Home | History | Annotate | Line # | Download | only in boot32
boot32.c revision 1.32
      1 /*	$NetBSD: boot32.c,v 1.32 2008/01/26 00:01:54 chris Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  *
     29  * Thanks a bunch for Ben's framework for the bootloader and its suporting
     30  * libs. This file tries to actually boot NetBSD/acorn32 !
     31  *
     32  * XXX eventually to be partly merged back with boot26 ? XXX
     33  */
     34 
     35 #include <lib/libsa/stand.h>
     36 #include <lib/libsa/loadfile.h>
     37 #include <lib/libkern/libkern.h>
     38 #include <riscoscalls.h>
     39 #include <srt0.h>
     40 #include <sys/boot_flag.h>
     41 #include <machine/vmparam.h>
     42 #include <arm/arm32/pte.h>
     43 #include <machine/bootconfig.h>
     44 
     45 extern char end[];
     46 
     47 /* debugging flags */
     48 int debug = 1;
     49 
     50 
     51 /* constants */
     52 #define PODRAM_START   (512*1024*1024)		/* XXX Kinetic cards XXX */
     53 
     54 #define MAX_RELOCPAGES	4096
     55 
     56 #define DEFAULT_ROOT	"/dev/wd0a"
     57 
     58 
     59 #define IO_BLOCKS	 16	/* move these to the bootloader structure? */
     60 #define ROM_BLOCKS	 16
     61 #define PODRAM_BLOCKS	 16
     62 
     63 
     64 /* booter variables */
     65 char	 scrap[80], twirl_cnt;		/* misc				*/
     66 char	 booted_file[80];
     67 
     68 struct bootconfig *bconfig;		/* bootconfig passing		*/
     69 u_long	 bconfig_new_phys;		/* physical address its bound	*/
     70 
     71 /* computer knowledge		*/
     72 u_int	 monitor_type, monitor_sync, ioeb_flags, lcd_flags;
     73 u_int	 superio_flags, superio_flags_basic, superio_flags_extra;
     74 
     75 /* sizes			*/
     76 int	 nbpp, memory_table_size, memory_image_size;
     77 /* relocate info		*/
     78 u_long	 reloc_tablesize, *reloc_instruction_table;
     79 u_long	*reloc_pos;			/* current empty entry		*/
     80 int	 reloc_entries;			/* number of relocations	*/
     81 int	 first_mapped_DRAM_page_index;	/* offset in RISC OS blob	*/
     82 int	 first_mapped_PODRAM_page_index;/* offset in RISC OS blob	*/
     83 
     84 struct page_info *mem_pages_info;	/* {nr, virt, phys}*		*/
     85 struct page_info *free_relocation_page;	/* points to the page_info chain*/
     86 struct page_info *relocate_table_pages;	/* points to seq. relocate info */
     87 struct page_info *relocate_code_page;	/* points to the copied code	*/
     88 struct page_info *bconfig_page;		/* page for passing on settings	*/
     89 
     90 unsigned char *memory_page_types;	/* packed array of 4 bit typeId	*/
     91 
     92 u_long	*initial_page_tables;		/* pagetables to be booted from	*/
     93 
     94 
     95 /* XXX rename *_BLOCKS to MEM_BLOCKS */
     96 /* DRAM/VRAM/ROM/IO info */
     97 /* where the display is		*/
     98 u_long	 videomem_start, videomem_pages, display_size;
     99 
    100 u_long	 pv_offset, top_physdram;	/* kernel_base - phys. diff	*/
    101 u_long	 top_1Mb_dram;			/* the lower mapped top 1Mb	*/
    102 u_long	 new_L1_pages_phys;		/* physical address of L1 pages	*/
    103 
    104 /* for bootconfig passing	*/
    105 u_long	 total_podram_pages, total_dram_pages, total_vram_pages;
    106 int	 dram_blocks, podram_blocks;	/* number of mem. objects/type  */
    107 int	 vram_blocks, rom_blocks, io_blocks;
    108 
    109 u_long	 DRAM_addr[DRAM_BLOCKS],     DRAM_pages[DRAM_BLOCKS];
    110 /* processor only RAM	*/
    111 u_long	 PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS];
    112 u_long	 VRAM_addr[VRAM_BLOCKS],     VRAM_pages[VRAM_BLOCKS];
    113 u_long	 ROM_addr[ROM_BLOCKS],       ROM_pages[ROM_BLOCKS];
    114 u_long	 IO_addr[IO_BLOCKS],         IO_pages[IO_BLOCKS];
    115 
    116 
    117 /* RISC OS memory pages we claimed */
    118 u_long	 firstpage, lastpage, totalpages; /* RISC OS pagecounters	*/
    119 /* RISC OS memory		*/
    120 char	*memory_image, *bottom_memory, *top_memory;
    121 
    122 u_long	 videomem_start_ro;		/* for debugging mainly		*/
    123 
    124 /* kernel info */
    125 u_long	 marks[MARK_MAX];		/* loader mark pointers 	*/
    126 u_long	 kernel_physical_start;		/* where does it get relocated	*/
    127 u_long	 kernel_free_vm_start;		/* where does the free VM start	*/
    128 /* some free space to mess with	*/
    129 u_long	 scratch_virtualbase, scratch_physicalbase;
    130 
    131 
    132 /* bootprogram identifiers */
    133 extern const char bootprog_rev[];
    134 extern const char bootprog_name[];
    135 extern const char bootprog_date[];
    136 extern const char bootprog_maker[];
    137 
    138 
    139 /* predefines / prototypes */
    140 void	 init_datastructures(void);
    141 void	 get_memory_configuration(void);
    142 void	 get_memory_map(void);
    143 void	 create_initial_page_tables(void);
    144 void	 add_pagetables_at_top(void);
    145 int	 page_info_cmp(const void *a, const void *);
    146 void	 add_initvectors(void);
    147 void	 create_configuration(int argc, char **argv, int start_args);
    148 void	 prepare_and_check_relocation_system(void);
    149 void	 twirl(void);
    150 int	 vdu_var(int);
    151 void	 process_args(int argc, char **argv, int *howto, char *file,
    152     int *start_args);
