error!	*/
    910 		total += bytes_read;		/* account read bytes	*/
    911 
    912 		if (bytes_read < fragsize)
    913 			return total;		/* does this happen?	*/
    914 
    915 		size -= fragsize;		/* advance		*/
    916 		addr += fragsize;
    917 	}
    918 	return total;
    919 }
    920 
    921 
    922 void *
    923 boot32_memcpy(void *dst, const void *src, size_t size)
    924 {
    925 	caddr_t fragaddr;
    926 	size_t fragsize;
    927 
    928 	/* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
    929 	while (size > 0) {
    930 		fragsize = nbpp;		/* select one page	*/
    931 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    932 
    933 		/* get a page for a fragment */
    934 		fragaddr = (caddr_t)get_relocated_page((u_long) dst -
    935 		    pv_offset, fragsize)->logical;
    936 		memcpy(fragaddr, src, size);
    937 
    938 		src += fragsize;		/* account copy		*/
    939 		dst += fragsize;
    940 		size-= fragsize;
    941 	}
    942 	return dst;
    943 }
    944 
    945 
    946 void *
    947 boot32_memset(void *dst, int c, size_t size)
    948 {
    949 	caddr_t fragaddr;
    950 	size_t fragsize;
    951 
    952 	/* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
    953 	while (size > 0) {
    954 		fragsize = nbpp;		/* select one page	*/
    955 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    956 
    957 		/* get a page for a fragment */
    958 		fragaddr = (caddr_t)get_relocated_page((u_long)dst - pv_offset,
    959 		    fragsize)->logical;
    960 		memset(fragaddr, c, fragsize);
    961 
    962 		dst += fragsize;		/* account memsetting	*/
    963 		size-= fragsize;
    964 
    965 	}
    966 	return dst;
    967 }
    968 
    969 
    970 /* We can rely on the fact that two entries never have identical ->physical */
    971 int
    972 page_info_cmp(const void *a, const void *b)
    973 {
    974 
    975 	return (((struct page_info *)a)->physical <
    976 	    ((struct page_info *)b)->physical) ? -1 : 1;
    977 }
    978 
    979 struct page_info *
    980 get_relocated_page(u_long destination, int size)
    981 {
    982 	struct page_info *page;
    983 
    984 	/* get a page for a fragment */
    985 	page = free_relocation_page;
    986 	if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages");
    987 	reloc_entries++;
    988 	if (reloc_entries >= MAX_RELOCPAGES)
    989 		panic("\n\nToo many relocations! What are you loading ??");
    990 
    991 	/* record the relocation */
    992 	*reloc_pos++ = free_relocation_page->physical;
    993 	*reloc_pos++ = destination;
    994 	*reloc_pos++ = size;
    995 	free_relocation_page++;			/* advance 		*/
    996 
    997 	return page;
    998 }
    999 
   1000 
   1001 int
   1002 vdu_var(int var)
   1003 {
   1004 	int varlist[2], vallist[2];
   1005 
   1006 	varlist[0] = var;
   1007 	varlist[1] = -1;
   1008 	os_read_vdu_variables(varlist, vallist);
   1009 	return vallist[0];
   1010 }
   1011 
   1012 
   1013 void
   1014 twirl(void)
   1015 {
   1016 
   1017 	printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
   1018 	twirl_cnt++;
   1019 	twirl_cnt &= 3;
   1020 }
   1021 
   1022 
   1023 void
   1024 process_args(int argc, char **argv, int *howto, char *file, int *start_args)
   1025 {
   1026 	int i, j;
   1027 	static char filename[80];
   1028 
   1029 	*howto = 0;
   1030 	*file = NULL; *start_args = 1;
   1031 	for (i = 1; i < argc; i++) {
   1032 		if (argv[i][0] == '-')
   1033 			for (j = 1; argv[i][j]; j++)
   1034 				BOOT_FLAG(argv[i][j], *howto);
   1035 		else {
   1036 			if (*file)
   1037 				*start_args = i;
   1038 			else {
   1039 				strcpy(file, argv[i]);
   1040 				*start_args = i+1;
   1041 			}
   1042 			break;
   1043 		}
   1044 	}
   1045 	if (*file == NULL) {
   1046 		if (*howto & RB_ASKNAME) {
   1047 			printf("boot: ");
   1048 			gets(filename);
   1049 			strcpy(file, filename);
   1050 		} else
   1051 			strcpy(file, "netbsd");
   1052 	}
   1053 }
   1054 
   1055 
   1056 char *
   1057 sprint0(int width, char prefix, char base, int value)
   1058 {
   1059 	static char format[50], scrap[50];
   1060 	char *pos;
   1061 	int length;
   1062 
   1063 	for (pos = format, length = 0; length<width; length++) *pos++ = prefix;
   1064 	*pos++ = '%';
   1065 	*pos++ = base;
   1066 	*pos++ = (char) 0;
   1067 
   1068 	sprintf(scrap, format, value);
   1069 	length = strlen(scrap);
   1070 
   1071 	return scrap+length-width;
   1072 }
   1073 
   1074