boot32.c revision 1.30.28.1 1 /* $NetBSD: boot32.c,v 1.30.28.1 2008/02/18 21:04:18 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 2002 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Thanks a bunch for Ben's framework for the bootloader and its suporting
30 * libs. This file tries to actually boot NetBSD/acorn32 !
31 *
32 * XXX eventually to be partly merged back with boot26 ? XXX
33 */
34
35 #include <lib/libsa/stand.h>
36 #include <lib/libsa/loadfile.h>
37 #include <lib/libkern/libkern.h>
38 #include <riscoscalls.h>
39 #include <srt0.h>
40 #include <sys/boot_flag.h>
41 #include <machine/vmparam.h>
42 #include <arm/arm32/pte.h>
43 #include <machine/bootconfig.h>
44
45 extern char end[];
46
47 /* debugging flags */
48 int debug = 1;
49
50
51 /* constants */
52 #define PODRAM_START (512*1024*1024) /* XXX Kinetic cards XXX */
53
54 #define MAX_RELOCPAGES 4096
55
56 #define DEFAULT_ROOT "/dev/wd0a"
57
58
59 #define IO_BLOCKS 16 /* move these to the bootloader structure? */
60 #define ROM_BLOCKS 16
61 #define PODRAM_BLOCKS 16
62
63
64 /* booter variables */
65 char scrap[80], twirl_cnt; /* misc */
66 char booted_file[80];
67
68 struct bootconfig *bconfig; /* bootconfig passing */
69 u_long bconfig_new_phys; /* physical address its bound */
70
71 /* computer knowledge */
72 u_int monitor_type, monitor_sync, ioeb_flags, lcd_flags;
73 u_int superio_flags, superio_flags_basic, superio_flags_extra;
74
75 /* sizes */
76 int nbpp, memory_table_size, memory_image_size;
77 /* relocate info */
78 u_long reloc_tablesize, *reloc_instruction_table;
79 u_long *reloc_pos; /* current empty entry */
80 int reloc_entries; /* number of relocations */
81 int first_mapped_DRAM_page_index; /* offset in RISC OS blob */
82 int first_mapped_PODRAM_page_index;/* offset in RISC OS blob */
83
84 struct page_info *mem_pages_info; /* {nr, virt, phys}* */
85 struct page_info *free_relocation_page; /* points to the page_info chain*/
86 struct page_info *relocate_code_page; /* points to the copied code */
87 struct page_info *bconfig_page; /* page for passing on settings */
88
89 unsigned char *memory_page_types; /* packed array of 4 bit typeId */
90
91 u_long *initial_page_tables; /* pagetables to be booted from */
92
93
94 /* XXX rename *_BLOCKS to MEM_BLOCKS */
95 /* DRAM/VRAM/ROM/IO info */
96 /* where the display is */
97 u_long videomem_start, videomem_pages, display_size;
98
99 u_long pv_offset, top_physdram; /* kernel_base - phys. diff */
100 u_long top_1Mb_dram; /* the lower mapped top 1Mb */
101 u_long new_L1_pages_phys; /* physical address of L1 pages */
102
103 /* for bootconfig passing */
104 u_long total_podram_pages, total_dram_pages, total_vram_pages;
105 int dram_blocks, podram_blocks; /* number of mem. objects/type */
106 int vram_blocks, rom_blocks, io_blocks;
107
108 u_long DRAM_addr[DRAM_BLOCKS], DRAM_pages[DRAM_BLOCKS];
109 /* processor only RAM */
110 u_long PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS];
111 u_long VRAM_addr[VRAM_BLOCKS], VRAM_pages[VRAM_BLOCKS];
112 u_long ROM_addr[ROM_BLOCKS], ROM_pages[ROM_BLOCKS];
113 u_long IO_addr[IO_BLOCKS], IO_pages[IO_BLOCKS];
114
115
116 /* RISC OS memory pages we claimed */
117 u_long firstpage, lastpage, totalpages; /* RISC OS pagecounters */
118 /* RISC OS memory */
119 char *memory_image, *bottom_memory, *top_memory;
120
121 /* kernel info */
122 u_long marks[MARK_MAX]; /* loader mark pointers */
123 u_long kernel_physical_start; /* where does it get relocated */
124 u_long kernel_free_vm_start; /* where does the free VM start */
125 /* some free space to mess with */
126 u_long scratch_virtualbase, scratch_physicalbase;
127
128
129 /* bootprogram identifiers */
130 extern const char bootprog_rev[];
131 extern const char bootprog_name[];
132 extern const char bootprog_date[];
133 extern const char bootprog_maker[];
134
135
136 /* predefines / prototypes */
137 void init_datastructures(void);
138 void get_memory_configuration(void);
