1 1.383 riastrad /* $NetBSD: machdep.c,v 1.383 2025/04/25 00:59:26 riastradh Exp $ */ 2 1.110 thorpej 3 1.110 thorpej /*- 4 1.368 thorpej * Copyright (c) 1998, 1999, 2000, 2019, 2020 The NetBSD Foundation, Inc. 5 1.110 thorpej * All rights reserved. 6 1.110 thorpej * 7 1.110 thorpej * This code is derived from software contributed to The NetBSD Foundation 8 1.110 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 1.110 thorpej * NASA Ames Research Center and by Chris G. Demetriou. 10 1.110 thorpej * 11 1.110 thorpej * Redistribution and use in source and binary forms, with or without 12 1.110 thorpej * modification, are permitted provided that the following conditions 13 1.110 thorpej * are met: 14 1.110 thorpej * 1. Redistributions of source code must retain the above copyright 15 1.110 thorpej * notice, this list of conditions and the following disclaimer. 16 1.110 thorpej * 2. Redistributions in binary form must reproduce the above copyright 17 1.110 thorpej * notice, this list of conditions and the following disclaimer in the 18 1.110 thorpej * documentation and/or other materials provided with the distribution. 19 1.110 thorpej * 20 1.110 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 1.110 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 1.110 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 1.110 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 1.110 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 1.110 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 1.110 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 1.110 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 1.110 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 1.110 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 1.110 thorpej * POSSIBILITY OF SUCH DAMAGE. 31 1.110 thorpej */ 32 1.1 cgd 33 1.1 cgd /* 34 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University. 35 1.1 cgd * All rights reserved. 36 1.1 cgd * 37 1.1 cgd * Author: Chris G. Demetriou 38 1.337 matt * 39 1.1 cgd * Permission to use, copy, modify and distribute this software and 40 1.1 cgd * its documentation is hereby granted, provided that both the copyright 41 1.1 cgd * notice and this permission notice appear in all copies of the 42 1.1 cgd * software, derivative works or modified versions, and any portions 43 1.1 cgd * thereof, and that both notices appear in supporting documentation. 44 1.337 matt * 45 1.337 matt * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 46 1.337 matt * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 47 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 48 1.337 matt * 49 1.1 cgd * Carnegie Mellon requests users of this software to return to 50 1.1 cgd * 51 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU 52 1.1 cgd * School of Computer Science 53 1.1 cgd * Carnegie Mellon University 54 1.1 cgd * Pittsburgh PA 15213-3890 55 1.1 cgd * 56 1.1 cgd * any improvements or extensions that they make and grant Carnegie the 57 1.1 cgd * rights to redistribute these changes. 58 1.1 cgd */ 59 1.74 cgd 60 1.129 jonathan #include "opt_ddb.h" 61 1.244 lukem #include "opt_kgdb.h" 62 1.315 apb #include "opt_modular.h" 63 1.147 thorpej #include "opt_multiprocessor.h" 64 1.123 thorpej #include "opt_dec_3000_300.h" 65 1.123 thorpej #include "opt_dec_3000_500.h" 66 1.250 jdolecek #include "opt_execfmt.h" 67 1.112 thorpej 68 1.375 thorpej #define __RWLOCK_PRIVATE 69 1.374 thorpej 70 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */ 71 1.75 cgd 72 1.383 riastrad __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.383 2025/04/25 00:59:26 riastradh Exp $"); 73 1.1 cgd 74 1.1 cgd #include <sys/param.h> 75 1.1 cgd #include <sys/systm.h> 76 1.1 cgd #include <sys/signalvar.h> 77 1.1 cgd #include <sys/kernel.h> 78 1.297 yamt #include <sys/cpu.h> 79 1.1 cgd #include <sys/proc.h> 80 1.264 nathanw #include <sys/ras.h> 81 1.207 thorpej #include <sys/sched.h> 82 1.1 cgd #include <sys/reboot.h> 83 1.28 cgd #include <sys/device.h> 84 1.354 thorpej #include <sys/module.h> 85 1.110 thorpej #include <sys/mman.h> 86 1.1 cgd #include <sys/msgbuf.h> 87 1.1 cgd #include <sys/ioctl.h> 88 1.1 cgd #include <sys/tty.h> 89 1.1 cgd #include <sys/exec.h> 90 1.320 matt #include <sys/exec_aout.h> /* for MID_* */ 91 1.1 cgd #include <sys/exec_ecoff.h> 92 1.43 cgd #include <sys/core.h> 93 1.43 cgd #include <sys/kcore.h> 94 1.261 thorpej #include <sys/ucontext.h> 95 1.258 gehenna #include <sys/conf.h> 96 1.266 ragge #include <sys/ksyms.h> 97 1.290 elad #include <sys/kauth.h> 98 1.303 ad #include <sys/atomic.h> 99 1.303 ad #include <sys/cpu.h> 100 1.374 thorpej #include <sys/rwlock.h> 101 1.303 ad 102 1.43 cgd #include <machine/kcore.h> 103 1.241 ross #include <machine/fpu.h> 104 1.1 cgd 105 1.1 cgd #include <sys/mount.h> 106 1.1 cgd #include <sys/syscallargs.h> 107 1.1 cgd 108 1.327 uebayasi #include <uvm/uvm.h> 109 1.217 mrg #include <sys/sysctl.h> 110 1.112 thorpej 111 1.1 cgd #include <dev/cons.h> 112 1.335 rmind #include <dev/mm.h> 113 1.1 cgd 114 1.81 thorpej #include <machine/autoconf.h> 115 1.1 cgd #include <machine/reg.h> 116 1.1 cgd #include <machine/rpb.h> 117 1.1 cgd #include <machine/prom.h> 118 1.258 gehenna #include <machine/cpuconf.h> 119 1.172 ross #include <machine/ieeefp.h> 120 1.148 thorpej 121 1.81 thorpej #ifdef DDB 122 1.81 thorpej #include <machine/db_machdep.h> 123 1.81 thorpej #include <ddb/db_access.h> 124 1.81 thorpej #include <ddb/db_sym.h> 125 1.81 thorpej #include <ddb/db_extern.h> 126 1.81 thorpej #include <ddb/db_interface.h> 127 1.233 thorpej #endif 128 1.233 thorpej 129 1.233 thorpej #ifdef KGDB 130 1.233 thorpej #include <sys/kgdb.h> 131 1.81 thorpej #endif 132 1.81 thorpej 133 1.229 sommerfe #ifdef DEBUG 134 1.229 sommerfe #include <machine/sigdebug.h> 135 1.346 uebayasi int sigdebug = 0x0; 136 1.346 uebayasi int sigpid = 0; 137 1.229 sommerfe #endif 138 1.229 sommerfe 139 1.374 thorpej /* Assert some assumptions made in lock_stubs.s */ 140 1.374 thorpej __CTASSERT(RW_READER == 0); 141 1.374 thorpej __CTASSERT(RW_HAS_WAITERS == 1); 142 1.374 thorpej 143 1.155 ross #include <machine/alpha.h> 144 1.143 matt 145 1.266 ragge #include "ksyms.h" 146 1.266 ragge 147 1.245 chs struct vm_map *phys_map = NULL; 148 1.1 cgd 149 1.295 christos void *msgbufaddr; 150 1.86 leo 151 1.1 cgd int maxmem; /* max memory per process */ 152 1.7 cgd 153 1.7 cgd int totalphysmem; /* total amount of physical memory in system */ 154 1.1 cgd int resvmem; /* amount of memory reserved for PROM */ 155 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */ 156 1.7 cgd int unknownmem; /* amount of memory with an unknown use */ 157 1.1 cgd 158 1.1 cgd int cputype; /* system type, from the RPB */ 159 1.377 andvar bool alpha_is_qemu; /* true if we've detected running in qemu */ 160 1.210 thorpej 161 1.210 thorpej int bootdev_debug = 0; /* patchable, or from DDB */ 162 1.1 cgd 163 1.1 cgd /* 164 1.1 cgd * XXX We need an address to which we can assign things so that they 165 1.1 cgd * won't be optimized away because we didn't use the value. 