Home | History | Annotate | Line # | Download | only in boot32
boot32.c revision 1.40
      1 /*	$NetBSD: boot32.c,v 1.40 2013/11/04 21:08:14 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002 Reinoud Zandijk
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  *
     29  * Thanks a bunch for Ben's framework for the bootloader and its suporting
     30  * libs. This file tries to actually boot NetBSD/acorn32 !
     31  *
     32  * XXX eventually to be partly merged back with boot26 ? XXX
     33  */
     34 
     35 #include <lib/libsa/stand.h>
     36 #include <lib/libsa/loadfile.h>
     37 #include <lib/libkern/libkern.h>
     38 #include <riscoscalls.h>
     39 #include <srt0.h>
     40 #include <sys/boot_flag.h>
     41 #include <machine/vmparam.h>
     42 #include <arm/arm32/pte.h>
     43 #include <machine/bootconfig.h>
     44 
     45 extern char end[];
     46 
     47 /* debugging flags */
     48 int debug = 1;
     49 
     50 
     51 /* constants */
     52 #define PODRAM_START   (512*1024*1024)		/* XXX Kinetic cards XXX */
     53 
     54 #define MAX_RELOCPAGES	4096
     55 
     56 #define DEFAULT_ROOT	"/dev/wd0a"
     57 
     58 
     59 #define IO_BLOCKS	 16	/* move these to the bootloader structure? */
     60 #define ROM_BLOCKS	 16
     61 #define PODRAM_BLOCKS	 16
     62 
     63 
     64 /* booter variables */
     65 char	 scrap[80], twirl_cnt;		/* misc				*/
     66 char	 booted_file[80];
     67 
     68 struct bootconfig *bconfig;		/* bootconfig passing		*/
     69 u_long	 bconfig_new_phys;		/* physical address its bound	*/
     70 
     71 /* computer knowledge		*/
     72 u_int	 monitor_type, monitor_sync, ioeb_flags, lcd_flags;
     73 u_int	 superio_flags, superio_flags_basic, superio_flags_extra;
     74 
     75 /* sizes			*/
     76 int	 nbpp, memory_table_size, memory_image_size;
     77 /* relocate info		*/
     78 u_long	 reloc_tablesize, *reloc_instruction_table;
     79 u_long	*reloc_pos;			/* current empty entry		*/
     80 int	 reloc_entries;			/* number of relocations	*/
     81 int	 first_mapped_DRAM_page_index;	/* offset in RISC OS blob	*/
     82 int	 first_mapped_PODRAM_page_index;/* offset in RISC OS blob	*/
     83 
     84 struct page_info *mem_pages_info;	/* {nr, virt, phys}*		*/
     85 struct page_info *free_relocation_page;	/* points to the page_info chain*/
     86 struct page_info *relocate_code_page;	/* points to the copied code	*/
     87 struct page_info *bconfig_page;		/* page for passing on settings	*/
     88 
     89 unsigned char *memory_page_types;	/* packed array of 4 bit typeId	*/
     90 
     91 u_long	*initial_page_tables;		/* pagetables to be booted from	*/
     92 
     93 
     94 /* XXX rename *_BLOCKS to MEM_BLOCKS */
     95 /* DRAM/VRAM/ROM/IO info */
     96 /* where the display is		*/
     97 u_long	 videomem_start, videomem_pages, display_size;
     98 
     99 u_long	 pv_offset, top_physdram;	/* kernel_base - phys. diff	*/
    100 u_long	 top_1Mb_dram;			/* the lower mapped top 1Mb	*/
    101 u_long	 new_L1_pages_phys;		/* physical address of L1 pages	*/
    102 
    103 /* for bootconfig passing	*/
    104 u_long	 total_podram_pages, total_dram_pages, total_vram_pages;
    105 int	 dram_blocks, podram_blocks;	/* number of mem. objects/type  */
    106 int	 vram_blocks, rom_blocks, io_blocks;
    107 
    108 u_long	 DRAM_addr[DRAM_BLOCKS],     DRAM_pages[DRAM_BLOCKS];
    109 /* processor only RAM	*/
    110 u_long	 PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS];
    111 u_long	 VRAM_addr[VRAM_BLOCKS],     VRAM_pages[VRAM_BLOCKS];
    112 u_long	 ROM_addr[ROM_BLOCKS],       ROM_pages[ROM_BLOCKS];
    113 u_long	 IO_addr[IO_BLOCKS],         IO_pages[IO_BLOCKS];
    114 
    115 
    116 /* RISC OS memory pages we claimed */
    117 u_long	 firstpage, lastpage, totalpages; /* RISC OS pagecounters	*/
    118 /* RISC OS memory		*/
    119 char	*memory_image, *bottom_memory, *top_memory;
    120 
    121 /* kernel info */
    122 u_long	 marks[MARK_MAX];		/* loader mark pointers 	*/
    123 u_long	 kernel_physical_start;		/* where does it get relocated	*/
    124 u_long	 kernel_physical_maxsize;	/* Max allowed size of kernel	*/
    125 u_long	 kernel_free_vm_start;		/* where does the free VM start	*/
    126 /* some free space to mess with	*/
    127 u_long	 scratch_virtualbase, scratch_physicalbase;
    128 
    129 
    130 /* bootprogram identifiers */
    131 extern const char bootprog_rev[];
    132 extern const char bootprog_name[];
    133 
    134 /* predefines / prototypes */
    135 void	 init_datastructures(void);
    136 void	 get_memory_configuration(void);
    137 void	 get_memory_map(void);
    138 void	 create_initial_page_tables(void);
