Home | History | Annotate | Line # | Download | only in boot32
boot32.c revision 1.37.4.1
      1 /*	$NetBSD: boot32.c,v 1.37.4.1 2011/03/05 20:49:06 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  *
     29  * Thanks a bunch for Ben's framework for the bootloader and its suporting
     30  * libs. This file tries to actually boot NetBSD/acorn32 !
     31  *
     32  * XXX eventually to be partly merged back with boot26 ? XXX
     33  */
     34 
     35 #include <lib/libsa/stand.h>
     36 #include <lib/libsa/loadfile.h>
     37 #include <lib/libkern/libkern.h>
     38 #include <riscoscalls.h>
     39 #include <srt0.h>
     40 #include <sys/boot_flag.h>
     41 #include <machine/vmparam.h>
     42 #include <arm/arm32/pte.h>
     43 #include <machine/bootconfig.h>
     44 
     45 extern char end[];
     46 
     47 /* debugging flags */
     48 int debug = 1;
     49 
     50 
     51 /* constants */
     52 #define PODRAM_START   (512*1024*1024)		/* XXX Kinetic cards XXX */
     53 
     54 #define MAX_RELOCPAGES	4096
     55 
     56 #define DEFAULT_ROOT	"/dev/wd0a"
     57 
     58 
     59 #define IO_BLOCKS	 16	/* move these to the bootloader structure? */
     60 #define ROM_BLOCKS	 16
     61 #define PODRAM_BLOCKS	 16
     62 
     63 
     64 /* booter variables */
     65 char	 scrap[80], twirl_cnt;		/* misc				*/
     66 char	 booted_file[80];
     67 
     68 struct bootconfig *bconfig;		/* bootconfig passing		*/
     69 u_long	 bconfig_new_phys;		/* physical address its bound	*/
     70 
     71 /* computer knowledge		*/
     72 u_int	 monitor_type, monitor_sync, ioeb_flags, lcd_flags;
     73 u_int	 superio_flags, superio_flags_basic, superio_flags_extra;
     74 
     75 /* sizes			*/
     76 int	 nbpp, memory_table_size, memory_image_size;
     77 /* relocate info		*/
     78 u_long	 reloc_tablesize, *reloc_instruction_table;
     79 u_long	*reloc_pos;			/* current empty entry		*/
     80 int	 reloc_entries;			/* number of relocations	*/
     81 int	 first_mapped_DRAM_page_index;	/* offset in RISC OS blob	*/
     82 int	 first_mapped_PODRAM_page_index;/* offset in RISC OS blob	*/
     83 
     84 struct page_info *mem_pages_info;	/* {nr, virt, phys}*		*/
     85 struct page_info *free_relocation_page;	/* points to the page_info chain*/
     86 struct page_info *relocate_code_page;	/* points to the copied code	*/
     87 struct page_info *bconfig_page;		/* page for passing on settings	*/
     88 
     89 unsigned char *memory_page_types;	/* packed array of 4 bit typeId	*/
     90 
     91 u_long	*initial_page_tables;		/* pagetables to be booted from	*/
     92 
     93 
     94 /* XXX rename *_BLOCKS to MEM_BLOCKS */
     95 /* DRAM/VRAM/ROM/IO info */
     96 /* where the display is		*/
     97 u_long	 videomem_start, videomem_pages, display_size;
     98 
     99 u_long	 pv_offset, top_physdram;	/* kernel_base - phys. diff	*/
    100 u_long	 top_1Mb_dram;			/* the lower mapped top 1Mb	*/
    101 u_long	 new_L1_pages_phys;		/* physical address of L1 pages	*/
    102 
    103 /* for bootconfig passing	*/
    104 u_long	 total_podram_pages, total_dram_pages, total_vram_pages;
    105 int	 dram_blocks, podram_blocks;	/* number of mem. objects/type  */
    106 int	 vram_blocks, rom_blocks, io_blocks;
    107 
    108 u_long	 DRAM_addr[DRAM_BLOCKS],     DRAM_pages[DRAM_BLOCKS];
    109 /* processor only RAM	*/
    110 u_long	 PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS];
    111 u_long	 VRAM_addr[VRAM_BLOCKS],     VRAM_pages[VRAM_BLOCKS];
    112 u_long	 ROM_addr[ROM_BLOCKS],       ROM_pages[ROM_BLOCKS];
    113 u_long	 IO_addr[IO_BLOCKS],         IO_pages[IO_BLOCKS];
    114 
    115 
    116 /* RISC OS memory pages we claimed */
    117 u_long	 firstpage, lastpage, totalpages; /* RISC OS pagecounters	*/
    118 /* RISC OS memory		*/
    119 char	*memory_image, *bottom_memory, *top_memory;
    120 
    121 /* kernel info */
    122 u_long	 marks[MARK_MAX];		/* loader mark pointers 	*/
    123 u_long	 kernel_physical_start;		/* where does it get relocated	*/
    124 u_long	 kernel_physical_maxsize;	/* Max allowed size of kernel	*/
    125 u_long	 kernel_free_vm_start;		/* where does the free VM start	*/
    126 /* some free space to mess with	*/
    127 u_long	 scratch_virtualbase, scratch_physicalbase;
    128 
    129 
    130 /* bootprogram identifiers */
    131 extern const char bootprog_rev[];
    132 extern const char bootprog_name[];
    133 
    134 /* predefines / prototypes */
    135 void	 init_datastructures(void);
    136 void	 get_memory_configuration(void);
    137 void	 get_memory_map(void);
    138 void	 create_initial_page_tables(void);
    139 void	 add_pagetables_at_top(void);