166 1.1 cgd */ 167 1.337 matt uint32_t no_optimize; 168 1.1 cgd 169 1.1 cgd /* the following is used externally (sysctl_hw) */ 170 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */ 171 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */ 172 1.1 cgd 173 1.1 cgd /* Number of machine cycles per microsecond */ 174 1.337 matt uint64_t cycles_per_usec; 175 1.1 cgd 176 1.280 wiz /* number of CPUs in the box. really! */ 177 1.7 cgd int ncpus; 178 1.7 cgd 179 1.102 cgd struct bootinfo_kernel bootinfo; 180 1.81 thorpej 181 1.123 thorpej /* For built-in TCDS */ 182 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500) 183 1.347 flxd uint8_t dec_3000_scsiid[3], dec_3000_scsifast[3]; 184 1.123 thorpej #endif 185 1.123 thorpej 186 1.89 mjacob struct platform platform; 187 1.89 mjacob 188 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR) 189 1.81 thorpej /* start and end of kernel symbol table */ 190 1.81 thorpej void *ksym_start, *ksym_end; 191 1.81 thorpej #endif 192 1.81 thorpej 193 1.30 cgd /* for cpu_sysctl() */ 194 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */ 195 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */ 196 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */ 197 1.241 ross int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */ 198 1.375 thorpej int alpha_fp_complete_debug = 0; /* fp completion debug enabled */ 199 1.30 cgd 200 1.110 thorpej /* 201 1.110 thorpej * XXX This should be dynamically sized, but we have the chicken-egg problem! 202 1.110 thorpej * XXX it should also be larger than it is, because not all of the mddt 203 1.110 thorpej * XXX clusters end up being used for VM. 204 1.110 thorpej */ 205 1.110 thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */ 206 1.110 thorpej int mem_cluster_cnt; 207 1.110 thorpej 208 1.316 dsl int cpu_dump(void); 209 1.316 dsl int cpu_dumpsize(void); 210 1.316 dsl u_long cpu_dump_mempagecnt(void); 211 1.316 dsl void dumpsys(void); 212 1.316 dsl void identifycpu(void); 213 1.316 dsl void printregs(struct reg *); 214 1.33 cgd 215 1.334 matt const pcu_ops_t fpu_ops = { 216 1.334 matt .pcu_id = PCU_FPU, 217 1.334 matt .pcu_state_load = fpu_state_load, 218 1.334 matt .pcu_state_save = fpu_state_save, 219 1.334 matt .pcu_state_release = fpu_state_release, 220 1.334 matt }; 221 1.334 matt 222 1.334 matt const pcu_ops_t * const pcu_ops_md_defs[PCU_UNIT_COUNT] = { 223 1.334 matt [PCU_FPU] = &fpu_ops, 224 1.334 matt }; 225 1.334 matt 226 1.368 thorpej static void 227 1.368 thorpej alpha_page_physload(unsigned long const start_pfn, unsigned long const end_pfn) 228 1.368 thorpej { 229 1.368 thorpej 230 1.368 thorpej /* 231 1.368 thorpej * Some Alpha platforms may have unique requirements about 232 1.368 thorpej * how physical memory is managed (e.g. reserving memory 233 1.368 thorpej * ranges due to lack of SGMAP DMA). 234 1.368 thorpej */ 235 1.368 thorpej if (platform.page_physload != NULL) { 236 1.368 thorpej (*platform.page_physload)(start_pfn, end_pfn); 237 1.368 thorpej return; 238 1.368 thorpej } 239 1.368 thorpej 240 1.368 thorpej uvm_page_physload(start_pfn, end_pfn, start_pfn, end_pfn, 241 1.368 thorpej VM_FREELIST_DEFAULT); 242 1.368 thorpej } 243 1.368 thorpej 244 1.368 thorpej void 245 1.368 thorpej alpha_page_physload_sheltered(unsigned long const start_pfn, 246 1.368 thorpej unsigned long const end_pfn, unsigned long const shelter_start_pfn, 247 1.368 thorpej unsigned long const shelter_end_pfn) 248 1.368 thorpej { 249 1.368 thorpej 250 1.368 thorpej /* 251 1.368 thorpej * If the added region ends before or starts after the sheltered 252 1.368 thorpej * region, then it just goes on the default freelist. 253 1.368 thorpej */ 254 1.368 thorpej if (end_pfn <= shelter_start_pfn || start_pfn >= shelter_end_pfn) { 255 1.368 thorpej uvm_page_physload(start_pfn, end_pfn, 256 1.368 thorpej start_pfn, end_pfn, VM_FREELIST_DEFAULT); 257 1.368 thorpej return; 258 1.368 thorpej } 259 1.368 thorpej 260 1.368 thorpej /* 261 1.368 thorpej * Load any portion that comes before the sheltered region. 262 1.368 thorpej */ 263 1.368 thorpej if (start_pfn < shelter_start_pfn) { 264 1.368 thorpej KASSERT(end_pfn > shelter_start_pfn); 265 1.368 thorpej uvm_page_physload(start_pfn, shelter_start_pfn, 266 1.368 thorpej start_pfn, shelter_start_pfn, VM_FREELIST_DEFAULT); 267 1.368 thorpej } 268 1.368 thorpej 269 1.368 thorpej /* 270 1.368 thorpej * Load the portion that overlaps that sheltered region. 271 1.368 thorpej */ 272 1.368 thorpej const unsigned long ov_start = MAX(start_pfn, shelter_start_pfn); 273 1.368 thorpej const unsigned long ov_end = MIN(end_pfn, shelter_end_pfn); 274 1.368 thorpej KASSERT(ov_start >= shelter_start_pfn); 275 1.368 thorpej KASSERT(ov_end <= shelter_end_pfn); 276 1.368 thorpej uvm_page_physload(ov_start, ov_end, ov_start, ov_end, 277 1.368 thorpej VM_FREELIST_SHELTERED); 278 1.368 thorpej 279 1.368 thorpej /* 280 1.368 thorpej * Load any portion that comes after the sheltered region. 281 1.368 thorpej */ 282 1.368 thorpej if (end_pfn > shelter_end_pfn) { 283 1.368 thorpej KASSERT(start_pfn < shelter_end_pfn); 284 1.368 thorpej uvm_page_physload(shelter_end_pfn, end_pfn, 285 1.368 thorpej shelter_end_pfn, end_pfn, VM_FREELIST_DEFAULT); 286 1.368 thorpej } 287 1.368 thorpej } 288 1.368 thorpej 289 1.55 cgd void 290 1.358 thorpej alpha_init(u_long xxx_pfn __unused, u_long ptb, u_long bim, u_long bip, 291 1.358 thorpej u_long biv) 292 1.358 thorpej /* pfn: first free PFN number (no longer used) */ 293 1.318 dsl /* ptb: PFN of current level 1 page table */ 294 1.318 dsl /* bim: bootinfo magic */ 295 1.318 dsl /* bip: bootinfo pointer */ 296 1.318 dsl /* biv: bootinfo version */ 297 1.1 cgd { 298 1.95 thorpej extern char kernel_text[], _end[]; 299 1.1 cgd struct mddt *mddtp; 300 1.110 thorpej struct mddt_cluster *memc; 301 1.7 cgd int i, mddtweird; 302 1.324 rmind struct pcb *pcb0; 303 1.324 rmind vaddr_t kernstart, kernend, v; 304 1.140 thorpej paddr_t kernstartpfn, kernendpfn, pfn0, pfn1; 305 1.211 thorpej cpuid_t cpu_id; 306 1.211 thorpej struct cpu_info *ci; 307 1.1 cgd char *p; 308 1.209 thorpej const char *bootinfo_msg; 309 1.209 thorpej const struct cpuinit *c; 310 1.106 cgd 311 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */ 312 1.1 cgd 313 1.1 cgd /* 314 1.77 cgd * Turn off interrupts (not mchecks) and floating point. 315 1.1 cgd * Make sure the instruction and data streams are consistent. 316 1.1 cgd */ 317 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH); 318 1.32 cgd alpha_pal_wrfen(0); 319 1.37 cgd ALPHA_TBIA(); 320 1.32 cgd alpha_pal_imb(); 321 1.248 thorpej 322 1.248 thorpej /* Initialize the SCB. */ 323 1.248 thorpej scb_init(); 324 1.1 cgd 325 1.211 thorpej cpu_id = cpu_number(); 326 1.211 thorpej 327 1.364 thorpej ci = &cpu_info_primary; 328 1.364 thorpej ci->ci_cpuid = cpu_id; 329 1.364 thorpej 330 1.189 thorpej #if defined(MULTIPROCESSOR) 331 1.189 thorpej /* 332 1.364 thorpej * Set the SysValue to &lwp0, after making sure that lwp0 333 1.364 thorpej * is pointing at the primary CPU. Secondary processors do 334 1.364 thorpej * this in their spinup trampoline. 335 1.189 thorpej */ 336 1.364 thorpej lwp0.l_cpu = ci; 337 1.364 thorpej cpu_info[cpu_id] = ci; 338 1.364 thorpej alpha_pal_wrval((u_long)&lwp0); 339 1.189 thorpej #endif 340 1.189 thorpej 341 1.1 cgd /* 342 1.106 cgd * Get critical system information (if possible, from the 343 1.106 cgd * information provided by the boot program). 