    139 void	 add_pagetables_at_top(void);
    140 int	 page_info_cmp(const void *a, const void *);
    141 void	 add_initvectors(void);
    142 void	 create_configuration(int argc, char **argv, int start_args);
    143 void	 prepare_and_check_relocation_system(void);
    144 void	 compact_relocations(void);
    145 void	 twirl(void);
    146 int	 vdu_var(int);
    147 void	 process_args(int argc, char **argv, int *howto, char *file,
    148     int *start_args);
    149 
    150 char		 *sprint0(int width, char prefix, char base, int value);
    151 struct page_info *get_relocated_page(u_long destination, int size);
    152 
    153 extern void start_kernel(
    154 		int relocate_code_page,
    155 		int relocation_pv_offset,
    156 		int configuration_structure_in_flat_physical_space,
    157 		int virtual_address_relocation_table,
    158 		int physical_address_of_new_L1_pages,
    159 		int kernel_entry_point
    160 		);	/* asm */
    161 
    162 
    163 /* the loader itself */
    164 void
    165 init_datastructures(void)
    166 {
    167 
    168 	/* Get number of pages and the memorytablesize */
    169 	osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
    170 
    171 	/* Allocate 99% - (small fixed amount) of the heap for memory_image */
    172 	memory_image_size = (int)HIMEM - (int)end - 512 * 1024;
    173 	memory_image_size /= 100;
    174 	memory_image_size *= 99;
    175 	if (memory_image_size <= 256*1024)
    176 		panic("Insufficient memory");
    177 
    178 	memory_image = alloc(memory_image_size);
    179 	if (!memory_image)
    180 		panic("Can't alloc get my memory image ?");
    181 
    182 	bottom_memory = memory_image;
    183 	top_memory    = memory_image + memory_image_size;
    184 
    185 	firstpage  = ((int)bottom_memory / nbpp) + 1;	/* safety */
    186 	lastpage   = ((int)top_memory    / nbpp) - 1;
    187 	totalpages = lastpage - firstpage;
    188 
    189 	printf("Allocated %ld memory pages, each of %d kilobytes.\n\n",
    190 			totalpages, nbpp>>10 );
    191 
    192 	/*
    193 	 * Setup the relocation table. Its a simple array of 3 * 32 bit
    194 	 * entries. The first word in the array is the number of relocations
    195 	 * to be done
    196 	 */
    197 	reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(u_long);
    198 	reloc_instruction_table = alloc(reloc_tablesize);
    199 	if (!reloc_instruction_table)
    200 		panic("Can't alloc my relocate instructions pages");
    201 
    202 	reloc_entries = 0;
    203 	reloc_pos     = reloc_instruction_table;
    204 	*reloc_pos++  = 0;
    205 
    206 	/*
    207 	 * Set up the memory translation info structure. We need to allocate
    208 	 * one more for the end of list marker. See get_memory_map.
    209 	 */
    210 	mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
    211 	if (!mem_pages_info)
    212 		panic("Can't alloc my phys->virt page info");
    213 
    214 	/*
    215 	 * Allocate memory for the memory arrangement table. We use this
    216 	 * structure to retrieve memory page properties to clasify them.
    217 	 */
    218 	memory_page_types = alloc(memory_table_size);
    219 	if (!memory_page_types)
    220 		panic("Can't alloc my memory page type block");
    221 
    222 	/*
    223 	 * Initial page tables is 16 kb per definition since only sections are
    224 	 * used.
    225 	 */
    226 	initial_page_tables = alloc(16*1024);
    227 	if (!initial_page_tables)
    228 		panic("Can't alloc my initial page tables");
    229 }
    230 
    231 void
    232 compact_relocations(void)
    233 {
    234 	u_long *reloc_entry, current_length, length;
    235 	u_long  src, destination, current_src, current_destination;
    236 	u_long *current_entry;
    237 
    238 	current_entry = reloc_entry = reloc_instruction_table + 1;
    239 
    240 	/* prime the loop */
    241 	current_src		= reloc_entry[0];
    242 	current_destination	= reloc_entry[1];
    243 	current_length		= reloc_entry[2];
    244 
    245 	reloc_entry += 3;
    246 	while (reloc_entry < reloc_pos) {
    247 		src         = reloc_entry[0];
    248 		destination = reloc_entry[1];
    249 		length      = reloc_entry[2];
    250 
    251 		if (src == (current_src + current_length) &&
    252 		    destination == (current_destination + current_length)) {
    253 			/* can merge */
    254 			current_length += length;
    255 		} else {
    256 			/* nothing else to do, so save the length */
    257 			current_entry[2] = current_length;
    258 			/* fill in next entry */
    259 			current_entry += 3;
    260 			current_src = current_entry[0] = src;
    261 			current_destination = current_entry[1] = destination;
