Home | History | Annotate | Line # | Download | only in boot32
boot32.c revision 1.30.28.1
      1 /*	$NetBSD: boot32.c,v 1.30.28.1 2008/02/18 21:04:18 mjf Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  *
     29  * Thanks a bunch for Ben's framework for the bootloader and its suporting
     30  * libs. This file tries to actually boot NetBSD/acorn32 !
     31  *
     32  * XXX eventually to be partly merged back with boot26 ? XXX
     33  */
     34 
     35 #include <lib/libsa/stand.h>
     36 #include <lib/libsa/loadfile.h>
     37 #include <lib/libkern/libkern.h>
     38 #include <riscoscalls.h>
     39 #include <srt0.h>
     40 #include <sys/boot_flag.h>
     41 #include <machine/vmparam.h>
     42 #include <arm/arm32/pte.h>
     43 #include <machine/bootconfig.h>
     44 
     45 extern char end[];
     46 
     47 /* debugging flags */
     48 int debug = 1;
     49 
     50 
     51 /* constants */
     52 #define PODRAM_START   (512*1024*1024)		/* XXX Kinetic cards XXX */
     53 
     54 #define MAX_RELOCPAGES	4096
     55 
     56 #define DEFAULT_ROOT	"/dev/wd0a"
     57 
     58 
     59 #define IO_BLOCKS	 16	/* move these to the bootloader structure? */
     60 #define ROM_BLOCKS	 16
     61 #define PODRAM_BLOCKS	 16
     62 
     63 
     64 /* booter variables */
     65 char	 scrap[80], twirl_cnt;		/* misc				*/
     66 char	 booted_file[80];
     67 
     68 struct bootconfig *bconfig;		/* bootconfig passing		*/
     69 u_long	 bconfig_new_phys;		/* physical address its bound	*/
     70 
     71 /* computer knowledge		*/
     72 u_int	 monitor_type, monitor_sync, ioeb_flags, lcd_flags;
     73 u_int	 superio_flags, superio_flags_basic, superio_flags_extra;
     74 
     75 /* sizes			*/
     76 int	 nbpp, memory_table_size, memory_image_size;
     77 /* relocate info		*/
     78 u_long	 reloc_tablesize, *reloc_instruction_table;
     79 u_long	*reloc_pos;			/* current empty entry		*/
     80 int	 reloc_entries;			/* number of relocations	*/
     81 int	 first_mapped_DRAM_page_index;	/* offset in RISC OS blob	*/
     82 int	 first_mapped_PODRAM_page_index;/* offset in RISC OS blob	*/
     83 
     84 struct page_info *mem_pages_info;	/* {nr, virt, phys}*		*/
     85 struct page_info *free_relocation_page;	/* points to the page_info chain*/
     86 struct page_info *relocate_code_page;	/* points to the copied code	*/
     87 struct page_info *bconfig_page;		/* page for passing on settings	*/
     88 
     89 unsigned char *memory_page_types;	/* packed array of 4 bit typeId	*/
     90 
     91 u_long	*initial_page_tables;		/* pagetables to be booted from	*/
     92 
     93 
     94 /* XXX rename *_BLOCKS to MEM_BLOCKS */
     95 /* DRAM/VRAM/ROM/IO info */
     96 /* where the display is		*/
     97 u_long	 videomem_start, videomem_pages, display_size;
     98 
     99 u_long	 pv_offset, top_physdram;	/* kernel_base - phys. diff	*/
    100 u_long	 top_1Mb_dram;			/* the lower mapped top 1Mb	*/
    101 u_long	 new_L1_pages_phys;		/* physical address of L1 pages	*/
    102 
    103 /* for bootconfig passing	*/
    104 u_long	 total_podram_pages, total_dram_pages, total_vram_pages;
    105 int	 dram_blocks, podram_blocks;	/* number of mem. objects/type  */
    106 int	 vram_blocks, rom_blocks, io_blocks;
    107 
    108 u_long	 DRAM_addr[DRAM_BLOCKS],     DRAM_pages[DRAM_BLOCKS];
    109 /* processor only RAM	*/
    110 u_long	 PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS];
    111 u_long	 VRAM_addr[VRAM_BLOCKS],     VRAM_pages[VRAM_BLOCKS];
    112 u_long	 ROM_addr[ROM_BLOCKS],       ROM_pages[ROM_BLOCKS];
    113 u_long	 IO_addr[IO_BLOCKS],         IO_pages[IO_BLOCKS];
    114 
    115 
    116 /* RISC OS memory pages we claimed */
    117 u_long	 firstpage, lastpage, totalpages; /* RISC OS pagecounters	*/
    118 /* RISC OS memory		*/
    119 char	*memory_image, *bottom_memory, *top_memory;
    120 
    121 /* kernel info */
    122 u_long	 marks[MARK_MAX];		/* loader mark pointers 	*/
    123 u_long	 kernel_physical_start;		/* where does it get relocated	*/