344 1.81 thorpej */ 345 1.106 cgd bootinfo_msg = NULL; 346 1.81 thorpej if (bim == BOOTINFO_MAGIC) { 347 1.102 cgd if (biv == 0) { /* backward compat */ 348 1.102 cgd biv = *(u_long *)bip; 349 1.102 cgd bip += 8; 350 1.102 cgd } 351 1.102 cgd switch (biv) { 352 1.102 cgd case 1: { 353 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip; 354 1.102 cgd 355 1.102 cgd bootinfo.ssym = v1p->ssym; 356 1.102 cgd bootinfo.esym = v1p->esym; 357 1.106 cgd /* hwrpb may not be provided by boot block in v1 */ 358 1.106 cgd if (v1p->hwrpb != NULL) { 359 1.106 cgd bootinfo.hwrpb_phys = 360 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys; 361 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize; 362 1.106 cgd } else { 363 1.106 cgd bootinfo.hwrpb_phys = 364 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys; 365 1.106 cgd bootinfo.hwrpb_size = 366 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size; 367 1.106 cgd } 368 1.247 thorpej memcpy(bootinfo.boot_flags, v1p->boot_flags, 369 1.351 riastrad uimin(sizeof v1p->boot_flags, 370 1.102 cgd sizeof bootinfo.boot_flags)); 371 1.247 thorpej memcpy(bootinfo.booted_kernel, v1p->booted_kernel, 372 1.351 riastrad uimin(sizeof v1p->booted_kernel, 373 1.102 cgd sizeof bootinfo.booted_kernel)); 374 1.106 cgd /* booted dev not provided in bootinfo */ 375 1.363 thorpej init_prom_interface(ptb, (struct rpb *) 376 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys)); 377 1.337 matt prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev, 378 1.102 cgd sizeof bootinfo.booted_dev); 379 1.81 thorpej break; 380 1.102 cgd } 381 1.81 thorpej default: 382 1.106 cgd bootinfo_msg = "unknown bootinfo version"; 383 1.102 cgd goto nobootinfo; 384 1.81 thorpej } 385 1.102 cgd } else { 386 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo"; 387 1.102 cgd nobootinfo: 388 1.102 cgd bootinfo.ssym = (u_long)_end; 389 1.102 cgd bootinfo.esym = (u_long)_end; 390 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys; 391 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size; 392 1.363 thorpej init_prom_interface(ptb, (struct rpb *)HWRPB_ADDR); 393 1.366 thorpej if (alpha_is_qemu) { 394 1.366 thorpej /* 395 1.366 thorpej * Grab boot flags from kernel command line. 396 1.366 thorpej * Assume autoboot if not supplied. 397 1.366 thorpej */ 398 1.366 thorpej if (! prom_qemu_getenv("flags", bootinfo.boot_flags, 399 1.366 thorpej sizeof(bootinfo.boot_flags))) { 400 1.366 thorpej strlcpy(bootinfo.boot_flags, "A", 401 1.366 thorpej sizeof(bootinfo.boot_flags)); 402 1.366 thorpej } 403 1.366 thorpej } else { 404 1.366 thorpej prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags, 405 1.366 thorpej sizeof bootinfo.boot_flags); 406 1.366 thorpej prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel, 407 1.366 thorpej sizeof bootinfo.booted_kernel); 408 1.366 thorpej prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev, 409 1.366 thorpej sizeof bootinfo.booted_dev); 410 1.366 thorpej } 411 1.102 cgd } 412 1.102 cgd 413 1.81 thorpej /* 414 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for 415 1.106 cgd * lots of things. 416 1.106 cgd */ 417 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys); 418 1.123 thorpej 419 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500) 420 1.123 thorpej if (hwrpb->rpb_type == ST_DEC_3000_300 || 421 1.123 thorpej hwrpb->rpb_type == ST_DEC_3000_500) { 422 1.123 thorpej prom_getenv(PROM_E_SCSIID, dec_3000_scsiid, 423 1.123 thorpej sizeof(dec_3000_scsiid)); 424 1.123 thorpej prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast, 425 1.123 thorpej sizeof(dec_3000_scsifast)); 426 1.123 thorpej } 427 1.123 thorpej #endif 428 1.106 cgd 429 1.106 cgd /* 430 1.337 matt * Remember how many cycles there are per microsecond, 431 1.106 cgd * so that we can use delay(). Round up, for safety. 432 1.106 cgd */ 433 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000; 434 1.106 cgd 435 1.106 cgd /* 436 1.251 wiz * Initialize the (temporary) bootstrap console interface, so 437 1.106 cgd * we can use printf until the VM system starts being setup. 438 1.106 cgd * The real console is initialized before then. 439 1.106 cgd */ 440 1.106 cgd init_bootstrap_console(); 441 1.106 cgd 442 1.106 cgd /* OUTPUT NOW ALLOWED */ 443 1.106 cgd 444 1.106 cgd /* delayed from above */ 445 1.106 cgd if (bootinfo_msg) 446 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n", 447 1.106 cgd bootinfo_msg, bim, bip, biv); 448 1.106 cgd 449 1.147 thorpej /* Initialize the trap vectors on the primary processor. */ 450 1.147 thorpej trap_init(); 451 1.1 cgd 452 1.1 cgd /* 453 1.263 thorpej * Find out this system's page size, and initialize 454 1.263 thorpej * PAGE_SIZE-dependent variables. 455 1.243 thorpej */ 456 1.263 thorpej if (hwrpb->rpb_page_size != ALPHA_PGBYTES) 457 1.263 thorpej panic("page size %lu != %d?!", hwrpb->rpb_page_size, 458 1.263 thorpej ALPHA_PGBYTES); 459 1.263 thorpej uvmexp.pagesize = hwrpb->rpb_page_size; 460 1.348 cherry uvm_md_init(); 461 1.243 thorpej 462 1.243 thorpej /* 463 1.363 thorpej * cputype has been initialized in init_prom_interface(). 464 1.363 thorpej * Perform basic platform initialization using this info. 465 1.106 cgd */ 466 1.363 thorpej KASSERT(prom_interface_initialized); 467 1.209 thorpej c = platform_lookup(cputype); 468 1.209 thorpej if (c == NULL) { 469 1.106 cgd platform_not_supported(); 470 1.106 cgd /* NOTREACHED */ 471 1.106 cgd } 472 1.209 thorpej (*c->init)(); 473 1.344 christos cpu_setmodel("%s", platform.model); 474 1.106 cgd 475 1.106 cgd /* 476 1.251 wiz * Initialize the real console, so that the bootstrap console is 477 1.106 cgd * no longer necessary. 478 1.106 cgd */ 479 1.169 thorpej (*platform.cons_init)(); 480 1.106 cgd 481 1.106 cgd #ifdef DIAGNOSTIC 482 1.106 cgd /* Paranoid sanity checking */ 483 1.106 cgd 484 1.199 soren /* We should always be running on the primary. */ 485 1.211 thorpej assert(hwrpb->rpb_primary_cpu_id == cpu_id); 486 1.106 cgd 487 1.116 mjacob /* 488 1.116 mjacob * On single-CPU systypes, the primary should always be CPU 0, 489 1.116 mjacob * except on Alpha 8200 systems where the CPU id is related 490 1.116 mjacob * to the VID, which is related to the Turbo Laser node id. 491 1.116 mjacob */ 492 1.106 cgd if (cputype != ST_DEC_21000) 493 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0); 494 1.106 cgd #endif 495 1.106 cgd 496 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */ 497 1.363 thorpej /* XXX Unless prom_uses_prom_console() evaluates to non-zero.) */ 498 1.95 thorpej 499 1.95 thorpej /* 500 1.101 cgd * Find the beginning and end of the kernel (and leave a 501 1.101 cgd * bit of space before the beginning for the bootstrap 502 1.101 cgd * stack). 503 1.95 thorpej */ 504 1.201 kleink kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE; 505 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR) 506 1.102 cgd ksym_start = (void *)bootinfo.ssym; 507 1.102 cgd ksym_end = (void *)bootinfo.esym; 508 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)ksym_end); 509 1.102 cgd #else 510 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)_end); 511 1.95 thorpej #endif 512 1.95 thorpej 513 1.110 thorpej kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart)); 514 1.110 thorpej kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend)); 515 1.110 thorpej 516 1.95 thorpej /* 517 1.1 cgd * Find out how much memory is available, by looking at 518 1.7 cgd * the memory cluster descriptors. This also tries to do 519 1.7 cgd * its best to detect things things that have never been seen 520 1.7 cgd * before... 