139 void get_memory_map(void);
140 void create_initial_page_tables(void);
141 void add_pagetables_at_top(void);
142 int page_info_cmp(const void *a, const void *);
143 void add_initvectors(void);
144 void create_configuration(int argc, char **argv, int start_args);
145 void prepare_and_check_relocation_system(void);
146 void compact_relocations(void);
147 void twirl(void);
148 int vdu_var(int);
149 void process_args(int argc, char **argv, int *howto, char *file,
150 int *start_args);
151
152 char *sprint0(int width, char prefix, char base, int value);
153 struct page_info *get_relocated_page(u_long destination, int size);
154
155 extern void start_kernel(
156 int relocate_code_page,
157 int relocation_pv_offset,
158 int configuration_structure_in_flat_physical_space,
159 int virtual_address_relocation_table,
160 int physical_address_of_new_L1_pages,
161 int kernel_entry_point
162 ); /* asm */
163
164
165 /* the loader itself */
166 void
167 init_datastructures(void)
168 {
169
170 /* Get number of pages and the memorytablesize */
171 osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
172
173 /* Allocate 99% - (small fixed amount) of the heap for memory_image */
174 memory_image_size = (int)HIMEM - (int)end - 512 * 1024;
175 memory_image_size /= 100;
176 memory_image_size *= 99;
177 if (memory_image_size <= 256*1024)
178 panic("Insufficient memory");
179
180 memory_image = alloc(memory_image_size);
181 if (!memory_image)
182 panic("Can't alloc get my memory image ?");
183
184 bottom_memory = memory_image;
185 top_memory = memory_image + memory_image_size;
186
187 firstpage = ((int)bottom_memory / nbpp) + 1; /* safety */
188 lastpage = ((int)top_memory / nbpp) - 1;
189 totalpages = lastpage - firstpage;
190
191 printf("Allocated %ld memory pages, each of %d kilobytes.\n\n",
192 totalpages, nbpp>>10 );
193
194 /*
195 * Setup the relocation table. Its a simple array of 3 * 32 bit
196 * entries. The first word in the array is the number of relocations
197 * to be done
198 */
199 reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(u_long);
200 reloc_instruction_table = alloc(reloc_tablesize);
201 if (!reloc_instruction_table)
202 panic("Can't alloc my relocate instructions pages");
203
204 reloc_entries = 0;
205 reloc_pos = reloc_instruction_table;
206 *reloc_pos++ = 0;
207
208 /*
209 * Set up the memory translation info structure. We need to allocate
210 * one more for the end of list marker. See get_memory_map.
211 */
212 mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
213 if (!mem_pages_info)
214 panic("Can't alloc my phys->virt page info");
215
216 /*
217 * Allocate memory for the memory arrangement table. We use this
218 * structure to retrieve memory page properties to clasify them.
219 */
220 memory_page_types = alloc(memory_table_size);
221 if (!memory_page_types)
222 panic("Can't alloc my memory page type block");
223
224 /*
225 * Initial page tables is 16 kb per definition since only sections are
226 * used.
227 */
228 initial_page_tables = alloc(16*1024);
229 if (!initial_page_tables)
230 panic("Can't alloc my initial page tables");
231 }
232
233 void
234 compact_relocations(void)
235 {
236 u_long *reloc_entry, current_length, length;
237 u_long src, destination, current_src, current_destination;
238 u_long *current_entry;
239
240 current_entry = reloc_entry = reloc_instruction_table + 1;
241
242 /* prime the loop */
243 current_src = reloc_entry[0];
244 current_destination = reloc_entry[1];
245 current_length = reloc_entry[2];
246
247 reloc_entry += 3;
248 while (reloc_entry < reloc_pos) {
249 src = reloc_entry[0];
250 destination = reloc_entry[1];
251 length = reloc_entry[2];
252
253 if (src == (current_src + current_length) &&
254 destination == (current_destination + current_length)) {
255 /* can merge */
256 current_length += length;
257 } else {
258 /* nothing else to do, so save the length */
259 current_entry[2] = current_length;
260 /* fill in next entry */