    124 u_long	 kernel_free_vm_start;		/* where does the free VM start	*/
    125 /* some free space to mess with	*/
    126 u_long	 scratch_virtualbase, scratch_physicalbase;
    127 
    128 
    129 /* bootprogram identifiers */
    130 extern const char bootprog_rev[];
    131 extern const char bootprog_name[];
    132 extern const char bootprog_date[];
    133 extern const char bootprog_maker[];
    134 
    135 
    136 /* predefines / prototypes */
    137 void	 init_datastructures(void);
    138 void	 get_memory_configuration(void);
    139 void	 get_memory_map(void);
    140 void	 create_initial_page_tables(void);
    141 void	 add_pagetables_at_top(void);
    142 int	 page_info_cmp(const void *a, const void *);
    143 void	 add_initvectors(void);
    144 void	 create_configuration(int argc, char **argv, int start_args);
    145 void	 prepare_and_check_relocation_system(void);
    146 void	 compact_relocations(void);
    147 void	 twirl(void);
    148 int	 vdu_var(int);
    149 void	 process_args(int argc, char **argv, int *howto, char *file,
    150     int *start_args);
    151 
    152 char		 *sprint0(int width, char prefix, char base, int value);
    153 struct page_info *get_relocated_page(u_long destination, int size);
    154 
    155 extern void start_kernel(
    156 		int relocate_code_page,
    157 		int relocation_pv_offset,
    158 		int configuration_structure_in_flat_physical_space,
    159 		int virtual_address_relocation_table,
    160 		int physical_address_of_new_L1_pages,
    161 		int kernel_entry_point
    162 		);	/* asm */
    163 
    164 
    165 /* the loader itself */
    166 void
    167 init_datastructures(void)
    168 {
    169 
    170 	/* Get number of pages and the memorytablesize */
    171 	osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
    172 
    173 	/* Allocate 99% - (small fixed amount) of the heap for memory_image */
    174 	memory_image_size = (int)HIMEM - (int)end - 512 * 1024;
    175 	memory_image_size /= 100;
    176 	memory_image_size *= 99;
    177 	if (memory_image_size <= 256*1024)
    178 		panic("Insufficient memory");
    179 
    180 	memory_image = alloc(memory_image_size);
    181 	if (!memory_image)
    182 		panic("Can't alloc get my memory image ?");
    183 
    184 	bottom_memory = memory_image;
    185 	top_memory    = memory_image + memory_image_size;
    186 
    187 	firstpage  = ((int)bottom_memory / nbpp) + 1;	/* safety */
    188 	lastpage   = ((int)top_memory    / nbpp) - 1;
    189 	totalpages = lastpage - firstpage;
    190 
    191 	printf("Allocated %ld memory pages, each of %d kilobytes.\n\n",
    192 			totalpages, nbpp>>10 );
    193 
    194 	/*
    195 	 * Setup the relocation table. Its a simple array of 3 * 32 bit
    196 	 * entries. The first word in the array is the number of relocations
    197 	 * to be done
    198 	 */
    199 	reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(u_long);
    200 	reloc_instruction_table = alloc(reloc_tablesize);
    201 	if (!reloc_instruction_table)
    202 		panic("Can't alloc my relocate instructions pages");
    203 
    204 	reloc_entries = 0;
    205 	reloc_pos     = reloc_instruction_table;
    206 	*reloc_pos++  = 0;
    207 
    208 	/*
    209 	 * Set up the memory translation info structure. We need to allocate
    210 	 * one more for the end of list marker. See get_memory_map.
    211 	 */
    212 	mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
    213 	if (!mem_pages_info)
    214 		panic("Can't alloc my phys->virt page info");
    215 
    216 	/*
    217 	 * Allocate memory for the memory arrangement table. We use this
    218 	 * structure to retrieve memory page properties to clasify them.
    219 	 */
    220 	memory_page_types = alloc(memory_table_size);
    221 	if (!memory_page_types)
    222 		panic("Can't alloc my memory page type block");
    223 
    224 	/*
    225 	 * Initial page tables is 16 kb per definition since only sections are
    226 	 * used.
