boot32.c revision 1.40 1 /* $NetBSD: boot32.c,v 1.40 2013/11/04 21:08:14 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Thanks a bunch for Ben's framework for the bootloader and its suporting
30 * libs. This file tries to actually boot NetBSD/acorn32 !
31 *
32 * XXX eventually to be partly merged back with boot26 ? XXX
33 */
34
35 #include <lib/libsa/stand.h>
36 #include <lib/libsa/loadfile.h>
37 #include <lib/libkern/libkern.h>
38 #include <riscoscalls.h>
39 #include <srt0.h>
40 #include <sys/boot_flag.h>
41 #include <machine/vmparam.h>
42 #include <arm/arm32/pte.h>
43 #include <machine/bootconfig.h>
44
45 extern char end[];
46
47 /* debugging flags */
48 int debug = 1;
49
50
51 /* constants */
52 #define PODRAM_START (512*1024*1024) /* XXX Kinetic cards XXX */
53
54 #define MAX_RELOCPAGES 4096
55
56 #define DEFAULT_ROOT "/dev/wd0a"
57
58
59 #define IO_BLOCKS 16 /* move these to the bootloader structure? */
60 #define ROM_BLOCKS 16
61 #define PODRAM_BLOCKS 16
62
63
64 /* booter variables */
65 char scrap[80], twirl_cnt; /* misc */
66 char booted_file[80];
67
68 struct bootconfig *bconfig; /* bootconfig passing */
69 u_long bconfig_new_phys; /* physical address its bound */
70
71 /* computer knowledge */
72 u_int monitor_type, monitor_sync, ioeb_flags, lcd_flags;
73 u_int superio_flags, superio_flags_basic, superio_flags_extra;
74
75 /* sizes */
76 int nbpp, memory_table_size, memory_image_size;
77 /* relocate info */
78 u_long reloc_tablesize, *reloc_instruction_table;
79 u_long *reloc_pos; /* current empty entry */
80 int reloc_entries; /* number of relocations */
81 int first_mapped_DRAM_page_index; /* offset in RISC OS blob */
82 int first_mapped_PODRAM_page_index;/* offset in RISC OS blob */
83
84 struct page_info *mem_pages_info; /* {nr, virt, phys}* */
85 struct page_info *free_relocation_page; /* points to the page_info chain*/
86 struct page_info *relocate_code_page; /* points to the copied code */
87 struct page_info *bconfig_page; /* page for passing on settings */
88
89 unsigned char *memory_page_types; /* packed array of 4 bit typeId */
90
91 u_long *initial_page_tables; /* pagetables to be booted from */
92
93
94 /* XXX rename *_BLOCKS to MEM_BLOCKS */
95 /* DRAM/VRAM/ROM/IO info */
96 /* where the display is */
97 u_long videomem_start, videomem_pages, display_size;
98
99 u_long pv_offset, top_physdram; /* kernel_base - phys. diff */
100 u_long top_1Mb_dram; /* the lower mapped top 1Mb */
101 u_long new_L1_pages_phys; /* physical address of L1 pages */
102
103 /* for bootconfig passing */
104 u_long total_podram_pages, total_dram_pages, total_vram_pages;
105 int dram_blocks, podram_blocks; /* number of mem. objects/type */
106 int vram_blocks, rom_blocks, io_blocks;
107
108 u_long DRAM_addr[DRAM_BLOCKS], DRAM_pages[DRAM_BLOCKS];
109 /* processor only RAM */
110 u_long PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS];
111 u_long VRAM_addr[VRAM_BLOCKS], VRAM_pages[VRAM_BLOCKS];
112 u_long ROM_addr[ROM_BLOCKS], ROM_pages[ROM_BLOCKS];
113 u_long IO_addr[IO_BLOCKS], IO_pages[IO_BLOCKS];
114
115
116 /* RISC OS memory pages we claimed */
117 u_long firstpage, lastpage, totalpages; /* RISC OS pagecounters */
118 /* RISC OS memory */
119 char *memory_image, *bottom_memory, *top_memory;
120
121 /* kernel info */
122 u_long marks[MARK_MAX]; /* loader mark pointers */
123 u_long kernel_physical_start; /* where does it get relocated */
124 u_long kernel_physical_maxsize; /* Max allowed size of kernel */
125 u_long kernel_free_vm_start; /* where does the free VM start */
126 /* some free space to mess with */
127 u_long scratch_virtualbase, scratch_physicalbase;
128
129
130 /* bootprogram identifiers */
131 extern const char bootprog_rev[];
132 extern const char bootprog_name[];
133
134 /* predefines / prototypes */
135 void init_datastructures(void);
136 void get_memory_configuration(void);
137 void get_memory_map(void);
