boot32.c revision 1.5 1 /* $NetBSD: boot32.c,v 1.5 2002/12/30 03:30:16 reinoud Exp $ */
2
3 /*-
4 * Copyright (c) 2002 Reinoud Zandijk
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Thanks a bunch for Ben's framework for the bootloader and its suporting
30 * libs. This file tries to actually boot NetBSD/acorn32 !
31 *
32 * XXX eventually to be partly merged back with boot26 ? XXX
33 */
34
35 #include <lib/libsa/stand.h>
36 #include <lib/libsa/loadfile.h>
37 #include <lib/libkern/libkern.h>
38 #include <riscoscalls.h>
39 #include <srt0.h>
40 #include <sys/boot_flag.h>
41 #include <machine/vmparam.h>
42 #include <arm/arm32/pte.h>
43 #include <machine/bootconfig.h>
44
45
46 /* debugging flags */
47 int debug = 1;
48
49
50 /* constants */
51 #define PODRAM_START (512*1024*1024) /* XXX Kinetic cards XXX */
52
53 #define MAX_RELOCPAGES 4096
54
55 #define DEFAULT_ROOT "/dev/wd0a"
56
57
58 #define IO_BLOCKS 16 /* move these to the bootloader structure? */
59 #define ROM_BLOCKS 16
60 #define PODRAM_BLOCKS 16
61
62
63 /* booter variables */
64 char scrap[80], twirl_cnt; /* misc */
65 char booted_file[80];
66
67 struct bootconfig *bconfig; /* bootconfig passing */
68 u_long bconfig_new_phys; /* physical address its bound */
69
70 u_int monitor_type, monitor_sync, ioeb_flags, lcd_flags; /* computer knowledge */
71 u_int superio_flags, superio_flags_basic, superio_flags_extra;
72
73 int nbpp, memory_table_size, memory_image_size; /* sizes */
74 int reloc_tablesize, *reloc_instruction_table; /* relocate info */
75 int *reloc_pos; /* current empty entry */
76 int reloc_entries; /* number of relocations */
77 int first_mapped_DRAM_page_index; /* offset in RISC OS blob */
78 int first_mapped_PODRAM_page_index; /* offset in RISC OS blob */
79
80 struct page_info *mem_pages_info; /* {nr, virt, phys}* */
81 struct page_info *free_relocation_page; /* points to the page_info chain*/
82 struct page_info *relocate_table_pages; /* points to seq. relocate info */
83 struct page_info *relocate_code_page; /* points to the copied code */
84 struct page_info *bconfig_page; /* page for passing on settings */
85
86 unsigned char *memory_page_types; /* packed array of 4 bit typeId */
87
88 u_long *initial_page_tables; /* pagetables to be booted from */
89
90
91 /* XXX rename *_BLOCKS to MEM_BLOCKS */
92 /* DRAM/VRAM/ROM/IO info */
93 u_long videomem_start, videomem_pages, display_size; /* where the display is */
94
95 u_long pv_offset, top_physdram; /* kernel_base - phys. diff */
96 u_long new_L1_pages_phys; /* physical address of L1 pages */
97
98 u_long total_podram_pages, total_dram_pages, total_vram_pages;/* for bootconfig passing */
99 int dram_blocks, podram_blocks; /* number of mem. objects/type */
100 int vram_blocks, rom_blocks, io_blocks;
101
102 u_long DRAM_addr[DRAM_BLOCKS], DRAM_pages[DRAM_BLOCKS];
103 u_long PODRAM_addr[PODRAM_BLOCKS], PODRAM_pages[PODRAM_BLOCKS]; /* processor only RAM */
104 u_long VRAM_addr[VRAM_BLOCKS], VRAM_pages[VRAM_BLOCKS];
105 u_long ROM_addr[ROM_BLOCKS], ROM_pages[ROM_BLOCKS];
106 u_long IO_addr[IO_BLOCKS], IO_pages[IO_BLOCKS];
107
108
109 /* RISC OS memory pages we claimed */
110 u_long firstpage, lastpage, totalpages; /* RISC OS pagecounters */
111 char *memory_image, *bottom_memory, *top_memory; /* RISC OS memory */
112
113 u_long videomem_start_ro; /* for debugging mainly */
114
115 /* kernel info */
116 u_long marks[MARK_MAX]; /* loader mark pointers */
117 u_long kernel_physical_start; /* where does it get relocated */
118 u_long kernel_free_vm_start; /* where does the free VM start */
119 u_long scratch_virtualbase, scratch_physicalbase; /* some free space to mess with */
120
121
122 /* bootprogram identifiers */
123 extern const char bootprog_rev[];
124 extern const char bootprog_name[];
125 extern const char bootprog_date[];
126 extern const char bootprog_maker[];
127
128
129 /* predefines / prototypes */
130 void init_datastructures(void);
131 void get_memory_configuration(void);
132 void get_memory_map(void);
133 void create_initial_page_tables(void);
134 void add_pagetables_at_top(void);
135 void sort_memory_map(void);
136 void add_initvectors(void);
137 void create_configuration(int argc, char **argv, int start_args);
138 void prepare_and_check_relocation_system(void);