    227 	 */
    228 	initial_page_tables = alloc(16*1024);
    229 	if (!initial_page_tables)
    230 		panic("Can't alloc my initial page tables");
    231 }
    232 
    233 void
    234 compact_relocations(void)
    235 {
    236 	u_long *reloc_entry, current_length, length;
    237 	u_long  src, destination, current_src, current_destination;
    238 	u_long *current_entry;
    239 
    240 	current_entry = reloc_entry = reloc_instruction_table + 1;
    241 
    242 	/* prime the loop */
    243 	current_src		= reloc_entry[0];
    244 	current_destination	= reloc_entry[1];
    245 	current_length		= reloc_entry[2];
    246 
    247 	reloc_entry += 3;
    248 	while (reloc_entry < reloc_pos) {
    249 		src         = reloc_entry[0];
    250 		destination = reloc_entry[1];
    251 		length      = reloc_entry[2];
    252 
    253 		if (src == (current_src + current_length) &&
    254 		    destination == (current_destination + current_length)) {
    255 			/* can merge */
    256 			current_length += length;
    257 		} else {
    258 			/* nothing else to do, so save the length */
    259 			current_entry[2] = current_length;
    260 			/* fill in next entry */
    261 			current_entry += 3;
    262 			current_src = current_entry[0] = src;
    263 			current_destination = current_entry[1] = destination;
    264 			current_length = length;
    265 		}
    266 		reloc_entry += 3;
    267 	}
    268 	/* save last length */
    269 	current_entry[2] = current_length;
    270 	current_entry += 3;
    271 
    272 	/* workout new count of entries */
    273 	length = current_entry - (reloc_instruction_table + 1);
    274 	printf("Compacted relocations from %d entries to %ld\n",
    275 		       reloc_entries, length/3);
    276 
    277 	/* update table to reflect new size */
    278 	reloc_entries = length/3;
    279 	reloc_instruction_table[0] = length/3;
    280 	reloc_pos = current_entry;
    281 }
    282 
    283 void
    284 get_memory_configuration(void)
    285 {
    286 	int loop, current_page_type, page_count, phys_page;
    287 	int page, count, bank, top_bank, video_bank;
    288 	int mapped_screen_memory;
    289 	int one_mb_pages;
    290 	u_long top;
    291 
    292 	printf("Getting memory configuration ");
    293 
    294 	osmemory_read_arrangement_table(memory_page_types);
    295 
    296 	/* init counters */
    297 	bank = vram_blocks = dram_blocks = rom_blocks = io_blocks =
    298 	    podram_blocks = 0;
    299 
    300 	current_page_type = -1;
    301 	phys_page = 0;			/* physical address in pages	*/
    302 	page_count = 0;			/* page counter in this block	*/
    303 	loop = 0;			/* loop variable over entries	*/
    304 
    305 	/* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
    306 	while (loop < 2*memory_table_size) {
    307 		page = memory_page_types[loop / 2];	/* read	twice */
    308 		if (loop & 1) page >>= 4;		/* take other nibble */
    309 
    310 		/*
    311 		 * bits 0-2 give type, bit3 means the bit page is
    312 		 * allocatable
    313 		 */
    314 		page &= 0x7;			/* only take bottom 3 bits */
    315 		if (page != current_page_type) {
    316 			/* passed a boundary ... note this block	   */
    317 			/*
    318 			 * splitting in different vars is for
    319 			 * compatability reasons
    320 			 */
    321 			switch (current_page_type) {
    322 			case -1:
    323 			case  0:
    324 				break;
    325 			case osmemory_TYPE_DRAM:
    326 				if ((phys_page * nbpp)< PODRAM_START) {
    327 					DRAM_addr[dram_blocks]  =
    328 					    phys_page * nbpp;
    329 					DRAM_pages[dram_blocks] =
    330 					    page_count;
    331 					dram_blocks++;
    332 				} else {
    333 					PODRAM_addr[podram_blocks]  =
    334 					    phys_page * nbpp;
    335 					PODRAM_pages[podram_blocks] =
    336 					    page_count;
    337 					podram_blocks++;
    338 				}
    339 				break;
    340 			case osmemory_TYPE_VRAM:
    341 				VRAM_addr[vram_blocks]  = phys_page * nbpp;
    342 				VRAM_pages[vram_blocks] = page_count;
    343 				vram_blocks++;
    344 				break;
    345 			case osmemory_TYPE_ROM:
    346 				ROM_addr[rom_blocks]  = phys_page * nbpp;
    347 				ROM_pages[rom_blocks] = page_count;
    348 				rom_blocks++;
    349 				break;
    350 			case osmemory_TYPE_IO:
    351 				IO_addr[io_blocks]  = phys_page * nbpp;
    352 				IO_pages[io_blocks] = page_count;
    353 				io_blocks++;
    354 				break;
    355 			default:
    356 				printf("WARNING : found unknown "
    357 				    "memory object %d ", current_page_type);
    358 				printf(" at 0x%s",
    359 				    sprint0(8,'0','x', phys_page * nbpp));
    360 				printf(" for %s k\n",
    361 				    sprint0(5,' ','d', (page_count*nbpp)>>10));
    362 				break;
    363 			}
    364 			current_page_type = page;
    365 			phys_page = loop;
    366 			page_count = 0;
    367 		}
    368 		/*
    369 		 * smallest unit we recognise is one page ... silly
    370 		 * could be upto 64 pages i.e. 256 kb
    371 		 */
    372 		page_count += 1;
    373 		loop       += 1;
    374 		if ((loop & 31) == 0) twirl();
    375 	}
    376 
    377 	printf(" \n\n");
    378 
    379 	if (VRAM_pages[0] == 0) {
    380 		/* map DRAM as video memory */
    381 		display_size	 =
    382 		    vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1);
    383 #if 0
    384 		mapped_screen_memory = 1024 * 1024; /* max allowed on RiscPC */
    385 		videomem_pages   = (mapped_screen_memory / nbpp);
    386 		videomem_start   = DRAM_addr[0];
    387 		DRAM_addr[0]	+= videomem_pages * nbpp;
    388 		DRAM_pages[0]	-= videomem_pages;
    389 #else
    390 		mapped_screen_memory = display_size;
    391 		videomem_pages   = mapped_screen_memory / nbpp;
    392 		one_mb_pages	 = (1024*1024)/nbpp;
    393 
    394 		/*
    395 		 * OK... we need one Mb at the top for compliance with current
    396 		 * kernel structure. This ought to be abolished one day IMHO.
    397 		 * Also we have to take care that the kernel needs to be in
    398 		 * DRAM0a and even has to start there.