    262 			current_length = length;
    263 		}
    264 		reloc_entry += 3;
    265 	}
    266 	/* save last length */
    267 	current_entry[2] = current_length;
    268 	current_entry += 3;
    269 
    270 	/* workout new count of entries */
    271 	length = current_entry - (reloc_instruction_table + 1);
    272 	printf("Compacted relocations from %d entries to %ld\n",
    273 		       reloc_entries, length/3);
    274 
    275 	/* update table to reflect new size */
    276 	reloc_entries = length/3;
    277 	reloc_instruction_table[0] = length/3;
    278 	reloc_pos = current_entry;
    279 }
    280 
    281 void
    282 get_memory_configuration(void)
    283 {
    284 	int loop, current_page_type, page_count, phys_page;
    285 	int page, count, top_bank, video_bank;
    286 	int mapped_screen_memory;
    287 	int one_mb_pages;
    288 	u_long top;
    289 
    290 	printf("Getting memory configuration ");
    291 
    292 	osmemory_read_arrangement_table(memory_page_types);
    293 
    294 	/* init counters */
    295 	vram_blocks = dram_blocks = rom_blocks = io_blocks = podram_blocks = 0;
    296 
    297 	current_page_type = -1;
    298 	phys_page = 0;			/* physical address in pages	*/
    299 	page_count = 0;			/* page counter in this block	*/
    300 	loop = 0;			/* loop variable over entries	*/
    301 
    302 	/* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
    303 	while (loop < 2*memory_table_size) {
    304 		page = memory_page_types[loop / 2];	/* read	twice */
    305 		if (loop & 1) page >>= 4;		/* take other nibble */
    306 
    307 		/*
    308 		 * bits 0-2 give type, bit3 means the bit page is
    309 		 * allocatable
    310 		 */
    311 		page &= 0x7;			/* only take bottom 3 bits */
    312 		if (page != current_page_type) {
    313 			/* passed a boundary ... note this block	   */
    314 			/*
    315 			 * splitting in different vars is for
    316 			 * compatability reasons
    317 			 */
    318 			switch (current_page_type) {
    319 			case -1:
    320 			case  0:
    321 				break;
    322 			case osmemory_TYPE_DRAM:
    323 				if ((phys_page * nbpp)< PODRAM_START) {
    324 					DRAM_addr[dram_blocks]  =
    325 					    phys_page * nbpp;
    326 					DRAM_pages[dram_blocks] =
    327 					    page_count;
    328 					dram_blocks++;
    329 				} else {
    330 					PODRAM_addr[podram_blocks]  =
    331 					    phys_page * nbpp;
    332 					PODRAM_pages[podram_blocks] =
    333 					    page_count;
    334 					podram_blocks++;
    335 				}
    336 				break;
    337 			case osmemory_TYPE_VRAM:
    338 				VRAM_addr[vram_blocks]  = phys_page * nbpp;
    339 				VRAM_pages[vram_blocks] = page_count;
    340 				vram_blocks++;
    341 				break;
    342 			case osmemory_TYPE_ROM:
    343 				ROM_addr[rom_blocks]  = phys_page * nbpp;
    344 				ROM_pages[rom_blocks] = page_count;
    345 				rom_blocks++;
    346 				break;
    347 			case osmemory_TYPE_IO:
    348 				IO_addr[io_blocks]  = phys_page * nbpp;
    349 				IO_pages[io_blocks] = page_count;
    350 				io_blocks++;
    351 				break;
    352 			default:
    353 				printf("WARNING : found unknown "
    354 				    "memory object %d ", current_page_type);
    355 				printf(" at 0x%s",
    356 				    sprint0(8,'0','x', phys_page * nbpp));
    357 				printf(" for %s k\n",
    358 				    sprint0(5,' ','d', (page_count*nbpp)>>10));
    359 				break;
    360 			}
    361 			current_page_type = page;
    362 			phys_page = loop;
    363 			page_count = 0;
    364 		}
    365 		/*
    366 		 * smallest unit we recognise is one page ... silly
    367 		 * could be upto 64 pages i.e. 256 kb
    368 		 */
    369 		page_count += 1;
    370 		loop       += 1;
    371 		if ((loop & 31) == 0) twirl();
    372 	}
    373 
    374 	printf(" \n\n");
    375 
    376 	if (VRAM_pages[0] == 0) {
    377 		/* map DRAM as video memory */
    378 		display_size	 =
    379 		    vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1);
    380 #if 0
    381 		mapped_screen_memory = 1024 * 1024; /* max allowed on RiscPC */
    382 		videomem_pages   = (mapped_screen_memory / nbpp);
    383 		videomem_start   = DRAM_addr[0];
    384 		DRAM_addr[0]	+= videomem_pages * nbpp;
    385 		DRAM_pages[0]	-= videomem_pages;
    386 #else
    387 		mapped_screen_memory = display_size;
    388 		videomem_pages   = mapped_screen_memory / nbpp;
    389 		one_mb_pages	 = (1024*1024)/nbpp;
    390 
    391 		/*
    392 		 * OK... we need one Mb at the top for compliance with current
    393 		 * kernel structure. This ought to be abolished one day IMHO.
    394 		 * Also we have to take care that the kernel needs to be in
    395 		 * DRAM0a and even has to start there.