    153 
    154 char		 *sprint0(int width, char prefix, char base, int value);
    155 struct page_info *get_relocated_page(u_long destination, int size);
    156 
    157 extern void start_kernel(
    158 		int relocate_code_page,
    159 		int relocation_pv_offset,
    160 		int configuration_structure_in_flat_physical_space,
    161 		int physical_address_of_relocation_tables,
    162 		int physical_address_of_new_L1_pages,
    163 		int kernel_entry_point
    164 		);	/* asm */
    165 
    166 
    167 /* the loader itself */
    168 void
    169 init_datastructures(void)
    170 {
    171 
    172 	/* Get number of pages and the memorytablesize */
    173 	osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
    174 
    175 	/* Allocate 99% - (small fixed amount) of the heap for memory_image */
    176 	memory_image_size = (int)HIMEM - (int)end - 512 * 1024;
    177 	memory_image_size /= 100;
    178 	memory_image_size *= 99;
    179 	if (memory_image_size <= 256*1024)
    180 		panic("Insufficient memory");
    181 
    182 	memory_image = alloc(memory_image_size);
    183 	if (!memory_image)
    184 		panic("Can't alloc get my memory image ?");
    185 
    186 	bottom_memory = memory_image;
    187 	top_memory    = memory_image + memory_image_size;
    188 
    189 	firstpage  = ((int)bottom_memory / nbpp) + 1;	/* safety */
    190 	lastpage   = ((int)top_memory    / nbpp) - 1;
    191 	totalpages = lastpage - firstpage;
    192 
    193 	printf("Allocated %ld memory pages, each of %d kilobytes.\n\n",
    194 			totalpages, nbpp>>10 );
    195 
    196 	/*
    197 	 * Setup the relocation table. Its a simple array of 3 * 32 bit
    198 	 * entries. The first word in the array is the number of relocations
    199 	 * to be done
    200 	 */
    201 	reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(u_long);
    202 	reloc_instruction_table = alloc(reloc_tablesize);
    203 	if (!reloc_instruction_table)
    204 		panic("Can't alloc my relocate instructions pages");
    205 
    206 	reloc_entries = 0;
    207 	reloc_pos     = reloc_instruction_table;
    208 	*reloc_pos++  = 0;
    209 
    210 	/*
    211 	 * Set up the memory translation info structure. We need to allocate
    212 	 * one more for the end of list marker. See get_memory_map.
    213 	 */
    214 	mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
    215 	if (!mem_pages_info)
    216 		panic("Can't alloc my phys->virt page info");
    217 
    218 	/*
    219 	 * Allocate memory for the memory arrangement table. We use this
    220 	 * structure to retrieve memory page properties to clasify them.
    221 	 */
    222 	memory_page_types = alloc(memory_table_size);
    223 	if (!memory_page_types)
    224 		panic("Can't alloc my memory page type block");
    225 
    226 	/*
    227 	 * Initial page tables is 16 kb per definition since only sections are
    228 	 * used.
    229 	 */
    230 	initial_page_tables = alloc(16*1024);
    231 	if (!initial_page_tables)
    232 		panic("Can't alloc my initial page tables");
    233 }
    234 
    235 
    236 void
    237 prepare_and_check_relocation_system(void)
    238 {
    239 	int     relocate_size, relocate_pages;
    240 	int     bank, pages, found;
    241 	u_long  dst, src, base, destination, extend;
    242 	u_long *reloc_entry, last_src, length;
    243 
    244 	/* set the number of relocation entries in the 1st word */
    245 	*reloc_instruction_table = reloc_entries;
    246 
    247 	/*
    248 	 * The relocate information needs to be in one sequential physical
    249 	 * space in order to be able to access it as one stream when the MMU
    250 	 * is switched off later.
    251 	 */
    252 	relocate_size = (reloc_tablesize + nbpp-1) & ~(nbpp-1);  /* round up */
    253 	printf("\nPreparing for booting %s ... ", booted_file);
    254 	relocate_pages = relocate_size / nbpp;
    255 
    256 	relocate_table_pages = free_relocation_page;
    257 	pages = 0;
    258 	while (pages < relocate_pages) {
    259 		src = (u_long)reloc_instruction_table + pages*nbpp;
    260 		dst = relocate_table_pages[pages].logical;
    261 		memcpy((void *)dst, (void *)src, nbpp);
    262 
    263 		if (pages < relocate_pages - 1) {
    264 			/* check if next page is sequential physically */
    265 			if (relocate_table_pages[pages+1].physical -
    266 			    relocate_table_pages[pages].physical != nbpp) {
    267 				/*
    268 				 * Non contigunous relocate area ->
    269 				 * try again
    270 				 */
    271 				printf("*");
    272 				relocate_table_pages += pages;
    273 				pages = 0;
    274 				continue;	/* while */
    275 			}
    276 		}
    277 		pages++;
    278 	}
    279 	free_relocation_page = relocate_table_pages + pages;
    280 
    281 	/* copy the relocation code into this page in start_kernel */
    282 	relocate_code_page = free_relocation_page++;
    283 
    284 	/*
    285 	 * All relocations are pages allocated in one big strict increasing
    286 	 * physical DRAM address sequence. When the MMU is switched off all
    287 	 * code and data is in this increasing order but not at the right
    288 	 * place. This is where the relocation code kicks in; relocation is
    289 	 * done in flat physical memory without MMU.