261 current_entry += 3;
262 current_src = current_entry[0] = src;
263 current_destination = current_entry[1] = destination;
264 current_length = length;
265 }
266 reloc_entry += 3;
267 }
268 /* save last length */
269 current_entry[2] = current_length;
270 current_entry += 3;
271
272 /* workout new count of entries */
273 length = current_entry - (reloc_instruction_table + 1);
274 printf("Compacted relocations from %d entries to %ld\n",
275 reloc_entries, length/3);
276
277 /* update table to reflect new size */
278 reloc_entries = length/3;
279 reloc_instruction_table[0] = length/3;
280 reloc_pos = current_entry;
281 }
282
283 void
284 get_memory_configuration(void)
285 {
286 int loop, current_page_type, page_count, phys_page;
287 int page, count, bank, top_bank, video_bank;
288 int mapped_screen_memory;
289 int one_mb_pages;
290 u_long top;
291
292 printf("Getting memory configuration ");
293
294 osmemory_read_arrangement_table(memory_page_types);
295
296 /* init counters */
297 bank = vram_blocks = dram_blocks = rom_blocks = io_blocks =
298 podram_blocks = 0;
299
300 current_page_type = -1;
301 phys_page = 0; /* physical address in pages */
302 page_count = 0; /* page counter in this block */
303 loop = 0; /* loop variable over entries */
304
305 /* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
306 while (loop < 2*memory_table_size) {
307 page = memory_page_types[loop / 2]; /* read twice */
308 if (loop & 1) page >>= 4; /* take other nibble */
309
310 /*
311 * bits 0-2 give type, bit3 means the bit page is
312 * allocatable
313 */
314 page &= 0x7; /* only take bottom 3 bits */
315 if (page != current_page_type) {
316 /* passed a boundary ... note this block */
317 /*
318 * splitting in different vars is for
319 * compatability reasons
320 */
321 switch (current_page_type) {
322 case -1:
323 case 0:
324 break;
325 case osmemory_TYPE_DRAM:
326 if ((phys_page * nbpp)< PODRAM_START) {
327 DRAM_addr[dram_blocks] =
328 phys_page * nbpp;
329 DRAM_pages[dram_blocks] =
330 page_count;
331 dram_blocks++;
332 } else {
333 PODRAM_addr[podram_blocks] =
334 phys_page * nbpp;
335 PODRAM_pages[podram_blocks] =
336 page_count;
337 podram_blocks++;
338 }
339 break;
340 case osmemory_TYPE_VRAM:
341 VRAM_addr[vram_blocks] = phys_page * nbpp;
342 VRAM_pages[vram_blocks] = page_count;
343 vram_blocks++;
344 break;
345 case osmemory_TYPE_ROM:
346 ROM_addr[rom_blocks] = phys_page * nbpp;
347 ROM_pages[rom_blocks] = page_count;
348 rom_blocks++;
349 break;
350 case osmemory_TYPE_IO:
351 IO_addr[io_blocks] = phys_page * nbpp;
352 IO_pages[io_blocks] = page_count;
353 io_blocks++;
354 break;
355 default:
356 printf("WARNING : found unknown "
357 "memory object %d ", current_page_type);
358 printf(" at 0x%s",
359 sprint0(8,'0','x', phys_page * nbpp));
360 printf(" for %s k\n",
361 sprint0(5,' ','d', (page_count*nbpp)>>10));
362 break;
363 }
364 current_page_type = page;
365 phys_page = loop;
366 page_count = 0;
367 }
368 /*
369 * smallest unit we recognise is one page ... silly
370 * could be upto 64 pages i.e. 256 kb
371 */
372 page_count += 1;
373 loop += 1;
374 if ((loop & 31) == 0) twirl();
375 }
376
377 printf(" \n\n");
378
379 if (VRAM_pages[0] == 0) {
380 /* map DRAM as video memory */
381 display_size =
382 vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1);
383 #if 0
384 mapped_screen_memory = 1024 * 1024; /* max allowed on RiscPC */
385 videomem_pages = (mapped_screen_memory / nbpp);
386 videomem_start = DRAM_addr[0];
387 DRAM_addr[0] += videomem_pages * nbpp;
388 DRAM_pages[0] -= videomem_pages;
389 #else
390 mapped_screen_memory = display_size;
391 videomem_pages = mapped_screen_memory / nbpp;
392 one_mb_pages = (1024*1024)/nbpp;
393
394 /*
395 * OK... we need one Mb at the top for compliance with current
396 * kernel structure. This ought to be abolished one day IMHO.
397 * Also we have to take care that the kernel needs to be in
398 * DRAM0a and even has to start there.