    396 		 * XXX one Mb simms are the smallest supported XXX
    397 		 */
    398 		top_bank = dram_blocks-1;
    399 		video_bank = top_bank;
    400 		if (DRAM_pages[top_bank] == one_mb_pages) video_bank--;
    401 
    402 		if (DRAM_pages[video_bank] < videomem_pages)
    403 			panic("Weird memory configuration found; please "
    404 			    "contact acorn32 portmaster.");
    405 
    406 		/* split off the top 1Mb */
    407 		DRAM_addr [top_bank+1]  = DRAM_addr[top_bank] +
    408 		    (DRAM_pages[top_bank] - one_mb_pages)*nbpp;
    409 		DRAM_pages[top_bank+1]  = one_mb_pages;
    410 		DRAM_pages[top_bank  ] -= one_mb_pages;
    411 		dram_blocks++;
    412 
    413 		/* Map video memory at the end of the choosen DIMM */
    414 		videomem_start          = DRAM_addr[video_bank] +
    415 		    (DRAM_pages[video_bank] - videomem_pages)*nbpp;
    416 		DRAM_pages[video_bank] -= videomem_pages;
    417 
    418 		/* sanity */
    419 		if (DRAM_pages[top_bank] == 0) {
    420 			DRAM_addr [top_bank] = DRAM_addr [top_bank+1];
    421 			DRAM_pages[top_bank] = DRAM_pages[top_bank+1];
    422 			dram_blocks--;
    423 		}
    424 #endif
    425 	} else {
    426 		/* use VRAM */
    427 		mapped_screen_memory = 0;
    428 		videomem_start	 = VRAM_addr[0];
    429 		videomem_pages	 = VRAM_pages[0];
    430 		display_size	 = videomem_pages * nbpp;
    431 	}
    432 
    433 	if (mapped_screen_memory) {
    434 		printf("Used %d kb DRAM ", mapped_screen_memory / 1024);
    435 		printf("at 0x%s for video memory\n",
    436 		    sprint0(8,'0','x', videomem_start));
    437 	}
    438 
    439 	/* find top of (PO)DRAM pages */
    440 	top_physdram = 0;
    441 	for (loop = 0; loop < podram_blocks; loop++) {
    442 		top = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
    443 		if (top > top_physdram) top_physdram = top;
    444 	}
    445 	for (loop = 0; loop < dram_blocks; loop++) {
    446 		top = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
    447 		if (top > top_physdram) top_physdram = top;
    448 	}
    449 	if (top_physdram == 0)
    450 		panic("reality check: No DRAM in this machine?");
    451 	if (((top_physdram >> 20) << 20) != top_physdram)
    452 		panic("Top is not not aligned on a Mb; "
    453 		    "remove very small DIMMS?");
    454 
    455 	/* pretty print the individual page types */
    456 	for (count = 0; count < rom_blocks; count++) {
    457 		printf("Found ROM  (%d)", count);
    458 		printf(" at 0x%s", sprint0(8,'0','x', ROM_addr[count]));
    459 		printf(" for %s k\n",
    460 		    sprint0(5,' ','d', (ROM_pages[count]*nbpp)>>10));
    461 	}
    462 
    463 	for (count = 0; count < io_blocks; count++) {
    464 		printf("Found I/O  (%d)", count);
    465 		printf(" at 0x%s", sprint0(8,'0','x', IO_addr[count]));
    466 		printf(" for %s k\n",
    467 		    sprint0(5,' ','d', (IO_pages[count]*nbpp)>>10));
    468 	}
    469 
    470 	/* for DRAM/VRAM also count the number of pages */
    471 	total_dram_pages = 0;
    472 	for (count = 0; count < dram_blocks; count++) {
    473 		total_dram_pages += DRAM_pages[count];
    474 		printf("Found DRAM (%d)", count);
    475 		printf(" at 0x%s", sprint0(8,'0','x', DRAM_addr[count]));
    476 		printf(" for %s k\n",
    477 		    sprint0(5,' ','d', (DRAM_pages[count]*nbpp)>>10));
    478 	}
    479 
    480 	total_vram_pages = 0;
    481 	for (count = 0; count < vram_blocks; count++) {
    482 		total_vram_pages += VRAM_pages[count];
    483 		printf("Found VRAM (%d)", count);
    484 		printf(" at 0x%s", sprint0(8,'0','x', VRAM_addr[count]));
    485 		printf(" for %s k\n",
    486 		    sprint0(5,' ','d', (VRAM_pages[count]*nbpp)>>10));
    487 	}
    488 
    489 	total_podram_pages = 0;
    490 	for (count = 0; count < podram_blocks; count++) {
    491 		total_podram_pages += PODRAM_pages[count];
    492 		printf("Found Processor only (S)DRAM (%d)", count);
    493 		printf(" at 0x%s", sprint0(8,'0','x', PODRAM_addr[count]));
    494 		printf(" for %s k\n",
    495 		    sprint0(5,' ','d', (PODRAM_pages[count]*nbpp)>>10));
    496 	}
    497 }
    498 
    499 
    500 void
    501 get_memory_map(void)
    502 {
    503 	struct page_info *page_info;
    504 	int	page, inout;
    505 	int	phys_addr;
    506 
    507 	printf("\nGetting actual memorymapping");
    508 	for (page = 0, page_info = mem_pages_info;
    509 	     page < totalpages;
    510 	     page++, page_info++) {
    511 		page_info->pagenumber = 0;	/* not used */
    512 		page_info->logical    = (firstpage + page) * nbpp;
    513 		page_info->physical   = 0;	/* result comes here */
    514 		/* to avoid triggering a `bug' in RISC OS 4, page it in */