138 void create_initial_page_tables(void);
139 void add_pagetables_at_top(void);
140 int page_info_cmp(const void *a, const void *);
141 void add_initvectors(void);
142 void create_configuration(int argc, char **argv, int start_args);
143 void prepare_and_check_relocation_system(void);
144 void compact_relocations(void);
145 void twirl(void);
146 int vdu_var(int);
147 void process_args(int argc, char **argv, int *howto, char *file,
148 int *start_args);
149
150 char *sprint0(int width, char prefix, char base, int value);
151 struct page_info *get_relocated_page(u_long destination, int size);
152
153 extern void start_kernel(
154 int relocate_code_page,
155 int relocation_pv_offset,
156 int configuration_structure_in_flat_physical_space,
157 int virtual_address_relocation_table,
158 int physical_address_of_new_L1_pages,
159 int kernel_entry_point
160 ); /* asm */
161
162
163 /* the loader itself */
164 void
165 init_datastructures(void)
166 {
167
168 /* Get number of pages and the memorytablesize */
169 osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
170
171 /* Allocate 99% - (small fixed amount) of the heap for memory_image */
172 memory_image_size = (int)HIMEM - (int)end - 512 * 1024;
173 memory_image_size /= 100;
174 memory_image_size *= 99;
175 if (memory_image_size <= 256*1024)
176 panic("Insufficient memory");
177
178 memory_image = alloc(memory_image_size);
179 if (!memory_image)
180 panic("Can't alloc get my memory image ?");
181
182 bottom_memory = memory_image;
183 top_memory = memory_image + memory_image_size;
184
185 firstpage = ((int)bottom_memory / nbpp) + 1; /* safety */
186 lastpage = ((int)top_memory / nbpp) - 1;
187 totalpages = lastpage - firstpage;
188
189 printf("Allocated %ld memory pages, each of %d kilobytes.\n\n",
190 totalpages, nbpp>>10 );
191
192 /*
193 * Setup the relocation table. Its a simple array of 3 * 32 bit
194 * entries. The first word in the array is the number of relocations
195 * to be done
196 */
197 reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(u_long);
198 reloc_instruction_table = alloc(reloc_tablesize);
199 if (!reloc_instruction_table)
200 panic("Can't alloc my relocate instructions pages");
201
202 reloc_entries = 0;
203 reloc_pos = reloc_instruction_table;
204 *reloc_pos++ = 0;
205
206 /*
207 * Set up the memory translation info structure. We need to allocate
208 * one more for the end of list marker. See get_memory_map.
209 */
210 mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
211 if (!mem_pages_info)
212 panic("Can't alloc my phys->virt page info");
213
214 /*
215 * Allocate memory for the memory arrangement table. We use this
216 * structure to retrieve memory page properties to clasify them.
217 */
218 memory_page_types = alloc(memory_table_size);
219 if (!memory_page_types)
220 panic("Can't alloc my memory page type block");
221
222 /*
223 * Initial page tables is 16 kb per definition since only sections are
224 * used.
225 */
226 initial_page_tables = alloc(16*1024);
227 if (!initial_page_tables)
228 panic("Can't alloc my initial page tables");
229 }
230
231 void
232 compact_relocations(void)
233 {
234 u_long *reloc_entry, current_length, length;
235 u_long src, destination, current_src, current_destination;
236 u_long *current_entry;
237
238 current_entry = reloc_entry = reloc_instruction_table + 1;
239
240 /* prime the loop */
241 current_src = reloc_entry[0];
242 current_destination = reloc_entry[1];
243 current_length = reloc_entry[2];
244
245 reloc_entry += 3;
246 while (reloc_entry < reloc_pos) {
247 src = reloc_entry[0];
248 destination = reloc_entry[1];
249 length = reloc_entry[2];
250
251 if (src == (current_src + current_length) &&
252 destination == (current_destination + current_length)) {
253 /* can merge */
254 current_length += length;
255 } else {
256 /* nothing else to do, so save the length */
257 current_entry[2] = current_length;
258 /* fill in next entry */