    290 	 */
    291 
    292 	printf("shift and check ... ");
    293 	reloc_entry = reloc_instruction_table + 1;
    294 	last_src = -1;
    295 	while (reloc_entry < reloc_pos) {
    296 		src         = reloc_entry[0];
    297 		destination = reloc_entry[1];
    298 		length      = reloc_entry[2];
    299 
    300 		/* paranoia check */
    301 		if ((long) (src - last_src) <= 0)
    302 			printf("relocation sequence challenged -- "
    303 			    "booting might fail ");
    304 		last_src = src;
    305 
    306 		/* check if its gonna be relocated into (PO)DRAM ! */
    307 		extend = destination + length;
    308 		found = 0;
    309 		for (bank = 0; (bank < dram_blocks) && !found; bank++) {
    310 			base   = DRAM_addr[bank];
    311 			found = (destination >= base) &&
    312 			    (extend <= base + DRAM_pages[bank]*nbpp);
    313 		}
    314 		for (bank = 0; (bank < podram_blocks) && !found; bank++) {
    315 			base = PODRAM_addr[bank];
    316 			found = (destination >= base) &&
    317 			    (extend <= base + PODRAM_pages[bank]*nbpp);
    318 		}
    319 		if (!found || (extend > top_physdram)) {
    320 			panic("Internal error: relocating range "
    321 			    "[%lx +%lx => %lx] outside (PO)DRAM banks!",
    322 			    src, length, destination);
    323 		}
    324 
    325 		reloc_entry += 3;
    326 	}
    327 	if (reloc_entry != reloc_pos)
    328 		panic("Relocation instruction table is corrupted");
    329 
    330 	printf("OK!\n");
    331 }
    332 
    333 
    334 void
    335 get_memory_configuration(void)
    336 {
    337 	int loop, current_page_type, page_count, phys_page;
    338 	int page, count, bank, top_bank, video_bank;
    339 	int mapped_screen_memory;
    340 	int one_mb_pages;
    341 	u_long top;
    342 
    343 	printf("Getting memory configuration ");
    344 
    345 	osmemory_read_arrangement_table(memory_page_types);
    346 
    347 	/* init counters */
    348 	bank = vram_blocks = dram_blocks = rom_blocks = io_blocks =
    349 	    podram_blocks = 0;
    350 
    351 	current_page_type = -1;
    352 	phys_page = 0;			/* physical address in pages	*/
    353 	page_count = 0;			/* page counter in this block	*/
    354 	loop = 0;			/* loop variable over entries	*/
    355 
    356 	/* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
    357 	while (loop < 2*memory_table_size) {
    358 		page = memory_page_types[loop / 2];	/* read	twice */
    359 		if (loop & 1) page >>= 4;		/* take other nibble */
    360 
    361 		/*
    362 		 * bits 0-2 give type, bit3 means the bit page is
    363 		 * allocatable
    364 		 */
    365 		page &= 0x7;			/* only take bottom 3 bits */
    366 		if (page != current_page_type) {
    367 			/* passed a boundary ... note this block	   */
    368 			/*
    369 			 * splitting in different vars is for
    370 			 * compatability reasons
    371 			 */
    372 			switch (current_page_type) {
    373 			case -1:
    374 			case  0:
    375 				break;
    376 			case osmemory_TYPE_DRAM:
    377 				if ((phys_page * nbpp)< PODRAM_START) {
    378 					DRAM_addr[dram_blocks]  =
    379 					    phys_page * nbpp;
    380 					DRAM_pages[dram_blocks] =
    381 					    page_count;
    382 					dram_blocks++;
    383 				} else {
    384 					PODRAM_addr[podram_blocks]  =
    385 					    phys_page * nbpp;
    386 					PODRAM_pages[podram_blocks] =
    387 					    page_count;
    388 					podram_blocks++;
    389 				}
    390 				break;
    391 			case osmemory_TYPE_VRAM:
    392 				VRAM_addr[vram_blocks]  = phys_page * nbpp;
    393 				VRAM_pages[vram_blocks] = page_count;
    394 				vram_blocks++;
    395 				break;
    396 			case osmemory_TYPE_ROM:
    397 				ROM_addr[rom_blocks]  = phys_page * nbpp;
    398 				ROM_pages[rom_blocks] = page_count;
    399 				rom_blocks++;
    400 				break;
    401 			case osmemory_TYPE_IO:
    402 				IO_addr[io_blocks]  = phys_page * nbpp;
    403 				IO_pages[io_blocks] = page_count;
    404 				io_blocks++;
    405 				break;
    406 			default:
    407 				printf("WARNING : found unknown "
    408 				    "memory object %d ", current_page_type);
    409 				printf(" at 0x%s",
    410 				    sprint0(8,'0','x', phys_page * nbpp));
    411 				printf(" for %s k\n",
    412 				    sprint0(5,' ','d', (page_count*nbpp)>>10));
    413 				break;
    414 			}
    415 			current_page_type = page;
    416 			phys_page = loop;
    417 			page_count = 0;
    418 		}
    419 		/*
    420 		 * smallest unit we recognise is one page ... silly
    421 		 * could be upto 64 pages i.e. 256 kb
    422 		 */
    423 		page_count += 1;
    424 		loop       += 1;
    425 		if ((loop & 31) == 0) twirl();
    426 	}
    427 
    428 	printf(" \n\n");
    429 
    430 	if (VRAM_pages[0] == 0) {
    431 		/* map DRAM as video memory */
    432 		display_size	 =
    433 		    vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1);
    434 #if 0
    435 		mapped_screen_memory = 1024 * 1024; /* max allowed on RiscPC */
    436 		videomem_pages   = (mapped_screen_memory / nbpp);
    437 		videomem_start   = DRAM_addr[0];
    438 		DRAM_addr[0]	+= videomem_pages * nbpp;
    439 		DRAM_pages[0]	-= videomem_pages;
    440 #else
    441 		mapped_screen_memory = display_size;
    442 		videomem_pages   = mapped_screen_memory / nbpp;
    443 		one_mb_pages	 = (1024*1024)/nbpp;
    444 
    445 		/*
    446 		 * OK... we need one Mb at the top for compliance with current
    447 		 * kernel structure. This ought to be abolished one day IMHO.