521 1.1 cgd */ 522 1.296 yamt mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off); 523 1.7 cgd 524 1.110 thorpej /* MDDT SANITY CHECKING */ 525 1.7 cgd mddtweird = 0; 526 1.110 thorpej if (mddtp->mddt_cluster_cnt < 2) { 527 1.7 cgd mddtweird = 1; 528 1.160 thorpej printf("WARNING: weird number of mem clusters: %lu\n", 529 1.110 thorpej mddtp->mddt_cluster_cnt); 530 1.7 cgd } 531 1.7 cgd 532 1.110 thorpej #if 0 533 1.359 thorpej printf("Memory cluster count: %" PRIu64 "\n", mddtp->mddt_cluster_cnt); 534 1.110 thorpej #endif 535 1.110 thorpej 536 1.110 thorpej for (i = 0; i < mddtp->mddt_cluster_cnt; i++) { 537 1.110 thorpej memc = &mddtp->mddt_clusters[i]; 538 1.110 thorpej #if 0 539 1.110 thorpej printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i, 540 1.110 thorpej memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage); 541 1.110 thorpej #endif 542 1.110 thorpej totalphysmem += memc->mddt_pg_cnt; 543 1.110 thorpej if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */ 544 1.110 thorpej mem_clusters[mem_cluster_cnt].start = 545 1.110 thorpej ptoa(memc->mddt_pfn); 546 1.110 thorpej mem_clusters[mem_cluster_cnt].size = 547 1.110 thorpej ptoa(memc->mddt_pg_cnt); 548 1.110 thorpej if (memc->mddt_usage & MDDT_mbz || 549 1.110 thorpej memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */ 550 1.110 thorpej memc->mddt_usage & MDDT_PALCODE) 551 1.110 thorpej mem_clusters[mem_cluster_cnt].size |= 552 1.110 thorpej PROT_READ; 553 1.110 thorpej else 554 1.110 thorpej mem_clusters[mem_cluster_cnt].size |= 555 1.110 thorpej PROT_READ | PROT_WRITE | PROT_EXEC; 556 1.110 thorpej mem_cluster_cnt++; 557 1.110 thorpej } 558 1.110 thorpej 559 1.110 thorpej if (memc->mddt_usage & MDDT_mbz) { 560 1.7 cgd mddtweird = 1; 561 1.110 thorpej printf("WARNING: mem cluster %d has weird " 562 1.110 thorpej "usage 0x%lx\n", i, memc->mddt_usage); 563 1.110 thorpej unknownmem += memc->mddt_pg_cnt; 564 1.110 thorpej continue; 565 1.7 cgd } 566 1.110 thorpej if (memc->mddt_usage & MDDT_NONVOLATILE) { 567 1.110 thorpej /* XXX should handle these... */ 568 1.110 thorpej printf("WARNING: skipping non-volatile mem " 569 1.110 thorpej "cluster %d\n", i); 570 1.110 thorpej unusedmem += memc->mddt_pg_cnt; 571 1.110 thorpej continue; 572 1.110 thorpej } 573 1.110 thorpej if (memc->mddt_usage & MDDT_PALCODE) { 574 1.110 thorpej resvmem += memc->mddt_pg_cnt; 575 1.110 thorpej continue; 576 1.110 thorpej } 577 1.110 thorpej 578 1.110 thorpej /* 579 1.110 thorpej * We have a memory cluster available for system 580 1.110 thorpej * software use. We must determine if this cluster 581 1.110 thorpej * holds the kernel. 582 1.110 thorpej */ 583 1.363 thorpej 584 1.110 thorpej /* 585 1.110 thorpej * XXX If the kernel uses the PROM console, we only use the 586 1.110 thorpej * XXX memory after the kernel in the first system segment, 587 1.110 thorpej * XXX to avoid clobbering prom mapping, data, etc. 588 1.110 thorpej */ 589 1.110 thorpej physmem += memc->mddt_pg_cnt; 590 1.110 thorpej pfn0 = memc->mddt_pfn; 591 1.110 thorpej pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt; 592 1.110 thorpej if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) { 593 1.110 thorpej /* 594 1.110 thorpej * Must compute the location of the kernel 595 1.110 thorpej * within the segment. 596 1.110 thorpej */ 597 1.110 thorpej #if 0 598 1.110 thorpej printf("Cluster %d contains kernel\n", i); 599 1.110 thorpej #endif 600 1.363 thorpej if (pfn0 < kernstartpfn && !prom_uses_prom_console()) { 601 1.110 thorpej /* 602 1.110 thorpej * There is a chunk before the kernel. 603 1.110 thorpej */ 604 1.110 thorpej #if 0 605 1.110 thorpej printf("Loading chunk before kernel: " 606 1.110 thorpej "0x%lx / 0x%lx\n", pfn0, kernstartpfn); 607 1.110 thorpej #endif 608 1.368 thorpej alpha_page_physload(pfn0, kernstartpfn); 609 1.110 thorpej } 610 1.110 thorpej if (kernendpfn < pfn1) { 611 1.110 thorpej /* 612 1.110 thorpej * There is a chunk after the kernel. 613 1.110 thorpej */ 614 1.110 thorpej #if 0 615 1.110 thorpej printf("Loading chunk after kernel: " 616 1.110 thorpej "0x%lx / 0x%lx\n", kernendpfn, pfn1); 617 1.110 thorpej #endif 618 1.368 thorpej alpha_page_physload(kernendpfn, pfn1); 619 1.110 thorpej } 620 1.110 thorpej } else { 621 1.110 thorpej /* 622 1.110 thorpej * Just load this cluster as one chunk. 623 1.110 thorpej */ 624 1.110 thorpej #if 0 625 1.110 thorpej printf("Loading cluster %d: 0x%lx / 0x%lx\n", i, 626 1.110 thorpej pfn0, pfn1); 627 1.110 thorpej #endif 628 1.368 thorpej alpha_page_physload(pfn0, pfn1); 629 1.7 cgd } 630 1.7 cgd } 631 1.7 cgd 632 1.110 thorpej /* 633 1.110 thorpej * Dump out the MDDT if it looks odd... 634 1.110 thorpej */ 635 1.7 cgd if (mddtweird) { 636 1.46 christos printf("\n"); 637 1.46 christos printf("complete memory cluster information:\n"); 638 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) { 639 1.46 christos printf("mddt %d:\n", i); 640 1.46 christos printf("\tpfn %lx\n", 641 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn); 642 1.46 christos printf("\tcnt %lx\n", 643 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt); 644 1.46 christos printf("\ttest %lx\n", 645 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test); 646 1.46 christos printf("\tbva %lx\n", 647 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr); 648 1.46 christos printf("\tbpa %lx\n", 649 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr); 650 1.46 christos printf("\tbcksum %lx\n", 651 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum); 652 1.46 christos printf("\tusage %lx\n", 653 1.2 cgd mddtp->mddt_clusters[i].mddt_usage); 654 1.2 cgd } 655 1.46 christos printf("\n"); 656 1.2 cgd } 657 1.2 cgd 658 1.7 cgd if (totalphysmem == 0) 659 1.1 cgd panic("can't happen: system seems to have no memory!"); 660 1.1 cgd maxmem = physmem; 661 1.7 cgd #if 0 662 1.46 christos printf("totalphysmem = %d\n", totalphysmem); 663 1.359 thorpej printf("physmem = %lu\n", physmem); 664 1.46 christos printf("resvmem = %d\n", resvmem); 665 1.46 christos printf("unusedmem = %d\n", unusedmem); 666 1.46 christos printf("unknownmem = %d\n", unknownmem); 667 1.7 cgd #endif 668 1.7 cgd 669 1.1 cgd /* 670 1.1 cgd * Initialize error message buffer (at end of core). 671 1.1 cgd */ 672 1.110 thorpej { 673 1.349 cherry paddr_t end; 674 1.204 enami vsize_t sz = (vsize_t)round_page(MSGBUFSIZE); 675 1.203 enami vsize_t reqsz = sz; 676 1.349 cherry uvm_physseg_t bank; 677 1.110 thorpej 678 1.349 cherry bank = uvm_physseg_get_last(); 679 1.110 thorpej 680 1.110 thorpej /* shrink so that it'll fit in the last segment */ 681 1.349 cherry if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < atop(sz)) 682 1.349 cherry sz = ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank)); 683 1.349 cherry 684 1.349 cherry end = uvm_physseg_get_end(bank); 685 1.349 cherry end -= atop(sz); 686 1.349 cherry 687 1.349 cherry uvm_physseg_unplug(end, atop(sz)); 688 1.349 cherry msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(end)); 689 1.110 thorpej 690 1.110 thorpej initmsgbuf(msgbufaddr, sz); 691 1.110 thorpej 692 1.110 thorpej /* warn if the message buffer had to be shrunk */ 693 1.203 enami if (sz != reqsz) 694 1.203 enami printf("WARNING: %ld bytes not available for msgbuf " 695 1.203 enami "in last cluster (%ld used)\n", reqsz, sz); 696 1.268 thorpej 697 1.110 thorpej } 698 1.239 thorpej 699 1.239 thorpej /* 700 1.268 thorpej * NOTE: It is safe to use uvm_pageboot_alloc() before 701 1.268 thorpej * pmap_bootstrap() because our pmap_virtual_space() 702 1.268 thorpej * returns compile-time constants. 703 1.268 thorpej */ 704 1.268 thorpej 705 1.268 thorpej /* 706 1.324 rmind * Allocate uarea page for lwp0 and set it. 707 1.1 cgd */ 708 1.324 rmind v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE); 709 1.324 rmind uvm_lwp_setuarea(&lwp0, v); 710 1.1 cgd 711 1.1 cgd /* 712 1.1 cgd * Initialize the virtual memory system, and set the 713 1.1 cgd * page table base register in proc 0's PCB. 714 1.1 cgd */ 715 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT), 716 1.144 thorpej hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt); 717 1.1 cgd 718 1.1 cgd /* 719 1.324 rmind * Initialize the rest of lwp0's PCB and cache its physical address. 