    140 int	 page_info_cmp(const void *a, const void *);
    141 void	 add_initvectors(void);
    142 void	 create_configuration(int argc, char **argv, int start_args);
    143 void	 prepare_and_check_relocation_system(void);
    144 void	 compact_relocations(void);
    145 void	 twirl(void);
    146 int	 vdu_var(int);
    147 void	 process_args(int argc, char **argv, int *howto, char *file,
    148     int *start_args);
    149 
    150 char		 *sprint0(int width, char prefix, char base, int value);
    151 struct page_info *get_relocated_page(u_long destination, int size);
    152 
    153 extern void start_kernel(
    154 		int relocate_code_page,
    155 		int relocation_pv_offset,
    156 		int configuration_structure_in_flat_physical_space,
    157 		int virtual_address_relocation_table,
    158 		int physical_address_of_new_L1_pages,
    159 		int kernel_entry_point
    160 		);	/* asm */
    161 
    162 
    163 /* the loader itself */
    164 void
    165 init_datastructures(void)
    166 {
    167 
    168 	/* Get number of pages and the memorytablesize */
    169 	osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
    170 
    171 	/* Allocate 99% - (small fixed amount) of the heap for memory_image */
    172 	memory_image_size = (int)HIMEM - (int)end - 512 * 1024;
    173 	memory_image_size /= 100;
    174 	memory_image_size *= 99;
    175 	if (memory_image_size <= 256*1024)
    176 		panic("Insufficient memory");
    177 
    178 	memory_image = alloc(memory_image_size);
    179 	if (!memory_image)
    180 		panic("Can't alloc get my memory image ?");
    181 
    182 	bottom_memory = memory_image;
    183 	top_memory    = memory_image + memory_image_size;
    184 
    185 	firstpage  = ((int)bottom_memory / nbpp) + 1;	/* safety */
    186 	lastpage   = ((int)top_memory    / nbpp) - 1;
    187 	totalpages = lastpage - firstpage;
    188 
    189 	printf("Allocated %ld memory pages, each of %d kilobytes.\n\n",
    190 			totalpages, nbpp>>10 );
    191 
    192 	/*
    193 	 * Setup the relocation table. Its a simple array of 3 * 32 bit
    194 	 * entries. The first word in the array is the number of relocations
    195 	 * to be done
    196 	 */
    197 	reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(u_long);
    198 	reloc_instruction_table = alloc(reloc_tablesize);
    199 	if (!reloc_instruction_table)
    200 		panic("Can't alloc my relocate instructions pages");
    201 
    202 	reloc_entries = 0;
    203 	reloc_pos     = reloc_instruction_table;
    204 	*reloc_pos++  = 0;
    205 
    206 	/*
    207 	 * Set up the memory translation info structure. We need to allocate
    208 	 * one more for the end of list marker. See get_memory_map.
    209 	 */
    210 	mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
    211 	if (!mem_pages_info)
    212 		panic("Can't alloc my phys->virt page info");
    213 
    214 	/*
    215 	 * Allocate memory for the memory arrangement table. We use this
    216 	 * structure to retrieve memory page properties to clasify them.
    217 	 */
    218 	memory_page_types = alloc(memory_table_size);
    219 	if (!memory_page_types)
    220 		panic("Can't alloc my memory page type block");
    221 
    222 	/*
    223 	 * Initial page tables is 16 kb per definition since only sections are
    224 	 * used.
    225 	 */
    226 	initial_page_tables = alloc(16*1024);
    227 	if (!initial_page_tables)
    228 		panic("Can't alloc my initial page tables");
    229 }
    230 
    231 void
    232 compact_relocations(void)
    233 {
    234 	u_long *reloc_entry, current_length, length;
    235 	u_long  src, destination, current_src, current_destination;
    236 	u_long *current_entry;
    237 
    238 	current_entry = reloc_entry = reloc_instruction_table + 1;
    239 
    240 	/* prime the loop */
    241 	current_src		= reloc_entry[0];
    242 	current_destination	= reloc_entry[1];
    243 	current_length		= reloc_entry[2];
    244 
    245 	reloc_entry += 3;
    246 	while (reloc_entry < reloc_pos) {
    247 		src         = reloc_entry[0];
    248 		destination = reloc_entry[1];
    249 		length      = reloc_entry[2];
    250 
    251 		if (src == (current_src + current_length) &&
    252 		    destination == (current_destination + current_length)) {
    253 			/* can merge */
    254 			current_length += length;
    255 		} else {
    256 			/* nothing else to do, so save the length */
    257 			current_entry[2] = current_length;
    258 			/* fill in next entry */
    259 			current_entry += 3;
    260 			current_src = current_entry[0] = src;
    261 			current_destination = current_entry[1] = destination;
    262 			current_length = length;
    263 		}