    448 		 * Also we have to take care that the kernel needs to be in
    449 		 * DRAM0a and even has to start there.
    450 		 * XXX one Mb simms are the smallest supported XXX
    451 		 */
    452 		top_bank = dram_blocks-1;
    453 		video_bank = top_bank;
    454 		if (DRAM_pages[top_bank] == one_mb_pages) video_bank--;
    455 
    456 		if (DRAM_pages[video_bank] < videomem_pages)
    457 			panic("Weird memory configuration found; please "
    458 			    "contact acorn32 portmaster.");
    459 
    460 		/* split off the top 1Mb */
    461 		DRAM_addr [top_bank+1]  = DRAM_addr[top_bank] +
    462 		    (DRAM_pages[top_bank] - one_mb_pages)*nbpp;
    463 		DRAM_pages[top_bank+1]  = one_mb_pages;
    464 		DRAM_pages[top_bank  ] -= one_mb_pages;
    465 		dram_blocks++;
    466 
    467 		/* Map video memory at the end of the choosen DIMM */
    468 		videomem_start          = DRAM_addr[video_bank] +
    469 		    (DRAM_pages[video_bank] - videomem_pages)*nbpp;
    470 		DRAM_pages[video_bank] -= videomem_pages;
    471 
    472 		/* sanity */
    473 		if (DRAM_pages[top_bank] == 0) {
    474 			DRAM_addr [top_bank] = DRAM_addr [top_bank+1];
    475 			DRAM_pages[top_bank] = DRAM_pages[top_bank+1];
    476 			dram_blocks--;
    477 		}
    478 #endif
    479 	} else {
    480 		/* use VRAM */
    481 		mapped_screen_memory = 0;
    482 		videomem_start	 = VRAM_addr[0];
    483 		videomem_pages	 = VRAM_pages[0];
    484 		display_size	 = videomem_pages * nbpp;
    485 	}
    486 
    487 	if (mapped_screen_memory) {
    488 		printf("Used %d kb DRAM ", mapped_screen_memory / 1024);
    489 		printf("at 0x%s for video memory\n",
    490 		    sprint0(8,'0','x', videomem_start));
    491 	}
    492 
    493 	/* find top of (PO)DRAM pages */
    494 	top_physdram = 0;
    495 	for (loop = 0; loop < podram_blocks; loop++) {
    496 		top = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
    497 		if (top > top_physdram) top_physdram = top;
    498 	}
    499 	for (loop = 0; loop < dram_blocks; loop++) {
    500 		top = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
    501 		if (top > top_physdram) top_physdram = top;
    502 	}
    503 	if (top_physdram == 0)
    504 		panic("reality check: No DRAM in this machine?");
    505 	if (((top_physdram >> 20) << 20) != top_physdram)
    506 		panic("Top is not not aligned on a Mb; "
    507 		    "remove very small DIMMS?");
    508 
    509 	videomem_start_ro = vdu_var(os_VDUVAR_DISPLAY_START);
    510 
    511 	/* pretty print the individual page types */
    512 	for (count = 0; count < rom_blocks; count++) {
    513 		printf("Found ROM  (%d)", count);
    514 		printf(" at 0x%s", sprint0(8,'0','x', ROM_addr[count]));
    515 		printf(" for %s k\n",
    516 		    sprint0(5,' ','d', (ROM_pages[count]*nbpp)>>10));
    517 	}
    518 
    519 	for (count = 0; count < io_blocks; count++) {
    520 		printf("Found I/O  (%d)", count);
    521 		printf(" at 0x%s", sprint0(8,'0','x', IO_addr[count]));
    522 		printf(" for %s k\n",
    523 		    sprint0(5,' ','d', (IO_pages[count]*nbpp)>>10));
    524 	}
    525 
    526 	/* for DRAM/VRAM also count the number of pages */
    527 	total_dram_pages = 0;
    528 	for (count = 0; count < dram_blocks; count++) {
    529 		total_dram_pages += DRAM_pages[count];
    530 		printf("Found DRAM (%d)", count);
    531 		printf(" at 0x%s", sprint0(8,'0','x', DRAM_addr[count]));
    532 		printf(" for %s k\n",
    533 		    sprint0(5,' ','d', (DRAM_pages[count]*nbpp)>>10));
    534 	}
    535 
    536 	total_vram_pages = 0;
    537 	for (count = 0; count < vram_blocks; count++) {
    538 		total_vram_pages += VRAM_pages[count];
    539 		printf("Found VRAM (%d)", count);
    540 		printf(" at 0x%s", sprint0(8,'0','x', VRAM_addr[count]));
    541 		printf(" for %s k\n",
    542 		    sprint0(5,' ','d', (VRAM_pages[count]*nbpp)>>10));
    543 	}
    544 
    545 	total_podram_pages = 0;
    546 	for (count = 0; count < podram_blocks; count++) {
    547 		total_podram_pages += PODRAM_pages[count];
    548 		printf("Found Processor only (S)DRAM (%d)", count);
    549 		printf(" at 0x%s", sprint0(8,'0','x', PODRAM_addr[count]));
    550 		printf(" for %s k\n",
    551 		    sprint0(5,' ','d', (PODRAM_pages[count]*nbpp)>>10));
    552 	}
    553 }
    554 
    555 
    556 void
    557 get_memory_map(void)
    558 {
    559 	struct page_info *page_info;
    560 	int	page, inout;
    561 	int	phys_addr;
    562 