399 * XXX one Mb simms are the smallest supported XXX
400 */
401 top_bank = dram_blocks-1;
402 video_bank = top_bank;
403 if (DRAM_pages[top_bank] == one_mb_pages) video_bank--;
404
405 if (DRAM_pages[video_bank] < videomem_pages)
406 panic("Weird memory configuration found; please "
407 "contact acorn32 portmaster.");
408
409 /* split off the top 1Mb */
410 DRAM_addr [top_bank+1] = DRAM_addr[top_bank] +
411 (DRAM_pages[top_bank] - one_mb_pages)*nbpp;
412 DRAM_pages[top_bank+1] = one_mb_pages;
413 DRAM_pages[top_bank ] -= one_mb_pages;
414 dram_blocks++;
415
416 /* Map video memory at the end of the choosen DIMM */
417 videomem_start = DRAM_addr[video_bank] +
418 (DRAM_pages[video_bank] - videomem_pages)*nbpp;
419 DRAM_pages[video_bank] -= videomem_pages;
420
421 /* sanity */
422 if (DRAM_pages[top_bank] == 0) {
423 DRAM_addr [top_bank] = DRAM_addr [top_bank+1];
424 DRAM_pages[top_bank] = DRAM_pages[top_bank+1];
425 dram_blocks--;
426 }
427 #endif
428 } else {
429 /* use VRAM */
430 mapped_screen_memory = 0;
431 videomem_start = VRAM_addr[0];
432 videomem_pages = VRAM_pages[0];
433 display_size = videomem_pages * nbpp;
434 }
435
436 if (mapped_screen_memory) {
437 printf("Used %d kb DRAM ", mapped_screen_memory / 1024);
438 printf("at 0x%s for video memory\n",
439 sprint0(8,'0','x', videomem_start));
440 }
441
442 /* find top of (PO)DRAM pages */
443 top_physdram = 0;
444 for (loop = 0; loop < podram_blocks; loop++) {
445 top = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
446 if (top > top_physdram) top_physdram = top;
447 }
448 for (loop = 0; loop < dram_blocks; loop++) {
449 top = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
450 if (top > top_physdram) top_physdram = top;
451 }
452 if (top_physdram == 0)
453 panic("reality check: No DRAM in this machine?");
454 if (((top_physdram >> 20) << 20) != top_physdram)
455 panic("Top is not not aligned on a Mb; "
456 "remove very small DIMMS?");
457
458 /* pretty print the individual page types */
459 for (count = 0; count < rom_blocks; count++) {
460 printf("Found ROM (%d)", count);
461 printf(" at 0x%s", sprint0(8,'0','x', ROM_addr[count]));
462 printf(" for %s k\n",
463 sprint0(5,' ','d', (ROM_pages[count]*nbpp)>>10));
464 }
465
466 for (count = 0; count < io_blocks; count++) {
467 printf("Found I/O (%d)", count);
468 printf(" at 0x%s", sprint0(8,'0','x', IO_addr[count]));
469 printf(" for %s k\n",
470 sprint0(5,' ','d', (IO_pages[count]*nbpp)>>10));
471 }
472
473 /* for DRAM/VRAM also count the number of pages */
474 total_dram_pages = 0;
475 for (count = 0; count < dram_blocks; count++) {
476 total_dram_pages += DRAM_pages[count];
477 printf("Found DRAM (%d)", count);
478 printf(" at 0x%s", sprint0(8,'0','x', DRAM_addr[count]));
479 printf(" for %s k\n",
480 sprint0(5,' ','d', (DRAM_pages[count]*nbpp)>>10));
481 }
482
483 total_vram_pages = 0;
484 for (count = 0; count < vram_blocks; count++) {
485 total_vram_pages += VRAM_pages[count];
486 printf("Found VRAM (%d)", count);
487 printf(" at 0x%s", sprint0(8,'0','x', VRAM_addr[count]));
488 printf(" for %s k\n",
489 sprint0(5,' ','d', (VRAM_pages[count]*nbpp)>>10));
490 }
491
492 total_podram_pages = 0;
493 for (count = 0; count < podram_blocks; count++) {
494 total_podram_pages += PODRAM_pages[count];
495 printf("Found Processor only (S)DRAM (%d)", count);
496 printf(" at 0x%s", sprint0(8,'0','x', PODRAM_addr[count]));
497 printf(" for %s k\n",
498 sprint0(5,' ','d', (PODRAM_pages[count]*nbpp)>>10));
499 }
500 }
501
502
503 void
504 get_memory_map(void)
505 {
506 struct page_info *page_info;
507 int page, inout;
508 int phys_addr;
509
510 printf("\nGetting actual memorymapping");
511 for (page = 0, page_info = mem_pages_info;
512 page < totalpages;
513 page++, page_info++) {
514 page_info->pagenumber = 0; /* not used */
515 page_info->logical = (firstpage + page) * nbpp;
516 page_info->physical = 0; /* result comes here */
517 /* to avoid triggering a `bug' in RISC OS 4, page it in */