259 current_entry += 3;
260 current_src = current_entry[0] = src;
261 current_destination = current_entry[1] = destination;
262 current_length = length;
263 }
264 reloc_entry += 3;
265 }
266 /* save last length */
267 current_entry[2] = current_length;
268 current_entry += 3;
269
270 /* workout new count of entries */
271 length = current_entry - (reloc_instruction_table + 1);
272 printf("Compacted relocations from %d entries to %ld\n",
273 reloc_entries, length/3);
274
275 /* update table to reflect new size */
276 reloc_entries = length/3;
277 reloc_instruction_table[0] = length/3;
278 reloc_pos = current_entry;
279 }
280
281 void
282 get_memory_configuration(void)
283 {
284 int loop, current_page_type, page_count, phys_page;
285 int page, count, top_bank, video_bank;
286 int mapped_screen_memory;
287 int one_mb_pages;
288 u_long top;
289
290 printf("Getting memory configuration ");
291
292 osmemory_read_arrangement_table(memory_page_types);
293
294 /* init counters */
295 vram_blocks = dram_blocks = rom_blocks = io_blocks = podram_blocks = 0;
296
297 current_page_type = -1;
298 phys_page = 0; /* physical address in pages */
299 page_count = 0; /* page counter in this block */
300 loop = 0; /* loop variable over entries */
301
302 /* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
303 while (loop < 2*memory_table_size) {
304 page = memory_page_types[loop / 2]; /* read twice */
305 if (loop & 1) page >>= 4; /* take other nibble */
306
307 /*
308 * bits 0-2 give type, bit3 means the bit page is
309 * allocatable
310 */
311 page &= 0x7; /* only take bottom 3 bits */
312 if (page != current_page_type) {
313 /* passed a boundary ... note this block */
314 /*
315 * splitting in different vars is for
316 * compatability reasons
317 */
318 switch (current_page_type) {
319 case -1:
320 case 0:
321 break;
322 case osmemory_TYPE_DRAM:
323 if ((phys_page * nbpp)< PODRAM_START) {
324 DRAM_addr[dram_blocks] =
325 phys_page * nbpp;
326 DRAM_pages[dram_blocks] =
327 page_count;
328 dram_blocks++;
329 } else {
330 PODRAM_addr[podram_blocks] =
331 phys_page * nbpp;
332 PODRAM_pages[podram_blocks] =
333 page_count;
334 podram_blocks++;
335 }
336 break;
337 case osmemory_TYPE_VRAM:
338 VRAM_addr[vram_blocks] = phys_page * nbpp;
339 VRAM_pages[vram_blocks] = page_count;
340 vram_blocks++;
341 break;
342 case osmemory_TYPE_ROM:
343 ROM_addr[rom_blocks] = phys_page * nbpp;
344 ROM_pages[rom_blocks] = page_count;
345 rom_blocks++;
346 break;
347 case osmemory_TYPE_IO:
348 IO_addr[io_blocks] = phys_page * nbpp;
349 IO_pages[io_blocks] = page_count;
350 io_blocks++;
351 break;
352 default:
353 printf("WARNING : found unknown "
354 "memory object %d ", current_page_type);
355 printf(" at 0x%s",
356 sprint0(8,'0','x', phys_page * nbpp));
357 printf(" for %s k\n",
358 sprint0(5,' ','d', (page_count*nbpp)>>10));
359 break;
360 }
361 current_page_type = page;
362 phys_page = loop;
363 page_count = 0;
364 }
365 /*
366 * smallest unit we recognise is one page ... silly
367 * could be upto 64 pages i.e. 256 kb
368 */
369 page_count += 1;
370 loop += 1;
371 if ((loop & 31) == 0) twirl();
372 }
373
374 printf(" \n\n");
375
376 if (VRAM_pages[0] == 0) {
377 /* map DRAM as video memory */
378 display_size =
379 vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1);
380 #if 0
381 mapped_screen_memory = 1024 * 1024; /* max allowed on RiscPC */
382 videomem_pages = (mapped_screen_memory / nbpp);
383 videomem_start = DRAM_addr[0];
384 DRAM_addr[0] += videomem_pages * nbpp;
385 DRAM_pages[0] -= videomem_pages;
386 #else
387 mapped_screen_memory = display_size;
388 videomem_pages = mapped_screen_memory / nbpp;
389 one_mb_pages = (1024*1024)/nbpp;
390
391 /*
392 * OK... we need one Mb at the top for compliance with current
393 * kernel structure. This ought to be abolished one day IMHO.
394 * Also we have to take care that the kernel needs to be in
395 * DRAM0a and even has to start there.