139 void twirl(void);
140 int vdu_var(int);
141 void process_args(int argc, char **argv, int *howto, char *file, int *start_args);
142
143 char *sprint0(int width, char prefix, char base, int value);
144 struct page_info *get_relocated_page(u_long destination, int size);
145
146 extern void start_kernel(
147 int relocate_code_page,
148 int relocation_pv_offset,
149 int configuration_structure_in_flat_physical_space,
150 int physical_address_of_relocation_tables,
151 int physical_address_of_new_L1_pages,
152 int kernel_entry_point
153 ); /* asm */
154
155
156 /* the loader itself */
157 void init_datastructures(void) {
158 /* Get number of pages and the memorytablesize */
159 osmemory_read_arrangement_table_size(&memory_table_size, &nbpp);
160
161 /* reserve some space for heap etc... 512 might be bigish though */
162 memory_image_size = (int) HIMEM - 512*1024;
163 if (memory_image_size <= 256*1024) panic("I need more memory to boot up; increase Wimp slot");
164 memory_image = alloc(memory_image_size);
165 if (!memory_image) panic("Can't alloc get my memory image ?");
166
167 bottom_memory = memory_image;
168 top_memory = memory_image + memory_image_size;
169
170 firstpage = ((int) bottom_memory / nbpp) + 1; /* safety */
171 lastpage = ((int) top_memory / nbpp) - 1;
172 totalpages = lastpage - firstpage;
173
174 printf("Got %ld memory pages each %d kilobytes to mess with.\n\n", totalpages, nbpp>>10);
175
176 /* allocate some space for the relocation table */
177 reloc_tablesize = (MAX_RELOCPAGES+1)*3*sizeof(int); /* 3 entry table */
178 reloc_instruction_table = alloc(reloc_tablesize);
179 if (!reloc_instruction_table) panic("Can't alloc my relocate instructions pages");
180
181 /* set up relocation table. First word gives number of relocations to be done */
182 reloc_entries = 0;
183 reloc_pos = reloc_instruction_table;
184 *reloc_pos++ = 0;
185
186 /* set up the memory translation info structure; alloc one more for *
187 * end of list marker; see get_memory_map */
188 mem_pages_info = alloc((totalpages + 1)*sizeof(struct page_info));
189 if (!mem_pages_info) panic("Can't alloc my phys->virt page info");
190
191 /* allocate memory for the memory arrangement table */
192 memory_page_types = alloc(memory_table_size);
193 if (!memory_page_types) panic("Can't alloc my memory page type block");
194
195 initial_page_tables = alloc(16*1024); /* size is 16 kb per definition */
196 if (!initial_page_tables) panic("Can't alloc my initial page tables");
197 }
198
199
200 void prepare_and_check_relocation_system(void) {
201 int relocate_size, relocate_pages;
202 char *dst, *src;
203 int pages;
204 int *reloc_entry, last_phys, phys, logical, length;
205
206 /* set the number of relocation entries in the 1st word */
207 *reloc_instruction_table = reloc_entries;
208
209 /* the relocate information needs to be in one sequential physical space */
210 relocate_size = (reloc_tablesize + nbpp-1) & ~(nbpp-1); /* round space up */
211 printf("\nPreparing for booting %s ... ", booted_file);
212 relocate_pages = relocate_size / nbpp;
213
214 relocate_table_pages = free_relocation_page;
215 pages = 0;
216 while (pages < relocate_pages) {
217 src = (char *) reloc_instruction_table + pages*nbpp, nbpp;
218 dst = (void *) (relocate_table_pages + pages)->logical;
219 memcpy(dst, src, nbpp);
220
221 if (pages < relocate_pages-1) {
222 /* check if next page is sequential physically */
223 if ((relocate_table_pages+pages+1)->physical - (relocate_table_pages+pages)->physical != nbpp) {
224 /* Ieee! non contigunous relocate area -> try again */
225 printf("*");
226 relocate_table_pages += pages;
227 pages = -1; /* will be incremented till zero later */
228 };
229 };
230 pages++;
231 };
232 free_relocation_page = relocate_table_pages + pages;
233
234 /* copy the relocation code into this page in start_kernel */
235 relocate_code_page = free_relocation_page++;
236
237 /*
238 * All relocations are pages allocated in one big strict increasing
239 * physical DRAM address sequence. When the MMU is switched off all
240 * code and data is in this increasing order but not at the right
241 * place. This is where the relocation code kicks in; relocation is
242 * done in flat physical memory without MMU.