720 1.3 cgd */ 721 1.324 rmind pcb0 = lwp_getpcb(&lwp0); 722 1.324 rmind lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0); 723 1.3 cgd 724 1.3 cgd /* 725 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe, 726 1.323 matt * and make lwp0's trapframe pointer point to it for sanity. 727 1.3 cgd */ 728 1.324 rmind pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe); 729 1.324 rmind lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp; 730 1.189 thorpej 731 1.323 matt /* Indicate that lwp0 has a CPU. */ 732 1.261 thorpej lwp0.l_cpu = ci; 733 1.1 cgd 734 1.1 cgd /* 735 1.25 cgd * Look at arguments passed to us and compute boothowto. 736 1.8 cgd */ 737 1.1 cgd 738 1.8 cgd boothowto = RB_SINGLE; 739 1.1 cgd #ifdef KADB 740 1.1 cgd boothowto |= RB_KDB; 741 1.1 cgd #endif 742 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) { 743 1.26 cgd /* 744 1.26 cgd * Note that we'd really like to differentiate case here, 745 1.26 cgd * but the Alpha AXP Architecture Reference Manual 746 1.26 cgd * says that we shouldn't. 747 1.26 cgd */ 748 1.8 cgd switch (*p) { 749 1.26 cgd case 'a': /* autoboot */ 750 1.26 cgd case 'A': 751 1.26 cgd boothowto &= ~RB_SINGLE; 752 1.21 cgd break; 753 1.21 cgd 754 1.43 cgd #ifdef DEBUG 755 1.43 cgd case 'c': /* crash dump immediately after autoconfig */ 756 1.43 cgd case 'C': 757 1.43 cgd boothowto |= RB_DUMP; 758 1.43 cgd break; 759 1.43 cgd #endif 760 1.43 cgd 761 1.81 thorpej #if defined(KGDB) || defined(DDB) 762 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */ 763 1.81 thorpej case 'D': 764 1.81 thorpej boothowto |= RB_KDB; 765 1.81 thorpej break; 766 1.81 thorpej #endif 767 1.81 thorpej 768 1.36 cgd case 'h': /* always halt, never reboot */ 769 1.36 cgd case 'H': 770 1.36 cgd boothowto |= RB_HALT; 771 1.8 cgd break; 772 1.8 cgd 773 1.21 cgd #if 0 774 1.8 cgd case 'm': /* mini root present in memory */ 775 1.26 cgd case 'M': 776 1.8 cgd boothowto |= RB_MINIROOT; 777 1.8 cgd break; 778 1.21 cgd #endif 779 1.36 cgd 780 1.36 cgd case 'n': /* askname */ 781 1.36 cgd case 'N': 782 1.36 cgd boothowto |= RB_ASKNAME; 783 1.65 cgd break; 784 1.65 cgd 785 1.65 cgd case 's': /* single-user (default, supported for sanity) */ 786 1.65 cgd case 'S': 787 1.65 cgd boothowto |= RB_SINGLE; 788 1.221 jdolecek break; 789 1.221 jdolecek 790 1.221 jdolecek case 'q': /* quiet boot */ 791 1.221 jdolecek case 'Q': 792 1.221 jdolecek boothowto |= AB_QUIET; 793 1.221 jdolecek break; 794 1.362 riastrad 795 1.221 jdolecek case 'v': /* verbose boot */ 796 1.221 jdolecek case 'V': 797 1.221 jdolecek boothowto |= AB_VERBOSE; 798 1.119 thorpej break; 799 1.119 thorpej 800 1.376 rin case 'x': /* debug messages */ 801 1.376 rin case 'X': 802 1.376 rin boothowto |= AB_DEBUG; 803 1.376 rin break; 804 1.376 rin 805 1.119 thorpej case '-': 806 1.119 thorpej /* 807 1.119 thorpej * Just ignore this. It's not required, but it's 808 1.119 thorpej * common for it to be passed regardless. 809 1.119 thorpej */ 810 1.65 cgd break; 811 1.65 cgd 812 1.65 cgd default: 813 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p); 814 1.36 cgd break; 815 1.1 cgd } 816 1.1 cgd } 817 1.1 cgd 818 1.302 ad /* 819 1.302 ad * Perform any initial kernel patches based on the running system. 820 1.302 ad * We may perform more later if we attach additional CPUs. 821 1.302 ad */ 822 1.302 ad alpha_patch(false); 823 1.136 mjacob 824 1.136 mjacob /* 825 1.280 wiz * Figure out the number of CPUs in the box, from RPB fields. 826 1.136 mjacob * Really. We mean it. 827 1.136 mjacob */ 828 1.136 mjacob for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) { 829 1.136 mjacob struct pcs *pcsp; 830 1.136 mjacob 831 1.144 thorpej pcsp = LOCATE_PCS(hwrpb, i); 832 1.136 mjacob if ((pcsp->pcs_flags & PCS_PP) != 0) 833 1.136 mjacob ncpus++; 834 1.136 mjacob } 835 1.136 mjacob 836 1.7 cgd /* 837 1.106 cgd * Initialize debuggers, and break into them if appropriate. 838 1.106 cgd */ 839 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR) 840 1.337 matt ksyms_addsyms_elf((int)((uint64_t)ksym_end - (uint64_t)ksym_start), 841 1.159 mjacob ksym_start, ksym_end); 842 1.234 thorpej #endif 843 1.234 thorpej 844 1.234 thorpej if (boothowto & RB_KDB) { 845 1.234 thorpej #if defined(KGDB) 846 1.234 thorpej kgdb_debug_init = 1; 847 1.234 thorpej kgdb_connect(1); 848 1.234 thorpej #elif defined(DDB) 849 1.106 cgd Debugger(); 850 1.106 cgd #endif 851 1.234 thorpej } 852 1.234 thorpej 853 1.298 tsutsui #ifdef DIAGNOSTIC 854 1.106 cgd /* 855 1.298 tsutsui * Check our clock frequency, from RPB fields. 856 1.106 cgd */ 857 1.298 tsutsui if ((hwrpb->rpb_intr_freq >> 12) != 1024) 858 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n", 859 1.106 cgd hwrpb->rpb_intr_freq, hz); 860 1.106 cgd #endif 861 1.95 thorpej } 862 1.95 thorpej 863 1.354 thorpej #ifdef MODULAR 864 1.354 thorpej /* Push any modules loaded by the boot loader */ 865 1.354 thorpej void 866 1.354 thorpej module_init_md(void) 867 1.354 thorpej { 868 1.354 thorpej /* nada. */ 869 1.354 thorpej } 870 1.354 thorpej #endif /* MODULAR */ 871 1.354 thorpej 872 1.18 cgd void 873 1.319 cegger consinit(void) 874 1.1 cgd { 875 1.81 thorpej 876 1.106 cgd /* 877 1.106 cgd * Everything related to console initialization is done 878 1.106 cgd * in alpha_init(). 879 1.106 cgd */ 880 1.363 thorpej #if defined(DIAGNOSTIC) && defined(_PROM_MAY_USE_PROM_CONSOLE) 881 1.106 cgd printf("consinit: %susing prom console\n", 882 1.363 thorpej prom_uses_prom_console() ? "" : "not "); 883 1.81 thorpej #endif 884 1.1 cgd } 885 1.118 thorpej 886 1.18 cgd void 887 1.319 cegger cpu_startup(void) 888 1.1 cgd { 889 1.140 thorpej vaddr_t minaddr, maxaddr; 890 1.173 lukem char pbuf[9]; 891 1.40 cgd #if defined(DEBUG) 892 1.1 cgd extern int pmapdebug; 893 1.1 cgd int opmapdebug = pmapdebug; 894 1.1 cgd 895 1.1 cgd pmapdebug = 0; 896 1.1 cgd #endif 897 1.1 cgd 898 1.1 cgd /* 899 1.1 cgd * Good {morning,afternoon,evening,night}. 900 1.1 cgd */ 901 1.284 lukem printf("%s%s", copyright, version); 902 1.1 cgd identifycpu(); 903 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem)); 904 1.173 lukem printf("total memory = %s\n", pbuf); 905 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem)); 906 1.173 lukem printf("(%s reserved for PROM, ", pbuf); 907 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(physmem)); 908 1.173 lukem printf("%s used by NetBSD)\n", pbuf); 909 1.173 lukem if (unusedmem) { 910 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem)); 911 1.173 lukem printf("WARNING: unused memory = %s\n", pbuf); 912 1.173 lukem } 913 1.173 lukem if (unknownmem) { 914 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem)); 915 1.173 lukem printf("WARNING: %s of memory with unknown purpose\n", pbuf); 916 1.173 lukem } 917 1.1 cgd 918 1.279 pk minaddr = 0; 919 1.240 thorpej 920 1.1 cgd /* 921 1.1 cgd * Allocate a submap for physio 922 1.1 cgd */ 923 1.112 thorpej phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr, 924 1.294 thorpej VM_PHYS_SIZE, 0, false, NULL); 925 1.1 cgd 926 1.1 cgd /* 927 1.164 thorpej * No need to allocate an mbuf cluster submap. Mbuf clusters 928 1.164 thorpej * are allocated via the pool allocator, and we use K0SEG to 929 1.164 thorpej * map those pages. 