396 * XXX one Mb simms are the smallest supported XXX
397 */
398 top_bank = dram_blocks-1;
399 video_bank = top_bank;
400 if (DRAM_pages[top_bank] == one_mb_pages) video_bank--;
401
402 if (DRAM_pages[video_bank] < videomem_pages)
403 panic("Weird memory configuration found; please "
404 "contact acorn32 portmaster.");
405
406 /* split off the top 1Mb */
407 DRAM_addr [top_bank+1] = DRAM_addr[top_bank] +
408 (DRAM_pages[top_bank] - one_mb_pages)*nbpp;
409 DRAM_pages[top_bank+1] = one_mb_pages;
410 DRAM_pages[top_bank ] -= one_mb_pages;
411 dram_blocks++;
412
413 /* Map video memory at the end of the choosen DIMM */
414 videomem_start = DRAM_addr[video_bank] +
415 (DRAM_pages[video_bank] - videomem_pages)*nbpp;
416 DRAM_pages[video_bank] -= videomem_pages;
417
418 /* sanity */
419 if (DRAM_pages[top_bank] == 0) {
420 DRAM_addr [top_bank] = DRAM_addr [top_bank+1];
421 DRAM_pages[top_bank] = DRAM_pages[top_bank+1];
422 dram_blocks--;
423 }
424 #endif
425 } else {
426 /* use VRAM */
427 mapped_screen_memory = 0;
428 videomem_start = VRAM_addr[0];
429 videomem_pages = VRAM_pages[0];
430 display_size = videomem_pages * nbpp;
431 }
432
433 if (mapped_screen_memory) {
434 printf("Used %d kb DRAM ", mapped_screen_memory / 1024);
435 printf("at 0x%s for video memory\n",
436 sprint0(8,'0','x', videomem_start));
437 }
438
439 /* find top of (PO)DRAM pages */
440 top_physdram = 0;
441 for (loop = 0; loop < podram_blocks; loop++) {
442 top = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
443 if (top > top_physdram) top_physdram = top;
444 }
445 for (loop = 0; loop < dram_blocks; loop++) {
446 top = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
447 if (top > top_physdram) top_physdram = top;
448 }
449 if (top_physdram == 0)
450 panic("reality check: No DRAM in this machine?");
451 if (((top_physdram >> 20) << 20) != top_physdram)
452 panic("Top is not not aligned on a Mb; "
453 "remove very small DIMMS?");
454
455 /* pretty print the individual page types */
456 for (count = 0; count < rom_blocks; count++) {
457 printf("Found ROM (%d)", count);
458 printf(" at 0x%s", sprint0(8,'0','x', ROM_addr[count]));
459 printf(" for %s k\n",
460 sprint0(5,' ','d', (ROM_pages[count]*nbpp)>>10));
461 }
462
463 for (count = 0; count < io_blocks; count++) {
464 printf("Found I/O (%d)", count);
465 printf(" at 0x%s", sprint0(8,'0','x', IO_addr[count]));
466 printf(" for %s k\n",
467 sprint0(5,' ','d', (IO_pages[count]*nbpp)>>10));
468 }
469
470 /* for DRAM/VRAM also count the number of pages */
471 total_dram_pages = 0;
472 for (count = 0; count < dram_blocks; count++) {
473 total_dram_pages += DRAM_pages[count];
474 printf("Found DRAM (%d)", count);
475 printf(" at 0x%s", sprint0(8,'0','x', DRAM_addr[count]));
476 printf(" for %s k\n",
477 sprint0(5,' ','d', (DRAM_pages[count]*nbpp)>>10));
478 }
479
480 total_vram_pages = 0;
481 for (count = 0; count < vram_blocks; count++) {
482 total_vram_pages += VRAM_pages[count];
483 printf("Found VRAM (%d)", count);
484 printf(" at 0x%s", sprint0(8,'0','x', VRAM_addr[count]));
485 printf(" for %s k\n",
486 sprint0(5,' ','d', (VRAM_pages[count]*nbpp)>>10));
487 }
488
489 total_podram_pages = 0;
490 for (count = 0; count < podram_blocks; count++) {
491 total_podram_pages += PODRAM_pages[count];
492 printf("Found Processor only (S)DRAM (%d)", count);
493 printf(" at 0x%s", sprint0(8,'0','x', PODRAM_addr[count]));
494 printf(" for %s k\n",
495 sprint0(5,' ','d', (PODRAM_pages[count]*nbpp)>>10));
496 }
497 }
498
499
500 void
501 get_memory_map(void)
502 {
503 struct page_info *page_info;
504 int page, inout;
505 int phys_addr;
506
507 printf("\nGetting actual memorymapping");
508 for (page = 0, page_info = mem_pages_info;
509 page < totalpages;
510 page++, page_info++) {
511 page_info->pagenumber = 0; /* not used */
512 page_info->logical = (firstpage + page) * nbpp;
513 page_info->physical = 0; /* result comes here */
514 /* to avoid triggering a `bug' in RISC OS 4, page it in */