243 */
244
245 printf("checking ... ");
246 reloc_entry = reloc_instruction_table + 1;
247 last_phys = -1;
248 while (reloc_entry < reloc_pos) {
249 phys = reloc_entry[0];
250 logical = reloc_entry[1];
251 length = reloc_entry[2];
252 reloc_entry[1] -= pv_offset;
253
254 if (last_phys - phys >= 0) printf("relocation sequence challenged -- booting might fail ");
255 last_phys = phys;
256
257 if (logical > top_physdram)
258 panic("Internal error: relocating outside RAM (%x > %lx) .. ", logical, top_physdram);
259
260 reloc_entry+=3;
261 };
262 if (reloc_entry != reloc_pos) panic("Relocation instructions table is corrupted");
263
264 printf("OK!\n");
265 }
266
267
268 void get_memory_configuration(void) {
269 int loop, current_page_type, page_count, phys_page;
270 int page, count, bank;
271 int mapped_screen_memory;
272
273 printf("Getting memory configuration ");
274
275 osmemory_read_arrangement_table(memory_page_types);
276
277 /* init counters */
278 vram_blocks = dram_blocks = rom_blocks = io_blocks = podram_blocks = 0;
279
280 current_page_type = -1;
281 phys_page = 0; /* physical address in pages */
282 page_count = 0; /* page counter in this block */
283 loop = 0; /* loop variable over entries */
284
285 /* iterating over a packed array of 2 page types/byte i.e. 8 kb/byte */
286 while (loop < 2*memory_table_size) {
287 page = (memory_page_types[loop / 2]); /* read twice */
288 if (loop & 1) page >>= 4; /* take other nibble */
289
290 /* bits 0-2 give type, bit3 means the bit page is allocatable */
291 page &= 0x7; /* only take bottom 3 bits */
292 if (page != current_page_type) {
293 /* passed a boundary ... note this block */
294 /* splitting in different vars is for compatability reasons*/
295 switch (current_page_type) {
296 case -1 :
297 case 0 :
298 break;
299 case osmemory_TYPE_DRAM :
300 if (phys_page < PODRAM_START) {
301 DRAM_addr[dram_blocks] = phys_page * nbpp;
302 DRAM_pages[dram_blocks] = page_count;
303 dram_blocks++;
304 } else {
305 PODRAM_addr[podram_blocks] = phys_page * nbpp;
306 PODRAM_pages[podram_blocks] = page_count;
307 podram_blocks++;
308 };
309 break;
310 case osmemory_TYPE_VRAM :
311 VRAM_addr[vram_blocks] = phys_page * nbpp;
312 VRAM_pages[vram_blocks] = page_count;
313 vram_blocks++;
314 break;
315 case osmemory_TYPE_ROM :
316 ROM_addr[rom_blocks] = phys_page * nbpp;
317 ROM_pages[rom_blocks] = page_count;
318 rom_blocks++;
319 break;
320 case osmemory_TYPE_IO :
321 IO_addr[io_blocks] = phys_page * nbpp;
322 IO_pages[io_blocks] = page_count;
323 io_blocks++;
324 break;
325 default :
326 printf("WARNING : found unknown memory object %d ", current_page_type);
327 printf(" at 0x%s", sprint0(8,'0','x', phys_page * nbpp));
328 printf(" for %s k\n", sprint0(5,' ','d', (page_count*nbpp)>>10));
329 break;
330 };
331 current_page_type = page;
332 phys_page = loop;
333 page_count = 0;
334 };
335 /* smallest unit we recognise is one page ... silly could be upto 64 pages i.e. 256 kb */
336 page_count += 1;
337 loop += 1;
338 if ((loop & 31) == 0) twirl();
339 };
340
341 printf(" \n\n");
342
343 /* find top of DRAM pages */
344 top_physdram = 0;
345
346 for (loop = podram_blocks-1; (loop >= 0) && (PODRAM_addr[loop] == 0); loop++);
347 if (loop >= 0) top_physdram = PODRAM_addr[loop] + PODRAM_pages[loop]*nbpp;
348 if (top_physdram == 0) {
349 for (loop = dram_blocks-1; (loop >= 0) && (DRAM_addr[loop] == 0); loop++);