    563 	printf("\nGetting actual memorymapping");
    564 	for (page = 0, page_info = mem_pages_info;
    565 	     page < totalpages;
    566 	     page++, page_info++) {
    567 		page_info->pagenumber = 0;	/* not used */
    568 		page_info->logical    = (firstpage + page) * nbpp;
    569 		page_info->physical   = 0;	/* result comes here */
    570 		/* to avoid triggering a `bug' in RISC OS 4, page it in */
    571 		*((int *)page_info->logical) = 0;
    572 	}
    573 	/* close list */
    574 	page_info->pagenumber = -1;
    575 
    576 	inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO |
    577 	    osmemory_RETURN_PHYS_ADDR;
    578 	osmemory_page_op(inout, mem_pages_info, totalpages);
    579 
    580 	printf(" ; sorting ");
    581 	qsort(mem_pages_info, totalpages, sizeof(struct page_info),
    582 	    &page_info_cmp);
    583 	printf(".\n");
    584 
    585 	/*
    586 	 * get the first DRAM index and show the physical memory
    587 	 * fragments we got
    588 	 */
    589 	printf("\nFound physical memory blocks :\n");
    590 	first_mapped_DRAM_page_index = -1;
    591 	first_mapped_PODRAM_page_index = -1;
    592 	for (page=0; page < totalpages; page++) {
    593 		phys_addr = mem_pages_info[page].physical;
    594 		printf("[0x%x", phys_addr);
    595 		while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
    596 			if (first_mapped_DRAM_page_index < 0 &&
    597 			    phys_addr >= DRAM_addr[0])
    598 				first_mapped_DRAM_page_index = page;
    599 			if (first_mapped_PODRAM_page_index < 0 &&
    600 			    phys_addr >= PODRAM_addr[0])
    601 				first_mapped_PODRAM_page_index = page;
    602 			page++;
    603 			phys_addr = mem_pages_info[page].physical;
    604 		}
    605 		printf("-0x%x]  ", phys_addr + nbpp -1);
    606 	}
    607 	printf("\n\n");
    608 
    609 	if (first_mapped_PODRAM_page_index < 0 && PODRAM_addr[0])
    610 		panic("Found no (S)DRAM mapped in the bootloader");
    611 	if (first_mapped_DRAM_page_index < 0)
    612 		panic("No DRAM mapped in the bootloader");
    613 }
    614 
    615 
    616 void
    617 create_initial_page_tables(void)
    618 {
    619 	u_long page, section, addr, kpage;
    620 
    621 	/* mark a section by the following bits and domain 0, AP=01, CB=0 */
    622 	/*         A         P         C        B        section
    623 	           domain		*/
    624 	section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) |
    625 	    (0) | (0 << 5);
    626 
    627 	/* first of all a full 1:1 mapping */
    628 	for (page = 0; page < 4*1024; page++)
    629 		initial_page_tables[page] = (page<<20) | section;
    630 
    631 	/*
    632 	 * video memory is mapped 1:1 in the DRAM section or in VRAM
    633 	 * section
    634 	 *
    635 	 * map 1Mb from top of DRAM memory to bottom 1Mb of virtual memmap
    636 	 */
    637 	top_1Mb_dram = (((top_physdram - 1024*1024) >> 20) << 20);
    638 
    639 	initial_page_tables[0] = top_1Mb_dram | section;
    640 
    641 	/*
    642 	 * map 16 Mb of kernel space to KERNEL_BASE
    643 	 * i.e. marks[KERNEL_START]
    644 	 */
    645 	for (page = 0; page < 16; page++) {
    646 		addr  = (kernel_physical_start >> 20) + page;
    647 		kpage = (marks[MARK_START]     >> 20) + page;
    648 		initial_page_tables[kpage] = (addr << 20) | section;
    649 	}
    650 }
    651 
    652 
    653 void
    654 add_pagetables_at_top(void)
    655 {
    656 	int page;
    657 	u_long src, dst, fragaddr;
    658 
    659 	/* Special : destination must be on a 16 Kb boundary */
    660 	/* get 4 pages on the top of the physical memory and copy PT's in it */
    661 	new_L1_pages_phys = top_physdram - 4 * nbpp;
    662 
    663 	/*
    664 	 * If the L1 page tables are not 16 kb aligned, adjust base
    665 	 * until it is
    666 	 */
    667 	while (new_L1_pages_phys & (16*1024-1))
    668 		new_L1_pages_phys -= nbpp;
    669 	if (new_L1_pages_phys & (16*1024-1))
    670 		panic("Paranoia : L1 pages not on 16Kb boundary");
    671 
    672 	dst = new_L1_pages_phys;
    673 	src = (u_long)initial_page_tables;
    674 
    675 	for (page = 0; page < 4; page++) {
    676 		/* get a page for a fragment */
    677 		fragaddr = get_relocated_page(dst, nbpp)->logical;
    678 		memcpy((void *)fragaddr, (void *)src, nbpp);
    679 
    680 		src += nbpp;
    681 		dst += nbpp;
    682 	}
    683 }
    684 
    685 
    686 void
    687 add_initvectors(void)
    688 {
    689 	u_long *pos;
