Home | History | Annotate | Line # | Download | only in alpha
      1  1.383  riastrad /* $NetBSD: machdep.c,v 1.383 2025/04/25 00:59:26 riastradh Exp $ */
      2  1.110   thorpej 
      3  1.110   thorpej /*-
      4  1.368   thorpej  * Copyright (c) 1998, 1999, 2000, 2019, 2020 The NetBSD Foundation, Inc.
      5  1.110   thorpej  * All rights reserved.
      6  1.110   thorpej  *
      7  1.110   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.110   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.110   thorpej  * NASA Ames Research Center and by Chris G. Demetriou.
     10  1.110   thorpej  *
     11  1.110   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.110   thorpej  * modification, are permitted provided that the following conditions
     13  1.110   thorpej  * are met:
     14  1.110   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.110   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.110   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.110   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.110   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.110   thorpej  *
     20  1.110   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  1.110   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  1.110   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  1.110   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  1.110   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.110   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.110   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.110   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.110   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.110   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.110   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31  1.110   thorpej  */
     32    1.1       cgd 
     33    1.1       cgd /*
     34   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     35    1.1       cgd  * All rights reserved.
     36    1.1       cgd  *
     37    1.1       cgd  * Author: Chris G. Demetriou
     38  1.337      matt  *
     39    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     40    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     41    1.1       cgd  * notice and this permission notice appear in all copies of the
     42    1.1       cgd  * software, derivative works or modified versions, and any portions
     43    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     44  1.337      matt  *
     45  1.337      matt  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     46  1.337      matt  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     47    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     48  1.337      matt  *
     49    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     50    1.1       cgd  *
     51    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     52    1.1       cgd  *  School of Computer Science
     53    1.1       cgd  *  Carnegie Mellon University
     54    1.1       cgd  *  Pittsburgh PA 15213-3890
     55    1.1       cgd  *
     56    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     57    1.1       cgd  * rights to redistribute these changes.
     58    1.1       cgd  */
     59   1.74       cgd 
     60  1.129  jonathan #include "opt_ddb.h"
     61  1.244     lukem #include "opt_kgdb.h"
     62  1.315       apb #include "opt_modular.h"
     63  1.147   thorpej #include "opt_multiprocessor.h"
     64  1.123   thorpej #include "opt_dec_3000_300.h"
     65  1.123   thorpej #include "opt_dec_3000_500.h"
     66  1.250  jdolecek #include "opt_execfmt.h"
     67  1.112   thorpej 
     68  1.375   thorpej #define	__RWLOCK_PRIVATE
     69  1.374   thorpej 
     70   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     71   1.75       cgd 
     72  1.383  riastrad __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.383 2025/04/25 00:59:26 riastradh Exp $");
     73    1.1       cgd 
     74    1.1       cgd #include <sys/param.h>
     75    1.1       cgd #include <sys/systm.h>
     76    1.1       cgd #include <sys/signalvar.h>
     77    1.1       cgd #include <sys/kernel.h>
     78  1.297      yamt #include <sys/cpu.h>
     79    1.1       cgd #include <sys/proc.h>
     80  1.264   nathanw #include <sys/ras.h>
     81  1.207   thorpej #include <sys/sched.h>
     82    1.1       cgd #include <sys/reboot.h>
     83   1.28       cgd #include <sys/device.h>
     84  1.354   thorpej #include <sys/module.h>
     85  1.110   thorpej #include <sys/mman.h>
     86    1.1       cgd #include <sys/msgbuf.h>
     87    1.1       cgd #include <sys/ioctl.h>
     88    1.1       cgd #include <sys/tty.h>
     89    1.1       cgd #include <sys/exec.h>
     90  1.320      matt #include <sys/exec_aout.h>		/* for MID_* */
     91    1.1       cgd #include <sys/exec_ecoff.h>
     92   1.43       cgd #include <sys/core.h>
     93   1.43       cgd #include <sys/kcore.h>
     94  1.261   thorpej #include <sys/ucontext.h>
     95  1.258   gehenna #include <sys/conf.h>
     96  1.266     ragge #include <sys/ksyms.h>
     97  1.290      elad #include <sys/kauth.h>
     98  1.303        ad #include <sys/atomic.h>
     99  1.303        ad #include <sys/cpu.h>
    100  1.374   thorpej #include <sys/rwlock.h>
    101  1.303        ad 
    102   1.43       cgd #include <machine/kcore.h>
    103  1.241      ross #include <machine/fpu.h>
    104    1.1       cgd 
    105    1.1       cgd #include <sys/mount.h>
    106    1.1       cgd #include <sys/syscallargs.h>
    107    1.1       cgd 
    108  1.327  uebayasi #include <uvm/uvm.h>
    109  1.217       mrg #include <sys/sysctl.h>
    110  1.112   thorpej 
    111    1.1       cgd #include <dev/cons.h>
    112  1.335     rmind #include <dev/mm.h>
    113    1.1       cgd 
    114   1.81   thorpej #include <machine/autoconf.h>
    115    1.1       cgd #include <machine/reg.h>
    116    1.1       cgd #include <machine/rpb.h>
    117    1.1       cgd #include <machine/prom.h>
    118  1.258   gehenna #include <machine/cpuconf.h>
    119  1.172      ross #include <machine/ieeefp.h>
    120  1.148   thorpej 
    121   1.81   thorpej #ifdef DDB
    122   1.81   thorpej #include <machine/db_machdep.h>
    123   1.81   thorpej #include <ddb/db_access.h>
    124   1.81   thorpej #include <ddb/db_sym.h>
    125   1.81   thorpej #include <ddb/db_extern.h>
    126   1.81   thorpej #include <ddb/db_interface.h>
    127  1.233   thorpej #endif
    128  1.233   thorpej 
    129  1.233   thorpej #ifdef KGDB
    130  1.233   thorpej #include <sys/kgdb.h>
    131   1.81   thorpej #endif
    132   1.81   thorpej 
    133  1.229  sommerfe #ifdef DEBUG
    134  1.229  sommerfe #include <machine/sigdebug.h>
    135  1.346  uebayasi int sigdebug = 0x0;
    136  1.346  uebayasi int sigpid = 0;
    137  1.229  sommerfe #endif
    138  1.229  sommerfe 
    139  1.374   thorpej /* Assert some assumptions made in lock_stubs.s */
    140  1.374   thorpej __CTASSERT(RW_READER == 0);
    141  1.374   thorpej __CTASSERT(RW_HAS_WAITERS == 1);
    142  1.374   thorpej 
    143  1.155      ross #include <machine/alpha.h>
    144  1.143      matt 
    145  1.266     ragge #include "ksyms.h"
    146  1.266     ragge 
    147  1.245       chs struct vm_map *phys_map = NULL;
    148    1.1       cgd 
    149  1.295  christos void *msgbufaddr;
    150   1.86       leo 
    151    1.1       cgd int	maxmem;			/* max memory per process */
    152    1.7       cgd 
    153    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    154    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    155    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    156    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    157    1.1       cgd 
    158    1.1       cgd int	cputype;		/* system type, from the RPB */
    159  1.377    andvar bool	alpha_is_qemu;		/* true if we've detected running in qemu */
    160  1.210   thorpej 
    161  1.210   thorpej int	bootdev_debug = 0;	/* patchable, or from DDB */
    162    1.1       cgd 
    163    1.1       cgd /*
    164    1.1       cgd  * XXX We need an address to which we can assign things so that they
    165    1.1       cgd  * won't be optimized away because we didn't use the value.
    166    1.1       cgd  */
    167  1.337      matt uint32_t no_optimize;
    168    1.1       cgd 
    169    1.1       cgd /* the following is used externally (sysctl_hw) */
    170   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    171   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    172    1.1       cgd 
    173    1.1       cgd /* Number of machine cycles per microsecond */
    174  1.337      matt uint64_t	cycles_per_usec;
    175    1.1       cgd 
    176  1.280       wiz /* number of CPUs in the box.  really! */
    177    1.7       cgd int		ncpus;
    178    1.7       cgd 
    179  1.102       cgd struct bootinfo_kernel bootinfo;
    180   1.81   thorpej 
    181  1.123   thorpej /* For built-in TCDS */
    182  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    183  1.347      flxd uint8_t	dec_3000_scsiid[3], dec_3000_scsifast[3];
    184  1.123   thorpej #endif
    185  1.123   thorpej 
    186   1.89    mjacob struct platform platform;
    187   1.89    mjacob 
    188  1.309        ad #if NKSYMS || defined(DDB) || defined(MODULAR)
    189   1.81   thorpej /* start and end of kernel symbol table */
    190   1.81   thorpej void	*ksym_start, *ksym_end;
    191   1.81   thorpej #endif
    192   1.81   thorpej 
    193   1.30       cgd /* for cpu_sysctl() */
    194   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    195   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    196   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    197  1.241      ross int	alpha_fp_sync_complete = 0;	/* fp fixup if sync even without /s */
    198  1.375   thorpej int	alpha_fp_complete_debug = 0;	/* fp completion debug enabled */
    199   1.30       cgd 
    200  1.110   thorpej /*
    201  1.110   thorpej  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    202  1.110   thorpej  * XXX it should also be larger than it is, because not all of the mddt
    203  1.110   thorpej  * XXX clusters end up being used for VM.
    204  1.110   thorpej  */
    205  1.110   thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    206  1.110   thorpej int	mem_cluster_cnt;
    207  1.110   thorpej 
    208  1.316       dsl int	cpu_dump(void);
    209  1.316       dsl int	cpu_dumpsize(void);
    210  1.316       dsl u_long	cpu_dump_mempagecnt(void);
    211  1.316       dsl void	dumpsys(void);
    212  1.316       dsl void	identifycpu(void);
    213  1.316       dsl void	printregs(struct reg *);
    214   1.33       cgd 
    215  1.334      matt const pcu_ops_t fpu_ops = {
    216  1.334      matt 	.pcu_id = PCU_FPU,
    217  1.334      matt 	.pcu_state_load = fpu_state_load,
    218  1.334      matt 	.pcu_state_save = fpu_state_save,
    219  1.334      matt 	.pcu_state_release = fpu_state_release,
    220  1.334      matt };
    221  1.334      matt 
    222  1.334      matt const pcu_ops_t * const pcu_ops_md_defs[PCU_UNIT_COUNT] = {
    223  1.334      matt 	[PCU_FPU] = &fpu_ops,
    224  1.334      matt };
    225  1.334      matt 
    226  1.368   thorpej static void
    227  1.368   thorpej alpha_page_physload(unsigned long const start_pfn, unsigned long const end_pfn)
    228  1.368   thorpej {
    229  1.368   thorpej 
    230  1.368   thorpej 	/*
    231  1.368   thorpej 	 * Some Alpha platforms may have unique requirements about
    232  1.368   thorpej 	 * how physical memory is managed (e.g. reserving memory
    233  1.368   thorpej 	 * ranges due to lack of SGMAP DMA).
    234  1.368   thorpej 	 */
    235  1.368   thorpej 	if (platform.page_physload != NULL) {
    236  1.368   thorpej 		(*platform.page_physload)(start_pfn, end_pfn);
    237  1.368   thorpej 		return;
    238  1.368   thorpej 	}
    239  1.368   thorpej 
    240  1.368   thorpej 	uvm_page_physload(start_pfn, end_pfn, start_pfn, end_pfn,
    241  1.368   thorpej 	    VM_FREELIST_DEFAULT);
    242  1.368   thorpej }
    243  1.368   thorpej 
    244  1.368   thorpej void
    245  1.368   thorpej alpha_page_physload_sheltered(unsigned long const start_pfn,
    246  1.368   thorpej     unsigned long const end_pfn, unsigned long const shelter_start_pfn,
    247  1.368   thorpej     unsigned long const shelter_end_pfn)
    248  1.368   thorpej {
    249  1.368   thorpej 
    250  1.368   thorpej 	/*
    251  1.368   thorpej 	 * If the added region ends before or starts after the sheltered
    252  1.368   thorpej 	 * region, then it just goes on the default freelist.
    253  1.368   thorpej 	 */
    254  1.368   thorpej 	if (end_pfn <= shelter_start_pfn || start_pfn >= shelter_end_pfn) {
    255  1.368   thorpej 		uvm_page_physload(start_pfn, end_pfn,
    256  1.368   thorpej 		    start_pfn, end_pfn, VM_FREELIST_DEFAULT);
    257  1.368   thorpej 		return;
    258  1.368   thorpej 	}
    259  1.368   thorpej 
    260  1.368   thorpej 	/*
    261  1.368   thorpej 	 * Load any portion that comes before the sheltered region.