350 if (loop >= 0) top_physdram = DRAM_addr[loop] + DRAM_pages[loop]*nbpp;
351 };
352 if (top_physdram == 0) panic("reality check: No DRAM in this machine?");
353
354 if (VRAM_pages[0] == 0) {
355 /* map bottom DRAM as video memory */
356 display_size = vdu_var(os_VDUVAR_TOTAL_SCREEN_SIZE) & ~(nbpp-1);
357 #if 0
358 mapped_screen_memory = 1024 * 1024; /* max allowed on RiscPC */
359 videomem_start = DRAM_addr[0];
360 videomem_pages = (mapped_screen_memory / nbpp);
361 DRAM_addr[0] += videomem_pages * nbpp;
362 DRAM_pages[0] -= videomem_pages;
363 #else
364 mapped_screen_memory = display_size;
365 bank = dram_blocks-1; /* pick last SIMM */
366 videomem_start = DRAM_addr[bank];
367 videomem_pages = (mapped_screen_memory / nbpp);
368 DRAM_addr[bank] += videomem_pages * nbpp; /* at the front of the SIMM */
369 DRAM_pages[bank]-= videomem_pages;
370 #endif
371 } else {
372 /* use VRAM */
373 mapped_screen_memory = 0;
374 videomem_start = VRAM_addr[0];
375 videomem_pages = VRAM_pages[0];
376 display_size = videomem_pages * nbpp;
377 };
378
379 if (mapped_screen_memory) {
380 printf("Used 1st Mb of DRAM at 0x%s for video memory\n", sprint0(8,'0','x', videomem_start));
381 };
382
383 videomem_start_ro = vdu_var(os_VDUVAR_DISPLAY_START);
384
385 /* pretty print the individual page types */
386 for (count = 0; count < rom_blocks; count++) {
387 printf("Found ROM (%d)", count);
388 printf(" at 0x%s", sprint0(8,'0','x', ROM_addr[count]));
389 printf(" for %s k\n", sprint0(5,' ','d', (ROM_pages[count]*nbpp)>>10));
390 };
391
392 for (count = 0; count < io_blocks; count++) {
393 printf("Found I/O (%d)", count);
394 printf(" at 0x%s", sprint0(8,'0','x', IO_addr[count]));
395 printf(" for %s k\n", sprint0(5,' ','d', (IO_pages[count]*nbpp)>>10));
396 };
397
398 /* for DRAM/VRAM also count the number of pages */
399 total_dram_pages = 0;
400 for (count = 0; count < dram_blocks; count++) {
401 total_dram_pages += DRAM_pages[count];
402 printf("Found DRAM (%d)", count);
403 printf(" at 0x%s", sprint0(8,'0','x', DRAM_addr[count]));
404 printf(" for %s k\n", sprint0(5,' ','d', (DRAM_pages[count]*nbpp)>>10));
405 };
406
407 total_vram_pages = 0;
408 for (count = 0; count < vram_blocks; count++) {
409 total_vram_pages += VRAM_pages[count];
410 printf("Found VRAM (%d)", count);
411 printf(" at 0x%s", sprint0(8,'0','x', VRAM_addr[count]));
412 printf(" for %s k\n", sprint0(5,' ','d', (VRAM_pages[count]*nbpp)>>10));
413 };
414
415 total_podram_pages = 0;
416 for (count = 0; count < podram_blocks; count++) {
417 total_podram_pages += PODRAM_pages[count];
418 printf("Found Processor only (S)DRAM (%d)", count);
419 printf(" at 0x%s", sprint0(8,'0','x', PODRAM_addr[count]));
420 printf(" for %s k\n", sprint0(5,' ','d', (PODRAM_pages[count]*nbpp)>>10));
421 };
422 }
423
424
425 void get_memory_map(void) {
426 struct page_info *page_info;
427 int page, inout;
428 int phys_addr;
429
430 printf("\nGetting actual memorymapping");
431 for (page = 0, page_info = mem_pages_info; page < totalpages; page++, page_info++) {
432 page_info->pagenumber = 0; /* not used */
433 page_info->logical = (firstpage + page) * nbpp;
434 page_info->physical = 0; /* result comes here */
435 /* to avoid triggering a `bug' in RISC OS 4, page it in */
436 *((int *) page_info->logical) = 0;
437 };
438 /* close list */
439 page_info->pagenumber = -1;
440