930 1.1 cgd */ 931 1.1 cgd 932 1.40 cgd #if defined(DEBUG) 933 1.1 cgd pmapdebug = opmapdebug; 934 1.1 cgd #endif 935 1.360 ad format_bytes(pbuf, sizeof(pbuf), ptoa(uvm_availmem(false))); 936 1.173 lukem printf("avail memory = %s\n", pbuf); 937 1.139 thorpej #if 0 938 1.139 thorpej { 939 1.139 thorpej extern u_long pmap_pages_stolen; 940 1.173 lukem 941 1.173 lukem format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE); 942 1.173 lukem printf("stolen memory for VM structures = %s\n", pbuf); 943 1.139 thorpej } 944 1.112 thorpej #endif 945 1.151 thorpej 946 1.151 thorpej /* 947 1.151 thorpej * Set up the HWPCB so that it's safe to configure secondary 948 1.151 thorpej * CPUs. 949 1.151 thorpej */ 950 1.151 thorpej hwrpb_primary_init(); 951 1.331 martin 952 1.331 martin /* 953 1.382 thorpej * Initialize FP handling. 954 1.331 martin */ 955 1.382 thorpej alpha_fp_init(); 956 1.104 thorpej } 957 1.104 thorpej 958 1.104 thorpej /* 959 1.104 thorpej * Retrieve the platform name from the DSR. 960 1.104 thorpej */ 961 1.104 thorpej const char * 962 1.319 cegger alpha_dsr_sysname(void) 963 1.104 thorpej { 964 1.104 thorpej struct dsrdb *dsr; 965 1.104 thorpej const char *sysname; 966 1.104 thorpej 967 1.104 thorpej /* 968 1.104 thorpej * DSR does not exist on early HWRPB versions. 969 1.104 thorpej */ 970 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS) 971 1.104 thorpej return (NULL); 972 1.104 thorpej 973 1.296 yamt dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off); 974 1.296 yamt sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off + 975 1.337 matt sizeof(uint64_t))); 976 1.104 thorpej return (sysname); 977 1.104 thorpej } 978 1.104 thorpej 979 1.104 thorpej /* 980 1.104 thorpej * Lookup the system specified system variation in the provided table, 981 1.104 thorpej * returning the model string on match. 982 1.104 thorpej */ 983 1.104 thorpej const char * 984 1.337 matt alpha_variation_name(uint64_t variation, const struct alpha_variation_table *avtp) 985 1.104 thorpej { 986 1.104 thorpej int i; 987 1.104 thorpej 988 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++) 989 1.104 thorpej if (avtp[i].avt_variation == variation) 990 1.104 thorpej return (avtp[i].avt_model); 991 1.104 thorpej return (NULL); 992 1.104 thorpej } 993 1.104 thorpej 994 1.104 thorpej /* 995 1.104 thorpej * Generate a default platform name based for unknown system variations. 996 1.104 thorpej */ 997 1.104 thorpej const char * 998 1.319 cegger alpha_unknown_sysname(void) 999 1.104 thorpej { 1000 1.105 thorpej static char s[128]; /* safe size */ 1001 1.104 thorpej 1002 1.343 christos snprintf(s, sizeof(s), "%s family, unknown model variation 0x%lx", 1003 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK); 1004 1.104 thorpej return ((const char *)s); 1005 1.1 cgd } 1006 1.1 cgd 1007 1.33 cgd void 1008 1.319 cegger identifycpu(void) 1009 1.1 cgd { 1010 1.344 christos const char *s; 1011 1.218 thorpej int i; 1012 1.1 cgd 1013 1.7 cgd /* 1014 1.7 cgd * print out CPU identification information. 1015 1.7 cgd */ 1016 1.381 thorpej s = cpu_getmodel(); 1017 1.381 thorpej printf("%s", s); 1018 1.381 thorpej for (; *s != '\0'; s++) { 1019 1.381 thorpej if (strncasecmp(s, "MHz", 3) == 0) { 1020 1.177 ross goto skipMHz; 1021 1.381 thorpej } 1022 1.381 thorpej } 1023 1.177 ross printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000); 1024 1.381 thorpej skipMHz: 1025 1.381 thorpej for (i = 0; i < 10; i++) { 1026 1.381 thorpej /* Only so long as there are printable characters. */ 1027 1.381 thorpej if (! isprint((unsigned char)hwrpb->rpb_ssn[i])) { 1028 1.381 thorpej break; 1029 1.381 thorpej } 1030 1.381 thorpej if (i == 0) { 1031 1.381 thorpej printf(", s/n "); 1032 1.381 thorpej } 1033 1.218 thorpej printf("%c", hwrpb->rpb_ssn[i]); 1034 1.381 thorpej } 1035 1.177 ross printf("\n"); 1036 1.46 christos printf("%ld byte page size, %d processor%s.\n", 1037 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s"); 1038 1.1 cgd } 1039 1.1 cgd 1040 1.1 cgd int waittime = -1; 1041 1.7 cgd struct pcb dumppcb; 1042 1.1 cgd 1043 1.18 cgd void 1044 1.317 dsl cpu_reboot(int howto, char *bootstr) 1045 1.1 cgd { 1046 1.148 thorpej #if defined(MULTIPROCESSOR) 1047 1.225 thorpej u_long cpu_id = cpu_number(); 1048 1.321 mhitch u_long wait_mask; 1049 1.225 thorpej int i; 1050 1.148 thorpej #endif 1051 1.148 thorpej 1052 1.225 thorpej /* If "always halt" was specified as a boot flag, obey. */ 1053 1.225 thorpej if ((boothowto & RB_HALT) != 0) 1054 1.225 thorpej howto |= RB_HALT; 1055 1.225 thorpej 1056 1.225 thorpej boothowto = howto; 1057 1.1 cgd 1058 1.1 cgd /* If system is cold, just halt. */ 1059 1.1 cgd if (cold) { 1060 1.225 thorpej boothowto |= RB_HALT; 1061 1.1 cgd goto haltsys; 1062 1.1 cgd } 1063 1.1 cgd 1064 1.225 thorpej if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) { 1065 1.1 cgd waittime = 0; 1066 1.7 cgd vfs_shutdown(); 1067 1.1 cgd } 1068 1.1 cgd 1069 1.1 cgd /* Disable interrupts. */ 1070 1.1 cgd splhigh(); 1071 1.1 cgd 1072 1.225 thorpej #if defined(MULTIPROCESSOR) 1073 1.225 thorpej /* 1074 1.225 thorpej * Halt all other CPUs. If we're not the primary, the 1075 1.225 thorpej * primary will spin, waiting for us to halt. 1076 1.225 thorpej */ 1077 1.321 mhitch cpu_id = cpu_number(); /* may have changed cpu */ 1078 1.321 mhitch wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id); 1079 1.321 mhitch 1080 1.225 thorpej alpha_broadcast_ipi(ALPHA_IPI_HALT); 1081 1.225 thorpej 1082 1.283 mhitch /* Ensure any CPUs paused by DDB resume execution so they can halt */ 1083 1.283 mhitch cpus_paused = 0; 1084 1.283 mhitch 1085 1.225 thorpej for (i = 0; i < 10000; i++) { 1086 1.225 thorpej alpha_mb(); 1087 1.225 thorpej if (cpus_running == wait_mask) 1088 1.225 thorpej break; 1089 1.225 thorpej delay(1000); 1090 1.225 thorpej } 1091 1.225 thorpej alpha_mb(); 1092 1.225 thorpej if (cpus_running != wait_mask) 1093 1.225 thorpej printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n", 1094 1.225 thorpej cpus_running); 1095 1.225 thorpej #endif /* MULTIPROCESSOR */ 1096 1.225 thorpej 1097 1.7 cgd /* If rebooting and a dump is requested do it. */ 1098 1.42 cgd #if 0 1099 1.225 thorpej if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP) 1100 1.42 cgd #else 1101 1.225 thorpej if (boothowto & RB_DUMP) 1102 1.42 cgd #endif 1103 1.1 cgd dumpsys(); 1104 1.6 cgd 1105 1.12 cgd haltsys: 1106 1.12 cgd 1107 1.6 cgd /* run any shutdown hooks */ 1108 1.6 cgd doshutdownhooks(); 1109 1.148 thorpej 1110 1.308 dyoung pmf_system_shutdown(boothowto); 1111 1.308 dyoung 1112 1.7 cgd #ifdef BOOTKEY 1113 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot"); 1114 1.117 drochner cnpollc(1); /* for proper keyboard command handling */ 1115 1.7 cgd cngetc(); 1116 1.117 drochner cnpollc(0); 1117 1.46 christos printf("\n"); 1118 1.7 cgd #endif 1119 1.7 cgd 1120 1.124 thorpej /* Finally, powerdown/halt/reboot the system. */ 1121 1.225 thorpej if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN && 1122 1.124 thorpej platform.powerdown != NULL) { 1123 1.124 thorpej (*platform.powerdown)(); 1124 1.124 thorpej printf("WARNING: powerdown failed!