    690 	u_long  vectoraddr, count;
    691 
    692 	/* the top 1Mb of the physical DRAM pages is mapped at address 0 */
    693 	vectoraddr = get_relocated_page(top_1Mb_dram, nbpp)->logical;
    694 
    695 	/* fill the vectors with `movs pc, lr' opcodes */
    696 	pos = (u_long *)vectoraddr; memset(pos, 0, nbpp);
    697 	for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
    698 }
    699 
    700 /*
    701  * Work out the display's vertical sync rate.  One might hope that there
    702  * would be a simpler way than by counting vsync interrupts for a second,
    703  * but if there is, I can't find it.
    704  */
    705 static int
    706 vsync_rate(void)
    707 {
    708 	uint8_t count0;
    709 	unsigned int time0;
    710 
    711 	count0 = osbyte_read(osbyte_VAR_VSYNC_TIMER);
    712 	time0 = os_read_monotonic_time();
    713 	while (os_read_monotonic_time() - time0 < 100)
    714 		continue;
    715 	return (u_int8_t)(count0 - osbyte_read(osbyte_VAR_VSYNC_TIMER));
    716 }
    717 
    718 void
    719 create_configuration(int argc, char **argv, int start_args)
    720 {
    721 	int   i, root_specified, id_low, id_high;
    722 	char *pos;
    723 
    724 	bconfig_new_phys = kernel_free_vm_start - pv_offset;
    725 	bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
    726 	bconfig = (struct bootconfig *)(bconfig_page->logical);
    727 	kernel_free_vm_start += nbpp;
    728 
    729 	/* get some miscelanious info for the bootblock */
    730 	os_readsysinfo_monitor_info(NULL, (int *)&monitor_type, (int *)&monitor_sync);
    731 	os_readsysinfo_chip_presence((int *)&ioeb_flags, (int *)&superio_flags, (int *)&lcd_flags);
    732 	os_readsysinfo_superio_features((int *)&superio_flags_basic,
    733 	    (int *)&superio_flags_extra);
    734 	os_readsysinfo_unique_id(&id_low, &id_high);
    735 
    736 	/* fill in the bootconfig *bconfig structure : generic version II */
    737 	memset(bconfig, 0, sizeof(*bconfig));
    738 	bconfig->magic		= BOOTCONFIG_MAGIC;
    739 	bconfig->version	= BOOTCONFIG_VERSION;
    740 	strcpy(bconfig->kernelname, booted_file);
    741 
    742 	/*
    743 	 * get the kernel base name and update the RiscOS name to a
    744 	 * Unix name
    745 	 */
    746 	i = strlen(booted_file);
    747 	while (i >= 0 && booted_file[i] != '.') i--;
    748 	if (i) {
    749 		strcpy(bconfig->kernelname, "/");
    750 		strcat(bconfig->kernelname, booted_file+i+1);
    751 	}
    752 
    753 	pos = bconfig->kernelname+1;
    754 	while (*pos) {
    755 		if (*pos == '/') *pos = '.';
    756 		pos++;
    757 	}
    758 
    759 	/* set the machine_id */
    760 	memcpy(&(bconfig->machine_id), &id_low, 4);
    761 
    762 	/* check if the `root' is specified */
    763 	root_specified = 0;
    764 	strcpy(bconfig->args, "");
    765 	for (i = start_args; i < argc; i++) {
    766 		if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
    767 		strcat(bconfig->args, argv[i]);
    768 	}
    769 	if (!root_specified) {
    770 		strcat(bconfig->args, "root=");
    771 		strcat(bconfig->args, DEFAULT_ROOT);
    772 	}
    773 
    774 	/* mark kernel pointers */
    775 	bconfig->kernvirtualbase	= marks[MARK_START];
    776 	bconfig->kernphysicalbase	= kernel_physical_start;
    777 	bconfig->kernsize		= kernel_free_vm_start -
    778 					    marks[MARK_START];
    779 	bconfig->ksym_start		= marks[MARK_SYM];
    780 	bconfig->ksym_end		= marks[MARK_SYM] + marks[MARK_NSYM];
    781 
    782 	/* setup display info */
    783 	bconfig->display_phys		= videomem_start;
    784 	bconfig->display_start		= videomem_start;
    785 	bconfig->display_size		= display_size;
    786 	bconfig->width			= vdu_var(os_MODEVAR_XWIND_LIMIT);
    787 	bconfig->height			= vdu_var(os_MODEVAR_YWIND_LIMIT);
    788 	bconfig->log2_bpp		= vdu_var(os_MODEVAR_LOG2_BPP);
    789 	bconfig->framerate		= vsync_rate();
    790 
    791 	/* fill in memory info */
    792 	bconfig->pagesize		= nbpp;
    793 	bconfig->drampages		= total_dram_pages +
    794 					    total_podram_pages;	/* XXX */
    795 	bconfig->vrampages		= total_vram_pages;
    796 	bconfig->dramblocks		= dram_blocks + podram_blocks; /*XXX*/
    797 	bconfig->vramblocks		= vram_blocks;
    798 
    799 	for (i = 0; i < dram_blocks; i++) {
    800 		bconfig->dram[i].address = DRAM_addr[i];
    801 		bconfig->dram[i].pages   = DRAM_pages[i];
    802 		bconfig->dram[i].flags   = PHYSMEM_TYPE_GENERIC;
    803 	}
    804 	for (; i < dram_blocks + podram_blocks; i++) {