441 inout = osmemory_GIVEN_LOG_ADDR | osmemory_RETURN_PAGE_NO | osmemory_RETURN_PHYS_ADDR;
442 osmemory_page_op(inout, mem_pages_info, totalpages);
443
444 printf(" ; sorting ");
445 sort_memory_map();
446 printf(".\n");
447
448 /* get the first DRAM index and show the physical memory fragments we got */
449 printf("\nFound physical memory blocks :\n");
450 first_mapped_DRAM_page_index = -1;
451 first_mapped_PODRAM_page_index = -1;
452 for (page=0; page < totalpages; page++) {
453 phys_addr = mem_pages_info[page].physical;
454 printf("[0x%x", phys_addr);
455 while (mem_pages_info[page+1].physical - phys_addr == nbpp) {
456 if ((first_mapped_DRAM_page_index<0) && (phys_addr >= DRAM_addr[0])) {
457 first_mapped_DRAM_page_index = page;
458 };
459 if ((first_mapped_PODRAM_page_index<0) && (phys_addr >= PODRAM_addr[0])) {
460 first_mapped_PODRAM_page_index = page;
461 };
462 page++;
463 phys_addr = mem_pages_info[page].physical;
464 };
465 printf("-0x%x] ", (phys_addr + nbpp -1));
466 };
467 printf("\n\n");
468 if (first_mapped_PODRAM_page_index < 0) {
469 if (PODRAM_addr[0]) panic("Found no (S)DRAM mapped in the bootloader ... increase Wimpslot!");
470 };
471 if (first_mapped_DRAM_page_index < 0) panic("No DRAM mapped in the bootloader ... increase Wimpslot!");
472 }
473
474
475 void create_initial_page_tables(void) {
476 u_long page, section, addr, kpage;
477
478 /* mark a section by the following bits and domain 0, AP=01, CB=0 */
479 /* A P C B section domain */
480 section = (0<<11) | (1<<10) | (0<<3) | (0<<2) | (1<<4) | (1<<1) | (0) | (0 << 5);
481
482 /* first of all a full 1:1 mapping */
483 for (page = 0; page < 4*1024; page++) {
484 initial_page_tables[page] = (page<<20) | section;
485 };
486
487 /* video memory is mapped 1:1 in the DRAM section or in VRAM section */
488
489 /* map 1Mb from top of memory to bottom 1Mb of virtual memmap */
490 initial_page_tables[0] = (((top_physdram - 1024*1024) >> 20) << 20) | section;
491
492 /* map 16 Mb of kernel space to KERNEL_BASE i.e. marks[KERNEL_START] */
493 for (page = 0; page < 16; page++) {
494 addr = (kernel_physical_start >> 20) + page;
495 kpage = (marks[MARK_START] >> 20) + page;
496 initial_page_tables[kpage] = (addr << 20) | section;
497 };
498 }
499
500
501 void add_pagetables_at_top(void) {
502 int page;
503 u_long src, dst, fragaddr;
504
505 /* Special : destination must be on a 16 Kb boundary */
506 /* get 4 pages on the top of the physical memeory and copy PT's in it */
507 new_L1_pages_phys = top_physdram - 4*nbpp;
508
509 dst = new_L1_pages_phys;
510 if (dst & (16*1024-1)) panic("L1 pages not on 16Kb boundary");
511 src = (u_long) initial_page_tables;
512
513 for (page = 0; page < 4; page++) {
514 /* get a page for a fragment */
515 fragaddr = get_relocated_page(dst, nbpp)->logical;
516 memcpy((void *) fragaddr, (void *) src, nbpp);
517
518 src += nbpp;
519 dst += nbpp;
520 };
521 }
522
523
524 void add_initvectors(void) {
525 u_long *pos;
526 u_long vectoraddr, count;
527
528 /* the top 1Mb of the physical DRAM pages is mapped at address 0 */
529 vectoraddr = get_relocated_page(top_physdram - 1024*1024, nbpp)->logical;
530
531 /* fill the vectors with `movs pc, lr' opcodes */
532 pos = (u_long *) vectoraddr; memset(pos, 0, nbpp);
533 for (count = 0; count < 128; count++) *pos++ = 0xE1B0F00E;
534 }
535
536
537 void create_configuration(int argc, char **argv, int start_args) {