    262  1.368   thorpej 	 */
    263  1.368   thorpej 	if (start_pfn < shelter_start_pfn) {
    264  1.368   thorpej 		KASSERT(end_pfn > shelter_start_pfn);
    265  1.368   thorpej 		uvm_page_physload(start_pfn, shelter_start_pfn,
    266  1.368   thorpej 		    start_pfn, shelter_start_pfn, VM_FREELIST_DEFAULT);
    267  1.368   thorpej 	}
    268  1.368   thorpej 
    269  1.368   thorpej 	/*
    270  1.368   thorpej 	 * Load the portion that overlaps that sheltered region.
    271  1.368   thorpej 	 */
    272  1.368   thorpej 	const unsigned long ov_start = MAX(start_pfn, shelter_start_pfn);
    273  1.368   thorpej 	const unsigned long ov_end = MIN(end_pfn, shelter_end_pfn);
    274  1.368   thorpej 	KASSERT(ov_start >= shelter_start_pfn);
    275  1.368   thorpej 	KASSERT(ov_end <= shelter_end_pfn);
    276  1.368   thorpej 	uvm_page_physload(ov_start, ov_end, ov_start, ov_end,
    277  1.368   thorpej 	    VM_FREELIST_SHELTERED);
    278  1.368   thorpej 
    279  1.368   thorpej 	/*
    280  1.368   thorpej 	 * Load any portion that comes after the sheltered region.
    281  1.368   thorpej 	 */
    282  1.368   thorpej 	if (end_pfn > shelter_end_pfn) {
    283  1.368   thorpej 		KASSERT(start_pfn < shelter_end_pfn);
    284  1.368   thorpej 		uvm_page_physload(shelter_end_pfn, end_pfn,
    285  1.368   thorpej 		    shelter_end_pfn, end_pfn, VM_FREELIST_DEFAULT);
    286  1.368   thorpej 	}
    287  1.368   thorpej }
    288  1.368   thorpej 
    289   1.55       cgd void
    290  1.358   thorpej alpha_init(u_long xxx_pfn __unused, u_long ptb, u_long bim, u_long bip,
    291  1.358   thorpej     u_long biv)
    292  1.358   thorpej 	/* pfn:		 first free PFN number (no longer used) */
    293  1.318       dsl 	/* ptb:		 PFN of current level 1 page table */
    294  1.318       dsl 	/* bim:		 bootinfo magic */
    295  1.318       dsl 	/* bip:		 bootinfo pointer */
    296  1.318       dsl 	/* biv:		 bootinfo version */
    297    1.1       cgd {
    298   1.95   thorpej 	extern char kernel_text[], _end[];
    299    1.1       cgd 	struct mddt *mddtp;
    300  1.110   thorpej 	struct mddt_cluster *memc;
    301    1.7       cgd 	int i, mddtweird;
    302  1.324     rmind 	struct pcb *pcb0;
    303  1.324     rmind 	vaddr_t kernstart, kernend, v;
    304  1.140   thorpej 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    305  1.211   thorpej 	cpuid_t cpu_id;
    306  1.211   thorpej 	struct cpu_info *ci;
    307    1.1       cgd 	char *p;
    308  1.209   thorpej 	const char *bootinfo_msg;
    309  1.209   thorpej 	const struct cpuinit *c;
    310  1.106       cgd 
    311  1.106       cgd 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    312    1.1       cgd 
    313    1.1       cgd 	/*
    314   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    315    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    316    1.1       cgd 	 */
    317   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    318   1.32       cgd 	alpha_pal_wrfen(0);
    319   1.37       cgd 	ALPHA_TBIA();
    320   1.32       cgd 	alpha_pal_imb();
    321  1.248   thorpej 
    322  1.248   thorpej 	/* Initialize the SCB. */
    323  1.248   thorpej 	scb_init();
    324    1.1       cgd 
    325  1.211   thorpej 	cpu_id = cpu_number();
    326  1.211   thorpej 
    327  1.364   thorpej 	ci = &cpu_info_primary;
    328  1.364   thorpej 	ci->ci_cpuid = cpu_id;
    329  1.364   thorpej 
    330  1.189   thorpej #if defined(MULTIPROCESSOR)
    331  1.189   thorpej 	/*
    332  1.364   thorpej 	 * Set the SysValue to &lwp0, after making sure that lwp0
    333  1.364   thorpej 	 * is pointing at the primary CPU.  Secondary processors do
    334  1.364   thorpej 	 * this in their spinup trampoline.
    335  1.189   thorpej 	 */
    336  1.364   thorpej 	lwp0.l_cpu = ci;
    337  1.364   thorpej 	cpu_info[cpu_id] = ci;
    338  1.364   thorpej 	alpha_pal_wrval((u_long)&lwp0);
    339  1.189   thorpej #endif
    340  1.189   thorpej 
    341    1.1       cgd 	/*
    342  1.106       cgd 	 * Get critical system information (if possible, from the
    343  1.106       cgd 	 * information provided by the boot program).
    344   1.81   thorpej 	 */
    345  1.106       cgd 	bootinfo_msg = NULL;
    346   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    347  1.102       cgd 		if (biv == 0) {		/* backward compat */
    348  1.102       cgd 			biv = *(u_long *)bip;
    349  1.102       cgd 			bip += 8;
    350  1.102       cgd 		}
    351  1.102       cgd 		switch (biv) {
    352  1.102       cgd 		case 1: {
    353  1.102       cgd 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    354  1.102       cgd 
    355  1.102       cgd 			bootinfo.ssym = v1p->ssym;
    356  1.102       cgd 			bootinfo.esym = v1p->esym;
    357  1.106       cgd 			/* hwrpb may not be provided by boot block in v1 */
    358  1.106       cgd 			if (v1p->hwrpb != NULL) {
    359  1.106       cgd 				bootinfo.hwrpb_phys =
    360  1.106       cgd 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    361  1.106       cgd 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    362  1.106       cgd 			} else {
    363  1.106       cgd 				bootinfo.hwrpb_phys =
    364  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    365  1.106       cgd 				bootinfo.hwrpb_size =
    366  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    367  1.106       cgd 			}
    368  1.247   thorpej 			memcpy(bootinfo.boot_flags, v1p->boot_flags,
    369  1.351  riastrad 			    uimin(sizeof v1p->boot_flags,
    370  1.102       cgd 			      sizeof bootinfo.boot_flags));
    371  1.247   thorpej 			memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
    372  1.351  riastrad 			    uimin(sizeof v1p->booted_kernel,
    373  1.102       cgd 			      sizeof bootinfo.booted_kernel));
    374  1.106       cgd 			/* booted dev not provided in bootinfo */
    375  1.363   thorpej 			init_prom_interface(ptb, (struct rpb *)
    376  1.106       cgd 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    377  1.337      matt 	        	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    378  1.102       cgd 			    sizeof bootinfo.booted_dev);
    379   1.81   thorpej 			break;
    380  1.102       cgd 		}
    381   1.81   thorpej 		default:
    382  1.106       cgd 			bootinfo_msg = "unknown bootinfo version";
    383  1.102       cgd 			goto nobootinfo;
    384   1.81   thorpej 		}
    385  1.102       cgd 	} else {
    386  1.106       cgd 		bootinfo_msg = "boot program did not pass bootinfo";
    387  1.102       cgd nobootinfo:
    388  1.102       cgd 		bootinfo.ssym = (u_long)_end;
    389  1.102       cgd 		bootinfo.esym = (u_long)_end;
    390  1.106       cgd 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    391  1.106       cgd 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    392  1.363   thorpej 		init_prom_interface(ptb, (struct rpb *)HWRPB_ADDR);
    393  1.366   thorpej 		if (alpha_is_qemu) {
    394  1.366   thorpej 			/*
    395  1.366   thorpej 			 * Grab boot flags from kernel command line.
    396  1.366   thorpej 			 * Assume autoboot if not supplied.
    397  1.366   thorpej 			 */
    398  1.366   thorpej 			if (! prom_qemu_getenv("flags", bootinfo.boot_flags,
    399  1.366   thorpej 					       sizeof(bootinfo.boot_flags))) {
    400  1.366   thorpej 				strlcpy(bootinfo.boot_flags, "A",
    401  1.366   thorpej 					sizeof(bootinfo.boot_flags));
    402  1.366   thorpej 			}
    403  1.366   thorpej 		} else {
    404  1.366   thorpej 			prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    405  1.366   thorpej 			    sizeof bootinfo.boot_flags);
    406  1.366   thorpej 			prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    407  1.366   thorpej 			    sizeof bootinfo.booted_kernel);
    408  1.366   thorpej 			prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    409  1.366   thorpej 			    sizeof bootinfo.booted_dev);
    410  1.366   thorpej 		}
    411  1.102       cgd 	}
    412  1.102       cgd 
    413   1.81   thorpej 	/*
    414  1.106       cgd 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    415  1.106       cgd 	 * lots of things.
    416  1.106       cgd 	 */
    417  1.106       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    418  1.123   thorpej 
    419  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    420  1.123   thorpej 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    421  1.123   thorpej 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    422  1.123   thorpej 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    423  1.123   thorpej 		    sizeof(dec_3000_scsiid));
    424  1.123   thorpej 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    425  1.123   thorpej 		    sizeof(dec_3000_scsifast));
    426  1.123   thorpej 	}
    427  1.123   thorpej #endif
    428  1.106       cgd 
    429  1.106       cgd 	/*
    430  1.337      matt 	 * Remember how many cycles there are per microsecond,
    431  1.106       cgd 	 * so that we can use delay().  Round up, for safety.
    432  1.106       cgd 	 */
    433  1.106       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    434  1.106       cgd 
    435  1.106       cgd 	/*
    436  1.251       wiz 	 * Initialize the (temporary) bootstrap console interface, so
    437  1.106       cgd 	 * we can use printf until the VM system starts being setup.
    438  1.106       cgd 	 * The real console is initialized before then.
    439  1.106       cgd 	 */
    440  1.106       cgd 	init_bootstrap_console();
    441  1.106       cgd 
    442  1.106       cgd 	/* OUTPUT NOW ALLOWED */
    443  1.106       cgd 
    444  1.106       cgd 	/* delayed from above */
    445  1.106       cgd 	if (bootinfo_msg)
    446  1.106       cgd 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    447  1.106       cgd 		    bootinfo_msg, bim, bip, biv);
    448  1.106       cgd 
    449  1.147   thorpej 	/* Initialize the trap vectors on the primary processor. */
    450  1.147   thorpej 	trap_init();
    451    1.1       cgd 
    452    1.1       cgd 	/*
    453  1.263   thorpej 	 * Find out this system's page size, and initialize
    454  1.263   thorpej 	 * PAGE_SIZE-dependent variables.
    455  1.243   thorpej 	 */
    456  1.263   thorpej 	if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
    457  1.263   thorpej 		panic("page size %lu != %d?!", hwrpb->rpb_page_size,
    458  1.263   thorpej 		    ALPHA_PGBYTES);
    459  1.263   thorpej 	uvmexp.pagesize = hwrpb->rpb_page_size;
    460  1.348    cherry 	uvm_md_init();
    461  1.243   thorpej 
    462  1.243   thorpej 	/*
    463  1.363   thorpej 	 * cputype has been initialized in init_prom_interface().
    464  1.363   thorpej 	 * Perform basic platform initialization using this info.
    465  1.106       cgd 	 */
    466  1.363   thorpej 	KASSERT(prom_interface_initialized);
    467  1.209   thorpej 	c = platform_lookup(cputype);
    468  1.209   thorpej 	if (c == NULL) {
    469  1.106       cgd 		platform_not_supported();
    470  1.106       cgd 		/* NOTREACHED */
    471  1.106       cgd 	}
    472  1.209   thorpej 	(*c->init)();
    473  1.344  christos 	cpu_setmodel("%s", platform.model);
    474  1.106       cgd 
    475  1.106       cgd 	/*
    476  1.251       wiz 	 * Initialize the real console, so that the bootstrap console is
    477  1.106       cgd 	 * no longer necessary.
    478  1.106       cgd 	 */
    479  1.169   thorpej 	(*platform.cons_init)();
    480  1.106       cgd 
    481  1.106       cgd #ifdef DIAGNOSTIC
    482  1.106       cgd 	/* Paranoid sanity checking */
    483  1.106       cgd 
    484  1.199     soren 	/* We should always be running on the primary. */
    485  1.211   thorpej 	assert(hwrpb->rpb_primary_cpu_id == cpu_id);
    486  1.106       cgd 
    487  1.116    mjacob 	/*
    488  1.116    mjacob 	 * On single-CPU systypes, the primary should always be CPU 0,
    489  1.116    mjacob 	 * except on Alpha 8200 systems where the CPU id is related
    490  1.116    mjacob 	 * to the VID, which is related to the Turbo Laser node id.