    399 		 * XXX one Mb simms are the smallest supported XXX
    400 		 */
    401 		top_bank = dram_blocks-1;
    402 		video_bank = top_bank;
    403 		if (DRAM_pages[top_bank] == one_mb_pages) video_bank--;
    404 
    405 		if (DRAM_pages[video_bank] < videomem_pages)
    406 			panic("Weird memory configuration found; please "
    407 			    "contact acorn32 portmaster.");
    408 
    409 		/* split off the top 1Mb */
    410 		DRAM_addr [top_bank+1]  = DRAM_addr[top_bank] +
    411 		    (DRAM_pages[top_bank] - one_mb_pages)*nbpp;
    412 		DRAM_pages[top_bank+1]  = one_mb_pages;
    413 		DRAM_pages[top_bank  ] -= one_mb_pages;
    414 		dram_blocks++;
    415 
    416 		/* Map video memory at the end of the choosen DIMM */
    417 		videomem_start          = DRAM_addr[video_bank] +
    418 		    (DRAM_pages[video_bank] - videomem_pages)*nbpp;
    419 		DRAM_pages[video_bank] -= videomem_pages;
    420 
    421 		/* sanity */
    422 		if (DRAM_pages[top_bank] == 0) {
    423 			DRAM_addr [top_bank] = DRAM_addr [top_bank+1];
    424 			DRAM_pages[top_bank] = DRAM_pages[top_bank+1];
    425 			dram_blocks--;
    426 		}
    427 #endif
    428 	} else {
    429 		/* use VRAM */
    430 		mapped_screen_memory = 0;
    431 		videomem_start	 = VRAM_addr[0];
    432 		videomem_pages	 = VRAM_pages[0];
    433 		display_size	 = videomem_pages * nbpp;
    434 	}
    435 
    436 	if (mapped_screen_memory) {
    437 		printf("Used %d kb DRAM ", mapped_screen_memory / 1024);
    438 		printf("at 0x%s for video memory\n",
    439 		    sprint0(8,'0','x', videomem_start));
    440 	}
    441 
    442 	/* find top of (PO)DRAM pages */
    443 	top_physdram = 0;
    444 	for (loop = 0; loop < podram_blocks; loop++) {
    445 		top = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
    446 		if (top > top_physdram) top_physdram = top;
    447 	}
    448 	for (loop = 0; loop < dram_blocks; loop++) {
    449 		top = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
    450 		if (top > top_physdram) top_physdram = top;
    451 	}
    452 	if (top_physdram == 0)
    453 		panic("reality check: No DRAM in this machine?");
    454 	if (((top_physdram >> 20) << 20) != top_physdram)
    455 		panic("Top is not not aligned on a Mb; "
    456 		    "remove very small DIMMS?");
    457 
    458 	/* pretty print the individual page types */
    459 	for (count = 0; count < rom_blocks; count++) {
    460 		printf("Found ROM  (%d)", count);
    461 		printf(" at 0x%s", sprint0(8,'0','x', ROM_addr[count]));
    462 		printf(" for %s k\n",
    463 		    sprint0(5,' ','d', (ROM_pages[count]*nbpp)>>10));
    464 	}
    465 
    466 	for (count = 0; count < io_blocks; count++) {
    467 		printf("Found I/O  (%d)", count);
    468 		printf(" at 0x%s", sprint0(8,'0','x', IO_addr[count]));
    469 		printf(" for %s k\n",
    470 		    sprint0(5,' ','d', (IO_pages[count]*nbpp)>>10));
    471 	}
    472 
    473 	/* for DRAM/VRAM also count the number of pages */
    474 	total_dram_pages = 0;
    475 	for (count = 0; count < dram_blocks; count++) {
    476 		total_dram_pages += DRAM_pages[count];
    477 		printf("Found DRAM (%d)", count);
    478 		printf(" at 0x%s", sprint0(8,'0','x', DRAM_addr[count]));
    479 		printf(" for %s k\n",
    480 		    sprint0(5,' ','d', (DRAM_pages[count]*nbpp)>>10));
    481 	}
    482 
    483 	total_vram_pages = 0;
    484 	for (count = 0; count < vram_blocks; count++) {
    485 		total_vram_pages += VRAM_pages[count];
    486 		printf("Found VRAM (%d)", count);
    487 		printf(" at 0x%s", sprint0(8,'0','x', VRAM_addr[count]));
    488 		printf(" for %s k\n",
    489 		    sprint0(5,' ','d', (VRAM_pages[count]*nbpp)>>10));
    490 	}
    491 
    492 	total_podram_pages = 0;
    493 	for (count = 0; count < podram_blocks; count++) {
    494 		total_podram_pages += PODRAM_pages[count];
    495 		printf("Found Processor only (S)DRAM (%d)", count);
    496 		printf(" at 0x%s", sprint0(8,'0','x', PODRAM_addr[count]));
    497 		printf(" for %s k\n",
    498 		    sprint0(5,' ','d', (PODRAM_pages[count]*nbpp)>>10));
    499 	}
    500 }
    501 
    502 
    503 void
    504 get_memory_map(void)
    505 {
    506 	struct page_info *page_info;
    507 	int	page, inout;
    508 	int	phys_addr;
    509 
    510 	printf("\nGetting actual memorymapping");
    511 	for (page = 0, page_info = mem_pages_info;
    512 	     page < totalpages;
    513 	     page++, page_info++) {
    514 		page_info->pagenumber = 0;	/* not used */
    515 		page_info->logical    = (firstpage + page) * nbpp;
    516 		page_info->physical   = 0;	/* result comes here */
    517 		/* to avoid triggering a `bug' in RISC OS 4, page it in */