    515 		*((int *)page_info->logical) = 0;
    516 	}
    517 	/* close list */
    518 	page_info->pagenumber = -1;
    519 
    520 	inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO |
    521 	    osmemory_RETURN_PHYS_ADDR;
    522 	osmemory_page_op(inout, mem_pages_info, totalpages);
    523 
    524 	printf(" ; sorting ");
    525 	qsort(mem_pages_info, totalpages, sizeof(struct page_info),
    526 	    &page_info_cmp);
    527 	printf(".\n");
    528 
    529 	/*
    530 	 * get the first DRAM index and show the physical memory
    531 	 * fragments we got
    532 	 */
    533 	printf("\nFound physical memory blocks :\n");
    534 	first_mapped_DRAM_page_index = -1;
    535 	first_mapped_PODRAM_page_index = -1;
    536 	for (page=0; page < totalpages; page++) {
    537 		phys_addr = mem_pages_info[page].physical;
    538 		printf("[0x%x", phys_addr);
    539 		while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
    540 			if (first_mapped_DRAM_page_index < 0 &&
    541 			    phys_addr >= DRAM_addr[0])
    542 				first_mapped_DRAM_page_index = page;
    543 			if (first_mapped_PODRAM_page_index < 0 &&
    544 			    phys_addr >= PODRAM_addr[0])
    545 				first_mapped_PODRAM_page_index = page;
    546 			page++;
    547 			phys_addr = mem_pages_info[page].physical;
    548 		}
    549 		printf("-0x%x]  ", phys_addr + nbpp -1);
    550 	}
    551 	printf("\n\n");
    552 
    553 	if (first_mapped_PODRAM_page_index < 0 && PODRAM_addr[0])
    554 		panic("Found no (S)DRAM mapped in the bootloader");
    555 	if (first_mapped_DRAM_page_index < 0)
    556 		panic("No DRAM mapped in the bootloader");
    557 }
    558 
    559 
    560 void
    561 create_initial_page_tables(void)
    562 {
    563 	u_long page, section, addr, kpage;
    564 
    565 	/* mark a section by the following bits and domain 0, AP=01, CB=0 */
    566 	/*         A         P         C        B        section
    567 	           domain		*/
    568 	section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) |
    569 	    (0) | (0 << 5);
    570 
    571 	/* first of all a full 1:1 mapping */
    572 	for (page = 0; page < 4*1024; page++)
    573 		initial_page_tables[page] = (page<<20) | section;
    574 
    575 	/*
    576 	 * video memory is mapped 1:1 in the DRAM section or in VRAM
    577 	 * section
    578 	 *
    579 	 * map 1Mb from top of DRAM memory to bottom 1Mb of virtual memmap
    580 	 */
    581 	top_1Mb_dram = (((top_physdram - 1024*1024) >> 20) << 20);
    582 
    583 	initial_page_tables[0] = top_1Mb_dram | section;
    584 
    585 	/*
    586 	 * map 16 Mb of kernel space to KERNEL_BASE
    587 	 * i.e. marks[KERNEL_START]
    588 	 */
    589 	for (page = 0; page < 16; page++) {
    590 		addr  = (kernel_physical_start >> 20) + page;
    591 		kpage = (marks[MARK_START]     >> 20) + page;
    592 		initial_page_tables[kpage] = (addr << 20) | section;
    593 	}
    594 }
    595 
    596 
    597 void
    598 add_pagetables_at_top(void)
    599 {
    600 	int page;
    601 	u_long src, dst, fragaddr;
    602 
    603 	/* Special : destination must be on a 16 Kb boundary */
    604 	/* get 4 pages on the top of the physical memory and copy PT's in it */
    605 	new_L1_pages_phys = top_physdram - 4 * nbpp;
    606 
    607 	/*
    608 	 * If the L1 page tables are not 16 kb aligned, adjust base
    609 	 * until it is
    610 	 */
    611 	while (new_L1_pages_phys & (16*1024-1))
    612 		new_L1_pages_phys -= nbpp;
    613 	if (new_L1_pages_phys & (16*1024-1))
    614 		panic("Paranoia : L1 pages not on 16Kb boundary");
    615 
    616 	dst = new_L1_pages_phys;
    617 	src = (u_long)initial_page_tables;
    618 
    619 	for (page = 0; page < 4; page++) {
    620 		/* get a page for a fragment */
    621 		fragaddr = get_relocated_page(dst, nbpp)->logical;
    622 		memcpy((void *)fragaddr, (void *)src, nbpp);
    623 
    624 		src += nbpp;
    625 		dst += nbpp;
    626 	}
    627 }
    628 
    629 
    630 void
    631 add_initvectors(void)
    632 {
    633 	u_long *pos;
    634 	u_long  vectoraddr, count;
    635 
    636 	/* the top 1Mb of the physical DRAM pages is mapped at address 0 */
    637 	vectoraddr = get_relocated_page(top_1Mb_dram, nbpp)->logical;
    638 
    639 	/* fill the vectors with `movs pc, lr' opcodes */
    640 	pos = (u_long *)vectoraddr; memset(pos, 0, nbpp);
    641 	for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
    642 }
    643 
    644 /*
    645  * Work out the display's vertical sync rate.  One might hope that there
    646  * would be a simpler way than by counting vsync interrupts for a second,
    647  * but if there is, I can't find it.