    491  1.116    mjacob 	 */
    492  1.106       cgd 	if (cputype != ST_DEC_21000)
    493  1.106       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);
    494  1.106       cgd #endif
    495  1.106       cgd 
    496  1.106       cgd 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    497  1.363   thorpej 	/* XXX Unless prom_uses_prom_console() evaluates to non-zero.) */
    498   1.95   thorpej 
    499   1.95   thorpej 	/*
    500  1.101       cgd 	 * Find the beginning and end of the kernel (and leave a
    501  1.101       cgd 	 * bit of space before the beginning for the bootstrap
    502  1.101       cgd 	 * stack).
    503   1.95   thorpej 	 */
    504  1.201    kleink 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
    505  1.309        ad #if NKSYMS || defined(DDB) || defined(MODULAR)
    506  1.102       cgd 	ksym_start = (void *)bootinfo.ssym;
    507  1.102       cgd 	ksym_end   = (void *)bootinfo.esym;
    508  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
    509  1.102       cgd #else
    510  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)_end);
    511   1.95   thorpej #endif
    512   1.95   thorpej 
    513  1.110   thorpej 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    514  1.110   thorpej 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    515  1.110   thorpej 
    516   1.95   thorpej 	/*
    517    1.1       cgd 	 * Find out how much memory is available, by looking at
    518    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    519    1.7       cgd 	 * its best to detect things things that have never been seen
    520    1.7       cgd 	 * before...
    521    1.1       cgd 	 */
    522  1.296      yamt 	mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
    523    1.7       cgd 
    524  1.110   thorpej 	/* MDDT SANITY CHECKING */
    525    1.7       cgd 	mddtweird = 0;
    526  1.110   thorpej 	if (mddtp->mddt_cluster_cnt < 2) {
    527    1.7       cgd 		mddtweird = 1;
    528  1.160   thorpej 		printf("WARNING: weird number of mem clusters: %lu\n",
    529  1.110   thorpej 		    mddtp->mddt_cluster_cnt);
    530    1.7       cgd 	}
    531    1.7       cgd 
    532  1.110   thorpej #if 0
    533  1.359   thorpej 	printf("Memory cluster count: %" PRIu64 "\n", mddtp->mddt_cluster_cnt);
    534  1.110   thorpej #endif
    535  1.110   thorpej 
    536  1.110   thorpej 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    537  1.110   thorpej 		memc = &mddtp->mddt_clusters[i];
    538  1.110   thorpej #if 0
    539  1.110   thorpej 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    540  1.110   thorpej 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    541  1.110   thorpej #endif
    542  1.110   thorpej 		totalphysmem += memc->mddt_pg_cnt;
    543  1.110   thorpej 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    544  1.110   thorpej 			mem_clusters[mem_cluster_cnt].start =
    545  1.110   thorpej 			    ptoa(memc->mddt_pfn);
    546  1.110   thorpej 			mem_clusters[mem_cluster_cnt].size =
    547  1.110   thorpej 			    ptoa(memc->mddt_pg_cnt);
    548  1.110   thorpej 			if (memc->mddt_usage & MDDT_mbz ||
    549  1.110   thorpej 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    550  1.110   thorpej 			    memc->mddt_usage & MDDT_PALCODE)
    551  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    552  1.110   thorpej 				    PROT_READ;
    553  1.110   thorpej 			else
    554  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    555  1.110   thorpej 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    556  1.110   thorpej 			mem_cluster_cnt++;
    557  1.110   thorpej 		}
    558  1.110   thorpej 
    559  1.110   thorpej 		if (memc->mddt_usage & MDDT_mbz) {
    560    1.7       cgd 			mddtweird = 1;
    561  1.110   thorpej 			printf("WARNING: mem cluster %d has weird "
    562  1.110   thorpej 			    "usage 0x%lx\n", i, memc->mddt_usage);
    563  1.110   thorpej 			unknownmem += memc->mddt_pg_cnt;
    564  1.110   thorpej 			continue;
    565    1.7       cgd 		}
    566  1.110   thorpej 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    567  1.110   thorpej 			/* XXX should handle these... */
    568  1.110   thorpej 			printf("WARNING: skipping non-volatile mem "
    569  1.110   thorpej 			    "cluster %d\n", i);
    570  1.110   thorpej 			unusedmem += memc->mddt_pg_cnt;
    571  1.110   thorpej 			continue;
    572  1.110   thorpej 		}
    573  1.110   thorpej 		if (memc->mddt_usage & MDDT_PALCODE) {
    574  1.110   thorpej 			resvmem += memc->mddt_pg_cnt;
    575  1.110   thorpej 			continue;
    576  1.110   thorpej 		}
    577  1.110   thorpej 
    578  1.110   thorpej 		/*
    579  1.110   thorpej 		 * We have a memory cluster available for system
    580  1.110   thorpej 		 * software use.  We must determine if this cluster
    581  1.110   thorpej 		 * holds the kernel.
    582  1.110   thorpej 		 */
    583  1.363   thorpej 
    584  1.110   thorpej 		/*
    585  1.110   thorpej 		 * XXX If the kernel uses the PROM console, we only use the
    586  1.110   thorpej 		 * XXX memory after the kernel in the first system segment,
    587  1.110   thorpej 		 * XXX to avoid clobbering prom mapping, data, etc.
    588  1.110   thorpej 		 */
    589  1.110   thorpej 		physmem += memc->mddt_pg_cnt;
    590  1.110   thorpej 		pfn0 = memc->mddt_pfn;
    591  1.110   thorpej 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    592  1.110   thorpej 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    593  1.110   thorpej 			/*
    594  1.110   thorpej 			 * Must compute the location of the kernel
    595  1.110   thorpej 			 * within the segment.
    596  1.110   thorpej 			 */
    597  1.110   thorpej #if 0
    598  1.110   thorpej 			printf("Cluster %d contains kernel\n", i);
    599  1.110   thorpej #endif
    600  1.363   thorpej 			if (pfn0 < kernstartpfn && !prom_uses_prom_console()) {
    601  1.110   thorpej 				/*
    602  1.110   thorpej 				 * There is a chunk before the kernel.
    603  1.110   thorpej 				 */
    604  1.110   thorpej #if 0
    605  1.110   thorpej 				printf("Loading chunk before kernel: "
    606  1.110   thorpej 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    607  1.110   thorpej #endif
    608  1.368   thorpej 				alpha_page_physload(pfn0, kernstartpfn);
    609  1.110   thorpej 			}
    610  1.110   thorpej 			if (kernendpfn < pfn1) {
    611  1.110   thorpej 				/*
    612  1.110   thorpej 				 * There is a chunk after the kernel.
    613  1.110   thorpej 				 */
    614  1.110   thorpej #if 0
    615  1.110   thorpej 				printf("Loading chunk after kernel: "
    616  1.110   thorpej 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    617  1.110   thorpej #endif
    618  1.368   thorpej 				alpha_page_physload(kernendpfn, pfn1);
    619  1.110   thorpej 			}
    620  1.110   thorpej 		} else {
    621  1.110   thorpej 			/*
    622  1.110   thorpej 			 * Just load this cluster as one chunk.
    623  1.110   thorpej 			 */
    624  1.110   thorpej #if 0
    625  1.110   thorpej 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    626  1.110   thorpej 			    pfn0, pfn1);
    627  1.110   thorpej #endif
    628  1.368   thorpej 			alpha_page_physload(pfn0, pfn1);
    629    1.7       cgd 		}
    630    1.7       cgd 	}
    631    1.7       cgd 
    632  1.110   thorpej 	/*
    633  1.110   thorpej 	 * Dump out the MDDT if it looks odd...
    634  1.110   thorpej 	 */
    635    1.7       cgd 	if (mddtweird) {
    636   1.46  christos 		printf("\n");
    637   1.46  christos 		printf("complete memory cluster information:\n");
    638    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    639   1.46  christos 			printf("mddt %d:\n", i);
    640   1.46  christos 			printf("\tpfn %lx\n",
    641    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    642   1.46  christos 			printf("\tcnt %lx\n",
    643    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    644   1.46  christos 			printf("\ttest %lx\n",
    645    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    646   1.46  christos 			printf("\tbva %lx\n",
    647    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    648   1.46  christos 			printf("\tbpa %lx\n",
    649    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    650   1.46  christos 			printf("\tbcksum %lx\n",
    651    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    652   1.46  christos 			printf("\tusage %lx\n",
    653    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    654    1.2       cgd 		}
    655   1.46  christos 		printf("\n");
    656    1.2       cgd 	}
    657    1.2       cgd 
    658    1.7       cgd 	if (totalphysmem == 0)
    659    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    660    1.1       cgd 	maxmem = physmem;
    661    1.7       cgd #if 0
    662   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    663  1.359   thorpej 	printf("physmem = %lu\n", physmem);
    664   1.46  christos 	printf("resvmem = %d\n", resvmem);
    665   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    666   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    667    1.7       cgd #endif
    668    1.7       cgd 
    669    1.1       cgd 	/*
    670    1.1       cgd 	 * Initialize error message buffer (at end of core).
    671    1.1       cgd 	 */
    672  1.110   thorpej 	{
    673  1.349    cherry 		paddr_t end;
    674  1.204     enami 		vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
    675  1.203     enami 		vsize_t reqsz = sz;
    676  1.349    cherry 		uvm_physseg_t bank;
    677  1.110   thorpej 
    678  1.349    cherry 		bank = uvm_physseg_get_last();
    679  1.110   thorpej 
    680  1.110   thorpej 		/* shrink so that it'll fit in the last segment */
    681  1.349    cherry 		if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < atop(sz))
    682  1.349    cherry 			sz = ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank));
    683  1.349    cherry 
    684  1.349    cherry 		end = uvm_physseg_get_end(bank);
    685  1.349    cherry 		end -= atop(sz);
    686  1.349    cherry 
    687  1.349    cherry 		uvm_physseg_unplug(end, atop(sz));
    688  1.349    cherry 		msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(end));
    689  1.110   thorpej 
    690  1.110   thorpej 		initmsgbuf(msgbufaddr, sz);
    691  1.110   thorpej 
    692  1.110   thorpej 		/* warn if the message buffer had to be shrunk */
    693  1.203     enami 		if (sz != reqsz)
    694  1.203     enami 			printf("WARNING: %ld bytes not available for msgbuf "
    695  1.203     enami 			    "in last cluster (%ld used)\n", reqsz, sz);
    696  1.268   thorpej 
    697  1.110   thorpej 	}
    698  1.239   thorpej 
    699  1.239   thorpej 	/*
    700  1.268   thorpej 	 * NOTE: It is safe to use uvm_pageboot_alloc() before
    701  1.268   thorpej 	 * pmap_bootstrap() because our pmap_virtual_space()
    702  1.268   thorpej 	 * returns compile-time constants.
    703  1.268   thorpej 	 */
    704  1.268   thorpej 
    705  1.268   thorpej 	/*
    706  1.324     rmind 	 * Allocate uarea page for lwp0 and set it.
    707    1.1       cgd 	 */
    708  1.324     rmind 	v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
    709  1.324     rmind 	uvm_lwp_setuarea(&lwp0, v);
    710    1.1       cgd 
    711    1.1       cgd 	/*
    712    1.1       cgd 	 * Initialize the virtual memory system, and set the
    713    1.1       cgd 	 * page table base register in proc 0's PCB.
    714    1.1       cgd 	 */
    715  1.110   thorpej 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    716  1.144   thorpej 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    717    1.1       cgd 
    718    1.1       cgd 	/*
    719  1.324     rmind 	 * Initialize the rest of lwp0's PCB and cache its physical address.
    720    1.3       cgd 	 */
    721  1.324     rmind 	pcb0 = lwp_getpcb(&lwp0);
    722  1.324     rmind 	lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
    723    1.3       cgd 
    724    1.3       cgd 	/*
    725    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    726  1.323      matt 	 * and make lwp0's trapframe pointer point to it for sanity.
    727    1.3       cgd 	 */
    728  1.324     rmind 	pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
    729  1.324     rmind 	lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
    730  1.189   thorpej 
    731  1.323      matt 	/* Indicate that lwp0 has a CPU. */
    732  1.261   thorpej 	lwp0.l_cpu = ci;
    733    1.1       cgd 
    734    1.1       cgd 	/*
    735   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    736    1.8       cgd 	 */
    737    1.1       cgd 
    738    1.8       cgd 	boothowto = RB_SINGLE;
    739    1.1       cgd #ifdef KADB
    740    1.1       cgd 	boothowto |= RB_KDB;
    741    1.1       cgd #endif
    742  1.102       cgd 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    743   1.26       cgd 		/*
    744   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    745   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    746   1.26       cgd 		 * says that we shouldn't.