538 int i, root_specified, id_low, id_high;
539
540 bconfig_new_phys = kernel_free_vm_start - pv_offset;
541 bconfig_page = get_relocated_page(bconfig_new_phys, nbpp);
542 bconfig = (struct bootconfig *) (bconfig_page->logical);
543 kernel_free_vm_start += nbpp;
544
545 /* get some miscelanious info for the bootblock */
546 os_readsysinfo_monitor_info(NULL, &monitor_type, &monitor_sync);
547 os_readsysinfo_chip_presence(&ioeb_flags, &superio_flags, &lcd_flags);
548 os_readsysinfo_superio_features(&superio_flags_basic, &superio_flags_extra);
549 os_readsysinfo_unique_id(&id_low, &id_high);
550
551 /* fill in the bootconfig *bconfig structure : generic version II */
552 memset(bconfig, 0, sizeof(bconfig));
553 bconfig->magic = BOOTCONFIG_MAGIC;
554 bconfig->version = BOOTCONFIG_VERSION;
555 strcpy(bconfig->kernelname, booted_file);
556
557 memcpy(&(bconfig->machine_id), &id_low, 4);
558
559 root_specified = 0;
560 strcpy(bconfig->args, "");
561 for (i = start_args; i < argc; i++) {
562 if (strncmp(argv[i], "root=",5) ==0) root_specified = 1;
563 strcat(bconfig->args, argv[i]);
564 };
565 if (!root_specified) {
566 strcat(bconfig->args, "root=");
567 strcat(bconfig->args, DEFAULT_ROOT);
568 };
569
570 bconfig->kernvirtualbase = marks[MARK_START];
571 bconfig->kernphysicalbase = kernel_physical_start;
572 bconfig->kernsize = kernel_free_vm_start - marks[MARK_START];
573 bconfig->ksym_start = marks[MARK_SYM];
574 bconfig->ksym_end = marks[MARK_SYM] + marks[MARK_NSYM];
575
576 bconfig->display_phys = videomem_start;
577 bconfig->display_start = videomem_start;
578 bconfig->display_size = display_size;
579 bconfig->width = vdu_var(os_MODEVAR_XWIND_LIMIT);
580 bconfig->height = vdu_var(os_MODEVAR_YWIND_LIMIT);
581 bconfig->log2_bpp = vdu_var(os_MODEVAR_LOG2_BPP);
582 bconfig->framerate = 56; /* XXX why? better guessing possible? XXX */
583
584 bconfig->pagesize = nbpp;
585 bconfig->drampages = total_dram_pages + total_podram_pages; /* XXX */
586 bconfig->vrampages = total_vram_pages;
587 bconfig->dramblocks = dram_blocks + podram_blocks; /* XXX */
588 bconfig->vramblocks = vram_blocks;
589
590 for (i = 0; i < dram_blocks; i++) {
591 bconfig->dram[i].address = DRAM_addr[i];
592 bconfig->dram[i].pages = DRAM_pages[i];
593 bconfig->dram[i].flags = PHYSMEM_TYPE_GENERIC;
594 };
595 for (; i < dram_blocks + podram_blocks; i++) {
596 bconfig->dram[i].address = PODRAM_addr[i];
597 bconfig->dram[i].pages = PODRAM_pages[i];
598 bconfig->dram[i].flags = PHYSMEM_TYPE_PROCESSOR_ONLY;
599 };
600 for (i = 0; i < vram_blocks; i++) {
601 bconfig->vram[i].address = VRAM_addr[i];
602 bconfig->vram[i].pages = VRAM_pages[i];
603 bconfig->vram[i].flags = PHYSMEM_TYPE_GENERIC;
604 };
605 }
606
607
608 int main(int argc, char **argv) {
609 int howto, start_args, ret;
610
611 printf("\n\n");
612 printf(">> %s, Revision %s\n", bootprog_name, bootprog_rev);
613 printf(">> (%s, %s)\n", bootprog_maker, bootprog_date);
614 printf(">> Booting NetBSD/acorn32 on a RiscPC/A7000/NC\n");
615 printf("\n");
616
617 process_args(argc, argv, &howto, booted_file, &start_args);
618
619 printf("Booting %s (howto = 0x%x)\n", booted_file, howto);
620
621 init_datastructures();
622 get_memory_configuration();
623 get_memory_map();
624
625 /* point to the first free DRAM page guaranteed to be in strict order up */
626 if (first_mapped_PODRAM_page_index) {