    264 		reloc_entry += 3;
    265 	}
    266 	/* save last length */
    267 	current_entry[2] = current_length;
    268 	current_entry += 3;
    269 
    270 	/* workout new count of entries */
    271 	length = current_entry - (reloc_instruction_table + 1);
    272 	printf("Compacted relocations from %d entries to %ld\n",
    273 		       reloc_entries, length/3);
    274 
    275 	/* update table to reflect new size */
    276 	reloc_entries = length/3;
    277 	reloc_instruction_table[0] = length/3;
    278 	reloc_pos = current_entry;
    279 }
    280 
    281 void
    282 get_memory_configuration(void)
    283 {
    284 	int loop, current_page_type, page_count, phys_page;
    285 	int page, count, bank, top_bank, video_bank;
    286 	int mapped_screen_memory;
    287 	int one_mb_pages;
    288 	u_long top;
    289 
    290 	printf("Getting memory configuration ");
    291 
    292 	osmemory_read_arrangement_table(memory_page_types);
    293 
    294 	/* init counters */
    295 	bank = vram_blocks = dram_blocks = rom_blocks = io_blocks =
    296 	    podram_blocks = 0;
    297 
    298 	current_page_type = -1;
    299 	phys_page = 0;			/* physical address in pages	*/
    300 	page_count = 0;			/* page counter in this block	*/
    301 	loop = 0;			/* loop variable over entries	*/
    302 
    303 	/* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
    304 	while (loop < 2*memory_table_size) {
    305 		page = memory_page_types[loop / 2];	/* read	twice */
    306 		if (loop & 1) page >>= 4;		/* take other nibble */
    307 
    308 		/*
    309 		 * bits 0-2 give type, bit3 means the bit page is
    310 		 * allocatable
    311 		 */
    312 		page &= 0x7;			/* only take bottom 3 bits */
    313 		if (page != current_page_type) {
    314 			/* passed a boundary ... note this block	   */
    315 			/*
    316 			 * splitting in different vars is for
    317 			 * compatability reasons
    318 			 */
    319 			switch (current_page_type) {
    320 			case -1:
    321 			case  0:
    322 				break;
    323 			case osmemory_TYPE_DRAM:
    324 				if ((phys_page * nbpp)< PODRAM_START) {
    325 					DRAM_addr[dram_blocks]  =
    326 					    phys_page * nbpp;
    327 					DRAM_pages[dram_blocks] =
    328 					    page_count;
    329 					dram_blocks++;
    330 				} else {
    331 					PODRAM_addr[podram_blocks]  =
    332 					    phys_page * nbpp;
    333 					PODRAM_pages[podram_blocks] =
    334 					    page_count;
    335 					podram_blocks++;
    336 				}
    337 				break;
    338 			case osmemory_TYPE_VRAM:
    339 				VRAM_addr[vram_blocks]  = phys_page * nbpp;
    340 				VRAM_pages[vram_blocks] = page_count;
    341 				vram_blocks++;
    342 				break;
    343 			case osmemory_TYPE_ROM:
    344 				ROM_addr[rom_blocks]  = phys_page * nbpp;
    345 				ROM_pages[rom_blocks] = page_count;
    346 				rom_blocks++;
    347 				break;
    348 			case osmemory_TYPE_IO:
    349 				IO_addr[io_blocks]  = phys_page * nbpp;
    350 				IO_pages[io_blocks] = page_count;
    351 				io_blocks++;
    352 				break;
    353 			default:
    354 				printf("WARNING : found unknown "
    355 				    "memory object %d ", current_page_type);
    356 				printf(" at 0x%s",
    357 				    sprint0(8,'0','x', phys_page * nbpp));
    358 				printf(" for %s k\n",
    359 				    sprint0(5,' ','d', (page_count*nbpp)>>10));
    360 				break;
    361 			}
    362 			current_page_type = page;
    363 			phys_page = loop;
    364 			page_count = 0;
    365 		}
    366 		/*
    367 		 * smallest unit we recognise is one page ... silly
    368 		 * could be upto 64 pages i.e. 256 kb
    369 		 */
    370 		page_count += 1;
    371 		loop       += 1;
    372 		if ((loop & 31) == 0) twirl();
    373 	}
    374 
    375 	printf(" \n\n");
    376 
    377 	if (VRAM_pages[0] == 0) {
    378 		/* map DRAM as video memory */
    379 		display_size	 =
    380 		    vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1);
    381 #if 0
    382 		mapped_screen_memory = 1024 * 1024; /* max allowed on RiscPC */
    383 		videomem_pages   = (mapped_screen_memory / nbpp);
    384 		videomem_start   = DRAM_addr[0];
    385 		DRAM_addr[0]	+= videomem_pages * nbpp;
    386 		DRAM_pages[0]	-= videomem_pages;
    387 #else
    388 		mapped_screen_memory = display_size;
    389 		videomem_pages   = mapped_screen_memory / nbpp;
    390 		one_mb_pages	 = (1024*1024)/nbpp;
    391 
    392 		/*
    393 		 * OK... we need one Mb at the top for compliance with current
    394 		 * kernel structure. This ought to be abolished one day IMHO.
    395 		 * Also we have to take care that the kernel needs to be in
    396 		 * DRAM0a and even has to start there.