    747   1.26       cgd 		 */
    748    1.8       cgd 		switch (*p) {
    749   1.26       cgd 		case 'a': /* autoboot */
    750   1.26       cgd 		case 'A':
    751   1.26       cgd 			boothowto &= ~RB_SINGLE;
    752   1.21       cgd 			break;
    753   1.21       cgd 
    754   1.43       cgd #ifdef DEBUG
    755   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    756   1.43       cgd 		case 'C':
    757   1.43       cgd 			boothowto |= RB_DUMP;
    758   1.43       cgd 			break;
    759   1.43       cgd #endif
    760   1.43       cgd 
    761   1.81   thorpej #if defined(KGDB) || defined(DDB)
    762   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    763   1.81   thorpej 		case 'D':
    764   1.81   thorpej 			boothowto |= RB_KDB;
    765   1.81   thorpej 			break;
    766   1.81   thorpej #endif
    767   1.81   thorpej 
    768   1.36       cgd 		case 'h': /* always halt, never reboot */
    769   1.36       cgd 		case 'H':
    770   1.36       cgd 			boothowto |= RB_HALT;
    771    1.8       cgd 			break;
    772    1.8       cgd 
    773   1.21       cgd #if 0
    774    1.8       cgd 		case 'm': /* mini root present in memory */
    775   1.26       cgd 		case 'M':
    776    1.8       cgd 			boothowto |= RB_MINIROOT;
    777    1.8       cgd 			break;
    778   1.21       cgd #endif
    779   1.36       cgd 
    780   1.36       cgd 		case 'n': /* askname */
    781   1.36       cgd 		case 'N':
    782   1.36       cgd 			boothowto |= RB_ASKNAME;
    783   1.65       cgd 			break;
    784   1.65       cgd 
    785   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    786   1.65       cgd 		case 'S':
    787   1.65       cgd 			boothowto |= RB_SINGLE;
    788  1.221  jdolecek 			break;
    789  1.221  jdolecek 
    790  1.221  jdolecek 		case 'q': /* quiet boot */
    791  1.221  jdolecek 		case 'Q':
    792  1.221  jdolecek 			boothowto |= AB_QUIET;
    793  1.221  jdolecek 			break;
    794  1.362  riastrad 
    795  1.221  jdolecek 		case 'v': /* verbose boot */
    796  1.221  jdolecek 		case 'V':
    797  1.221  jdolecek 			boothowto |= AB_VERBOSE;
    798  1.119   thorpej 			break;
    799  1.119   thorpej 
    800  1.376       rin 		case 'x': /* debug messages */
    801  1.376       rin 		case 'X':
    802  1.376       rin 			boothowto |= AB_DEBUG;
    803  1.376       rin 			break;
    804  1.376       rin 
    805  1.119   thorpej 		case '-':
    806  1.119   thorpej 			/*
    807  1.119   thorpej 			 * Just ignore this.  It's not required, but it's
    808  1.119   thorpej 			 * common for it to be passed regardless.
    809  1.119   thorpej 			 */
    810   1.65       cgd 			break;
    811   1.65       cgd 
    812   1.65       cgd 		default:
    813   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    814   1.36       cgd 			break;
    815    1.1       cgd 		}
    816    1.1       cgd 	}
    817    1.1       cgd 
    818  1.302        ad 	/*
    819  1.302        ad 	 * Perform any initial kernel patches based on the running system.
    820  1.302        ad 	 * We may perform more later if we attach additional CPUs.
    821  1.302        ad 	 */
    822  1.302        ad 	alpha_patch(false);
    823  1.136    mjacob 
    824  1.136    mjacob 	/*
    825  1.280       wiz 	 * Figure out the number of CPUs in the box, from RPB fields.
    826  1.136    mjacob 	 * Really.  We mean it.
    827  1.136    mjacob 	 */
    828  1.136    mjacob 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    829  1.136    mjacob 		struct pcs *pcsp;
    830  1.136    mjacob 
    831  1.144   thorpej 		pcsp = LOCATE_PCS(hwrpb, i);
    832  1.136    mjacob 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    833  1.136    mjacob 			ncpus++;
    834  1.136    mjacob 	}
    835  1.136    mjacob 
    836    1.7       cgd 	/*
    837  1.106       cgd 	 * Initialize debuggers, and break into them if appropriate.
    838  1.106       cgd 	 */
    839  1.309        ad #if NKSYMS || defined(DDB) || defined(MODULAR)
    840  1.337      matt 	ksyms_addsyms_elf((int)((uint64_t)ksym_end - (uint64_t)ksym_start),
    841  1.159    mjacob 	    ksym_start, ksym_end);
    842  1.234   thorpej #endif
    843  1.234   thorpej 
    844  1.234   thorpej 	if (boothowto & RB_KDB) {
    845  1.234   thorpej #if defined(KGDB)
    846  1.234   thorpej 		kgdb_debug_init = 1;
    847  1.234   thorpej 		kgdb_connect(1);
    848  1.234   thorpej #elif defined(DDB)
    849  1.106       cgd 		Debugger();
    850  1.106       cgd #endif
    851  1.234   thorpej 	}
    852  1.234   thorpej 
    853  1.298   tsutsui #ifdef DIAGNOSTIC
    854  1.106       cgd 	/*
    855  1.298   tsutsui 	 * Check our clock frequency, from RPB fields.
    856  1.106       cgd 	 */
    857  1.298   tsutsui 	if ((hwrpb->rpb_intr_freq >> 12) != 1024)
    858  1.106       cgd 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    859  1.106       cgd 			hwrpb->rpb_intr_freq, hz);
    860  1.106       cgd #endif
    861   1.95   thorpej }
    862   1.95   thorpej 
    863  1.354   thorpej #ifdef MODULAR
    864  1.354   thorpej /* Push any modules loaded by the boot loader */
    865  1.354   thorpej void
    866  1.354   thorpej module_init_md(void)
    867  1.354   thorpej {
    868  1.354   thorpej 	/* nada. */
    869  1.354   thorpej }
    870  1.354   thorpej #endif /* MODULAR */
    871  1.354   thorpej 
    872   1.18       cgd void
    873  1.319    cegger consinit(void)
    874    1.1       cgd {
    875   1.81   thorpej 
    876  1.106       cgd 	/*
    877  1.106       cgd 	 * Everything related to console initialization is done
    878  1.106       cgd 	 * in alpha_init().
    879  1.106       cgd 	 */
    880  1.363   thorpej #if defined(DIAGNOSTIC) && defined(_PROM_MAY_USE_PROM_CONSOLE)
    881  1.106       cgd 	printf("consinit: %susing prom console\n",
    882  1.363   thorpej 	    prom_uses_prom_console() ? "" : "not ");
    883   1.81   thorpej #endif
    884    1.1       cgd }
    885  1.118   thorpej 
    886   1.18       cgd void
    887  1.319    cegger cpu_startup(void)
    888    1.1       cgd {
    889  1.140   thorpej 	vaddr_t minaddr, maxaddr;
    890  1.173     lukem 	char pbuf[9];
    891   1.40       cgd #if defined(DEBUG)
    892    1.1       cgd 	extern int pmapdebug;
    893    1.1       cgd 	int opmapdebug = pmapdebug;
    894    1.1       cgd 
    895    1.1       cgd 	pmapdebug = 0;
    896    1.1       cgd #endif
    897    1.1       cgd 
    898    1.1       cgd 	/*
    899    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    900    1.1       cgd 	 */
    901  1.284     lukem 	printf("%s%s", copyright, version);
    902    1.1       cgd 	identifycpu();
    903  1.185   thorpej 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
    904  1.173     lukem 	printf("total memory = %s\n", pbuf);
    905  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    906  1.173     lukem 	printf("(%s reserved for PROM, ", pbuf);
    907  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    908  1.173     lukem 	printf("%s used by NetBSD)\n", pbuf);
    909  1.173     lukem 	if (unusedmem) {
    910  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
    911  1.173     lukem 		printf("WARNING: unused memory = %s\n", pbuf);
    912  1.173     lukem 	}
    913  1.173     lukem 	if (unknownmem) {
    914  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
    915  1.173     lukem 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    916  1.173     lukem 	}
    917    1.1       cgd 
    918  1.279        pk 	minaddr = 0;
    919  1.240   thorpej 
    920    1.1       cgd 	/*
    921    1.1       cgd 	 * Allocate a submap for physio
    922    1.1       cgd 	 */
    923  1.112   thorpej 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    924  1.294   thorpej 				   VM_PHYS_SIZE, 0, false, NULL);
    925    1.1       cgd 
    926    1.1       cgd 	/*
    927  1.164   thorpej 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    928  1.164   thorpej 	 * are allocated via the pool allocator, and we use K0SEG to
    929  1.164   thorpej 	 * map those pages.
    930    1.1       cgd 	 */
    931    1.1       cgd 
    932   1.40       cgd #if defined(DEBUG)
    933    1.1       cgd 	pmapdebug = opmapdebug;
    934    1.1       cgd #endif
    935  1.360        ad 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvm_availmem(false)));
    936  1.173     lukem 	printf("avail memory = %s\n", pbuf);
    937  1.139   thorpej #if 0
    938  1.139   thorpej 	{
    939  1.139   thorpej 		extern u_long pmap_pages_stolen;
    940  1.173     lukem 
    941  1.173     lukem 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
    942  1.173     lukem 		printf("stolen memory for VM structures = %s\n", pbuf);
    943  1.139   thorpej 	}
    944  1.112   thorpej #endif
    945  1.151   thorpej 
    946  1.151   thorpej 	/*
    947  1.151   thorpej 	 * Set up the HWPCB so that it's safe to configure secondary
    948  1.151   thorpej 	 * CPUs.
    949  1.151   thorpej 	 */
    950  1.151   thorpej 	hwrpb_primary_init();
    951  1.331    martin 
    952  1.331    martin 	/*
    953  1.382   thorpej 	 * Initialize FP handling.
    954  1.331    martin 	 */
    955  1.382   thorpej 	alpha_fp_init();
    956  1.104   thorpej }
    957  1.104   thorpej 
    958  1.104   thorpej /*
    959  1.104   thorpej  * Retrieve the platform name from the DSR.
    960  1.104   thorpej  */
    961  1.104   thorpej const char *
    962  1.319    cegger alpha_dsr_sysname(void)
    963  1.104   thorpej {
    964  1.104   thorpej 	struct dsrdb *dsr;
    965  1.104   thorpej 	const char *sysname;
    966  1.104   thorpej 
    967  1.104   thorpej 	/*
    968  1.104   thorpej 	 * DSR does not exist on early HWRPB versions.
    969  1.104   thorpej 	 */
    970  1.104   thorpej 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
    971  1.104   thorpej 		return (NULL);
    972  1.104   thorpej 
    973  1.296      yamt 	dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
    974  1.296      yamt 	sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
    975  1.337      matt 	    sizeof(uint64_t)));
    976  1.104   thorpej 	return (sysname);
    977  1.104   thorpej }
    978  1.104   thorpej 
    979  1.104   thorpej /*
    980  1.104   thorpej  * Lookup the system specified system variation in the provided table,
    981  1.104   thorpej  * returning the model string on match.
    982  1.104   thorpej  */
    983  1.104   thorpej const char *
    984  1.337      matt alpha_variation_name(uint64_t variation, const struct alpha_variation_table *avtp)
    985  1.104   thorpej {
    986  1.104   thorpej 	int i;
    987  1.104   thorpej 
    988  1.104   thorpej 	for (i = 0; avtp[i].avt_model != NULL; i++)
    989  1.104   thorpej 		if (avtp[i].avt_variation == variation)
    990  1.104   thorpej 			return (avtp[i].avt_model);
    991  1.104   thorpej 	return (NULL);
    992  1.104   thorpej }
    993  1.104   thorpej 
    994  1.104   thorpej /*
    995  1.104   thorpej  * Generate a default platform name based for unknown system variations.
    996  1.104   thorpej  */
    997  1.104   thorpej const char *
    998  1.319    cegger alpha_unknown_sysname(void)
    999  1.104   thorpej {
   1000  1.105   thorpej 	static char s[128];		/* safe size */
   1001  1.104   thorpej 
   1002  1.343  christos 	snprintf(s, sizeof(s), "%s family, unknown model variation 0x%lx",
   1003  1.105   thorpej 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1004  1.104   thorpej 	return ((const char *)s);
   1005    1.1       cgd }
   1006    1.1       cgd 
   1007   1.33       cgd void
   1008  1.319    cegger identifycpu(void)
   1009    1.1       cgd {
   1010  1.344  christos 	const char *s;
   1011  1.218   thorpej 	int i;
   1012    1.1       cgd 
   1013    1.7       cgd 	/*
   1014    1.7       cgd 	 * print out CPU identification information.