627 free_relocation_page = mem_pages_info + first_mapped_PODRAM_page_index;
628 kernel_physical_start = PODRAM_addr[0];
629 } else {
630 free_relocation_page = mem_pages_info + first_mapped_DRAM_page_index;
631 kernel_physical_start = DRAM_addr[0];
632 };
633
634 printf("\nLoading %s ", booted_file);
635
636 /* first count the kernel to get the markers */
637 ret = loadfile(booted_file, marks, COUNT_KERNEL);
638 if (ret == -1) panic("Kernel load failed"); /* lie to the user ... */
639 close(ret);
640
641 /* calculate how much the difference is between physical and virtual space for the kernel */
642 pv_offset = ((u_long) marks[MARK_START] - kernel_physical_start);
643 kernel_free_vm_start = (marks[MARK_END] + nbpp-1) & ~(nbpp-1); /* round on a page */
644
645 /* we seem to be forced to clear the marks() ? */
646 bzero(marks, sizeof(marks[MARK_MAX]));
647
648 /* really load it ! */
649 ret = loadfile(booted_file, marks, LOAD_KERNEL);
650 if (ret == -1) panic("Kernel load failed");
651 close(ret);
652
653 /* finish off the relocation information */
654 create_initial_page_tables();
655 add_initvectors();
656 add_pagetables_at_top();
657 create_configuration(argc, argv, start_args);
658
659 /* done relocating and creating information, now update and check the relocation mechanism */
660 prepare_and_check_relocation_system();
661
662 printf("\nStarting at 0x%lx\n", marks[MARK_ENTRY]);
663 printf("Will boot in a few secs due to relocation....\nbye bye from RISC OS!");
664
665 /* dismount all filesystems */
666 xosfscontrol_shutdown();
667
668 /* reset devices, well they try to anyway */
669 service_pre_reset();
670
671 start_kernel(
672 /* r0 relocation code page (V) */ relocate_code_page->logical,
673 /* r1 relocation pv offset */ relocate_code_page->physical-relocate_code_page->logical,
674 /* r2 configuration structure */ bconfig_new_phys,
675 /* r3 relocation table (P) */ relocate_table_pages->physical, /* one piece! */
676 /* r4 L1 page descriptor (P) */ new_L1_pages_phys,
677 /* r5 kernel entry point */ marks[MARK_ENTRY]
678 );
679 return 0;
680 }
681
682
683 ssize_t boot32_read(int f, void *addr, size_t size) {
684 caddr_t fragaddr;
685 size_t fragsize;
686 ssize_t bytes_read, total;
687
688 /* printf("read at %p for %ld bytes\n", addr, size); */
689 total = 0;
690 while (size > 0) {
691 fragsize = nbpp; /* select one page */
692 if (size < nbpp) fragsize = size; /* clip to size left */
693
694 /* get a page for a fragment */
695 fragaddr = (caddr_t) get_relocated_page((u_long) addr - pv_offset, fragsize)->logical;
696
697 bytes_read = read(f, fragaddr, fragsize);
698 if (bytes_read < 0) return bytes_read; /* error! */
699 total += bytes_read; /* account read bytes */
700
701 if (bytes_read < fragsize) return total; /* does this happen? */
702
703 size -= fragsize; /* advance */
704 addr += fragsize;
705 };
706 return total;
707 }
708
709
710 void *boot32_memcpy(void *dst, const void *src, size_t size) {
711 caddr_t fragaddr;
712 size_t fragsize;
713
714 /* printf("memcpy to %p from %p for %ld bytes\n", dst, src, size); */
715 while (size > 0) {
716 fragsize = nbpp; /* select one page */
717 if (size < nbpp) fragsize = size; /* clip to size left */
718
719 /* get a page for a fragment */
720 fragaddr = (caddr_t) get_relocated_page((u_long) dst - pv_offset, fragsize)->logical;
721 memcpy(fragaddr, src, size);
722