    397 		 * XXX one Mb simms are the smallest supported XXX
    398 		 */
    399 		top_bank = dram_blocks-1;
    400 		video_bank = top_bank;
    401 		if (DRAM_pages[top_bank] == one_mb_pages) video_bank--;
    402 
    403 		if (DRAM_pages[video_bank] < videomem_pages)
    404 			panic("Weird memory configuration found; please "
    405 			    "contact acorn32 portmaster.");
    406 
    407 		/* split off the top 1Mb */
    408 		DRAM_addr [top_bank+1]  = DRAM_addr[top_bank] +
    409 		    (DRAM_pages[top_bank] - one_mb_pages)*nbpp;
    410 		DRAM_pages[top_bank+1]  = one_mb_pages;
    411 		DRAM_pages[top_bank  ] -= one_mb_pages;
    412 		dram_blocks++;
    413 
    414 		/* Map video memory at the end of the choosen DIMM */
    415 		videomem_start          = DRAM_addr[video_bank] +
    416 		    (DRAM_pages[video_bank] - videomem_pages)*nbpp;
    417 		DRAM_pages[video_bank] -= videomem_pages;
    418 
    419 		/* sanity */
    420 		if (DRAM_pages[top_bank] == 0) {
    421 			DRAM_addr [top_bank] = DRAM_addr [top_bank+1];
    422 			DRAM_pages[top_bank] = DRAM_pages[top_bank+1];
    423 			dram_blocks--;
    424 		}
    425 #endif
    426 	} else {
    427 		/* use VRAM */
    428 		mapped_screen_memory = 0;
    429 		videomem_start	 = VRAM_addr[0];
    430 		videomem_pages	 = VRAM_pages[0];
    431 		display_size	 = videomem_pages * nbpp;
    432 	}
    433 
    434 	if (mapped_screen_memory) {
    435 		printf("Used %d kb DRAM ", mapped_screen_memory / 1024);
    436 		printf("at 0x%s for video memory\n",
    437 		    sprint0(8,'0','x', videomem_start));
    438 	}
    439 
    440 	/* find top of (PO)DRAM pages */
    441 	top_physdram = 0;
    442 	for (loop = 0; loop < podram_blocks; loop++) {
    443 		top = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
    444 		if (top > top_physdram) top_physdram = top;
    445 	}
    446 	for (loop = 0; loop < dram_blocks; loop++) {
    447 		top = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
    448 		if (top > top_physdram) top_physdram = top;
    449 	}
    450 	if (top_physdram == 0)
    451 		panic("reality check: No DRAM in this machine?");
    452 	if (((top_physdram >> 20) << 20) != top_physdram)
    453 		panic("Top is not not aligned on a Mb; "
    454 		    "remove very small DIMMS?");
    455 
    456 	/* pretty print the individual page types */
    457 	for (count = 0; count < rom_blocks; count++) {
    458 		printf("Found ROM  (%d)", count);
    459 		printf(" at 0x%s", sprint0(8,'0','x', ROM_addr[count]));
    460 		printf(" for %s k\n",
    461 		    sprint0(5,' ','d', (ROM_pages[count]*nbpp)>>10));
    462 	}
    463 
    464 	for (count = 0; count < io_blocks; count++) {
    465 		printf("Found I/O  (%d)", count);
    466 		printf(" at 0x%s", sprint0(8,'0','x', IO_addr[count]));
    467 		printf(" for %s k\n",
    468 		    sprint0(5,' ','d', (IO_pages[count]*nbpp)>>10));
    469 	}
    470 
    471 	/* for DRAM/VRAM also count the number of pages */
    472 	total_dram_pages = 0;
    473 	for (count = 0; count < dram_blocks; count++) {
    474 		total_dram_pages += DRAM_pages[count];
    475 		printf("Found DRAM (%d)", count);
    476 		printf(" at 0x%s", sprint0(8,'0','x', DRAM_addr[count]));
    477 		printf(" for %s k\n",
    478 		    sprint0(5,' ','d', (DRAM_pages[count]*nbpp)>>10));
    479 	}
    480 
    481 	total_vram_pages = 0;
    482 	for (count = 0; count < vram_blocks; count++) {
    483 		total_vram_pages += VRAM_pages[count];
    484 		printf("Found VRAM (%d)", count);
    485 		printf(" at 0x%s", sprint0(8,'0','x', VRAM_addr[count]));
    486 		printf(" for %s k\n",
    487 		    sprint0(5,' ','d', (VRAM_pages[count]*nbpp)>>10));
    488 	}
    489 
    490 	total_podram_pages = 0;
    491 	for (count = 0; count < podram_blocks; count++) {
    492 		total_podram_pages += PODRAM_pages[count];
    493 		printf("Found Processor only (S)DRAM (%d)", count);
    494 		printf(" at 0x%s", sprint0(8,'0','x', PODRAM_addr[count]));
    495 		printf(" for %s k\n",
    496 		    sprint0(5,' ','d', (PODRAM_pages[count]*nbpp)>>10));
    497 	}
    498 }
    499 
    500 
    501 void
    502 get_memory_map(void)
    503 {
    504 	struct page_info *page_info;
    505 	int	page, inout;
    506 	int	phys_addr;
    507 
    508 	printf("\nGetting actual memorymapping");
    509 	for (page = 0, page_info = mem_pages_info;
    510 	     page < totalpages;
    511 	     page++, page_info++) {
    512 		page_info->pagenumber = 0;	/* not used */
    513 		page_info->logical    = (firstpage + page) * nbpp;
    514 		page_info->physical   = 0;	/* result comes here */
    515 		/* to avoid triggering a `bug' in RISC OS 4, page it in */