   1015    1.7       cgd 	 */
   1016  1.381   thorpej 	s = cpu_getmodel();
   1017  1.381   thorpej 	printf("%s", s);
   1018  1.381   thorpej 	for (; *s != '\0'; s++) {
   1019  1.381   thorpej 		if (strncasecmp(s, "MHz", 3) == 0) {
   1020  1.177      ross 			goto skipMHz;
   1021  1.381   thorpej 		}
   1022  1.381   thorpej 	}
   1023  1.177      ross 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
   1024  1.381   thorpej  skipMHz:
   1025  1.381   thorpej 	for (i = 0; i < 10; i++) {
   1026  1.381   thorpej 		/* Only so long as there are printable characters. */
   1027  1.381   thorpej 		if (! isprint((unsigned char)hwrpb->rpb_ssn[i])) {
   1028  1.381   thorpej 			break;
   1029  1.381   thorpej 		}
   1030  1.381   thorpej 		if (i == 0) {
   1031  1.381   thorpej 			printf(", s/n ");
   1032  1.381   thorpej 		}
   1033  1.218   thorpej 		printf("%c", hwrpb->rpb_ssn[i]);
   1034  1.381   thorpej 	}
   1035  1.177      ross 	printf("\n");
   1036   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
   1037    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1038    1.1       cgd }
   1039    1.1       cgd 
   1040    1.1       cgd int	waittime = -1;
   1041    1.7       cgd struct pcb dumppcb;
   1042    1.1       cgd 
   1043   1.18       cgd void
   1044  1.317       dsl cpu_reboot(int howto, char *bootstr)
   1045    1.1       cgd {
   1046  1.148   thorpej #if defined(MULTIPROCESSOR)
   1047  1.225   thorpej 	u_long cpu_id = cpu_number();
   1048  1.321    mhitch 	u_long wait_mask;
   1049  1.225   thorpej 	int i;
   1050  1.148   thorpej #endif
   1051  1.148   thorpej 
   1052  1.225   thorpej 	/* If "always halt" was specified as a boot flag, obey. */
   1053  1.225   thorpej 	if ((boothowto & RB_HALT) != 0)
   1054  1.225   thorpej 		howto |= RB_HALT;
   1055  1.225   thorpej 
   1056  1.225   thorpej 	boothowto = howto;
   1057    1.1       cgd 
   1058    1.1       cgd 	/* If system is cold, just halt. */
   1059    1.1       cgd 	if (cold) {
   1060  1.225   thorpej 		boothowto |= RB_HALT;
   1061    1.1       cgd 		goto haltsys;
   1062    1.1       cgd 	}
   1063    1.1       cgd 
   1064  1.225   thorpej 	if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
   1065    1.1       cgd 		waittime = 0;
   1066    1.7       cgd 		vfs_shutdown();
   1067    1.1       cgd 	}
   1068    1.1       cgd 
   1069    1.1       cgd 	/* Disable interrupts. */
   1070    1.1       cgd 	splhigh();
   1071    1.1       cgd 
   1072  1.225   thorpej #if defined(MULTIPROCESSOR)
   1073  1.225   thorpej 	/*
   1074  1.225   thorpej 	 * Halt all other CPUs.  If we're not the primary, the
   1075  1.225   thorpej 	 * primary will spin, waiting for us to halt.
   1076  1.225   thorpej 	 */
   1077  1.321    mhitch 	cpu_id = cpu_number();		/* may have changed cpu */
   1078  1.321    mhitch 	wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
   1079  1.321    mhitch 
   1080  1.225   thorpej 	alpha_broadcast_ipi(ALPHA_IPI_HALT);
   1081  1.225   thorpej 
   1082  1.283    mhitch 	/* Ensure any CPUs paused by DDB resume execution so they can halt */
   1083  1.283    mhitch 	cpus_paused = 0;
   1084  1.283    mhitch 
   1085  1.225   thorpej 	for (i = 0; i < 10000; i++) {
   1086  1.225   thorpej 		alpha_mb();
   1087  1.225   thorpej 		if (cpus_running == wait_mask)
   1088  1.225   thorpej 			break;
   1089  1.225   thorpej 		delay(1000);
   1090  1.225   thorpej 	}
   1091  1.225   thorpej 	alpha_mb();
   1092  1.225   thorpej 	if (cpus_running != wait_mask)
   1093  1.225   thorpej 		printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
   1094  1.225   thorpej 		    cpus_running);
   1095  1.225   thorpej #endif /* MULTIPROCESSOR */
   1096  1.225   thorpej 
   1097    1.7       cgd 	/* If rebooting and a dump is requested do it. */
   1098   1.42       cgd #if 0
   1099  1.225   thorpej 	if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1100   1.42       cgd #else
   1101  1.225   thorpej 	if (boothowto & RB_DUMP)
   1102   1.42       cgd #endif
   1103    1.1       cgd 		dumpsys();
   1104    1.6       cgd 
   1105   1.12       cgd haltsys:
   1106   1.12       cgd 
   1107    1.6       cgd 	/* run any shutdown hooks */
   1108    1.6       cgd 	doshutdownhooks();
   1109  1.148   thorpej 
   1110  1.308    dyoung 	pmf_system_shutdown(boothowto);
   1111  1.308    dyoung 
   1112    1.7       cgd #ifdef BOOTKEY
   1113   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1114  1.117  drochner 	cnpollc(1);	/* for proper keyboard command handling */
   1115    1.7       cgd 	cngetc();
   1116  1.117  drochner 	cnpollc(0);
   1117   1.46  christos 	printf("\n");
   1118    1.7       cgd #endif
   1119    1.7       cgd 
   1120  1.124   thorpej 	/* Finally, powerdown/halt/reboot the system. */
   1121  1.225   thorpej 	if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
   1122  1.124   thorpej 	    platform.powerdown != NULL) {
   1123  1.124   thorpej 		(*platform.powerdown)();
   1124  1.124   thorpej 		printf("WARNING: powerdown failed!\n");
   1125  1.124   thorpej 	}
   1126  1.225   thorpej 	printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
   1127  1.225   thorpej #if defined(MULTIPROCESSOR)
   1128  1.225   thorpej 	if (cpu_id != hwrpb->rpb_primary_cpu_id)
   1129  1.225   thorpej 		cpu_halt();
   1130  1.225   thorpej 	else
   1131  1.225   thorpej #endif
   1132  1.225   thorpej 		prom_halt(boothowto & RB_HALT);
   1133    1.1       cgd 	/*NOTREACHED*/
   1134    1.1       cgd }
   1135    1.1       cgd 
   1136    1.7       cgd /*
   1137    1.7       cgd  * These variables are needed by /sbin/savecore
   1138    1.7       cgd  */
   1139  1.337      matt uint32_t dumpmag = 0x8fca0101;	/* magic number */
   1140    1.7       cgd int 	dumpsize = 0;		/* pages */
   1141    1.7       cgd long	dumplo = 0; 		/* blocks */
   1142    1.7       cgd 
   1143    1.7       cgd /*
   1144   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1145   1.43       cgd  */
   1146   1.43       cgd int
   1147  1.319    cegger cpu_dumpsize(void)
   1148   1.43       cgd {
   1149   1.43       cgd 	int size;
   1150   1.43       cgd 
   1151  1.108       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1152  1.110   thorpej 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1153   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
   1154   1.43       cgd 		return -1;
   1155   1.43       cgd 
   1156   1.43       cgd 	return (1);
   1157   1.43       cgd }
   1158   1.43       cgd 
   1159   1.43       cgd /*
   1160  1.110   thorpej  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1161  1.110   thorpej  */
   1162  1.110   thorpej u_long
   1163  1.319    cegger cpu_dump_mempagecnt(void)
   1164  1.110   thorpej {
   1165  1.110   thorpej 	u_long i, n;
   1166  1.110   thorpej 
   1167  1.110   thorpej 	n = 0;
   1168  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++)
   1169  1.110   thorpej 		n += atop(mem_clusters[i].size);
   1170  1.110   thorpej 	return (n);
   1171  1.110   thorpej }
   1172  1.110   thorpej 
   1173  1.110   thorpej /*
   1174   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
   1175   1.43       cgd  */
   1176   1.43       cgd int
   1177  1.319    cegger cpu_dump(void)
   1178   1.43       cgd {
   1179  1.316       dsl 	int (*dump)(dev_t, daddr_t, void *, size_t);
   1180  1.107       cgd 	char buf[dbtob(1)];
   1181  1.107       cgd 	kcore_seg_t *segp;
   1182  1.107       cgd 	cpu_kcore_hdr_t *cpuhdrp;
   1183  1.107       cgd 	phys_ram_seg_t *memsegp;
   1184  1.258   gehenna 	const struct bdevsw *bdev;
   1185  1.110   thorpej 	int i;
   1186   1.43       cgd 
   1187  1.258   gehenna 	bdev = bdevsw_lookup(dumpdev);
   1188  1.258   gehenna 	if (bdev == NULL)
   1189  1.258   gehenna 		return (ENXIO);
   1190  1.258   gehenna 	dump = bdev->d_dump;
   1191   1.43       cgd 
   1192  1.246   thorpej 	memset(buf, 0, sizeof buf);
   1193   1.43       cgd 	segp = (kcore_seg_t *)buf;
   1194  1.107       cgd 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1195  1.107       cgd 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1196  1.107       cgd 	    ALIGN(sizeof(*cpuhdrp))];
   1197   1.43       cgd 
   1198   1.43       cgd 	/*
   1199   1.43       cgd 	 * Generate a segment header.
   1200   1.43       cgd 	 */
   1201   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1202   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1203   1.43       cgd 
   1204   1.43       cgd 	/*
   1205  1.107       cgd 	 * Add the machine-dependent header info.
   1206   1.43       cgd 	 */
   1207  1.140   thorpej 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1208   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
   1209  1.110   thorpej 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1210  1.107       cgd 
   1211  1.107       cgd 	/*
   1212  1.107       cgd 	 * Fill in the memory segment descriptors.
   1213  1.107       cgd 	 */
   1214  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1215  1.110   thorpej 		memsegp[i].start = mem_clusters[i].start;
   1216  1.110   thorpej 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1217  1.110   thorpej 	}
   1218   1.43       cgd 
   1219  1.295  christos 	return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
   1220   1.43       cgd }
   1221   1.43       cgd 
   1222   1.43       cgd /*
   1223   1.68       gwr  * This is called by main to set dumplo and dumpsize.
   1224  1.262   thorpej  * Dumps always skip the first PAGE_SIZE of disk space
   1225    1.7       cgd  * in case there might be a disk label stored there.
   1226    1.7       cgd  * If there is extra space, put dump at the end to
   1227    1.7       cgd  * reduce the chance that swapping trashes it.
   1228    1.7       cgd  */
   1229    1.7       cgd void
   1230  1.319    cegger cpu_dumpconf(void)
   1231    1.7       cgd {
   1232   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
   1233    1.7       cgd 
   1234    1.7       cgd 	if (dumpdev == NODEV)
   1235   1.43       cgd 		goto bad;
   1236  1.336       mrg 	nblks = bdev_size(dumpdev);
   1237    1.7       cgd 	if (nblks <= ctod(1))
   1238   1.43       cgd 		goto bad;
   1239   1.43       cgd 
   1240   1.43       cgd 	dumpblks = cpu_dumpsize();
   1241   1.43       cgd 	if (dumpblks < 0)
   1242   1.43       cgd 		goto bad;
   1243  1.110   thorpej 	dumpblks += ctod(cpu_dump_mempagecnt());
   1244   1.43       cgd 
   1245   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1246   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1247   1.43       cgd 		goto bad;
   1248   1.43       cgd 
   1249   1.43       cgd 	/* Put dump at end of partition */
   1250   1.43       cgd 	dumplo = nblks - dumpblks;
   1251    1.7       cgd 
   1252   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1253  1.110   thorpej 	dumpsize = cpu_dump_mempagecnt();
   1254   1.43       cgd 	return;
   1255    1.7       cgd 
   1256   1.43       cgd bad:
   1257   1.43       cgd 	dumpsize = 0;
   1258   1.43       cgd 	return;
   1259    1.7       cgd }
   1260    1.7       cgd 
   1261    1.7       cgd /*
   1262   1.42       cgd  * Dump the kernel's image to the swap partition.