    648  */
    649 static int
    650 vsync_rate(void)
    651 {
    652 	uint8_t count0;
    653 	unsigned int time0;
    654 
    655 	count0 = osbyte_read(osbyte_VAR_VSYNC_TIMER);
    656 	time0 = os_read_monotonic_time();
    657 	while (os_read_monotonic_time() - time0 < 100)
    658 		continue;
    659 	return (uint8_t)(count0 - osbyte_read(osbyte_VAR_VSYNC_TIMER));
    660 }
    661 
    662 void
    663 create_configuration(int argc, char **argv, int start_args)
    664 {
    665 	int   i, root_specified, id_low, id_high;
    666 	char *pos;
    667 
    668 	bconfig_new_phys = kernel_free_vm_start - pv_offset;
    669 	bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
    670 	bconfig = (struct bootconfig *)(bconfig_page->logical);
    671 	kernel_free_vm_start += nbpp;
    672 
    673 	/* get some miscelanious info for the bootblock */
    674 	os_readsysinfo_monitor_info(NULL, (int *)&monitor_type, (int *)&monitor_sync);
    675 	os_readsysinfo_chip_presence((int *)&ioeb_flags, (int *)&superio_flags, (int *)&lcd_flags);
    676 	os_readsysinfo_superio_features((int *)&superio_flags_basic,
    677 	    (int *)&superio_flags_extra);
    678 	os_readsysinfo_unique_id(&id_low, &id_high);
    679 
    680 	/* fill in the bootconfig *bconfig structure : generic version II */
    681 	memset(bconfig, 0, sizeof(*bconfig));
    682 	bconfig->magic		= BOOTCONFIG_MAGIC;
    683 	bconfig->version	= BOOTCONFIG_VERSION;
    684 	strcpy(bconfig->kernelname, booted_file);
    685 
    686 	/*
    687 	 * get the kernel base name and update the RiscOS name to a
    688 	 * Unix name
    689 	 */
    690 	i = strlen(booted_file);
    691 	while (i >= 0 && booted_file[i] != '.') i--;
    692 	if (i) {
    693 		strcpy(bconfig->kernelname, "/");
    694 		strcat(bconfig->kernelname, booted_file+i+1);
    695 	}
    696 
    697 	pos = bconfig->kernelname+1;
    698 	while (*pos) {
    699 		if (*pos == '/') *pos = '.';
    700 		pos++;
    701 	}
    702 
    703 	/* set the machine_id */
    704 	memcpy(&(bconfig->machine_id), &id_low, 4);
    705 
    706 	/* check if the `root' is specified */
    707 	root_specified = 0;
    708 	strcpy(bconfig->args, "");
    709 	for (i = start_args; i < argc; i++) {
    710 		if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
    711 		if (i > start_args)
    712 			strcat(bconfig->args, " ");
    713 		strcat(bconfig->args, argv[i]);
    714 	}
    715 	if (!root_specified) {
    716 		if (start_args < argc)
    717 			strcat(bconfig->args, " ");
    718 		strcat(bconfig->args, "root=");
    719 		strcat(bconfig->args, DEFAULT_ROOT);
    720 	}
    721 
    722 	/* mark kernel pointers */
    723 	bconfig->kernvirtualbase	= marks[MARK_START];
    724 	bconfig->kernphysicalbase	= kernel_physical_start;
    725 	bconfig->kernsize		= kernel_free_vm_start -
    726 					    marks[MARK_START];
    727 	bconfig->ksym_start		= marks[MARK_SYM];
    728 	bconfig->ksym_end		= marks[MARK_SYM] + marks[MARK_NSYM];
    729 
    730 	/* setup display info */
    731 	bconfig->display_phys		= videomem_start;
    732 	bconfig->display_start		= videomem_start;
    733 	bconfig->display_size		= display_size;
    734 	bconfig->width			= vdu_var(os_MODEVAR_XWIND_LIMIT);
    735 	bconfig->height			= vdu_var(os_MODEVAR_YWIND_LIMIT);
    736 	bconfig->log2_bpp		= vdu_var(os_MODEVAR_LOG2_BPP);
    737 	bconfig->framerate		= vsync_rate();
    738 
    739 	/* fill in memory info */
    740 	bconfig->pagesize		= nbpp;
    741 	bconfig->drampages		= total_dram_pages +
    742 					    total_podram_pages;	/* XXX */
    743 	bconfig->vrampages		= total_vram_pages;
    744 	bconfig->dramblocks		= dram_blocks + podram_blocks; /*XXX*/
    745 	bconfig->vramblocks		= vram_blocks;
    746 
    747 	for (i = 0; i < dram_blocks; i++) {
    748 		bconfig->dram[i].address = DRAM_addr[i];
    749 		bconfig->dram[i].pages   = DRAM_pages[i];
    750 		bconfig->dram[i].flags   = PHYSMEM_TYPE_GENERIC;
    751 	}
    752 	for (; i < dram_blocks + podram_blocks; i++) {
    753 		bconfig->dram[i].address = PODRAM_addr[i-dram_blocks];
    754 		bconfig->dram[i].pages   = PODRAM_pages[i-dram_blocks];
    755 		bconfig->dram[i].flags   = PHYSMEM_TYPE_PROCESSOR_ONLY;
    756 	}
    757 	for (i = 0; i < vram_blocks; i++) {
    758 		bconfig->vram[i].address = VRAM_addr[i];
    759 		bconfig->vram[i].pages   = VRAM_pages[i];
    760 		bconfig->vram[i].flags   = PHYSMEM_TYPE_GENERIC;
    761 	}
    762 }
    763 
    764 
    765 int
    766 main(int argc, char **argv)
    767 {
    768 	int howto, start_args, ret;
    769 	int class;
    770 
    771 	printf("\n\n");