    516 		*((int *)page_info->logical) = 0;
    517 	}
    518 	/* close list */
    519 	page_info->pagenumber = -1;
    520 
    521 	inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO |
    522 	    osmemory_RETURN_PHYS_ADDR;
    523 	osmemory_page_op(inout, mem_pages_info, totalpages);
    524 
    525 	printf(" ; sorting ");
    526 	qsort(mem_pages_info, totalpages, sizeof(struct page_info),
    527 	    &page_info_cmp);
    528 	printf(".\n");
    529 
    530 	/*
    531 	 * get the first DRAM index and show the physical memory
    532 	 * fragments we got
    533 	 */
    534 	printf("\nFound physical memory blocks :\n");
    535 	first_mapped_DRAM_page_index = -1;
    536 	first_mapped_PODRAM_page_index = -1;
    537 	for (page=0; page < totalpages; page++) {
    538 		phys_addr = mem_pages_info[page].physical;
    539 		printf("[0x%x", phys_addr);
    540 		while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
    541 			if (first_mapped_DRAM_page_index < 0 &&
    542 			    phys_addr >= DRAM_addr[0])
    543 				first_mapped_DRAM_page_index = page;
    544 			if (first_mapped_PODRAM_page_index < 0 &&
    545 			    phys_addr >= PODRAM_addr[0])
    546 				first_mapped_PODRAM_page_index = page;
    547 			page++;
    548 			phys_addr = mem_pages_info[page].physical;
    549 		}
    550 		printf("-0x%x]  ", phys_addr + nbpp -1);
    551 	}
    552 	printf("\n\n");
    553 
    554 	if (first_mapped_PODRAM_page_index < 0 && PODRAM_addr[0])
    555 		panic("Found no (S)DRAM mapped in the bootloader");
    556 	if (first_mapped_DRAM_page_index < 0)
    557 		panic("No DRAM mapped in the bootloader");
    558 }
    559 
    560 
    561 void
    562 create_initial_page_tables(void)
    563 {
    564 	u_long page, section, addr, kpage;
    565 
    566 	/* mark a section by the following bits and domain 0, AP=01, CB=0 */
    567 	/*         A         P         C        B        section
    568 	           domain		*/
    569 	section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) |
    570 	    (0) | (0 << 5);
    571 
    572 	/* first of all a full 1:1 mapping */
    573 	for (page = 0; page < 4*1024; page++)
    574 		initial_page_tables[page] = (page<<20) | section;
    575 
    576 	/*
    577 	 * video memory is mapped 1:1 in the DRAM section or in VRAM
    578 	 * section
    579 	 *
    580 	 * map 1Mb from top of DRAM memory to bottom 1Mb of virtual memmap
    581 	 */
    582 	top_1Mb_dram = (((top_physdram - 1024*1024) >> 20) << 20);
    583 
    584 	initial_page_tables[0] = top_1Mb_dram | section;
    585 
    586 	/*
    587 	 * map 16 Mb of kernel space to KERNEL_BASE
    588 	 * i.e. marks[KERNEL_START]
    589 	 */
    590 	for (page = 0; page < 16; page++) {
    591 		addr  = (kernel_physical_start >> 20) + page;
    592 		kpage = (marks[MARK_START]     >> 20) + page;
    593 		initial_page_tables[kpage] = (addr << 20) | section;
    594 	}
    595 }
    596 
    597 
    598 void
    599 add_pagetables_at_top(void)
    600 {
    601 	int page;
    602 	u_long src, dst, fragaddr;
    603 
    604 	/* Special : destination must be on a 16 Kb boundary */
    605 	/* get 4 pages on the top of the physical memory and copy PT's in it */
    606 	new_L1_pages_phys = top_physdram - 4 * nbpp;
    607 
    608 	/*
    609 	 * If the L1 page tables are not 16 kb aligned, adjust base
    610 	 * until it is
    611 	 */
    612 	while (new_L1_pages_phys & (16*1024-1))
    613 		new_L1_pages_phys -= nbpp;
    614 	if (new_L1_pages_phys & (16*1024-1))
    615 		panic("Paranoia : L1 pages not on 16Kb boundary");
    616 
    617 	dst = new_L1_pages_phys;
    618 	src = (u_long)initial_page_tables;
    619 
    620 	for (page = 0; page < 4; page++) {
    621 		/* get a page for a fragment */
    622 		fragaddr = get_relocated_page(dst, nbpp)->logical;
    623 		memcpy((void *)fragaddr, (void *)src, nbpp);
    624 
    625 		src += nbpp;
    626 		dst += nbpp;
    627 	}
    628 }
    629 
    630 
    631 void
    632 add_initvectors(void)
    633 {
    634 	u_long *pos;
    635 	u_long  vectoraddr, count;
    636 
    637 	/* the top 1Mb of the physical DRAM pages is mapped at address 0 */
    638 	vectoraddr = get_relocated_page(top_1Mb_dram, nbpp)->logical;
    639 
    640 	/* fill the vectors with `movs pc, lr' opcodes */
    641 	pos = (u_long *)vectoraddr; memset(pos, 0, nbpp);
    642 	for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
    643 }
    644 
    645 /*
    646  * Work out the display's vertical sync rate.  One might hope that there
    647  * would be a simpler way than by counting vsync interrupts for a second,
    648  * but if there is, I can't find it.