   1263    1.7       cgd  */
   1264  1.262   thorpej #define	BYTES_PER_DUMP	PAGE_SIZE
   1265   1.42       cgd 
   1266    1.7       cgd void
   1267  1.319    cegger dumpsys(void)
   1268    1.7       cgd {
   1269  1.258   gehenna 	const struct bdevsw *bdev;
   1270  1.110   thorpej 	u_long totalbytesleft, bytes, i, n, memcl;
   1271  1.110   thorpej 	u_long maddr;
   1272  1.110   thorpej 	int psize;
   1273   1.42       cgd 	daddr_t blkno;
   1274  1.316       dsl 	int (*dump)(dev_t, daddr_t, void *, size_t);
   1275   1.42       cgd 	int error;
   1276   1.42       cgd 
   1277   1.42       cgd 	/* Save registers. */
   1278   1.42       cgd 	savectx(&dumppcb);
   1279    1.7       cgd 
   1280    1.7       cgd 	if (dumpdev == NODEV)
   1281    1.7       cgd 		return;
   1282  1.258   gehenna 	bdev = bdevsw_lookup(dumpdev);
   1283  1.258   gehenna 	if (bdev == NULL || bdev->d_psize == NULL)
   1284  1.258   gehenna 		return;
   1285   1.42       cgd 
   1286   1.42       cgd 	/*
   1287   1.42       cgd 	 * For dumps during autoconfiguration,
   1288   1.42       cgd 	 * if dump device has already configured...
   1289   1.42       cgd 	 */
   1290   1.42       cgd 	if (dumpsize == 0)
   1291   1.68       gwr 		cpu_dumpconf();
   1292   1.47       cgd 	if (dumplo <= 0) {
   1293  1.314        he 		printf("\ndump to dev %u,%u not possible\n",
   1294  1.313       rtr 		    major(dumpdev), minor(dumpdev));
   1295   1.42       cgd 		return;
   1296   1.43       cgd 	}
   1297  1.314        he 	printf("\ndumping to dev %u,%u offset %ld\n",
   1298  1.313       rtr 	    major(dumpdev), minor(dumpdev), dumplo);
   1299    1.7       cgd 
   1300  1.336       mrg 	psize = bdev_size(dumpdev);
   1301   1.46  christos 	printf("dump ");
   1302   1.42       cgd 	if (psize == -1) {
   1303   1.46  christos 		printf("area unavailable\n");
   1304   1.42       cgd 		return;
   1305   1.42       cgd 	}
   1306   1.42       cgd 
   1307   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1308   1.42       cgd 
   1309   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1310   1.43       cgd 		goto err;
   1311   1.43       cgd 
   1312  1.110   thorpej 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1313   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1314  1.258   gehenna 	dump = bdev->d_dump;
   1315   1.42       cgd 	error = 0;
   1316   1.42       cgd 
   1317  1.110   thorpej 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1318  1.110   thorpej 		maddr = mem_clusters[memcl].start;
   1319  1.110   thorpej 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1320  1.110   thorpej 
   1321  1.110   thorpej 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1322  1.110   thorpej 
   1323  1.110   thorpej 			/* Print out how many MBs we to go. */
   1324  1.110   thorpej 			if ((totalbytesleft % (1024*1024)) == 0)
   1325  1.311        ad 				printf_nolog("%ld ",
   1326  1.311        ad 				    totalbytesleft / (1024 * 1024));
   1327  1.110   thorpej 
   1328  1.110   thorpej 			/* Limit size for next transfer. */
   1329  1.110   thorpej 			n = bytes - i;
   1330  1.110   thorpej 			if (n > BYTES_PER_DUMP)
   1331  1.110   thorpej 				n =  BYTES_PER_DUMP;
   1332  1.362  riastrad 
   1333  1.110   thorpej 			error = (*dump)(dumpdev, blkno,
   1334  1.295  christos 			    (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1335  1.110   thorpej 			if (error)
   1336  1.110   thorpej 				goto err;
   1337  1.110   thorpej 			maddr += n;
   1338  1.110   thorpej 			blkno += btodb(n);			/* XXX? */
   1339   1.42       cgd 
   1340  1.110   thorpej 			/* XXX should look for keystrokes, to cancel. */
   1341  1.110   thorpej 		}
   1342   1.42       cgd 	}
   1343   1.42       cgd 
   1344   1.43       cgd err:
   1345   1.42       cgd 	switch (error) {
   1346    1.7       cgd 
   1347    1.7       cgd 	case ENXIO:
   1348   1.46  christos 		printf("device bad\n");
   1349    1.7       cgd 		break;
   1350    1.7       cgd 
   1351    1.7       cgd 	case EFAULT:
   1352   1.46  christos 		printf("device not ready\n");
   1353    1.7       cgd 		break;
   1354    1.7       cgd 
   1355    1.7       cgd 	case EINVAL:
   1356   1.46  christos 		printf("area improper\n");
   1357    1.7       cgd 		break;
   1358    1.7       cgd 
   1359    1.7       cgd 	case EIO:
   1360   1.46  christos 		printf("i/o error\n");
   1361    1.7       cgd 		break;
   1362    1.7       cgd 
   1363    1.7       cgd 	case EINTR:
   1364   1.46  christos 		printf("aborted from console\n");
   1365    1.7       cgd 		break;
   1366    1.7       cgd 
   1367   1.42       cgd 	case 0:
   1368   1.46  christos 		printf("succeeded\n");
   1369   1.42       cgd 		break;
   1370   1.42       cgd 
   1371    1.7       cgd 	default:
   1372   1.46  christos 		printf("error %d\n", error);
   1373    1.7       cgd 		break;
   1374    1.7       cgd 	}
   1375   1.46  christos 	printf("\n\n");
   1376    1.7       cgd 	delay(1000);
   1377    1.7       cgd }
   1378    1.7       cgd 
   1379    1.1       cgd void
   1380  1.317       dsl frametoreg(const struct trapframe *framep, struct reg *regp)
   1381    1.1       cgd {
   1382    1.1       cgd 
   1383    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1384    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1385    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1386    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1387    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1388    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1389    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1390    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1391    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1392    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1393    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1394    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1395    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1396    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1397    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1398    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1399   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1400   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1401   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1402    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1403    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1404    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1405    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1406    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1407    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1408    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1409    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1410    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1411    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1412   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1413   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1414    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1415    1.1       cgd }
   1416    1.1       cgd 
   1417    1.1       cgd void
   1418  1.317       dsl regtoframe(const struct reg *regp, struct trapframe *framep)
   1419    1.1       cgd {
   1420    1.1       cgd 
   1421    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1422    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1423    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1424    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1425    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1426    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1427    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1428    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1429    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1430    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1431    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1432    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1433    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1434    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1435    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1436    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1437   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1438   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1439   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1440    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1441    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1442    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1443    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1444    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1445    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1446    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1447    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1448    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1449    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1450   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1451   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1452    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1453    1.1       cgd }
   1454    1.1       cgd 
   1455    1.1       cgd void
   1456  1.317       dsl printregs(struct reg *regp)
   1457    1.1       cgd {
   1458    1.1       cgd 	int i;
   1459    1.1       cgd 
   1460    1.1       cgd 	for (i = 0; i < 32; i++)
   1461   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1462    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1463    1.1       cgd }
   1464    1.1       cgd 
   1465    1.1       cgd void
   1466  1.317       dsl regdump(struct trapframe *framep)
   1467    1.1       cgd {
   1468    1.1       cgd 	struct reg reg;
   1469    1.1       cgd 
   1470    1.1       cgd 	frametoreg(framep, &reg);
   1471   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1472   1.35       cgd 
   1473   1.46  christos 	printf("REGISTERS:\n");
   1474    1.1       cgd 	printregs(&reg);
   1475    1.1       cgd }
   1476    1.1       cgd 
   1477    1.1       cgd 
   1478  1.274       skd 
   1479  1.274       skd void *
   1480  1.383  riastrad getframe(const struct lwp *l, int sig, int *onstack, size_t size, size_t align)
   1481  1.274       skd {
   1482  1.383  riastrad 	uintptr_t frame;
   1483  1.383  riastrad 
   1484  1.383  riastrad 	KASSERT((align & (align - 1)) == 0);
   1485  1.274       skd 
   1486  1.274       skd 	/* Do we need to jump onto the signal stack? */
   1487  1.274       skd 	*onstack =
   1488  1.293        ad 	    (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1489  1.293        ad 	    (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
   1490  1.274       skd 
   1491  1.274       skd 	if (*onstack)
   1492  1.383  riastrad 		frame = (uintptr_t)l->l_sigstk.ss_sp + l->l_sigstk.ss_size;
   1493  1.274       skd 	else
   1494  1.383  riastrad 		frame = (uintptr_t)alpha_pal_rdusp();
   1495  1.383  riastrad 	frame -= size;
   1496  1.383  riastrad 	frame &= ~(STACK_ALIGNBYTES | (align - 1));
   1497  1.383  riastrad 	return (void *)frame;
   1498  1.362  riastrad }
   1499  1.274       skd 
   1500  1.274       skd void
   1501  1.274       skd buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
   1502  1.274       skd {
   1503  1.274       skd 	struct trapframe *tf = l->l_md.md_tf;
   1504  1.274       skd 
   1505  1.337      matt 	tf->tf_regs[FRAME_RA] = (uint64_t)tramp;
   1506  1.337      matt 	tf->tf_regs[FRAME_PC] = (uint64_t)catcher;
   1507  1.337      matt 	tf->tf_regs[FRAME_T12] = (uint64_t)catcher;
   1508  1.274       skd 	alpha_pal_wrusp((unsigned long)fp);
   1509  1.274       skd }
   1510  1.274       skd 
   1511  1.274       skd 
   1512    1.1       cgd /*
   1513  1.274       skd  * Send an interrupt to process, new style
   1514    1.1       cgd  */
   1515    1.1       cgd void
   1516  1.274       skd sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
   1517    1.1       cgd {
   1518  1.261   thorpej 	struct lwp *l = curlwp;
   1519  1.261   thorpej 	struct proc *p = l->l_proc;
   1520  1.256   thorpej 	struct sigacts *ps = p->p_sigacts;
   1521  1.293        ad 	int onstack, sig = ksi->ksi_signo, error;
   1522  1.274       skd 	struct sigframe_siginfo *fp, frame;
   1523  1.274       skd 	struct trapframe *tf;
   1524  1.274       skd 	sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
   1525    1.1       cgd 
   1526  1.274       skd 	tf = l->l_md.md_tf;
   1527  1.141   thorpej 
   1528  1.141   thorpej 	/* Allocate space for the signal handler context. */
   1529  1.383  riastrad 	fp = getframe(l, ksi->ksi_signo, &onstack, sizeof(*fp), _Alignof(*fp));
   1530  1.141   thorpej 
   1531    1.1       cgd #ifdef DEBUG
   1532    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1533  1.274       skd 		printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1534  1.276   nathanw 		    sig, &onstack, fp);
   1535  1.125      ross #endif
   1536    1.1       cgd 
   1537  1.141   thorpej 	/* Build stack frame for signal trampoline. */
   1538  1.352      maxv 	memset(&frame, 0, sizeof(frame));
   1539  1.275     enami 	frame.sf_si._info = ksi->ksi_info;
   1540  1.274       skd 	frame.sf_uc.uc_flags = _UC_SIGMASK;
   1541  1.274       skd 	frame.sf_uc.uc_sigmask = *mask;
   1542  1.299     pooka 	frame.sf_uc.uc_link = l->l_ctxlink;
   1543  1.372   thorpej 	frame.sf_uc.uc_flags |= (l->l_sigstk.ss_flags & SS_ONSTACK)
   1544  1.372   thorpej 	    ? _UC_SETSTACK : _UC_CLRSTACK;
   1545  1.293        ad 	sendsig_reset(l, sig);
   1546  1.304        ad 	mutex_exit(p->p_lock);
   1547  1.274       skd 	cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
   1548  1.293        ad 	error = copyout(&frame, fp, sizeof(frame));
   1549  1.304        ad 	mutex_enter(p->p_lock);
   1550    1.1       cgd 
   1551  1.293        ad 	if (error != 0) {
   1552  1.141   thorpej 		/*
   1553  1.141   thorpej 		 * Process has trashed its stack; give it an illegal
   1554  1.141   thorpej 		 * instruction to halt it in its tracks.