\n"); 1125 1.124 thorpej } 1126 1.225 thorpej printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting..."); 1127 1.225 thorpej #if defined(MULTIPROCESSOR) 1128 1.225 thorpej if (cpu_id != hwrpb->rpb_primary_cpu_id) 1129 1.225 thorpej cpu_halt(); 1130 1.225 thorpej else 1131 1.225 thorpej #endif 1132 1.225 thorpej prom_halt(boothowto & RB_HALT); 1133 1.1 cgd /*NOTREACHED*/ 1134 1.1 cgd } 1135 1.1 cgd 1136 1.7 cgd /* 1137 1.7 cgd * These variables are needed by /sbin/savecore 1138 1.7 cgd */ 1139 1.337 matt uint32_t dumpmag = 0x8fca0101; /* magic number */ 1140 1.7 cgd int dumpsize = 0; /* pages */ 1141 1.7 cgd long dumplo = 0; /* blocks */ 1142 1.7 cgd 1143 1.7 cgd /* 1144 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers. 1145 1.43 cgd */ 1146 1.43 cgd int 1147 1.319 cegger cpu_dumpsize(void) 1148 1.43 cgd { 1149 1.43 cgd int size; 1150 1.43 cgd 1151 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) + 1152 1.110 thorpej ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t)); 1153 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1)) 1154 1.43 cgd return -1; 1155 1.43 cgd 1156 1.43 cgd return (1); 1157 1.43 cgd } 1158 1.43 cgd 1159 1.43 cgd /* 1160 1.110 thorpej * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped. 1161 1.110 thorpej */ 1162 1.110 thorpej u_long 1163 1.319 cegger cpu_dump_mempagecnt(void) 1164 1.110 thorpej { 1165 1.110 thorpej u_long i, n; 1166 1.110 thorpej 1167 1.110 thorpej n = 0; 1168 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) 1169 1.110 thorpej n += atop(mem_clusters[i].size); 1170 1.110 thorpej return (n); 1171 1.110 thorpej } 1172 1.110 thorpej 1173 1.110 thorpej /* 1174 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers. 1175 1.43 cgd */ 1176 1.43 cgd int 1177 1.319 cegger cpu_dump(void) 1178 1.43 cgd { 1179 1.316 dsl int (*dump)(dev_t, daddr_t, void *, size_t); 1180 1.107 cgd char buf[dbtob(1)]; 1181 1.107 cgd kcore_seg_t *segp; 1182 1.107 cgd cpu_kcore_hdr_t *cpuhdrp; 1183 1.107 cgd phys_ram_seg_t *memsegp; 1184 1.258 gehenna const struct bdevsw *bdev; 1185 1.110 thorpej int i; 1186 1.43 cgd 1187 1.258 gehenna bdev = bdevsw_lookup(dumpdev); 1188 1.258 gehenna if (bdev == NULL) 1189 1.258 gehenna return (ENXIO); 1190 1.258 gehenna dump = bdev->d_dump; 1191 1.43 cgd 1192 1.246 thorpej memset(buf, 0, sizeof buf); 1193 1.43 cgd segp = (kcore_seg_t *)buf; 1194 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))]; 1195 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) + 1196 1.107 cgd ALIGN(sizeof(*cpuhdrp))]; 1197 1.43 cgd 1198 1.43 cgd /* 1199 1.43 cgd * Generate a segment header. 1200 1.43 cgd */ 1201 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU); 1202 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp)); 1203 1.43 cgd 1204 1.43 cgd /* 1205 1.107 cgd * Add the machine-dependent header info. 1206 1.43 cgd */ 1207 1.140 thorpej cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map); 1208 1.43 cgd cpuhdrp->page_size = PAGE_SIZE; 1209 1.110 thorpej cpuhdrp->nmemsegs = mem_cluster_cnt; 1210 1.107 cgd 1211 1.107 cgd /* 1212 1.107 cgd * Fill in the memory segment descriptors. 1213 1.107 cgd */ 1214 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) { 1215 1.110 thorpej memsegp[i].start = mem_clusters[i].start; 1216 1.110 thorpej memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK; 1217 1.110 thorpej } 1218 1.43 cgd 1219 1.295 christos return (dump(dumpdev, dumplo, (void *)buf, dbtob(1))); 1220 1.43 cgd } 1221 1.43 cgd 1222 1.43 cgd /* 1223 1.68 gwr * This is called by main to set dumplo and dumpsize. 1224 1.262 thorpej * Dumps always skip the first PAGE_SIZE of disk space 1225 1.7 cgd * in case there might be a disk label stored there. 1226 1.7 cgd * If there is extra space, put dump at the end to 1227 1.7 cgd * reduce the chance that swapping trashes it. 1228 1.7 cgd */ 1229 1.7 cgd void 1230 1.319 cegger cpu_dumpconf(void) 1231 1.7 cgd { 1232 1.43 cgd int nblks, dumpblks; /* size of dump area */ 1233 1.7 cgd 1234 1.7 cgd if (dumpdev == NODEV) 1235 1.43 cgd goto bad; 1236 1.336 mrg nblks = bdev_size(dumpdev); 1237 1.7 cgd if (nblks <= ctod(1)) 1238 1.43 cgd goto bad; 1239 1.43 cgd 1240 1.43 cgd dumpblks = cpu_dumpsize(); 1241 1.43 cgd if (dumpblks < 0) 1242 1.43 cgd goto bad; 1243 1.110 thorpej dumpblks += ctod(cpu_dump_mempagecnt()); 1244 1.43 cgd 1245 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */ 1246 1.43 cgd if (dumpblks > (nblks - ctod(1))) 1247 1.43 cgd goto bad; 1248 1.43 cgd 1249 1.43 cgd /* Put dump at end of partition */ 1250 1.43 cgd dumplo = nblks - dumpblks; 1251 1.7 cgd 1252 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */ 1253 1.110 thorpej dumpsize = cpu_dump_mempagecnt(); 1254 1.43 cgd return; 1255 1.7 cgd 1256 1.43 cgd bad: 1257 1.43 cgd dumpsize = 0; 1258 1.43 cgd return; 1259 1.7 cgd } 1260 1.7 cgd 1261 1.7 cgd /* 1262 1.42 cgd * Dump the kernel's image to the swap partition. 1263 1.7 cgd */ 1264 1.262 thorpej #define BYTES_PER_DUMP PAGE_SIZE 1265 1.42 cgd 1266 1.7 cgd void 1267 1.319 cegger dumpsys(void) 1268 1.7 cgd { 1269 1.258 gehenna const struct bdevsw *bdev; 1270 1.110 thorpej u_long totalbytesleft, bytes, i, n, memcl; 1271 1.110 thorpej u_long maddr; 1272 1.110 thorpej int psize; 1273 1.42 cgd daddr_t blkno; 1274 1.316 dsl int (*dump)(dev_t, daddr_t, void *, size_t); 1275 1.42 cgd int error; 1276 1.42 cgd 1277 1.42 cgd /* Save registers. */ 1278 1.42 cgd savectx(&dumppcb); 1279 1.7 cgd 1280 1.7 cgd if (dumpdev == NODEV) 1281 1.7 cgd return; 1282 1.258 gehenna bdev = bdevsw_lookup(dumpdev); 1283 1.258 gehenna if (bdev == NULL || bdev->d_psize == NULL) 1284 1.258 gehenna return; 1285 1.42 cgd 1286 1.42 cgd /* 1287 1.42 cgd * For dumps during autoconfiguration, 1288 1.42 cgd * if dump device has already configured... 1289 1.42 cgd */ 1290 1.42 cgd if (dumpsize == 0) 1291 1.68 gwr cpu_dumpconf(); 1292 1.47 cgd if (dumplo <= 0) { 1293 1.314 he printf("\ndump to dev %u,%u not possible\n", 1294 1.313 rtr major(dumpdev), minor(dumpdev)); 1295 1.42 cgd return; 1296 1.43 cgd } 1297 1.314 he printf("\ndumping to dev %u,%u offset %ld\n", 1298 1.313 rtr major(dumpdev), minor(dumpdev), dumplo); 1299 1.7 cgd 1300 1.336 mrg psize = bdev_size(dumpdev); 1301 1.46 christos printf("dump "); 1302 1.42 cgd if (psize == -1) { 1303 1.46 christos printf("area unavailable\n"); 1304 1.42 cgd return; 1305 1.42 cgd } 1306 1.42 cgd 1307 1.42 cgd /* XXX should purge all outstanding keystrokes. */ 1308 1.42 cgd 1309 1.43 cgd if ((error = cpu_dump()) != 0) 1310 1.43 cgd goto err; 1311 1.43 cgd 1312 1.110 thorpej totalbytesleft = ptoa(cpu_dump_mempagecnt()); 1313 1.43 cgd blkno = dumplo + cpu_dumpsize(); 1314 1.258 gehenna dump = bdev->d_dump; 1315 1.42 cgd error = 0; 1316 1.42 cgd 1317 1.110 thorpej for (memcl = 0; memcl < mem_cluster_cnt; memcl++) { 1318 1.110 thorpej maddr = mem_clusters[memcl].start; 1319 1.110 thorpej bytes = mem_clusters[memcl].size & ~PAGE_MASK; 1320 1.110 thorpej 1321 1.110 thorpej for (i = 0; i < bytes; i += n, totalbytesleft -= n) { 1322 1.110 thorpej 1323 1.110 thorpej /* Print out how many MBs we to go. */ 1324 1.110 thorpej if ((totalbytesleft % (1024*1024)) == 0) 1325 1.311 ad printf_nolog("%ld ", 1326 1.311 ad totalbytesleft / (1024 * 1024)); 1327 1.110 thorpej 1328 1.110 thorpej /* Limit size for next transfer. */ 1329 1.110 thorpej n = bytes - i; 1330 1.110 thorpej if (n > BYTES_PER_DUMP) 1331 1.110 thorpej n = BYTES_PER_DUMP; 1332 1.362 riastrad 1333 1.110 thorpej error = (*dump)(dumpdev, blkno, 1334 1.295 christos (void *)ALPHA_PHYS_TO_K0SEG(maddr), n); 1335 1.110 thorpej if (error) 1336 1.110 thorpej goto err; 1337 1.110 thorpej maddr += n; 1338 1.110 thorpej blkno += btodb(n); /* XXX? */ 1339 1.42 cgd 1340 1.110 thorpej /* XXX should look for keystrokes, to cancel. */ 1341 1.110 thorpej } 1342 1.42 cgd } 1343 1.42 cgd 1344 1.43 cgd err: 1345 1.42 cgd switch (error) { 1346 1.7 cgd 1347 1.7 cgd case ENXIO: 1348 1.46 christos printf("device bad\n"); 1349 1.7 cgd break; 1350 