    772 	printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
    773 	printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
    774 	printf("\n");
    775 
    776 	process_args(argc, argv, &howto, booted_file, &start_args);
    777 
    778 	printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
    779 
    780 	init_datastructures();
    781 	get_memory_configuration();
    782 	get_memory_map();
    783 
    784 	/*
    785 	 * point to the first free DRAM page guaranteed to be in
    786 	 * strict order up
    787 	 */
    788 	if (podram_blocks != 0) {
    789 		free_relocation_page =
    790 		    mem_pages_info + first_mapped_PODRAM_page_index;
    791 		kernel_physical_start = PODRAM_addr[0];
    792 		kernel_physical_maxsize = PODRAM_pages[0] * nbpp;
    793 	} else {
    794 		free_relocation_page =
    795 		    mem_pages_info + first_mapped_DRAM_page_index;
    796 		kernel_physical_start = DRAM_addr[0];
    797 		kernel_physical_maxsize = DRAM_pages[0] * nbpp;
    798 	}
    799 
    800 	printf("\nLoading %s ", booted_file);
    801 
    802 	/* first count the kernel to get the markers */
    803 	ret = loadfile(booted_file, marks, COUNT_KERNEL);
    804 	if (ret == -1) panic("Kernel load failed"); /* lie to the user ... */
    805 	close(ret);
    806 
    807 	if (marks[MARK_END] - marks[MARK_START] > kernel_physical_maxsize)
    808 	{
    809 		panic("\nKernel is bigger than the first DRAM module, unable to boot\n");
    810 	}
    811 
    812 	/*
    813 	 * calculate how much the difference is between physical and
    814 	 * virtual space for the kernel
    815 	 */
    816 	pv_offset = ((u_long)marks[MARK_START] - kernel_physical_start);
    817 	/* round on a page	*/
    818 	kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1);
    819 
    820 	/* we seem to be forced to clear the marks[] ? */
    821 	memset(marks, 0, sizeof(marks));
    822 
    823 	/* really load it ! */
    824 	ret = loadfile(booted_file, marks, LOAD_KERNEL);
    825 	if (ret == -1) panic("Kernel load failed");
    826 	close(ret);
    827 
    828 	/* finish off the relocation information */
    829 	create_initial_page_tables();
    830 	add_initvectors();
    831 	add_pagetables_at_top();
    832 	create_configuration(argc, argv, start_args);
    833 
    834 	/*
    835 	 * done relocating and creating information, now update and
    836 	 * check the relocation mechanism
    837 	 */
    838 	compact_relocations();
    839 
    840 	/*
    841 	 * grab a page to copy the bootstrap code into
    842 	 */
    843 	relocate_code_page = free_relocation_page++;
    844 
    845 	printf("\nStarting at 0x%lx, p@0x%lx\n", marks[MARK_ENTRY], kernel_physical_start);
    846 	printf("%ld entries, first one is 0x%lx->0x%lx for %lx bytes\n",
    847 			reloc_instruction_table[0],
    848 			reloc_instruction_table[1],
    849 			reloc_instruction_table[2],
    850 			reloc_instruction_table[3]);
    851 
    852 	printf("Will boot in a few secs due to relocation....\n"
    853 	    "bye bye from RISC OS!");
    854 
    855 	/* dismount all filesystems */
    856 	xosfscontrol_shutdown();
    857 
    858 	os_readsysinfo_platform_class(&class, NULL, NULL);
    859 	if (class != osreadsysinfo_Platform_Pace) {
    860 		/* reset devices, well they try to anyway */
    861 		service_pre_reset();
    862 	}
    863 
    864 	start_kernel(
    865 		/* r0 relocation code page (V)	*/ relocate_code_page->logical,
    866 		/* r1 relocation pv offset	*/
    867 		relocate_code_page->physical-relocate_code_page->logical,
    868 		/* r2 configuration structure	*/ bconfig_new_phys,
    869 		/* r3 relocation table (l)	*/
    870 		(int)reloc_instruction_table,	/* one piece! */
    871 		/* r4 L1 page descriptor (P)	*/ new_L1_pages_phys,
    872 		/* r5 kernel entry point	*/ marks[MARK_ENTRY]
    873 	);
    874 	return 0;
    875 }
    876 
    877 
    878 ssize_t
    879 boot32_read(int f, void *addr, size_t size)
    880 {
    881 	void *fragaddr;
    882 	size_t fragsize;
    883 	ssize_t bytes_read, total;
    884 
    885 	/* printf("read at %p for %ld bytes\n", addr, size); */
    886 	total = 0;
    887 	while (size > 0) {
    888 		fragsize = nbpp;		/* select one page	*/
    889 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    890 
    891 		/* get a page for a fragment */
    892 		fragaddr = (void *)get_relocated_page((u_long) addr -
    893 		    pv_offset, fragsize)->logical;
    894 
    895 		bytes_read = read(f, fragaddr, fragsize);
    896 		if (bytes_read < 0) return bytes_read;	/* error!	*/
    897 		total += bytes_read;		/* account read bytes	*/
    898 