515 *((int *)page_info->logical) = 0;
516 }
517 /* close list */
518 page_info->pagenumber = -1;
519
520 inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO |
521 osmemory_RETURN_PHYS_ADDR;
522 osmemory_page_op(inout, mem_pages_info, totalpages);
523
524 printf(" ; sorting ");
525 qsort(mem_pages_info, totalpages, sizeof(struct page_info),
526 &page_info_cmp);
527 printf(".\n");
528
529 /*
530 * get the first DRAM index and show the physical memory
531 * fragments we got
532 */
533 printf("\nFound physical memory blocks :\n");
534 first_mapped_DRAM_page_index = -1;
535 first_mapped_PODRAM_page_index = -1;
536 for (page=0; page < totalpages; page++) {
537 phys_addr = mem_pages_info[page].physical;
538 printf("[0x%x", phys_addr);
539 while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
540 if (first_mapped_DRAM_page_index < 0 &&
541 phys_addr >= DRAM_addr[0])
542 first_mapped_DRAM_page_index = page;
543 if (first_mapped_PODRAM_page_index < 0 &&
544 phys_addr >= PODRAM_addr[0])
545 first_mapped_PODRAM_page_index = page;
546 page++;
547 phys_addr = mem_pages_info[page].physical;
548 }
549 printf("-0x%x] ", phys_addr + nbpp -1);
550 }
551 printf("\n\n");
552
553 if (first_mapped_PODRAM_page_index < 0 && PODRAM_addr[0])
554 panic("Found no (S)DRAM mapped in the bootloader");
555 if (first_mapped_DRAM_page_index < 0)
556 panic("No DRAM mapped in the bootloader");
557 }
558
559
560 void
561 create_initial_page_tables(void)
562 {
563 u_long page, section, addr, kpage;
564
565 /* mark a section by the following bits and domain 0, AP=01, CB=0 */
566 /* A P C B section
567 domain */
568 section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) |
569 (0) | (0 << 5);
570
571 /* first of all a full 1:1 mapping */
572 for (page = 0; page < 4*1024; page++)
573 initial_page_tables[page] = (page<<20) | section;
574
575 /*
576 * video memory is mapped 1:1 in the DRAM section or in VRAM
577 * section
578 *
579 * map 1Mb from top of DRAM memory to bottom 1Mb of virtual memmap
580 */
581 top_1Mb_dram = (((top_physdram - 1024*1024) >> 20) << 20);
582
583 initial_page_tables[0] = top_1Mb_dram | section;
584
585 /*
586 * map 16 Mb of kernel space to KERNEL_BASE
587 * i.e. marks[KERNEL_START]
588 */
589 for (page = 0; page < 16; page++) {
590 addr = (kernel_physical_start >> 20) + page;
591 kpage = (marks[MARK_START] >> 20) + page;
592 initial_page_tables[kpage] = (addr << 20) | section;
593 }
594 }
595
596
597 void
598 add_pagetables_at_top(void)
599 {
600 int page;
601 u_long src, dst, fragaddr;
602
603 /* Special : destination must be on a 16 Kb boundary */
604 /* get 4 pages on the top of the physical memory and copy PT's in it */
605 new_L1_pages_phys = top_physdram - 4 * nbpp;
606
607 /*
608 * If the L1 page tables are not 16 kb aligned, adjust base
609 * until it is
610 */
611 while (new_L1_pages_phys & (16*1024-1))
612 new_L1_pages_phys -= nbpp;
613 if (new_L1_pages_phys & (16*1024-1))
614 panic("Paranoia : L1 pages not on 16Kb boundary");
615
616 dst = new_L1_pages_phys;
617 src = (u_long)initial_page_tables;
618
619 for (page = 0; page < 4; page++) {
620 /* get a page for a fragment */
621 fragaddr = get_relocated_page(dst, nbpp)->logical;
622 memcpy((void *)fragaddr, (void *)src, nbpp);
623
624 src += nbpp;
625 dst += nbpp;
626 }
627 }
628
629
630 void
631 add_initvectors(void)
632 {
633 u_long *pos;
634 u_long vectoraddr, count;
635
636 /* the top 1Mb of the physical DRAM pages is mapped at address 0 */
637 vectoraddr = get_relocated_page(top_1Mb_dram, nbpp)->logical;
638
639 /* fill the vectors with `movs pc, lr' opcodes */
640 pos = (u_long *)vectoraddr; memset(pos, 0, nbpp);
641 for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
642 }
643
644 /*
645 * Work out the display's vertical sync rate. One might hope that there
646 * would be a simpler way than by counting vsync interrupts for a second,
647 * but if there is, I can't find it.