    649  */
    650 static int
    651 vsync_rate(void)
    652 {
    653 	uint8_t count0;
    654 	unsigned int time0;
    655 
    656 	count0 = osbyte_read(osbyte_VAR_VSYNC_TIMER);
    657 	time0 = os_read_monotonic_time();
    658 	while (os_read_monotonic_time() - time0 < 100)
    659 		continue;
    660 	return (u_int8_t)(count0 - osbyte_read(osbyte_VAR_VSYNC_TIMER));
    661 }
    662 
    663 void
    664 create_configuration(int argc, char **argv, int start_args)
    665 {
    666 	int   i, root_specified, id_low, id_high;
    667 	char *pos;
    668 
    669 	bconfig_new_phys = kernel_free_vm_start - pv_offset;
    670 	bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
    671 	bconfig = (struct bootconfig *)(bconfig_page->logical);
    672 	kernel_free_vm_start += nbpp;
    673 
    674 	/* get some miscelanious info for the bootblock */
    675 	os_readsysinfo_monitor_info(NULL, (int *)&monitor_type, (int *)&monitor_sync);
    676 	os_readsysinfo_chip_presence((int *)&ioeb_flags, (int *)&superio_flags, (int *)&lcd_flags);
    677 	os_readsysinfo_superio_features((int *)&superio_flags_basic,
    678 	    (int *)&superio_flags_extra);
    679 	os_readsysinfo_unique_id(&id_low, &id_high);
    680 
    681 	/* fill in the bootconfig *bconfig structure : generic version II */
    682 	memset(bconfig, 0, sizeof(*bconfig));
    683 	bconfig->magic		= BOOTCONFIG_MAGIC;
    684 	bconfig->version	= BOOTCONFIG_VERSION;
    685 	strcpy(bconfig->kernelname, booted_file);
    686 
    687 	/*
    688 	 * get the kernel base name and update the RiscOS name to a
    689 	 * Unix name
    690 	 */
    691 	i = strlen(booted_file);
    692 	while (i >= 0 && booted_file[i] != '.') i--;
    693 	if (i) {
    694 		strcpy(bconfig->kernelname, "/");
    695 		strcat(bconfig->kernelname, booted_file+i+1);
    696 	}
    697 
    698 	pos = bconfig->kernelname+1;
    699 	while (*pos) {
    700 		if (*pos == '/') *pos = '.';
    701 		pos++;
    702 	}
    703 
    704 	/* set the machine_id */
    705 	memcpy(&(bconfig->machine_id), &id_low, 4);
    706 
    707 	/* check if the `root' is specified */
    708 	root_specified = 0;
    709 	strcpy(bconfig->args, "");
    710 	for (i = start_args; i < argc; i++) {
    711 		if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
    712 		if (i > start_args)
    713 			strcat(bconfig->args, " ");
    714 		strcat(bconfig->args, argv[i]);
    715 	}
    716 	if (!root_specified) {
    717 		if (start_args < argc)
    718 			strcat(bconfig->args, " ");
    719 		strcat(bconfig->args, "root=");
    720 		strcat(bconfig->args, DEFAULT_ROOT);
    721 	}
    722 
    723 	/* mark kernel pointers */
    724 	bconfig->kernvirtualbase	= marks[MARK_START];
    725 	bconfig->kernphysicalbase	= kernel_physical_start;
    726 	bconfig->kernsize		= kernel_free_vm_start -
    727 					    marks[MARK_START];
    728 	bconfig->ksym_start		= marks[MARK_SYM];
    729 	bconfig->ksym_end		= marks[MARK_SYM] + marks[MARK_NSYM];
    730 
    731 	/* setup display info */
    732 	bconfig->display_phys		= videomem_start;
    733 	bconfig->display_start		= videomem_start;
    734 	bconfig->display_size		= display_size;
    735 	bconfig->width			= vdu_var(os_MODEVAR_XWIND_LIMIT);
    736 	bconfig->height			= vdu_var(os_MODEVAR_YWIND_LIMIT);
    737 	bconfig->log2_bpp		= vdu_var(os_MODEVAR_LOG2_BPP);
    738 	bconfig->framerate		= vsync_rate();
    739 
    740 	/* fill in memory info */
    741 	bconfig->pagesize		= nbpp;
    742 	bconfig->drampages		= total_dram_pages +
    743 					    total_podram_pages;	/* XXX */
    744 	bconfig->vrampages		= total_vram_pages;
    745 	bconfig->dramblocks		= dram_blocks + podram_blocks; /*XXX*/
    746 	bconfig->vramblocks		= vram_blocks;
    747 
    748 	for (i = 0; i < dram_blocks; i++) {
    749 		bconfig->dram[i].address = DRAM_addr[i];
    750 		bconfig->dram[i].pages   = DRAM_pages[i];
    751 		bconfig->dram[i].flags   = PHYSMEM_TYPE_GENERIC;
    752 	}
    753 	for (; i < dram_blocks + podram_blocks; i++) {
    754 		bconfig->dram[i].address = PODRAM_addr[i-dram_blocks];
    755 		bconfig->dram[i].pages   = PODRAM_pages[i-dram_blocks];
    756 		bconfig->dram[i].flags   = PHYSMEM_TYPE_PROCESSOR_ONLY;
    757 	}
    758 	for (i = 0; i < vram_blocks; i++) {
    759 		bconfig->vram[i].address = VRAM_addr[i];
    760 		bconfig->vram[i].pages   = VRAM_pages[i];
    761 		bconfig->vram[i].flags   = PHYSMEM_TYPE_GENERIC;
    762 	}
    763 }
    764 
    765 
    766 int
    767 main(int argc, char **argv)
    768 {
    769 	int howto, start_args, ret;
    770 	int class;
    771 
    772 	printf("\n\n");