    518 		*((int *)page_info->logical) = 0;
    519 	}
    520 	/* close list */
    521 	page_info->pagenumber = -1;
    522 
    523 	inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO |
    524 	    osmemory_RETURN_PHYS_ADDR;
    525 	osmemory_page_op(inout, mem_pages_info, totalpages);
    526 
    527 	printf(" ; sorting ");
    528 	qsort(mem_pages_info, totalpages, sizeof(struct page_info),
    529 	    &page_info_cmp);
    530 	printf(".\n");
    531 
    532 	/*
    533 	 * get the first DRAM index and show the physical memory
    534 	 * fragments we got
    535 	 */
    536 	printf("\nFound physical memory blocks :\n");
    537 	first_mapped_DRAM_page_index = -1;
    538 	first_mapped_PODRAM_page_index = -1;
    539 	for (page=0; page < totalpages; page++) {
    540 		phys_addr = mem_pages_info[page].physical;
    541 		printf("[0x%x", phys_addr);
    542 		while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
    543 			if (first_mapped_DRAM_page_index < 0 &&
    544 			    phys_addr >= DRAM_addr[0])
    545 				first_mapped_DRAM_page_index = page;
    546 			if (first_mapped_PODRAM_page_index < 0 &&
    547 			    phys_addr >= PODRAM_addr[0])
    548 				first_mapped_PODRAM_page_index = page;
    549 			page++;
    550 			phys_addr = mem_pages_info[page].physical;
    551 		}
    552 		printf("-0x%x]  ", phys_addr + nbpp -1);
    553 	}
    554 	printf("\n\n");
    555 
    556 	if (first_mapped_PODRAM_page_index < 0 && PODRAM_addr[0])
    557 		panic("Found no (S)DRAM mapped in the bootloader");
    558 	if (first_mapped_DRAM_page_index < 0)
    559 		panic("No DRAM mapped in the bootloader");
    560 }
    561 
    562 
    563 void
    564 create_initial_page_tables(void)
    565 {
    566 	u_long page, section, addr, kpage;
    567 
    568 	/* mark a section by the following bits and domain 0, AP=01, CB=0 */
    569 	/*         A         P         C        B        section
    570 	           domain		*/
    571 	section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) |
    572 	    (0) | (0 << 5);
    573 
    574 	/* first of all a full 1:1 mapping */
    575 	for (page = 0; page < 4*1024; page++)
    576 		initial_page_tables[page] = (page<<20) | section;
    577 
    578 	/*
    579 	 * video memory is mapped 1:1 in the DRAM section or in VRAM
    580 	 * section
    581 	 *
    582 	 * map 1Mb from top of DRAM memory to bottom 1Mb of virtual memmap
    583 	 */
    584 	top_1Mb_dram = (((top_physdram - 1024*1024) >> 20) << 20);
    585 
    586 	initial_page_tables[0] = top_1Mb_dram | section;
    587 
    588 	/*
    589 	 * map 16 Mb of kernel space to KERNEL_BASE
    590 	 * i.e. marks[KERNEL_START]
    591 	 */
    592 	for (page = 0; page < 16; page++) {
    593 		addr  = (kernel_physical_start >> 20) + page;
    594 		kpage = (marks[MARK_START]     >> 20) + page;
    595 		initial_page_tables[kpage] = (addr << 20) | section;
    596 	}
    597 }
    598 
    599 
    600 void
    601 add_pagetables_at_top(void)
    602 {
    603 	int page;
    604 	u_long src, dst, fragaddr;
    605 
    606 	/* Special : destination must be on a 16 Kb boundary */
    607 	/* get 4 pages on the top of the physical memory and copy PT's in it */
    608 	new_L1_pages_phys = top_physdram - 4 * nbpp;
    609 
    610 	/*
    611 	 * If the L1 page tables are not 16 kb aligned, adjust base
    612 	 * until it is
    613 	 */
    614 	while (new_L1_pages_phys & (16*1024-1))
    615 		new_L1_pages_phys -= nbpp;
    616 	if (new_L1_pages_phys & (16*1024-1))
    617 		panic("Paranoia : L1 pages not on 16Kb boundary");
    618 
    619 	dst = new_L1_pages_phys;
    620 	src = (u_long)initial_page_tables;
    621 
    622 	for (page = 0; page < 4; page++) {
    623 		/* get a page for a fragment */
    624 		fragaddr = get_relocated_page(dst, nbpp)->logical;
    625 		memcpy((void *)fragaddr, (void *)src, nbpp);
    626 
    627 		src += nbpp;
    628 		dst += nbpp;
    629 	}
    630 }
    631 
    632 
    633 void
    634 add_initvectors(void)
    635 {
    636 	u_long *pos;
    637 	u_long  vectoraddr, count;
    638 
    639 	/* the top 1Mb of the physical DRAM pages is mapped at address 0 */
    640 	vectoraddr = get_relocated_page(top_1Mb_dram, nbpp)->logical;
    641 
    642 	/* fill the vectors with `movs pc, lr' opcodes */
    643 	pos = (u_long *)vectoraddr; memset(pos, 0, nbpp);
    644 	for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
    645 }
    646 
    647 /*
    648  * Work out the display's vertical sync rate.  One might hope that there
    649  * would be a simpler way than by counting vsync interrupts for a second,
    650  * but if there is, I can't find it.