648 */
649 static int
650 vsync_rate(void)
651 {
652 uint8_t count0;
653 unsigned int time0;
654
655 count0 = osbyte_read(osbyte_VAR_VSYNC_TIMER);
656 time0 = os_read_monotonic_time();
657 while (os_read_monotonic_time() - time0 < 100)
658 continue;
659 return (uint8_t)(count0 - osbyte_read(osbyte_VAR_VSYNC_TIMER));
660 }
661
662 void
663 create_configuration(int argc, char **argv, int start_args)
664 {
665 int i, root_specified, id_low, id_high;
666 char *pos;
667
668 bconfig_new_phys = kernel_free_vm_start - pv_offset;
669 bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
670 bconfig = (struct bootconfig *)(bconfig_page->logical);
671 kernel_free_vm_start += nbpp;
672
673 /* get some miscelanious info for the bootblock */
674 os_readsysinfo_monitor_info(NULL, (int *)&monitor_type, (int *)&monitor_sync);
675 os_readsysinfo_chip_presence((int *)&ioeb_flags, (int *)&superio_flags, (int *)&lcd_flags);
676 os_readsysinfo_superio_features((int *)&superio_flags_basic,
677 (int *)&superio_flags_extra);
678 os_readsysinfo_unique_id(&id_low, &id_high);
679
680 /* fill in the bootconfig *bconfig structure : generic version II */
681 memset(bconfig, 0, sizeof(*bconfig));
682 bconfig->magic = BOOTCONFIG_MAGIC;
683 bconfig->version = BOOTCONFIG_VERSION;
684 strcpy(bconfig->kernelname, booted_file);
685
686 /*
687 * get the kernel base name and update the RiscOS name to a
688 * Unix name
689 */
690 i = strlen(booted_file);
691 while (i >= 0 && booted_file[i] != '.') i--;
692 if (i) {
693 strcpy(bconfig->kernelname, "/");
694 strcat(bconfig->kernelname, booted_file+i+1);
695 }
696
697 pos = bconfig->kernelname+1;
698 while (*pos) {
699 if (*pos == '/') *pos = '.';
700 pos++;
701 }
702
703 /* set the machine_id */
704 memcpy(&(bconfig->machine_id), &id_low, 4);
705
706 /* check if the `root' is specified */
707 root_specified = 0;
708 strcpy(bconfig->args, "");
709 for (i = start_args; i < argc; i++) {
710 if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
711 if (i > start_args)
712 strcat(bconfig->args, " ");
713 strcat(bconfig->args, argv[i]);
714 }
715 if (!root_specified) {
716 if (start_args < argc)
717 strcat(bconfig->args, " ");
718 strcat(bconfig->args, "root=");
719 strcat(bconfig->args, DEFAULT_ROOT);
720 }
721
722 /* mark kernel pointers */
723 bconfig->kernvirtualbase = marks[MARK_START];
724 bconfig->kernphysicalbase = kernel_physical_start;
725 bconfig->kernsize = kernel_free_vm_start -
726 marks[MARK_START];
727 bconfig->ksym_start = marks[MARK_SYM];
728 bconfig->ksym_end = marks[MARK_SYM] + marks[MARK_NSYM];
729
730 /* setup display info */
731 bconfig->display_phys = videomem_start;
732 bconfig->display_start = videomem_start;
733 bconfig->display_size = display_size;
734 bconfig->width = vdu_var(os_MODEVAR_XWIND_LIMIT);
735 bconfig->height = vdu_var(os_MODEVAR_YWIND_LIMIT);
736 bconfig->log2_bpp = vdu_var(os_MODEVAR_LOG2_BPP);
737 bconfig->framerate = vsync_rate();
738
739 /* fill in memory info */
740 bconfig->pagesize = nbpp;
741 bconfig->drampages = total_dram_pages +
742 total_podram_pages; /* XXX */
743 bconfig->vrampages = total_vram_pages;
744 bconfig->dramblocks = dram_blocks + podram_blocks; /*XXX*/
745 bconfig->vramblocks = vram_blocks;
746
747 for (i = 0; i < dram_blocks; i++) {
748 bconfig->dram[i].address = DRAM_addr[i];
749 bconfig->dram[i].pages = DRAM_pages[i];
750 bconfig->dram[i].flags = PHYSMEM_TYPE_GENERIC;
751 }
752 for (; i < dram_blocks + podram_blocks; i++) {
753 bconfig->dram[i].address = PODRAM_addr[i-dram_blocks];
754 bconfig->dram[i].pages = PODRAM_pages[i-dram_blocks];
755 bconfig->dram[i].flags = PHYSMEM_TYPE_PROCESSOR_ONLY;
756 }
757 for (i = 0; i < vram_blocks; i++) {
758 bconfig->vram[i].address = VRAM_addr[i];
759 bconfig->vram[i].pages = VRAM_pages[i];
760 bconfig->vram[i].flags = PHYSMEM_TYPE_GENERIC;
761 }
762 }
763
764
765 int
766 main(int argc, char **argv)
767 {
768 int howto, start_args, ret;
769 int class;