    773 	printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
    774 	printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
    775 	printf("\n");
    776 
    777 	process_args(argc, argv, &howto, booted_file, &start_args);
    778 
    779 	printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
    780 
    781 	init_datastructures();
    782 	get_memory_configuration();
    783 	get_memory_map();
    784 
    785 	/*
    786 	 * point to the first free DRAM page guaranteed to be in
    787 	 * strict order up
    788 	 */
    789 	if (podram_blocks != 0) {
    790 		free_relocation_page =
    791 		    mem_pages_info + first_mapped_PODRAM_page_index;
    792 		kernel_physical_start = PODRAM_addr[0];
    793 		kernel_physical_maxsize = PODRAM_pages[0] * nbpp;
    794 	} else {
    795 		free_relocation_page =
    796 		    mem_pages_info + first_mapped_DRAM_page_index;
    797 		kernel_physical_start = DRAM_addr[0];
    798 		kernel_physical_maxsize = DRAM_pages[0] * nbpp;
    799 	}
    800 
    801 	printf("\nLoading %s ", booted_file);
    802 
    803 	/* first count the kernel to get the markers */
    804 	ret = loadfile(booted_file, marks, COUNT_KERNEL);
    805 	if (ret == -1) panic("Kernel load failed"); /* lie to the user ... */
    806 	close(ret);
    807 
    808 	if (marks[MARK_END] - marks[MARK_START] > kernel_physical_maxsize)
    809 	{
    810 		panic("\nKernel is bigger than the first DRAM module, unable to boot\n");
    811 	}
    812 
    813 	/*
    814 	 * calculate how much the difference is between physical and
    815 	 * virtual space for the kernel
    816 	 */
    817 	pv_offset = ((u_long)marks[MARK_START] - kernel_physical_start);
    818 	/* round on a page	*/
    819 	kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1);
    820 
    821 	/* we seem to be forced to clear the marks[] ? */
    822 	memset(marks, 0, sizeof(marks));
    823 
    824 	/* really load it ! */
    825 	ret = loadfile(booted_file, marks, LOAD_KERNEL);
    826 	if (ret == -1) panic("Kernel load failed");
    827 	close(ret);
    828 
    829 	/* finish off the relocation information */
    830 	create_initial_page_tables();
    831 	add_initvectors();
    832 	add_pagetables_at_top();
    833 	create_configuration(argc, argv, start_args);
    834 
    835 	/*
    836 	 * done relocating and creating information, now update and
    837 	 * check the relocation mechanism
    838 	 */
    839 	compact_relocations();
    840 
    841 	/*
    842 	 * grab a page to copy the bootstrap code into
    843 	 */
    844 	relocate_code_page = free_relocation_page++;
    845 
    846 	printf("\nStarting at 0x%lx, p@0x%lx\n", marks[MARK_ENTRY], kernel_physical_start);
    847 	printf("%ld entries, first one is 0x%lx->0x%lx for %lx bytes\n",
    848 			reloc_instruction_table[0],
    849 			reloc_instruction_table[1],
    850 			reloc_instruction_table[2],
    851 			reloc_instruction_table[3]);
    852 
    853 	printf("Will boot in a few secs due to relocation....\n"
    854 	    "bye bye from RISC OS!");
    855 
    856 	/* dismount all filesystems */
    857 	xosfscontrol_shutdown();
    858 
    859 	os_readsysinfo_platform_class(&class, NULL, NULL);
    860 	if (class != osreadsysinfo_Platform_Pace) {
    861 		/* reset devices, well they try to anyway */
    862 		service_pre_reset();
    863 	}
    864 
    865 	start_kernel(
    866 		/* r0 relocation code page (V)	*/ relocate_code_page->logical,
    867 		/* r1 relocation pv offset	*/
    868 		relocate_code_page->physical-relocate_code_page->logical,
    869 		/* r2 configuration structure	*/ bconfig_new_phys,
    870 		/* r3 relocation table (l)	*/
    871 		(int)reloc_instruction_table,	/* one piece! */
    872 		/* r4 L1 page descriptor (P)	*/ new_L1_pages_phys,
    873 		/* r5 kernel entry point	*/ marks[MARK_ENTRY]
    874 	);
    875 	return 0;
    876 }
    877 
    878 
    879 ssize_t
    880 boot32_read(int f, void *addr, size_t size)
    881 {
    882 	void *fragaddr;
    883 	size_t fragsize;
    884 	ssize_t bytes_read, total;
    885 
    886 	/* printf("read at %p for %ld bytes\n", addr, size); */
    887 	total = 0;
    888 	while (size > 0) {
    889 		fragsize = nbpp;		/* select one page	*/
    890 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    891 
    892 		/* get a page for a fragment */
    893 		fragaddr = (void *)get_relocated_page((u_long) addr -
    894 		    pv_offset, fragsize)->logical;
    895 
    896 		bytes_read = read(f, fragaddr, fragsize);
    897 		if (bytes_read < 0) return bytes_read;	/* error!	*/
    898 		total += bytes_read;		/* account read bytes	*/
    899 