    651  */
    652 static int
    653 vsync_rate(void)
    654 {
    655 	uint8_t count0;
    656 	unsigned int time0;
    657 
    658 	count0 = osbyte_read(osbyte_VAR_VSYNC_TIMER);
    659 	time0 = os_read_monotonic_time();
    660 	while (os_read_monotonic_time() - time0 < 100)
    661 		continue;
    662 	return (u_int8_t)(count0 - osbyte_read(osbyte_VAR_VSYNC_TIMER));
    663 }
    664 
    665 void
    666 create_configuration(int argc, char **argv, int start_args)
    667 {
    668 	int   i, root_specified, id_low, id_high;
    669 	char *pos;
    670 
    671 	bconfig_new_phys = kernel_free_vm_start - pv_offset;
    672 	bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
    673 	bconfig = (struct bootconfig *)(bconfig_page->logical);
    674 	kernel_free_vm_start += nbpp;
    675 
    676 	/* get some miscelanious info for the bootblock */
    677 	os_readsysinfo_monitor_info(NULL, (int *)&monitor_type, (int *)&monitor_sync);
    678 	os_readsysinfo_chip_presence((int *)&ioeb_flags, (int *)&superio_flags, (int *)&lcd_flags);
    679 	os_readsysinfo_superio_features((int *)&superio_flags_basic,
    680 	    (int *)&superio_flags_extra);
    681 	os_readsysinfo_unique_id(&id_low, &id_high);
    682 
    683 	/* fill in the bootconfig *bconfig structure : generic version II */
    684 	memset(bconfig, 0, sizeof(*bconfig));
    685 	bconfig->magic		= BOOTCONFIG_MAGIC;
    686 	bconfig->version	= BOOTCONFIG_VERSION;
    687 	strcpy(bconfig->kernelname, booted_file);
    688 
    689 	/*
    690 	 * get the kernel base name and update the RiscOS name to a
    691 	 * Unix name
    692 	 */
    693 	i = strlen(booted_file);
    694 	while (i >= 0 && booted_file[i] != '.') i--;
    695 	if (i) {
    696 		strcpy(bconfig->kernelname, "/");
    697 		strcat(bconfig->kernelname, booted_file+i+1);
    698 	}
    699 
    700 	pos = bconfig->kernelname+1;
    701 	while (*pos) {
    702 		if (*pos == '/') *pos = '.';
    703 		pos++;
    704 	}
    705 
    706 	/* set the machine_id */
    707 	memcpy(&(bconfig->machine_id), &id_low, 4);
    708 
    709 	/* check if the `root' is specified */
    710 	root_specified = 0;
    711 	strcpy(bconfig->args, "");
    712 	for (i = start_args; i < argc; i++) {
    713 		if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
    714 		strcat(bconfig->args, argv[i]);
    715 	}
    716 	if (!root_specified) {
    717 		strcat(bconfig->args, "root=");
    718 		strcat(bconfig->args, DEFAULT_ROOT);
    719 	}
    720 
    721 	/* mark kernel pointers */
    722 	bconfig->kernvirtualbase	= marks[MARK_START];
    723 	bconfig->kernphysicalbase	= kernel_physical_start;
    724 	bconfig->kernsize		= kernel_free_vm_start -
    725 					    marks[MARK_START];
    726 	bconfig->ksym_start		= marks[MARK_SYM];
    727 	bconfig->ksym_end		= marks[MARK_SYM] + marks[MARK_NSYM];
    728 
    729 	/* setup display info */
    730 	bconfig->display_phys		= videomem_start;
    731 	bconfig->display_start		= videomem_start;
    732 	bconfig->display_size		= display_size;
    733 	bconfig->width			= vdu_var(os_MODEVAR_XWIND_LIMIT);
    734 	bconfig->height			= vdu_var(os_MODEVAR_YWIND_LIMIT);
    735 	bconfig->log2_bpp		= vdu_var(os_MODEVAR_LOG2_BPP);
    736 	bconfig->framerate		= vsync_rate();
    737 
    738 	/* fill in memory info */
    739 	bconfig->pagesize		= nbpp;
    740 	bconfig->drampages		= total_dram_pages +
    741 					    total_podram_pages;	/* XXX */
    742 	bconfig->vrampages		= total_vram_pages;
    743 	bconfig->dramblocks		= dram_blocks + podram_blocks; /*XXX*/
    744 	bconfig->vramblocks		= vram_blocks;
    745 
    746 	for (i = 0; i < dram_blocks; i++) {
    747 		bconfig->dram[i].address = DRAM_addr[i];
    748 		bconfig->dram[i].pages   = DRAM_pages[i];
    749 		bconfig->dram[i].flags   = PHYSMEM_TYPE_GENERIC;
    750 	}
    751 	for (; i < dram_blocks + podram_blocks; i++) {
    752 		bconfig->dram[i].address = PODRAM_addr[i-dram_blocks];
    753 		bconfig->dram[i].pages   = PODRAM_pages[i-dram_blocks];
    754 		bconfig->dram[i].flags   = PHYSMEM_TYPE_PROCESSOR_ONLY;
    755 	}
    756 	for (i = 0; i < vram_blocks; i++) {
    757 		bconfig->vram[i].address = VRAM_addr[i];
    758 		bconfig->vram[i].pages   = VRAM_pages[i];
    759 		bconfig->vram[i].flags   = PHYSMEM_TYPE_GENERIC;
    760 	}
    761 }
    762 
    763 
    764 int
    765 main(int argc, char **argv)
    766 {
    767 	int howto, start_args, ret;
    768 
    769 	printf("\n\n");