   1555  1.141   thorpej 		 */
   1556  1.141   thorpej #ifdef DEBUG
   1557  1.141   thorpej 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1558  1.274       skd 			printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
   1559  1.141   thorpej 			    p->p_pid, sig);
   1560  1.141   thorpej #endif
   1561  1.261   thorpej 		sigexit(l, SIGILL);
   1562  1.141   thorpej 		/* NOTREACHED */
   1563  1.141   thorpej 	}
   1564  1.274       skd 
   1565    1.1       cgd #ifdef DEBUG
   1566    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1567  1.276   nathanw 		printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
   1568  1.276   nathanw 		       p->p_pid, sig, fp, ksi->ksi_code);
   1569    1.1       cgd #endif
   1570    1.1       cgd 
   1571  1.256   thorpej 	/*
   1572  1.256   thorpej 	 * Set up the registers to directly invoke the signal handler.  The
   1573  1.256   thorpej 	 * signal trampoline is then used to return from the signal.  Note
   1574  1.256   thorpej 	 * the trampoline version numbers are coordinated with machine-
   1575  1.256   thorpej 	 * dependent code in libc.
   1576  1.256   thorpej 	 */
   1577  1.362  riastrad 
   1578  1.274       skd 	tf->tf_regs[FRAME_A0] = sig;
   1579  1.337      matt 	tf->tf_regs[FRAME_A1] = (uint64_t)&fp->sf_si;
   1580  1.337      matt 	tf->tf_regs[FRAME_A2] = (uint64_t)&fp->sf_uc;
   1581  1.256   thorpej 
   1582  1.274       skd 	buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
   1583  1.142   mycroft 
   1584  1.142   mycroft 	/* Remember that we're now on the signal stack. */
   1585  1.142   mycroft 	if (onstack)
   1586  1.293        ad 		l->l_sigstk.ss_flags |= SS_ONSTACK;
   1587    1.1       cgd 
   1588    1.1       cgd #ifdef DEBUG
   1589    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1590  1.274       skd 		printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
   1591  1.276   nathanw 		    tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
   1592    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1593  1.274       skd 		printf("sendsig_siginfo(%d): sig %d returns\n",
   1594    1.1       cgd 		    p->p_pid, sig);
   1595    1.1       cgd #endif
   1596    1.1       cgd }
   1597    1.1       cgd 
   1598    1.1       cgd /*
   1599    1.1       cgd  * machine dependent system variables.
   1600    1.1       cgd  */
   1601  1.278    atatat SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
   1602    1.1       cgd {
   1603  1.241      ross 
   1604  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1605  1.282    atatat 		       CTLFLAG_PERMANENT,
   1606  1.278    atatat 		       CTLTYPE_NODE, "machdep", NULL,
   1607  1.278    atatat 		       NULL, 0, NULL, 0,
   1608  1.278    atatat 		       CTL_MACHDEP, CTL_EOL);
   1609  1.278    atatat 
   1610  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1611  1.282    atatat 		       CTLFLAG_PERMANENT,
   1612  1.278    atatat 		       CTLTYPE_STRUCT, "console_device", NULL,
   1613  1.278    atatat 		       sysctl_consdev, 0, NULL, sizeof(dev_t),
   1614  1.278    atatat 		       CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
   1615  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1616  1.282    atatat 		       CTLFLAG_PERMANENT,
   1617  1.278    atatat 		       CTLTYPE_STRING, "root_device", NULL,
   1618  1.278    atatat 		       sysctl_root_device, 0, NULL, 0,
   1619  1.278    atatat 		       CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
   1620  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1621  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1622  1.340     njoly 		       CTLTYPE_INT, "unaligned_print",
   1623  1.340     njoly 		       SYSCTL_DESCR("Warn about unaligned accesses"),
   1624  1.278    atatat 		       NULL, 0, &alpha_unaligned_print, 0,
   1625  1.278    atatat 		       CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
   1626  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1627  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1628  1.340     njoly 		       CTLTYPE_INT, "unaligned_fix",
   1629  1.340     njoly 		       SYSCTL_DESCR("Fix up unaligned accesses"),
   1630  1.278    atatat 		       NULL, 0, &alpha_unaligned_fix, 0,
   1631  1.278    atatat 		       CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
   1632  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1633  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1634  1.340     njoly 		       CTLTYPE_INT, "unaligned_sigbus",
   1635  1.340     njoly 		       SYSCTL_DESCR("Do SIGBUS for fixed unaligned accesses"),
   1636  1.278    atatat 		       NULL, 0, &alpha_unaligned_sigbus, 0,
   1637  1.278    atatat 		       CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
   1638  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1639  1.282    atatat 		       CTLFLAG_PERMANENT,
   1640  1.278    atatat 		       CTLTYPE_STRING, "booted_kernel", NULL,
   1641  1.278    atatat 		       NULL, 0, bootinfo.booted_kernel, 0,
   1642  1.278    atatat 		       CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
   1643  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1644  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1645  1.278    atatat 		       CTLTYPE_INT, "fp_sync_complete", NULL,
   1646  1.278    atatat 		       NULL, 0, &alpha_fp_sync_complete, 0,
   1647  1.278    atatat 		       CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
   1648  1.369   thorpej 	sysctl_createv(clog, 0, NULL, NULL,
   1649  1.369   thorpej 		       CTLFLAG_PERMANENT,
   1650  1.369   thorpej 		       CTLTYPE_INT, "cctr", NULL,
   1651  1.369   thorpej 		       NULL, 0, &alpha_use_cctr, 0,
   1652  1.369   thorpej 		       CTL_MACHDEP, CPU_CCTR, CTL_EOL);
   1653  1.369   thorpej 	sysctl_createv(clog, 0, NULL, NULL,
   1654  1.369   thorpej 		       CTLFLAG_PERMANENT,
   1655  1.369   thorpej 		       CTLTYPE_BOOL, "is_qemu", NULL,
   1656  1.369   thorpej 		       NULL, 0, &alpha_is_qemu, 0,
   1657  1.369   thorpej 		       CTL_MACHDEP, CPU_IS_QEMU, CTL_EOL);
   1658  1.375   thorpej 	sysctl_createv(clog, 0, NULL, NULL,
   1659  1.375   thorpej 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1660  1.375   thorpej 		       CTLTYPE_INT, "fp_complete_debug", NULL,
   1661  1.375   thorpej 		       NULL, 0, &alpha_fp_complete_debug, 0,
   1662  1.375   thorpej 		       CTL_MACHDEP, CPU_FP_COMPLETE_DEBUG, CTL_EOL);
   1663  1.379   thorpej 	sysctl_createv(clog, 0, NULL, NULL,
   1664  1.379   thorpej 		       CTLFLAG_PERMANENT,
   1665  1.379   thorpej 		       CTLTYPE_QUAD, "rpb_type", NULL,
   1666  1.379   thorpej 		       NULL, 0, &hwrpb->rpb_type, 0,
   1667  1.379   thorpej 		       CTL_MACHDEP, CPU_RPB_TYPE, CTL_EOL);
   1668  1.379   thorpej 	sysctl_createv(clog, 0, NULL, NULL,
   1669  1.379   thorpej 		       CTLFLAG_PERMANENT,
   1670  1.379   thorpej 		       CTLTYPE_QUAD, "rpb_variation", NULL,
   1671  1.379   thorpej 		       NULL, 0, &hwrpb->rpb_variation, 0,
   1672  1.379   thorpej 		       CTL_MACHDEP, CPU_RPB_VARIATION, CTL_EOL);
   1673    1.1       cgd }
   1674    1.1       cgd 
   1675    1.1       cgd /*
   1676    1.1       cgd  * Set registers on exec.
   1677    1.1       cgd  */
   1678    1.1       cgd void
   1679  1.325      matt setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
   1680    1.1       cgd {
   1681  1.261   thorpej 	struct trapframe *tfp = l->l_md.md_tf;
   1682  1.322     rmind 	struct pcb *pcb;
   1683   1.56       cgd #ifdef DEBUG
   1684    1.1       cgd 	int i;
   1685   1.56       cgd #endif
   1686   1.43       cgd 
   1687   1.43       cgd #ifdef DEBUG
   1688   1.43       cgd 	/*
   1689   1.43       cgd 	 * Crash and dump, if the user requested it.
   1690   1.43       cgd 	 */
   1691   1.43       cgd 	if (boothowto & RB_DUMP)
   1692   1.43       cgd 		panic("crash requested by boot flags");
   1693   1.43       cgd #endif
   1694    1.1       cgd 
   1695  1.380  riastrad 	memset(tfp, 0, sizeof(*tfp));
   1696  1.380  riastrad 
   1697    1.1       cgd #ifdef DEBUG
   1698   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1699    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1700    1.1       cgd #endif
   1701  1.322     rmind 	pcb = lwp_getpcb(l);
   1702  1.322     rmind 	memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
   1703   1.35       cgd 	alpha_pal_wrusp(stack);
   1704   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1705   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1706   1.41       cgd 
   1707   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1708   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1709   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1710  1.330     joerg 	tfp->tf_regs[FRAME_A3] = l->l_proc->p_psstrp;	/* a3 = ps_strings */
   1711   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1712    1.1       cgd 
   1713  1.261   thorpej 	if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
   1714  1.375   thorpej 		l->l_md.md_flags =
   1715  1.375   thorpej 		    (l->l_md.md_flags & ~(MDLWP_FP_C | MDLWP_FPACTIVE)) |
   1716  1.375   thorpej 		    FP_C_DEFAULT;
   1717  1.375   thorpej 		pcb->pcb_fp.fpr_cr = FPCR_DEFAULT;
   1718  1.241      ross 	}
   1719   1.15       cgd }
   1720   1.15       cgd 
   1721  1.366   thorpej void	(*alpha_delay_fn)(unsigned long);
   1722  1.366   thorpej 
   1723   1.15       cgd /*
   1724   1.15       cgd  * Wait "n" microseconds.
   1725   1.15       cgd  */
   1726   1.32       cgd void
   1727  1.317       dsl delay(unsigned long n)
   1728   1.15       cgd {
   1729  1.216   thorpej 	unsigned long pcc0, pcc1, curcycle, cycles, usec;
   1730   1.15       cgd 
   1731  1.216   thorpej 	if (n == 0)
   1732  1.216   thorpej 		return;
   1733  1.216   thorpej 
   1734  1.366   thorpej 	/*
   1735  1.366   thorpej 	 * If we have an alternative delay function, go ahead and
   1736  1.366   thorpej 	 * use it.
   1737  1.366   thorpej 	 */
   1738  1.366   thorpej 	if (alpha_delay_fn != NULL) {
   1739  1.366   thorpej 		(*alpha_delay_fn)(n);
   1740  1.366   thorpej 		return;
   1741  1.366   thorpej 	}
   1742  1.366   thorpej 
   1743  1.370   thorpej 	lwp_t * const l = curlwp;
   1744  1.370   thorpej 	KPREEMPT_DISABLE(l);
   1745  1.370   thorpej 
   1746  1.216   thorpej 	pcc0 = alpha_rpcc() & 0xffffffffUL;
   1747  1.216   thorpej 	cycles = 0;
   1748  1.216   thorpej 	usec = 0;
   1749  1.216   thorpej 
   1750  1.216   thorpej 	while (usec <= n) {
   1751  1.216   thorpej 		/*
   1752  1.216   thorpej 		 * Get the next CPU cycle count- assumes that we cannot
   1753  1.216   thorpej 		 * have had more than one 32 bit overflow.
   1754  1.216   thorpej 		 */
   1755  1.216   thorpej 		pcc1 = alpha_rpcc() & 0xffffffffUL;
   1756  1.216   thorpej 		if (pcc1 < pcc0)
   1757  1.216   thorpej 			curcycle = (pcc1 + 0x100000000UL) - pcc0;
   1758  1.216   thorpej 		else
   1759  1.216   thorpej 			curcycle = pcc1 - pcc0;
   1760  1.186   thorpej 
   1761  1.216   thorpej 		/*
   1762  1.216   thorpej 		 * We now have the number of processor cycles since we
   1763  1.216   thorpej 		 * last checked. Add the current cycle count to the
   1764  1.216   thorpej 		 * running total. If it's over cycles_per_usec, increment
   1765  1.216   thorpej 		 * the usec counter.