    805 		bconfig->dram[i].address = PODRAM_addr[i-dram_blocks];
    806 		bconfig->dram[i].pages   = PODRAM_pages[i-dram_blocks];
    807 		bconfig->dram[i].flags   = PHYSMEM_TYPE_PROCESSOR_ONLY;
    808 	}
    809 	for (i = 0; i < vram_blocks; i++) {
    810 		bconfig->vram[i].address = VRAM_addr[i];
    811 		bconfig->vram[i].pages   = VRAM_pages[i];
    812 		bconfig->vram[i].flags   = PHYSMEM_TYPE_GENERIC;
    813 	}
    814 }
    815 
    816 
    817 int
    818 main(int argc, char **argv)
    819 {
    820 	int howto, start_args, ret;
    821 
    822 	printf("\n\n");
    823 	printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
    824 	printf(">> (%s, %s)\n", bootprog_maker, bootprog_date);
    825 	printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
    826 	printf("\n");
    827 
    828 	process_args(argc, argv, &howto, booted_file, &start_args);
    829 
    830 	printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
    831 
    832 	init_datastructures();
    833 	get_memory_configuration();
    834 	get_memory_map();
    835 
    836 	/*
    837 	 * point to the first free DRAM page guaranteed to be in
    838 	 * strict order up
    839 	 */
    840 	if (podram_blocks != 0) {
    841 		free_relocation_page =
    842 		    mem_pages_info + first_mapped_PODRAM_page_index;
    843 		kernel_physical_start = PODRAM_addr[0];
    844 	} else {
    845 		free_relocation_page =
    846 		    mem_pages_info + first_mapped_DRAM_page_index;
    847 		kernel_physical_start = DRAM_addr[0];
    848 	}
    849 
    850 	printf("\nLoading %s ", booted_file);
    851 
    852 	/* first count the kernel to get the markers */
    853 	ret = loadfile(booted_file, marks, COUNT_KERNEL);
    854 	if (ret == -1) panic("Kernel load failed"); /* lie to the user ... */
    855 	close(ret);
    856 
    857 	/*
    858 	 * calculate how much the difference is between physical and
    859 	 * virtual space for the kernel
    860 	 */
    861 	pv_offset = ((u_long)marks[MARK_START] - kernel_physical_start);
    862 	/* round on a page	*/
    863 	kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1);
    864 
    865 	/* we seem to be forced to clear the marks[] ? */
    866 	bzero(marks, sizeof(marks));
    867 
    868 	/* really load it ! */
    869 	ret = loadfile(booted_file, marks, LOAD_KERNEL);
    870 	if (ret == -1) panic("Kernel load failed");
    871 	close(ret);
    872 
    873 	/* finish off the relocation information */
    874 	create_initial_page_tables();
    875 	add_initvectors();
    876 	add_pagetables_at_top();
    877 	create_configuration(argc, argv, start_args);
    878 
    879 	/*
    880 	 * done relocating and creating information, now update and
    881 	 * check the relocation mechanism
    882 	 */
    883 	prepare_and_check_relocation_system();
    884 
    885 	printf("\nStarting at 0x%lx, p@0x%lx\n", marks[MARK_ENTRY], kernel_physical_start);
    886 	printf("Will boot in a few secs due to relocation....\n"
    887 	    "bye bye from RISC OS!");
    888 
    889 	/* dismount all filesystems */
    890 	xosfscontrol_shutdown();
    891 
    892 	/* reset devices, well they try to anyway */
    893 	service_pre_reset();
    894 
    895 	start_kernel(
    896 		/* r0 relocation code page (V)	*/ relocate_code_page->logical,
    897 		/* r1 relocation pv offset	*/
    898 		relocate_code_page->physical-relocate_code_page->logical,
    899 		/* r2 configuration structure	*/ bconfig_new_phys,
    900 		/* r3 relocation table (P)	*/
    901 		relocate_table_pages->physical,	/* one piece! */
    902 		/* r4 L1 page descriptor (P)	*/ new_L1_pages_phys,
    903 		/* r5 kernel entry point	*/ marks[MARK_ENTRY]
    904 	);
    905 	return 0;
    906 }
    907 
    908 
    909 ssize_t
    910 boot32_read(int f, void *addr, size_t size)
    911 {
    912 	void *fragaddr;
    913 	size_t fragsize;
    914 	ssize_t bytes_read, total;
    915 
    916 	/* printf("read at %p for %ld bytes\n", addr, size); */
    917 	total = 0;
    918 	while (size > 0) {
    919 		fragsize = nbpp;		/* select one page	*/
    920 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    921 
    922 		/* get a page for a fragment */
    923 		fragaddr = (void *)get_relocated_page((u_long) addr -
    924 		    pv_offset, fragsize)->logical;
    925 
    926 		bytes_read = read(f, fragaddr, fragsize);
    927 		if (bytes_read < 0) return bytes_read;	/* error!	*/