518 *((int *)page_info->logical) = 0;
519 }
520 /* close list */
521 page_info->pagenumber = -1;
522
523 inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO |
524 osmemory_RETURN_PHYS_ADDR;
525 osmemory_page_op(inout, mem_pages_info, totalpages);
526
527 printf(" ; sorting ");
528 qsort(mem_pages_info, totalpages, sizeof(struct page_info),
529 &page_info_cmp);
530 printf(".\n");
531
532 /*
533 * get the first DRAM index and show the physical memory
534 * fragments we got
535 */
536 printf("\nFound physical memory blocks :\n");
537 first_mapped_DRAM_page_index = -1;
538 first_mapped_PODRAM_page_index = -1;
539 for (page=0; page < totalpages; page++) {
540 phys_addr = mem_pages_info[page].physical;
541 printf("[0x%x", phys_addr);
542 while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
543 if (first_mapped_DRAM_page_index < 0 &&
544 phys_addr >= DRAM_addr[0])
545 first_mapped_DRAM_page_index = page;
546 if (first_mapped_PODRAM_page_index < 0 &&
547 phys_addr >= PODRAM_addr[0])
548 first_mapped_PODRAM_page_index = page;
549 page++;
550 phys_addr = mem_pages_info[page].physical;
551 }
552 printf("-0x%x] ", phys_addr + nbpp -1);
553 }
554 printf("\n\n");
555
556 if (first_mapped_PODRAM_page_index < 0 && PODRAM_addr[0])
557 panic("Found no (S)DRAM mapped in the bootloader");
558 if (first_mapped_DRAM_page_index < 0)
559 panic("No DRAM mapped in the bootloader");
560 }
561
562
563 void
564 create_initial_page_tables(void)
565 {
566 u_long page, section, addr, kpage;
567
568 /* mark a section by the following bits and domain 0, AP=01, CB=0 */
569 /* A P C B section
570 domain */
571 section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) |
572 (0) | (0 << 5);
573
574 /* first of all a full 1:1 mapping */
575 for (page = 0; page < 4*1024; page++)
576 initial_page_tables[page] = (page<<20) | section;
577
578 /*
579 * video memory is mapped 1:1 in the DRAM section or in VRAM
580 * section
581 *
582 * map 1Mb from top of DRAM memory to bottom 1Mb of virtual memmap
583 */
584 top_1Mb_dram = (((top_physdram - 1024*1024) >> 20) << 20);
585
586 initial_page_tables[0] = top_1Mb_dram | section;
587
588 /*
589 * map 16 Mb of kernel space to KERNEL_BASE
590 * i.e. marks[KERNEL_START]
591 */
592 for (page = 0; page < 16; page++) {
593 addr = (kernel_physical_start >> 20) + page;
594 kpage = (marks[MARK_START] >> 20) + page;
595 initial_page_tables[kpage] = (addr << 20) | section;
596 }
597 }
598
599
600 void
601 add_pagetables_at_top(void)
602 {
603 int page;
604 u_long src, dst, fragaddr;
605
606 /* Special : destination must be on a 16 Kb boundary */
607 /* get 4 pages on the top of the physical memory and copy PT's in it */
608 new_L1_pages_phys = top_physdram - 4 * nbpp;
609
610 /*
611 * If the L1 page tables are not 16 kb aligned, adjust base
612 * until it is
613 */
614 while (new_L1_pages_phys & (16*1024-1))
615 new_L1_pages_phys -= nbpp;
616 if (new_L1_pages_phys & (16*1024-1))
617 panic("Paranoia : L1 pages not on 16Kb boundary");
618
619 dst = new_L1_pages_phys;
620 src = (u_long)initial_page_tables;
621
622 for (page = 0; page < 4; page++) {
623 /* get a page for a fragment */
624 fragaddr = get_relocated_page(dst, nbpp)->logical;
625 memcpy((void *)fragaddr, (void *)src, nbpp);
626
627 src += nbpp;
628 dst += nbpp;
629 }
630 }
631
632
633 void
634 add_initvectors(void)
635 {
636 u_long *pos;
637 u_long vectoraddr, count;
638
639 /* the top 1Mb of the physical DRAM pages is mapped at address 0 */
640 vectoraddr = get_relocated_page(top_1Mb_dram, nbpp)->logical;
641
642 /* fill the vectors with `movs pc, lr' opcodes */
643 pos = (u_long *)vectoraddr; memset(pos, 0, nbpp);
644 for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
645 }
646
647 /*
648 * Work out the display's vertical sync rate. One might hope that there
649 * would be a simpler way than by counting vsync interrupts for a second,
650 * but if there is, I can't find it.