    899 		if (bytes_read < fragsize)
    900 			return total;		/* does this happen?	*/
    901 
    902 		size -= fragsize;		/* advance		*/
    903 		addr += fragsize;
    904 	}
    905 	return total;
    906 }
    907 
    908 
    909 void *
    910 boot32_memcpy(void *dst, const void *src, size_t size)
    911 {
    912 	void *fragaddr;
    913 	size_t fragsize;
    914 
    915 	/* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
    916 	while (size > 0) {
    917 		fragsize = nbpp;		/* select one page	*/
    918 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    919 
    920 		/* get a page for a fragment */
    921 		fragaddr = (void *)get_relocated_page((u_long) dst -
    922 		    pv_offset, fragsize)->logical;
    923 		memcpy(fragaddr, src, size);
    924 
    925 		src += fragsize;		/* account copy		*/
    926 		dst += fragsize;
    927 		size-= fragsize;
    928 	}
    929 	return dst;
    930 }
    931 
    932 
    933 void *
    934 boot32_memset(void *dst, int c, size_t size)
    935 {
    936 	void *fragaddr;
    937 	size_t fragsize;
    938 
    939 	/* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
    940 	while (size > 0) {
    941 		fragsize = nbpp;		/* select one page	*/
    942 		if (size < nbpp) fragsize = size;/* clip to size left	*/
    943 
    944 		/* get a page for a fragment */
    945 		fragaddr = (void *)get_relocated_page((u_long)dst - pv_offset,
    946 		    fragsize)->logical;
    947 		memset(fragaddr, c, fragsize);
    948 
    949 		dst += fragsize;		/* account memsetting	*/
    950 		size-= fragsize;
    951 
    952 	}
    953 	return dst;
    954 }
    955 
    956 
    957 /* We can rely on the fact that two entries never have identical ->physical */
    958 int
    959 page_info_cmp(const void *a, const void *b)
    960 {
    961 
    962 	return (((struct page_info *)a)->physical <
    963 	    ((struct page_info *)b)->physical) ? -1 : 1;
    964 }
    965 
    966 struct page_info *
    967 get_relocated_page(u_long destination, int size)
    968 {
    969 	struct page_info *page;
    970 
    971 	/* get a page for a fragment */
    972 	page = free_relocation_page;
    973 	if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages");
    974 	reloc_entries++;
    975 	if (reloc_entries >= MAX_RELOCPAGES)
    976 		panic("\n\nToo many relocations! What are you loading ??");
    977 
    978 	/* record the relocation */
    979 	if (free_relocation_page->physical & 0x3)
    980 		panic("\n\nphysical address is not aligned!");
    981 
    982 	if (destination & 0x3)
    983 		panic("\n\ndestination address is not aligned!");
    984 
    985 	*reloc_pos++ = free_relocation_page->physical;
    986 	*reloc_pos++ = destination;
    987 	*reloc_pos++ = size;
    988 	free_relocation_page++;			/* advance 		*/
    989 
    990 	return page;
    991 }
    992 
    993 
    994 int
    995 vdu_var(int var)
    996 {
    997 	int varlist[2], vallist[2];
    998 
    999 	varlist[0] = var;
   1000 	varlist[1] = -1;
   1001 	os_read_vdu_variables(varlist, vallist);
   1002 	return vallist[0];
   1003 }
   1004 
   1005 
   1006 void
   1007 twirl(void)
   1008 {
   1009 
   1010 	printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
   1011 	twirl_cnt++;
   1012 	twirl_cnt &= 3;
   1013 }
   1014 
   1015 
   1016 void
   1017 process_args(int argc, char **argv, int *howto, char *file, int *start_args)
   1018 {
   1019 	int i, j;
   1020 	static char filename[80];
   1021 
   1022 	*howto = 0;
   1023 	*file = NULL; *start_args = 1;
   1024 	for (i = 1; i < argc; i++) {
   1025 		if (argv[i][0] == '-')
   1026 			for (j = 1; argv[i][j]; j++)
   1027 				BOOT_FLAG(argv[i][j], *howto);
   1028 		else {
   1029 			if (*file)
   1030 				*start_args = i;
   1031 			else {
   1032 				strcpy(file, argv[i]);
   1033 				*start_args = i+1;
   1034 			}
   1035 			break;
   1036 		}
   1037 	}
   1038 	if (*file == NULL) {
   1039 		if (*howto & RB_ASKNAME) {
   1040 			printf("boot: ");
   1041 			gets(filename);
   1042 			strcpy(file, filename);
   1043 		} else
   1044 			strcpy(file, "netbsd");
   1045 	}
   1046 }
   1047 
   1048 
   1049 char *
   1050 sprint0(int width, char prefix, char base, int value)
   1051 {
   1052 	static char format[50], scrap[50];
   1053 	char *pos;
   1054 	int length;
   1055 
   1056 	for (pos = format, length = 0; length<width; length++) *pos++ = prefix;
   1057 	*pos++ = '%';
   1058 	*pos++ = base;
   1059 	*pos++ = (char) 0;
   1060 
   1061 	sprintf(scrap, format, value);
   1062 	length = strlen(scrap);
   1063 
   1064 	return scrap+length-width;
   1065 }
   1066 
   1067