723 src += fragsize; /* account copy */
724 dst += fragsize;
725 size-= fragsize;
726 };
727 return dst;
728 };
729
730
731 void *boot32_memset(void *dst, int c, size_t size) {
732 caddr_t fragaddr;
733 size_t fragsize;
734
735 /* printf("memset %p for %ld bytes with %d\n", dst, size, c); */
736 while (size > 0) {
737 fragsize = nbpp; /* select one page */
738 if (size < nbpp) fragsize = size; /* clip to size left */
739
740 /* get a page for a fragment */
741 fragaddr = (caddr_t) get_relocated_page((u_long) dst - pv_offset, fragsize)->logical;
742 memset(fragaddr, c, fragsize);
743
744 dst += fragsize; /* account memsetting */
745 size-= fragsize;
746
747 };
748 return dst;
749 }
750
751
752 /* This sort routine needs to be re-implemented in either assembler or use other algorithm one day; its slow */
753 void sort_memory_map(void) {
754 int out, in, count;
755 struct page_info *out_page, *in_page, temp_page;
756
757 count = 0;
758 for (out = 0, out_page = mem_pages_info; out < totalpages; out++, out_page++) {
759 for (in = out+1, in_page = out_page+1; in < totalpages; in++, in_page++) {
760 if (in_page->physical < out_page->physical) {
761 memcpy(&temp_page, in_page, sizeof(struct page_info));
762 memcpy(out_page, in_page, sizeof(struct page_info));
763 memcpy(in_page, &temp_page, sizeof(struct page_info));
764 };
765 count++;
766 if ((count & 0x3ffff) == 0) twirl();
767 };
768 };
769 }
770
771
772 struct page_info *get_relocated_page(u_long destination, int size) {
773 struct page_info *page;
774
775 /* get a page for a fragment */
776 page = free_relocation_page;
777 if (free_relocation_page->pagenumber < 0) panic("\n\nOut of pages; increase Wimpslot and try again");
778 reloc_entries++;
779 if (reloc_entries >= MAX_RELOCPAGES) panic("\n\nToo many relocations! What are you loading ??");
780
781 /* record the relocation */
782 *reloc_pos++ = free_relocation_page->physical;
783 *reloc_pos++ = destination;
784 *reloc_pos++ = size;
785 free_relocation_page++; /* advance */
786
787 return page;
788 }
789
790
791 int vdu_var(int var) {
792 int varlist[2], vallist[2];
793
794 varlist[0] = var;
795 varlist[1] = -1;
796 os_read_vdu_variables(varlist, vallist);
797 return vallist[0];
798 }
799
800
801 void twirl(void) {
802 printf("%c%c", "|/-\\"[(int) twirl_cnt], 8);
803 twirl_cnt++;
804 twirl_cnt &= 3;
805 }
806
807
808 void process_args(int argc, char **argv, int *howto, char *file, int *start_args) {
809 int i, j;
810 static char filename[80];
811
812 *howto = 0;
813 *file = NULL; *start_args = 1;
814 for (i = 1; i < argc; i++) {
815 if (argv[i][0] == '-')
816 for (j = 1; argv[i][j]; j++)
817 BOOT_FLAG(argv[i][j], *howto);
818 else {
819 if (*file)
820 *start_args = i;
821 else {
822 strcpy(file, argv[i]);
823 *start_args = i+1;
824 };
825 break;
826 };
827 };
828 if (*file == NULL) {
829 if (*howto & RB_ASKNAME) {
830 printf("boot: ");
831 gets(filename);
832 strcpy(file, filename);
833 } else
834 strcpy(file, "netbsd");
835 };
836 }
837
838
839 char *sprint0(int width, char prefix, char base, int value) {
840 static char format[50], scrap[50];
841 char *pos;
842 int length;
843
844 for (pos = format, length = 0; length<width; length++) *pos++ = prefix;
845 *pos++ = '%';
846 *pos++ = base;
847 *pos++ = (char) 0;
848
849 sprintf(scrap, format, value);
850 length = strlen(scrap);
851
852 return scrap+length-width;
853 }
854
855