651 */
652 static int
653 vsync_rate(void)
654 {
655 uint8_t count0;
656 unsigned int time0;
657
658 count0 = osbyte_read(osbyte_VAR_VSYNC_TIMER);
659 time0 = os_read_monotonic_time();
660 while (os_read_monotonic_time() - time0 < 100)
661 continue;
662 return (u_int8_t)(count0 - osbyte_read(osbyte_VAR_VSYNC_TIMER));
663 }
664
665 void
666 create_configuration(int argc, char **argv, int start_args)
667 {
668 int i, root_specified, id_low, id_high;
669 char *pos;
670
671 bconfig_new_phys = kernel_free_vm_start - pv_offset;
672 bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
673 bconfig = (struct bootconfig *)(bconfig_page->logical);
674 kernel_free_vm_start += nbpp;
675
676 /* get some miscelanious info for the bootblock */
677 os_readsysinfo_monitor_info(NULL, (int *)&monitor_type, (int *)&monitor_sync);
678 os_readsysinfo_chip_presence((int *)&ioeb_flags, (int *)&superio_flags, (int *)&lcd_flags);
679 os_readsysinfo_superio_features((int *)&superio_flags_basic,
680 (int *)&superio_flags_extra);
681 os_readsysinfo_unique_id(&id_low, &id_high);
682
683 /* fill in the bootconfig *bconfig structure : generic version II */
684 memset(bconfig, 0, sizeof(*bconfig));
685 bconfig->magic = BOOTCONFIG_MAGIC;
686 bconfig->version = BOOTCONFIG_VERSION;
687 strcpy(bconfig->kernelname, booted_file);
688
689 /*
690 * get the kernel base name and update the RiscOS name to a
691 * Unix name
692 */
693 i = strlen(booted_file);
694 while (i >= 0 && booted_file[i] != '.') i--;
695 if (i) {
696 strcpy(bconfig->kernelname, "/");
697 strcat(bconfig->kernelname, booted_file+i+1);
698 }
699
700 pos = bconfig->kernelname+1;
701 while (*pos) {
702 if (*pos == '/') *pos = '.';
703 pos++;
704 }
705
706 /* set the machine_id */
707 memcpy(&(bconfig->machine_id), &id_low, 4);
708
709 /* check if the `root' is specified */
710 root_specified = 0;
711 strcpy(bconfig->args, "");
712 for (i = start_args; i < argc; i++) {
713 if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
714 strcat(bconfig->args, argv[i]);
715 }
716 if (!root_specified) {
717 strcat(bconfig->args, "root=");
718 strcat(bconfig->args, DEFAULT_ROOT);
719 }
720
721 /* mark kernel pointers */
722 bconfig->kernvirtualbase = marks[MARK_START];
723 bconfig->kernphysicalbase = kernel_physical_start;
724 bconfig->kernsize = kernel_free_vm_start -
725 marks[MARK_START];
726 bconfig->ksym_start = marks[MARK_SYM];
727 bconfig->ksym_end = marks[MARK_SYM] + marks[MARK_NSYM];
728
729 /* setup display info */
730 bconfig->display_phys = videomem_start;
731 bconfig->display_start = videomem_start;
732 bconfig->display_size = display_size;
733 bconfig->width = vdu_var(os_MODEVAR_XWIND_LIMIT);
734 bconfig->height = vdu_var(os_MODEVAR_YWIND_LIMIT);
735 bconfig->log2_bpp = vdu_var(os_MODEVAR_LOG2_BPP);
736 bconfig->framerate = vsync_rate();
737
738 /* fill in memory info */
739 bconfig->pagesize = nbpp;
740 bconfig->drampages = total_dram_pages +
741 total_podram_pages; /* XXX */
742 bconfig->vrampages = total_vram_pages;
743 bconfig->dramblocks = dram_blocks + podram_blocks; /*XXX*/
744 bconfig->vramblocks = vram_blocks;
745
746 for (i = 0; i < dram_blocks; i++) {
747 bconfig->dram[i].address = DRAM_addr[i];
748 bconfig->dram[i].pages = DRAM_pages[i];
749 bconfig->dram[i].flags = PHYSMEM_TYPE_GENERIC;
750 }
751 for (; i < dram_blocks + podram_blocks; i++) {
752 bconfig->dram[i].address = PODRAM_addr[i-dram_blocks];
753 bconfig->dram[i].pages = PODRAM_pages[i-dram_blocks];
754 bconfig->dram[i].flags = PHYSMEM_TYPE_PROCESSOR_ONLY;
755 }
756 for (i = 0; i < vram_blocks; i++) {
757 bconfig->vram[i].address = VRAM_addr[i];
758 bconfig->vram[i].pages = VRAM_pages[i];
759 bconfig->vram[i].flags = PHYSMEM_TYPE_GENERIC;
760 }
761 }
762
763
764 int
765 main(int argc, char **argv)
766 {
767 int howto, start_args, ret;