    900 		if (bytes_read < fragsize)
    901 			return total;		/* does this happen?	*/
    902 
    903 		size -= fragsize;		/* advance		*/
    904 		addr += fragsize;
    905 	}
    906 	return total;
    907 }
    908 
    909 
    910 void *
    911 boot32_memcpy(void *dst, const void *src, size_t size)
    912 {
    913 	void *fragaddr;
    914 	size_t fragsize;
    915 
    916 	/* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
    917 	while (size > 0) {
    918 		fragsize = nbpp;		/* select one page	*/
    919 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    920 
    921 		/* get a page for a fragment */
    922 		fragaddr = (void *)get_relocated_page((u_long) dst -
    923 		    pv_offset, fragsize)->logical;
    924 		memcpy(fragaddr, src, size);
    925 
    926 		src += fragsize;		/* account copy		*/
    927 		dst += fragsize;
    928 		size-= fragsize;
    929 	}
    930 	return dst;
    931 }
    932 
    933 
    934 void *
    935 boot32_memset(void *dst, int c, size_t size)
    936 {
    937 	void *fragaddr;
    938 	size_t fragsize;
    939 
    940 	/* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
    941 	while (size > 0) {
    942 		fragsize = nbpp;		/* select one page	*/
    943 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    944 
    945 		/* get a page for a fragment */
    946 		fragaddr = (void *)get_relocated_page((u_long)dst - pv_offset,
    947 		    fragsize)->logical;
    948 		memset(fragaddr, c, fragsize);
    949 
    950 		dst += fragsize;		/* account memsetting	*/
    951 		size-= fragsize;
    952 
    953 	}
    954 	return dst;
    955 }
    956 
    957 
    958 /* We can rely on the fact that two entries never have identical ->physical */
    959 int
    960 page_info_cmp(const void *a, const void *b)
    961 {
    962 
    963 	return (((struct page_info *)a)->physical <
    964 	    ((struct page_info *)b)->physical) ? -1 : 1;
    965 }
    966 
    967 struct page_info *
    968 get_relocated_page(u_long destination, int size)
    969 {
    970 	struct page_info *page;
    971 
    972 	/* get a page for a fragment */
    973 	page = free_relocation_page;
    974 	if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages");
    975 	reloc_entries++;
    976 	if (reloc_entries >= MAX_RELOCPAGES)
    977 		panic("\n\nToo many relocations! What are you loading ??");
    978 
    979 	/* record the relocation */
    980 	if (free_relocation_page->physical & 0x3)
    981 		panic("\n\nphysical address is not aligned!");
    982 
    983 	if (destination & 0x3)
    984 		panic("\n\ndestination address is not aligned!");
    985 
    986 	*reloc_pos++ = free_relocation_page->physical;
    987 	*reloc_pos++ = destination;
    988 	*reloc_pos++ = size;
    989 	free_relocation_page++;			/* advance 		*/
    990 
    991 	return page;
    992 }
    993 
    994 
    995 int
    996 vdu_var(int var)
    997 {
    998 	int varlist[2], vallist[2];
    999 
   1000 	varlist[0] = var;
   1001 	varlist[1] = -1;
   1002 	os_read_vdu_variables(varlist, vallist);
   1003 	return vallist[0];
   1004 }
   1005 
   1006 
   1007 void
   1008 twirl(void)
   1009 {
   1010 
   1011 	printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
   1012 	twirl_cnt++;
   1013 	twirl_cnt &= 3;
   1014 }
   1015 
   1016 
   1017 void
   1018 process_args(int argc, char **argv, int *howto, char *file, int *start_args)
   1019 {
   1020 	int i, j;
   1021 	static char filename[80];
   1022 
   1023 	*howto = 0;
   1024 	*file = NULL; *start_args = 1;
   1025 	for (i = 1; i < argc; i++) {
   1026 		if (argv[i][0] == '-')
   1027 			for (j = 1; argv[i][j]; j++)
   1028 				BOOT_FLAG(argv[i][j], *howto);
   1029 		else {
   1030 			if (*file)
   1031 				*start_args = i;
   1032 			else {
   1033 				strcpy(file, argv[i]);
   1034 				*start_args = i+1;
   1035 			}
   1036 			break;
   1037 		}
   1038 	}
   1039 	if (*file == NULL) {
   1040 		if (*howto & RB_ASKNAME) {
   1041 			printf("boot: ");
   1042 			gets(filename);
   1043 			strcpy(file, filename);
   1044 		} else
   1045 			strcpy(file, "netbsd");
   1046 	}
   1047 }
   1048 
   1049 
   1050 char *
   1051 sprint0(int width, char prefix, char base, int value)
   1052 {
   1053 	static char format[50], scrap[50];
   1054 	char *pos;
   1055 	int length;
   1056 
   1057 	for (pos = format, length = 0; length<width; length++) *pos++ = prefix;
   1058 	*pos++ = '%';
   1059 	*pos++ = base;
   1060 	*pos++ = (char) 0;
   1061 
   1062 	sprintf(scrap, format, value);
   1063 	length = strlen(scrap);
   1064 
   1065 	return scrap+length-width;
   1066 }
   1067 
   1068