    928 		total += bytes_read;		/* account read bytes	*/
    929 
    930 		if (bytes_read < fragsize)
    931 			return total;		/* does this happen?	*/
    932 
    933 		size -= fragsize;		/* advance		*/
    934 		addr += fragsize;
    935 	}
    936 	return total;
    937 }
    938 
    939 
    940 void *
    941 boot32_memcpy(void *dst, const void *src, size_t size)
    942 {
    943 	void *fragaddr;
    944 	size_t fragsize;
    945 
    946 	/* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
    947 	while (size > 0) {
    948 		fragsize = nbpp;		/* select one page	*/
    949 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    950 
    951 		/* get a page for a fragment */
    952 		fragaddr = (void *)get_relocated_page((u_long) dst -
    953 		    pv_offset, fragsize)->logical;
    954 		memcpy(fragaddr, src, size);
    955 
    956 		src += fragsize;		/* account copy		*/
    957 		dst += fragsize;
    958 		size-= fragsize;
    959 	}
    960 	return dst;
    961 }
    962 
    963 
    964 void *
    965 boot32_memset(void *dst, int c, size_t size)
    966 {
    967 	void *fragaddr;
    968 	size_t fragsize;
    969 
    970 	/* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
    971 	while (size > 0) {
    972 		fragsize = nbpp;		/* select one page	*/
    973 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    974 
    975 		/* get a page for a fragment */
    976 		fragaddr = (void *)get_relocated_page((u_long)dst - pv_offset,
    977 		    fragsize)->logical;
    978 		memset(fragaddr, c, fragsize);
    979 
    980 		dst += fragsize;		/* account memsetting	*/
    981 		size-= fragsize;
    982 
    983 	}
    984 	return dst;
    985 }
    986 
    987 
    988 /* We can rely on the fact that two entries never have identical ->physical */
    989 int
    990 page_info_cmp(const void *a, const void *b)
    991 {
    992 
    993 	return (((struct page_info *)a)->physical <
    994 	    ((struct page_info *)b)->physical) ? -1 : 1;
    995 }
    996 
    997 struct page_info *
    998 get_relocated_page(u_long destination, int size)
    999 {
   1000 	struct page_info *page;
   1001 
   1002 	/* get a page for a fragment */
   1003 	page = free_relocation_page;
   1004 	if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages");
   1005 	reloc_entries++;
   1006 	if (reloc_entries >= MAX_RELOCPAGES)
   1007 		panic("\n\nToo many relocations! What are you loading ??");
   1008 
   1009 	/* record the relocation */
   1010 	*reloc_pos++ = free_relocation_page->physical;
   1011 	*reloc_pos++ = destination;
   1012 	*reloc_pos++ = size;
   1013 	free_relocation_page++;			/* advance 		*/
   1014 
   1015 	return page;
   1016 }
   1017 
   1018 
   1019 int
   1020 vdu_var(int var)
   1021 {
   1022 	int varlist[2], vallist[2];
   1023 
   1024 	varlist[0] = var;
   1025 	varlist[1] = -1;
   1026 	os_read_vdu_variables(varlist, vallist);
   1027 	return vallist[0];
   1028 }
   1029 
   1030 
   1031 void
   1032 twirl(void)
   1033 {
   1034 
   1035 	printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
   1036 	twirl_cnt++;
   1037 	twirl_cnt &= 3;
   1038 }
   1039 
   1040 
   1041 void
   1042 process_args(int argc, char **argv, int *howto, char *file, int *start_args)
   1043 {
   1044 	int i, j;
   1045 	static char filename[80];
   1046 
   1047 	*howto = 0;
   1048 	*file = NULL; *start_args = 1;
   1049 	for (i = 1; i < argc; i++) {
   1050 		if (argv[i][0] == '-')
   1051 			for (j = 1; argv[i][j]; j++)
   1052 				BOOT_FLAG(argv[i][j], *howto);
   1053 		else {
   1054 			if (*file)
   1055 				*start_args = i;
   1056 			else {
   1057 				strcpy(file, argv[i]);
   1058 				*start_args = i+1;
   1059 			}
   1060 			break;
   1061 		}
   1062 	}
   1063 	if (*file == NULL) {
   1064 		if (*howto & RB_ASKNAME) {
   1065 			printf("boot: ");
   1066 			gets(filename);
   1067 			strcpy(file, filename);
   1068 		} else
   1069 			strcpy(file, "netbsd");
   1070 	}
   1071 }
   1072 
   1073 
   1074 char *
   1075 sprint0(int width, char prefix, char base, int value)
   1076 {
   1077 	static char format[50], scrap[50];
   1078 	char *pos;
   1079 	int length;
   1080 
   1081 	for (pos = format, length = 0; length<width; length++) *pos++ = prefix;
   1082 	*pos++ = '%';
   1083 	*pos++ = base;
   1084 	*pos++ = (char) 0;
   1085 
   1086 	sprintf(scrap, format, value);
   1087 	length = strlen(scrap);
   1088 
   1089 	return scrap+length-width;
   1090 }
   1091 
   1092