    770 	printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
    771 	printf(">> (%s, %s)\n", bootprog_maker, bootprog_date);
    772 	printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
    773 	printf("\n");
    774 
    775 	process_args(argc, argv, &howto, booted_file, &start_args);
    776 
    777 	printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
    778 
    779 	init_datastructures();
    780 	get_memory_configuration();
    781 	get_memory_map();
    782 
    783 	/*
    784 	 * point to the first free DRAM page guaranteed to be in
    785 	 * strict order up
    786 	 */
    787 	if (podram_blocks != 0) {
    788 		free_relocation_page =
    789 		    mem_pages_info + first_mapped_PODRAM_page_index;
    790 		kernel_physical_start = PODRAM_addr[0];
    791 	} else {
    792 		free_relocation_page =
    793 		    mem_pages_info + first_mapped_DRAM_page_index;
    794 		kernel_physical_start = DRAM_addr[0];
    795 	}
    796 
    797 	printf("\nLoading %s ", booted_file);
    798 
    799 	/* first count the kernel to get the markers */
    800 	ret = loadfile(booted_file, marks, COUNT_KERNEL);
    801 	if (ret == -1) panic("Kernel load failed"); /* lie to the user ... */
    802 	close(ret);
    803 
    804 	/*
    805 	 * calculate how much the difference is between physical and
    806 	 * virtual space for the kernel
    807 	 */
    808 	pv_offset = ((u_long)marks[MARK_START] - kernel_physical_start);
    809 	/* round on a page	*/
    810 	kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1);
    811 
    812 	/* we seem to be forced to clear the marks[] ? */
    813 	bzero(marks, sizeof(marks));
    814 
    815 	/* really load it ! */
    816 	ret = loadfile(booted_file, marks, LOAD_KERNEL);
    817 	if (ret == -1) panic("Kernel load failed");
    818 	close(ret);
    819 
    820 	/* finish off the relocation information */
    821 	create_initial_page_tables();
    822 	add_initvectors();
    823 	add_pagetables_at_top();
    824 	create_configuration(argc, argv, start_args);
    825 
    826 	/*
    827 	 * done relocating and creating information, now update and
    828 	 * check the relocation mechanism
    829 	 */
    830 	compact_relocations();
    831 
    832 	/*
    833 	 * grab a page to copy the bootstrap code into
    834 	 */
    835 	relocate_code_page = free_relocation_page++;
    836 
    837 	printf("\nStarting at 0x%lx, p@0x%lx\n", marks[MARK_ENTRY], kernel_physical_start);
    838 	printf("%ld entries, first one is 0x%lx->0x%lx for %lx bytes\n",
    839 			reloc_instruction_table[0],
    840 			reloc_instruction_table[1],
    841 			reloc_instruction_table[2],
    842 			reloc_instruction_table[3]);
    843 
    844 	printf("Will boot in a few secs due to relocation....\n"
    845 	    "bye bye from RISC OS!");
    846 
    847 	/* dismount all filesystems */
    848 	xosfscontrol_shutdown();
    849 
    850 	/* reset devices, well they try to anyway */
    851 	service_pre_reset();
    852 
    853 	start_kernel(
    854 		/* r0 relocation code page (V)	*/ relocate_code_page->logical,
    855 		/* r1 relocation pv offset	*/
    856 		relocate_code_page->physical-relocate_code_page->logical,
    857 		/* r2 configuration structure	*/ bconfig_new_phys,
    858 		/* r3 relocation table (l)	*/
    859 		(int)reloc_instruction_table,	/* one piece! */
    860 		/* r4 L1 page descriptor (P)	*/ new_L1_pages_phys,
    861 		/* r5 kernel entry point	*/ marks[MARK_ENTRY]
    862 	);
    863 	return 0;
    864 }
    865 
    866 
    867 ssize_t
    868 boot32_read(int f, void *addr, size_t size)
    869 {
    870 	void *fragaddr;
    871 	size_t fragsize;
    872 	ssize_t bytes_read, total;
    873 
    874 	/* printf("read at %p for %ld bytes\n", addr, size); */
    875 	total = 0;
    876 	while (size > 0) {
    877 		fragsize = nbpp;		/* select one page	*/
    878 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    879 
    880 		/* get a page for a fragment */
    881 		fragaddr = (void *)get_relocated_page((u_long) addr -
    882 		    pv_offset, fragsize)->logical;
    883 
    884 		bytes_read = read(f, fragaddr, fragsize);
    885 		if (bytes_read < 0) return bytes_read;	/* error!	*/
    886 		total += bytes_read;		/* account read bytes	*/
    887 
    888 		if (bytes_read < fragsize)
    889 			return total;		/* does this happen?	*/
    890 
    891 		size -= fragsize;		/* advance		*/
    892 		addr += fragsize;
    893 	}
    894 	return total;
    895 }
    896 
    897 