768
769 printf("\n\n");
770 printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
771 printf(">> (%s, %s)\n", bootprog_maker, bootprog_date);
772 printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
773 printf("\n");
774
775 process_args(argc, argv, &howto, booted_file, &start_args);
776
777 printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
778
779 init_datastructures();
780 get_memory_configuration();
781 get_memory_map();
782
783 /*
784 * point to the first free DRAM page guaranteed to be in
785 * strict order up
786 */
787 if (podram_blocks != 0) {
788 free_relocation_page =
789 mem_pages_info + first_mapped_PODRAM_page_index;
790 kernel_physical_start = PODRAM_addr[0];
791 } else {
792 free_relocation_page =
793 mem_pages_info + first_mapped_DRAM_page_index;
794 kernel_physical_start = DRAM_addr[0];
795 }
796
797 printf("\nLoading %s ", booted_file);
798
799 /* first count the kernel to get the markers */
800 ret = loadfile(booted_file, marks, COUNT_KERNEL);
801 if (ret == -1) panic("Kernel load failed"); /* lie to the user ... */
802 close(ret);
803
804 /*
805 * calculate how much the difference is between physical and
806 * virtual space for the kernel
807 */
808 pv_offset = ((u_long)marks[MARK_START] - kernel_physical_start);
809 /* round on a page */
810 kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1);
811
812 /* we seem to be forced to clear the marks[] ? */
813 bzero(marks, sizeof(marks));
814
815 /* really load it ! */
816 ret = loadfile(booted_file, marks, LOAD_KERNEL);
817 if (ret == -1) panic("Kernel load failed");
818 close(ret);
819
820 /* finish off the relocation information */
821 create_initial_page_tables();
822 add_initvectors();
823 add_pagetables_at_top();
824 create_configuration(argc, argv, start_args);
825
826 /*
827 * done relocating and creating information, now update and
828 * check the relocation mechanism
829 */
830 compact_relocations();
831
832 /*
833 * grab a page to copy the bootstrap code into
834 */
835 relocate_code_page = free_relocation_page++;
836
837 printf("\nStarting at 0x%lx, p@0x%lx\n", marks[MARK_ENTRY], kernel_physical_start);
838 printf("%ld entries, first one is 0x%lx->0x%lx for %lx bytes\n",
839 reloc_instruction_table[0],
840 reloc_instruction_table[1],
841 reloc_instruction_table[2],
842 reloc_instruction_table[3]);
843
844 printf("Will boot in a few secs due to relocation....\n"
845 "bye bye from RISC OS!");
846
847 /* dismount all filesystems */
848 xosfscontrol_shutdown();
849
850 /* reset devices, well they try to anyway */
851 service_pre_reset();
852
853 start_kernel(
854 /* r0 relocation code page (V) */ relocate_code_page->logical,
855 /* r1 relocation pv offset */
856 relocate_code_page->physical-relocate_code_page->logical,
857 /* r2 configuration structure */ bconfig_new_phys,
858 /* r3 relocation table (l) */
859 (int)reloc_instruction_table, /* one piece! */
860 /* r4 L1 page descriptor (P) */ new_L1_pages_phys,
861 /* r5 kernel entry point */ marks[MARK_ENTRY]
862 );
863 return 0;
864 }
865
866
867 ssize_t
868 boot32_read(int f, void *addr, size_t size)
869 {
870 void *fragaddr;
871 size_t fragsize;
872 ssize_t bytes_read, total;
873
874 /* printf("read at %p for %ld bytes\n", addr, size); */
875 total = 0;
876 while (size > 0) {
877 fragsize = nbpp; /* select one page */
878 if (size < nbpp) fragsize = size;/* clip to size left */
879
880 /* get a page for a fragment */
881 fragaddr = (void *)get_relocated_page((u_long) addr -
882 pv_offset, fragsize)->logical;
883
884 bytes_read = read(f, fragaddr, fragsize);
885 if (bytes_read < 0) return bytes_read; /* error! */
886 total += bytes_read; /* account read bytes */
887
888 if (bytes_read < fragsize)
889 return total; /* does this happen? */
890
891 size -= fragsize; /* advance */