770
771 printf("\n\n");
772 printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
773 printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
774 printf("\n");
775
776 process_args(argc, argv, &howto, booted_file, &start_args);
777
778 printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
779
780 init_datastructures();
781 get_memory_configuration();
782 get_memory_map();
783
784 /*
785 * point to the first free DRAM page guaranteed to be in
786 * strict order up
787 */
788 if (podram_blocks != 0) {
789 free_relocation_page =
790 mem_pages_info + first_mapped_PODRAM_page_index;
791 kernel_physical_start = PODRAM_addr[0];
792 kernel_physical_maxsize = PODRAM_pages[0] * nbpp;
793 } else {
794 free_relocation_page =
795 mem_pages_info + first_mapped_DRAM_page_index;
796 kernel_physical_start = DRAM_addr[0];
797 kernel_physical_maxsize = DRAM_pages[0] * nbpp;
798 }
799
800 printf("\nLoading %s ", booted_file);
801
802 /* first count the kernel to get the markers */
803 ret = loadfile(booted_file, marks, COUNT_KERNEL);
804 if (ret == -1) panic("Kernel load failed"); /* lie to the user ... */
805 close(ret);
806
807 if (marks[MARK_END] - marks[MARK_START] > kernel_physical_maxsize)
808 {
809 panic("\nKernel is bigger than the first DRAM module, unable to boot\n");
810 }
811
812 /*
813 * calculate how much the difference is between physical and
814 * virtual space for the kernel
815 */
816 pv_offset = ((u_long)marks[MARK_START] - kernel_physical_start);
817 /* round on a page */
818 kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1);
819
820 /* we seem to be forced to clear the marks[] ? */
821 memset(marks, 0, sizeof(marks));
822
823 /* really load it ! */
824 ret = loadfile(booted_file, marks, LOAD_KERNEL);
825 if (ret == -1) panic("Kernel load failed");
826 close(ret);
827
828 /* finish off the relocation information */
829 create_initial_page_tables();
830 add_initvectors();
831 add_pagetables_at_top();
832 create_configuration(argc, argv, start_args);
833
834 /*
835 * done relocating and creating information, now update and
836 * check the relocation mechanism
837 */
838 compact_relocations();
839
840 /*
841 * grab a page to copy the bootstrap code into
842 */
843 relocate_code_page = free_relocation_page++;
844
845 printf("\nStarting at 0x%lx, p@0x%lx\n", marks[MARK_ENTRY], kernel_physical_start);
846 printf("%ld entries, first one is 0x%lx->0x%lx for %lx bytes\n",
847 reloc_instruction_table[0],
848 reloc_instruction_table[1],
849 reloc_instruction_table[2],
850 reloc_instruction_table[3]);
851
852 printf("Will boot in a few secs due to relocation....\n"
853 "bye bye from RISC OS!");
854
855 /* dismount all filesystems */
856 xosfscontrol_shutdown();
857
858 os_readsysinfo_platform_class(&class, NULL, NULL);
859 if (class != osreadsysinfo_Platform_Pace) {
860 /* reset devices, well they try to anyway */
861 service_pre_reset();
862 }
863
864 start_kernel(
865 /* r0 relocation code page (V) */ relocate_code_page->logical,
866 /* r1 relocation pv offset */
867 relocate_code_page->physical-relocate_code_page->logical,
868 /* r2 configuration structure */ bconfig_new_phys,
869 /* r3 relocation table (l) */
870 (int)reloc_instruction_table, /* one piece! */
871 /* r4 L1 page descriptor (P) */ new_L1_pages_phys,
872 /* r5 kernel entry point */ marks[MARK_ENTRY]
873 );
874 return 0;
875 }
876
877
878 ssize_t
879 boot32_read(int f, void *addr, size_t size)
880 {
881 void *fragaddr;
882 size_t fragsize;
883 ssize_t bytes_read, total;
884
885 /* printf("read at %p for %ld bytes\n", addr, size); */
886 total = 0;
887 while (size > 0) {
888 fragsize = nbpp; /* select one page */
889 if (size < nbpp) fragsize = size;/* clip to size left */
890
891 /* get a page for a fragment */
892 fragaddr = (void *)get_relocated_page((u_long) addr -
893 pv_offset, fragsize)->logical;
894
895 bytes_read = read(f, fragaddr, fragsize);