    898 void *
    899 boot32_memcpy(void *dst, const void *src, size_t size)
    900 {
    901 	void *fragaddr;
    902 	size_t fragsize;
    903 
    904 	/* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
    905 	while (size > 0) {
    906 		fragsize = nbpp;		/* select one page	*/
    907 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    908 
    909 		/* get a page for a fragment */
    910 		fragaddr = (void *)get_relocated_page((u_long) dst -
    911 		    pv_offset, fragsize)->logical;
    912 		memcpy(fragaddr, src, size);
    913 
    914 		src += fragsize;		/* account copy		*/
    915 		dst += fragsize;
    916 		size-= fragsize;
    917 	}
    918 	return dst;
    919 }
    920 
    921 
    922 void *
    923 boot32_memset(void *dst, int c, size_t size)
    924 {
    925 	void *fragaddr;
    926 	size_t fragsize;
    927 
    928 	/* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
    929 	while (size > 0) {
    930 		fragsize = nbpp;		/* select one page	*/
    931 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    932 
    933 		/* get a page for a fragment */
    934 		fragaddr = (void *)get_relocated_page((u_long)dst - pv_offset,
    935 		    fragsize)->logical;
    936 		memset(fragaddr, c, fragsize);
    937 
    938 		dst += fragsize;		/* account memsetting	*/
    939 		size-= fragsize;
    940 
    941 	}
    942 	return dst;
    943 }
    944 
    945 
    946 /* We can rely on the fact that two entries never have identical ->physical */
    947 int
    948 page_info_cmp(const void *a, const void *b)
    949 {
    950 
    951 	return (((struct page_info *)a)->physical <
    952 	    ((struct page_info *)b)->physical) ? -1 : 1;
    953 }
    954 
    955 struct page_info *
    956 get_relocated_page(u_long destination, int size)
    957 {
    958 	struct page_info *page;
    959 
    960 	/* get a page for a fragment */
    961 	page = free_relocation_page;
    962 	if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages");
    963 	reloc_entries++;
    964 	if (reloc_entries >= MAX_RELOCPAGES)
    965 		panic("\n\nToo many relocations! What are you loading ??");
    966 
    967 	/* record the relocation */
    968 	if (free_relocation_page->physical & 0x3)
    969 		panic("\n\nphysical address is not aligned!");
    970 
    971 	if (destination & 0x3)
    972 		panic("\n\ndestination address is not aligned!");
    973 
    974 	if (size & 0x3)
    975 		panic("\n\nsize is not aligned!");
    976 
    977 	*reloc_pos++ = free_relocation_page->physical;
    978 	*reloc_pos++ = destination;
    979 	*reloc_pos++ = size;
    980 	free_relocation_page++;			/* advance 		*/
    981 
    982 	return page;
    983 }
    984 
    985 
    986 int
    987 vdu_var(int var)
    988 {
    989 	int varlist[2], vallist[2];
    990 
    991 	varlist[0] = var;
    992 	varlist[1] = -1;
    993 	os_read_vdu_variables(varlist, vallist);
    994 	return vallist[0];
    995 }
    996 
    997 
    998 void
    999 twirl(void)
   1000 {
   1001 
   1002 	printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
   1003 	twirl_cnt++;
   1004 	twirl_cnt &= 3;
   1005 }
   1006 
   1007 
   1008 void
   1009 process_args(int argc, char **argv, int *howto, char *file, int *start_args)
   1010 {
   1011 	int i, j;
   1012 	static char filename[80];
   1013 
   1014 	*howto = 0;
   1015 	*file = NULL; *start_args = 1;
   1016 	for (i = 1; i < argc; i++) {
   1017 		if (argv[i][0] == '-')
   1018 			for (j = 1; argv[i][j]; j++)
   1019 				BOOT_FLAG(argv[i][j], *howto);
   1020 		else {
   1021 			if (*file)
   1022 				*start_args = i;
   1023 			else {
   1024 				strcpy(file, argv[i]);
   1025 				*start_args = i+1;
   1026 			}
   1027 			break;
   1028 		}
   1029 	}
   1030 	if (*file == NULL) {
   1031 		if (*howto & RB_ASKNAME) {
   1032 			printf("boot: ");
   1033 			gets(filename);
   1034 			strcpy(file, filename);
   1035 		} else
   1036 			strcpy(file, "netbsd");
   1037 	}
   1038 }
   1039 
   1040 
   1041 char *
   1042 sprint0(int width, char prefix, char base, int value)
   1043 {
   1044 	static char format[50], scrap[50];
   1045 	char *pos;
   1046 	int length;
   1047 
   1048 	for (pos = format, length = 0; length<width; length++) *pos++ = prefix;
   1049 	*pos++ = '%';
   1050 	*pos++ = base;
   1051 	*pos++ = (char) 0;
   1052 
   1053 	sprintf(scrap, format, value);
   1054 	length = strlen(scrap);
   1055 
   1056 	return scrap+length-width;
   1057 }
   1058 
   1059