892 addr += fragsize;
893 }
894 return total;
895 }
896
897
898 void *
899 boot32_memcpy(void *dst, const void *src, size_t size)
900 {
901 void *fragaddr;
902 size_t fragsize;
903
904 /* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
905 while (size > 0) {
906 fragsize = nbpp; /* select one page */
907 if (size < nbpp) fragsize = size;/* clip to size left */
908
909 /* get a page for a fragment */
910 fragaddr = (void *)get_relocated_page((u_long) dst -
911 pv_offset, fragsize)->logical;
912 memcpy(fragaddr, src, size);
913
914 src += fragsize; /* account copy */
915 dst += fragsize;
916 size-= fragsize;
917 }
918 return dst;
919 }
920
921
922 void *
923 boot32_memset(void *dst, int c, size_t size)
924 {
925 void *fragaddr;
926 size_t fragsize;
927
928 /* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
929 while (size > 0) {
930 fragsize = nbpp; /* select one page */
931 if (size < nbpp) fragsize = size;/* clip to size left */
932
933 /* get a page for a fragment */
934 fragaddr = (void *)get_relocated_page((u_long)dst - pv_offset,
935 fragsize)->logical;
936 memset(fragaddr, c, fragsize);
937
938 dst += fragsize; /* account memsetting */
939 size-= fragsize;
940
941 }
942 return dst;
943 }
944
945
946 /* We can rely on the fact that two entries never have identical ->physical */
947 int
948 page_info_cmp(const void *a, const void *b)
949 {
950
951 return (((struct page_info *)a)->physical <
952 ((struct page_info *)b)->physical) ? -1 : 1;
953 }
954
955 struct page_info *
956 get_relocated_page(u_long destination, int size)
957 {
958 struct page_info *page;
959
960 /* get a page for a fragment */
961 page = free_relocation_page;
962 if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages");
963 reloc_entries++;
964 if (reloc_entries >= MAX_RELOCPAGES)
965 panic("\n\nToo many relocations! What are you loading ??");
966
967 /* record the relocation */
968 if (free_relocation_page->physical & 0x3)
969 panic("\n\nphysical address is not aligned!");
970
971 if (destination & 0x3)
972 panic("\n\ndestination address is not aligned!");
973
974 if (size & 0x3)
975 panic("\n\nsize is not aligned!");
976
977 *reloc_pos++ = free_relocation_page->physical;
978 *reloc_pos++ = destination;
979 *reloc_pos++ = size;
980 free_relocation_page++; /* advance */
981
982 return page;
983 }
984
985
986 int
987 vdu_var(int var)
988 {
989 int varlist[2], vallist[2];
990
991 varlist[0] = var;
992 varlist[1] = -1;
993 os_read_vdu_variables(varlist, vallist);
994 return vallist[0];
995 }
996
997
998 void
999 twirl(void)
1000 {
1001
1002 printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
1003 twirl_cnt++;
1004 twirl_cnt &= 3;
1005 }
1006
1007
1008 void
1009 process_args(int argc, char **argv, int *howto, char *file, int *start_args)
1010 {
1011 int i, j;
1012 static char filename[80];
1013
1014 *howto = 0;
1015 *file = NULL; *start_args = 1;
1016 for (i = 1; i < argc; i++) {
1017 if (argv[i][0] == '-')
1018 for (j = 1; argv[i][j]; j++)
1019 BOOT_FLAG(argv[i][j], *howto);
1020 else {
1021 if (*file)
1022 *start_args = i;
1023 else {
1024 strcpy(file, argv[i]);
1025 *start_args = i+1;
1026 }
1027 break;
1028 }
1029 }
1030 if (*file == NULL) {
1031 if (*howto & RB_ASKNAME) {
1032 printf("boot: ");
1033 gets(filename);
1034 strcpy(file, filename);
1035 } else
1036 strcpy(file, "netbsd");
1037 }
1038 }
1039
1040
1041 char *
1042 sprint0(int width, char prefix, char base, int value)
1043 {
1044 static char format[50], scrap[50];
1045 char *pos;
1046 int length;
1047
1048 for (pos = format, length = 0; length<width; length++) *pos++ = prefix;
1049 *pos++ = '%';
1050 *pos++ = base;
1051 *pos++ = (char) 0;
1052
1053 sprintf(scrap, format, value);
1054 length = strlen(scrap);
1055
1056 return scrap+length-width;
1057 }
1058
1059