   1766  1.216   thorpej 		 */
   1767  1.216   thorpej 		cycles += curcycle;
   1768  1.216   thorpej 		while (cycles > cycles_per_usec) {
   1769  1.216   thorpej 			usec++;
   1770  1.216   thorpej 			cycles -= cycles_per_usec;
   1771  1.216   thorpej 		}
   1772  1.216   thorpej 		pcc0 = pcc1;
   1773  1.216   thorpej 	}
   1774  1.370   thorpej 
   1775  1.370   thorpej 	KPREEMPT_ENABLE(l);
   1776    1.1       cgd }
   1777  1.225   thorpej 
   1778  1.250  jdolecek #ifdef EXEC_ECOFF
   1779    1.1       cgd void
   1780  1.325      matt cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
   1781    1.1       cgd {
   1782   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1783    1.1       cgd 
   1784  1.261   thorpej 	l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1785    1.1       cgd }
   1786    1.1       cgd 
   1787    1.1       cgd /*
   1788    1.1       cgd  * cpu_exec_ecoff_hook():
   1789    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   1790  1.337      matt  *
   1791    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1792    1.1       cgd  *
   1793    1.1       cgd  */
   1794    1.1       cgd int
   1795  1.317       dsl cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
   1796    1.1       cgd {
   1797   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1798  1.171       cgd 	int error;
   1799    1.1       cgd 
   1800  1.224  jdolecek 	if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
   1801  1.171       cgd 		error = 0;
   1802  1.224  jdolecek 	else
   1803  1.224  jdolecek 		error = ENOEXEC;
   1804    1.1       cgd 
   1805  1.171       cgd 	return (error);
   1806    1.1       cgd }
   1807  1.250  jdolecek #endif /* EXEC_ECOFF */
   1808  1.110   thorpej 
   1809  1.110   thorpej int
   1810  1.335     rmind mm_md_physacc(paddr_t pa, vm_prot_t prot)
   1811  1.110   thorpej {
   1812  1.335     rmind 	u_quad_t size;
   1813  1.110   thorpej 	int i;
   1814  1.110   thorpej 
   1815  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1816  1.110   thorpej 		if (pa < mem_clusters[i].start)
   1817  1.110   thorpej 			continue;
   1818  1.335     rmind 		size = mem_clusters[i].size & ~PAGE_MASK;
   1819  1.335     rmind 		if (pa >= (mem_clusters[i].start + size))
   1820  1.110   thorpej 			continue;
   1821  1.335     rmind 		if ((prot & mem_clusters[i].size & PAGE_MASK) == prot)
   1822  1.335     rmind 			return 0;
   1823  1.110   thorpej 	}
   1824  1.335     rmind 	return EFAULT;
   1825  1.335     rmind }
   1826  1.335     rmind 
   1827  1.335     rmind bool
   1828  1.335     rmind mm_md_direct_mapped_io(void *addr, paddr_t *paddr)
   1829  1.335     rmind {
   1830  1.335     rmind 	vaddr_t va = (vaddr_t)addr;
   1831  1.335     rmind 
   1832  1.335     rmind 	if (va >= ALPHA_K0SEG_BASE && va <= ALPHA_K0SEG_END) {
   1833  1.335     rmind 		*paddr = ALPHA_K0SEG_TO_PHYS(va);
   1834  1.335     rmind 		return true;
   1835  1.335     rmind 	}
   1836  1.335     rmind 	return false;
   1837  1.335     rmind }
   1838  1.337      matt 
   1839  1.335     rmind bool
   1840  1.335     rmind mm_md_direct_mapped_phys(paddr_t paddr, vaddr_t *vaddr)
   1841  1.335     rmind {
   1842  1.197   thorpej 
   1843  1.335     rmind 	*vaddr = ALPHA_PHYS_TO_K0SEG(paddr);
   1844  1.335     rmind 	return true;
   1845  1.110   thorpej }
   1846   1.50       cgd 
   1847  1.261   thorpej void
   1848  1.317       dsl cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
   1849  1.261   thorpej {
   1850  1.261   thorpej 	struct trapframe *frame = l->l_md.md_tf;
   1851  1.322     rmind 	struct pcb *pcb = lwp_getpcb(l);
   1852  1.261   thorpej 	__greg_t *gr = mcp->__gregs;
   1853  1.264   nathanw 	__greg_t ras_pc;
   1854  1.261   thorpej 
   1855  1.261   thorpej 	/* Save register context. */
   1856  1.261   thorpej 	frametoreg(frame, (struct reg *)gr);
   1857  1.261   thorpej 	/* XXX if there's a better, general way to get the USP of
   1858  1.261   thorpej 	 * an LWP that might or might not be curlwp, I'd like to know
   1859  1.261   thorpej 	 * about it.
   1860  1.261   thorpej 	 */
   1861  1.261   thorpej 	if (l == curlwp) {
   1862  1.261   thorpej 		gr[_REG_SP] = alpha_pal_rdusp();
   1863  1.261   thorpej 		gr[_REG_UNIQUE] = alpha_pal_rdunique();
   1864  1.261   thorpej 	} else {
   1865  1.322     rmind 		gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
   1866  1.322     rmind 		gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
   1867  1.261   thorpej 	}
   1868  1.261   thorpej 	gr[_REG_PC] = frame->tf_regs[FRAME_PC];
   1869  1.261   thorpej 	gr[_REG_PS] = frame->tf_regs[FRAME_PS];
   1870  1.264   nathanw 
   1871  1.264   nathanw 	if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
   1872  1.295  christos 	    (void *) gr[_REG_PC])) != -1)
   1873  1.264   nathanw 		gr[_REG_PC] = ras_pc;
   1874  1.264   nathanw 
   1875  1.342      manu 	*flags |= _UC_CPU | _UC_TLSBASE;
   1876  1.261   thorpej 
   1877  1.261   thorpej 	/* Save floating point register context, if any, and copy it. */
   1878  1.345      matt 	if (fpu_valid_p(l)) {
   1879  1.350       chs 		fpu_save(l);
   1880  1.322     rmind 		(void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
   1881  1.261   thorpej 		    sizeof (mcp->__fpregs));
   1882  1.261   thorpej 		mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
   1883  1.261   thorpej 		*flags |= _UC_FPU;
   1884  1.261   thorpej 	}
   1885  1.261   thorpej }
   1886  1.261   thorpej 
   1887  1.339    martin int
   1888  1.339    martin cpu_mcontext_validate(struct lwp *l, const mcontext_t *mcp)
   1889  1.339    martin {
   1890  1.339    martin 	const __greg_t *gr = mcp->__gregs;
   1891  1.339    martin 
   1892  1.339    martin 	if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
   1893  1.339    martin 	    (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
   1894  1.339    martin 		return EINVAL;
   1895  1.339    martin 
   1896  1.339    martin 	return 0;
   1897  1.339    martin }
   1898  1.261   thorpej 
   1899  1.261   thorpej int
   1900  1.317       dsl cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
   1901  1.261   thorpej {
   1902  1.261   thorpej 	struct trapframe *frame = l->l_md.md_tf;
   1903  1.322     rmind 	struct pcb *pcb = lwp_getpcb(l);
   1904  1.261   thorpej 	const __greg_t *gr = mcp->__gregs;
   1905  1.339    martin 	int error;
   1906  1.261   thorpej 
   1907  1.261   thorpej 	/* Restore register context, if any. */
   1908  1.261   thorpej 	if (flags & _UC_CPU) {
   1909  1.261   thorpej 		/* Check for security violations first. */
   1910  1.339    martin 		error = cpu_mcontext_validate(l, mcp);
   1911  1.339    martin 		if (error)
   1912  1.339    martin 			return error;
   1913  1.261   thorpej 
   1914  1.286       jdc 		regtoframe((const struct reg *)gr, l->l_md.md_tf);
   1915  1.261   thorpej 		if (l == curlwp)
   1916  1.261   thorpej 			alpha_pal_wrusp(gr[_REG_SP]);
   1917  1.261   thorpej 		else
   1918  1.322     rmind 			pcb->pcb_hw.apcb_usp = gr[_REG_SP];
   1919  1.261   thorpej 		frame->tf_regs[FRAME_PC] = gr[_REG_PC];
   1920  1.261   thorpej 		frame->tf_regs[FRAME_PS] = gr[_REG_PS];
   1921  1.261   thorpej 	}
   1922  1.372   thorpej 
   1923  1.342      manu 	if (flags & _UC_TLSBASE)
   1924  1.329     joerg 		lwp_setprivate(l, (void *)(uintptr_t)gr[_REG_UNIQUE]);
   1925  1.372   thorpej 
   1926  1.261   thorpej 	/* Restore floating point register context, if any. */
   1927  1.261   thorpej 	if (flags & _UC_FPU) {
   1928  1.261   thorpej 		/* If we have an FP register context, get rid of it. */
   1929  1.350       chs 		fpu_discard(l, true);
   1930  1.322     rmind 		(void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
   1931  1.322     rmind 		    sizeof (pcb->pcb_fp));
   1932  1.334      matt 		l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDLWP_FP_C;
   1933  1.261   thorpej 	}
   1934  1.261   thorpej 
   1935  1.372   thorpej 	mutex_enter(l->l_proc->p_lock);
   1936  1.372   thorpej 	if (flags & _UC_SETSTACK)
   1937  1.372   thorpej 		l->l_sigstk.ss_flags |= SS_ONSTACK;
   1938  1.372   thorpej 	if (flags & _UC_CLRSTACK)
   1939  1.372   thorpej 		l->l_sigstk.ss_flags &= ~SS_ONSTACK;
   1940  1.372   thorpej 	mutex_exit(l->l_proc->p_lock);
   1941  1.372   thorpej 
   1942  1.261   thorpej 	return (0);
   1943  1.138      ross }
   1944  1.297      yamt 
   1945  1.361   thorpej static void
   1946  1.361   thorpej cpu_kick(struct cpu_info * const ci)
   1947  1.361   thorpej {
   1948  1.361   thorpej #if defined(MULTIPROCESSOR)
   1949  1.361   thorpej 	alpha_send_ipi(ci->ci_cpuid, ALPHA_IPI_AST);
   1950  1.361   thorpej #endif /* MULTIPROCESSOR */
   1951  1.361   thorpej }
   1952  1.361   thorpej 
   1953  1.297      yamt /*
   1954  1.297      yamt  * Preempt the current process if in interrupt from user mode,
   1955  1.297      yamt  * or after the current trap/syscall if in system mode.
   1956  1.297      yamt  */
   1957  1.297      yamt void
   1958  1.355        ad cpu_need_resched(struct cpu_info *ci, struct lwp *l, int flags)
   1959  1.297      yamt {
   1960  1.361   thorpej 
   1961  1.361   thorpej 	KASSERT(kpreempt_disabled());
   1962  1.361   thorpej 
   1963  1.361   thorpej 	if ((flags & RESCHED_IDLE) != 0) {
   1964  1.361   thorpej 		/*
   1965  1.361   thorpej 		 * Nothing to do here; we are not currently using WTINT
   1966  1.361   thorpej 		 * in cpu_idle().
   1967  1.361   thorpej 		 */
   1968  1.361   thorpej 		return;
   1969  1.361   thorpej 	}
   1970  1.361   thorpej 
   1971  1.361   thorpej 	/* XXX RESCHED_KPREEMPT XXX */
   1972  1.361   thorpej 
   1973  1.361   thorpej 	KASSERT((flags & RESCHED_UPREEMPT) != 0);
   1974  1.361   thorpej 	if ((flags & RESCHED_REMOTE) != 0) {
   1975  1.361   thorpej 		cpu_kick(ci);
   1976  1.361   thorpej 	} else {
   1977  1.361   thorpej 		aston(l);
   1978  1.361   thorpej 	}
   1979  1.361   thorpej }
   1980  1.361   thorpej 
   1981  1.361   thorpej /*
   1982  1.361   thorpej  * Notify the current lwp (l) that it has a signal pending,
   1983  1.361   thorpej  * process as soon as possible.
   1984  1.361   thorpej  */
   1985  1.361   thorpej void
   1986  1.361   thorpej cpu_signotify(struct lwp *l)
   1987  1.361   thorpej {
   1988  1.362  riastrad 
   1989  1.361   thorpej 	KASSERT(kpreempt_disabled());
   1990  1.361   thorpej 
   1991  1.361   thorpej 	if (l->l_cpu != curcpu()) {
   1992  1.361   thorpej 		cpu_kick(l->l_cpu);
   1993  1.361   thorpej 	} else {
   1994  1.361   thorpej 		aston(l);
   1995  1.297      yamt 	}
   1996  1.297      yamt }
   1997  1.361   thorpej 
   1998  1.361   thorpej /*
   1999  1.361   thorpej  * Give a profiling tick to the current process when the user profiling
   2000  1.361   thorpej  * buffer pages are invalid.  On the alpha, request an AST to send us
   2001  1.361   thorpej  * through trap, marking the proc as needing a profiling tick.
   2002  1.361   thorpej  */
   2003  1.361   thorpej void
   2004  1.361   thorpej cpu_need_proftick(struct lwp *l)
   2005  1.361   thorpej {
   2006  1.361   thorpej 
   2007  1.361   thorpej 	KASSERT(kpreempt_disabled());
   2008  1.361   thorpej 	KASSERT(l->l_cpu == curcpu());
   2009  1.361   thorpej 
   2010  1.361   thorpej 	l->l_pflag |= LP_OWEUPC;
   2011  1.361   thorpej 	aston(l);
   2012  1.361   thorpej }
   2013