896 if (bytes_read < 0) return bytes_read; /* error! */
897 total += bytes_read; /* account read bytes */
898
899 if (bytes_read < fragsize)
900 return total; /* does this happen? */
901
902 size -= fragsize; /* advance */
903 addr += fragsize;
904 }
905 return total;
906 }
907
908
909 void *
910 boot32_memcpy(void *dst, const void *src, size_t size)
911 {
912 void *fragaddr;
913 size_t fragsize;
914
915 /* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
916 while (size > 0) {
917 fragsize = nbpp; /* select one page */
918 if (size < nbpp) fragsize = size;/* clip to size left */
919
920 /* get a page for a fragment */
921 fragaddr = (void *)get_relocated_page((u_long) dst -
922 pv_offset, fragsize)->logical;
923 memcpy(fragaddr, src, size);
924
925 src += fragsize; /* account copy */
926 dst += fragsize;
927 size-= fragsize;
928 }
929 return dst;
930 }
931
932
933 void *
934 boot32_memset(void *dst, int c, size_t size)
935 {
936 void *fragaddr;
937 size_t fragsize;
938
939 /* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
940 while (size > 0) {
941 fragsize = nbpp; /* select one page */
942 if (size < nbpp) fragsize = size;/* clip to size left */
943
944 /* get a page for a fragment */
945 fragaddr = (void *)get_relocated_page((u_long)dst - pv_offset,
946 fragsize)->logical;
947 memset(fragaddr, c, fragsize);
948
949 dst += fragsize; /* account memsetting */
950 size-= fragsize;
951
952 }
953 return dst;
954 }
955
956
957 /* We can rely on the fact that two entries never have identical ->physical */
958 int
959 page_info_cmp(const void *a, const void *b)
960 {
961
962 return (((struct page_info *)a)->physical <
963 ((struct page_info *)b)->physical) ? -1 : 1;
964 }
965
966 struct page_info *
967 get_relocated_page(u_long destination, int size)
968 {
969 struct page_info *page;
970
971 /* get a page for a fragment */
972 page = free_relocation_page;
973 if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages");
974 reloc_entries++;
975 if (reloc_entries >= MAX_RELOCPAGES)
976 panic("\n\nToo many relocations! What are you loading ??");
977
978 /* record the relocation */
979 if (free_relocation_page->physical & 0x3)
980 panic("\n\nphysical address is not aligned!");
981
982 if (destination & 0x3)
983 panic("\n\ndestination address is not aligned!");
984
985 *reloc_pos++ = free_relocation_page->physical;
986 *reloc_pos++ = destination;
987 *reloc_pos++ = size;
988 free_relocation_page++; /* advance */
989
990 return page;
991 }
992
993
994 int
995 vdu_var(int var)
996 {
997 int varlist[2], vallist[2];
998
999 varlist[0] = var;
1000 varlist[1] = -1;
1001 os_read_vdu_variables(varlist, vallist);
1002 return vallist[0];
1003 }
1004
1005
1006 void
1007 twirl(void)
1008 {
1009
1010 printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
1011 twirl_cnt++;
1012 twirl_cnt &= 3;
1013 }
1014
1015
1016 void
1017 process_args(int argc, char **argv, int *howto, char *file, int *start_args)
1018 {
1019 int i, j;
1020 static char filename[80];
1021
1022 *howto = 0;
1023 *file = NULL; *start_args = 1;
1024 for (i = 1; i < argc; i++) {
1025 if (argv[i][0] == '-')
1026 for (j = 1; argv[i][j]; j++)
1027 BOOT_FLAG(argv[i][j], *howto);
1028 else {
1029 if (*file)
1030 *start_args = i;
1031 else {
1032 strcpy(file, argv[i]);
1033 *start_args = i+1;
1034 }
1035 break;
1036 }
1037 }
1038 if (*file == NULL) {
1039 if (*howto & RB_ASKNAME) {
1040 printf("boot: ");
1041 gets(filename);
1042 strcpy(file, filename);
1043 } else
1044 strcpy(file, "netbsd");
1045 }
1046 }
1047
1048
1049 char *
1050 sprint0(int width, char prefix, char base, int value)
1051 {
1052 static char format[50], scrap[50];
1053 char *pos;
1054 int length;
1055
1056 for (pos = format, length = 0; length<width; length++) *pos++ = prefix;
1057 *pos++ = '%';
1058 *pos++ = base;
1059 *pos++ = (char) 0;
1060
1061 sprintf(scrap, format, value);
1062 length = strlen(scrap);
1063
1064 return scrap+length-width;
1065 }
1066
1067