1.7 cgd 1351 1.7 cgd case EFAULT: 1352 1.46 christos printf("device not ready\n"); 1353 1.7 cgd break; 1354 1.7 cgd 1355 1.7 cgd case EINVAL: 1356 1.46 christos printf("area improper\n"); 1357 1.7 cgd break; 1358 1.7 cgd 1359 1.7 cgd case EIO: 1360 1.46 christos printf("i/o error\n"); 1361 1.7 cgd break; 1362 1.7 cgd 1363 1.7 cgd case EINTR: 1364 1.46 christos printf("aborted from console\n"); 1365 1.7 cgd break; 1366 1.7 cgd 1367 1.42 cgd case 0: 1368 1.46 christos printf("succeeded\n"); 1369 1.42 cgd break; 1370 1.42 cgd 1371 1.7 cgd default: 1372 1.46 christos printf("error %d\n", error); 1373 1.7 cgd break; 1374 1.7 cgd } 1375 1.46 christos printf("\n\n"); 1376 1.7 cgd delay(1000); 1377 1.7 cgd } 1378 1.7 cgd 1379 1.1 cgd void 1380 1.317 dsl frametoreg(const struct trapframe *framep, struct reg *regp) 1381 1.1 cgd { 1382 1.1 cgd 1383 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0]; 1384 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0]; 1385 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1]; 1386 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2]; 1387 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3]; 1388 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4]; 1389 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5]; 1390 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6]; 1391 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7]; 1392 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0]; 1393 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1]; 1394 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2]; 1395 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3]; 1396 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4]; 1397 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5]; 1398 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6]; 1399 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0]; 1400 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1]; 1401 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2]; 1402 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3]; 1403 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4]; 1404 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5]; 1405 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8]; 1406 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9]; 1407 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10]; 1408 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11]; 1409 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA]; 1410 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12]; 1411 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT]; 1412 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP]; 1413 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */ 1414 1.1 cgd regp->r_regs[R_ZERO] = 0; 1415 1.1 cgd } 1416 1.1 cgd 1417 1.1 cgd void 1418 1.317 dsl regtoframe(const struct reg *regp, struct trapframe *framep) 1419 1.1 cgd { 1420 1.1 cgd 1421 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0]; 1422 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0]; 1423 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1]; 1424 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2]; 1425 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3]; 1426 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4]; 1427 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5]; 1428 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6]; 1429 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7]; 1430 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0]; 1431 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1]; 1432 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2]; 1433 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3]; 1434 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4]; 1435 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5]; 1436 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6]; 1437 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0]; 1438 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1]; 1439 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2]; 1440 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3]; 1441 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4]; 1442 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5]; 1443 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8]; 1444 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9]; 1445 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10]; 1446 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11]; 1447 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA]; 1448 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12]; 1449 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT]; 1450 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP]; 1451 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */ 1452 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */ 1453 1.1 cgd } 1454 1.1 cgd 1455 1.1 cgd void 1456 1.317 dsl printregs(struct reg *regp) 1457 1.1 cgd { 1458 1.1 cgd int i; 1459 1.1 cgd 1460 1.1 cgd for (i = 0; i < 32; i++) 1461 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i], 1462 1.1 cgd i & 1 ? "\n" : "\t"); 1463 1.1 cgd } 1464 1.1 cgd 1465 1.1 cgd void 1466 1.317 dsl regdump(struct trapframe *framep) 1467 1.1 cgd { 1468 1.1 cgd struct reg reg; 1469 1.1 cgd 1470 1.1 cgd frametoreg(framep, ®); 1471 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp(); 1472 1.35 cgd 1473 1.46 christos printf("REGISTERS:\n"); 1474 1.1 cgd printregs(®); 1475 1.1 cgd } 1476 1.1 cgd 1477 1.1 cgd 1478 1.274 skd 1479 1.274 skd void * 1480 1.383 riastrad getframe(const struct lwp *l, int sig, int *onstack, size_t size, size_t align) 1481 1.274 skd { 1482 1.383 riastrad uintptr_t frame; 1483 1.383 riastrad 1484 1.383 riastrad KASSERT((align & (align - 1)) == 0); 1485 1.274 skd 1486 1.274 skd /* Do we need to jump onto the signal stack? */ 1487 1.274 skd *onstack = 1488 1.293 ad (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 && 1489 1.293 ad (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0; 1490 1.274 skd 1491 1.274 skd if (*onstack) 1492 1.383 riastrad frame = (uintptr_t)l->l_sigstk.ss_sp + l->l_sigstk.ss_size; 1493 1.274 skd else 1494 1.383 riastrad frame = (uintptr_t)alpha_pal_rdusp(); 1495 1.383 riastrad frame -= size; 1496 1.383 riastrad frame &= ~(STACK_ALIGNBYTES | (align - 1)); 1497 1.383 riastrad return (void *)frame; 1498 1.362 riastrad } 1499 1.274 skd 1500 1.274 skd void 1501 1.274 skd buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp) 1502 1.274 skd { 1503 1.274 skd struct trapframe *tf = l->l_md.md_tf; 1504 1.274 skd 1505 1.337 matt tf->tf_regs[FRAME_RA] = (uint64_t)tramp; 1506 1.337 matt tf->tf_regs[FRAME_PC] = (uint64_t)catcher; 1507 1.337 matt tf->tf_regs[FRAME_T12] = (uint64_t)catcher; 1508 1.274 skd alpha_pal_wrusp((unsigned long)fp); 1509 1.274 skd } 1510 1.274 skd 1511 1.274 skd 1512 1.1 cgd /* 1513 1.274 skd * Send an interrupt to process, new style 1514 1.1 cgd */ 1515 1.1 cgd void 1516 1.274 skd sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask) 1517 1.1 cgd { 1518 1.261 thorpej struct lwp *l = curlwp; 1519 1.261 thorpej struct proc *p = l->l_proc; 1520 1.256 thorpej struct sigacts *ps = p->p_sigacts; 1521 1.293 ad int onstack, sig = ksi->ksi_signo, error; 1522 1.274 skd struct sigframe_siginfo *fp, frame; 1523 1.274 skd struct trapframe *tf; 1524 1.274 skd sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler; 1525 1.1 cgd 1526 1.274 skd tf = l->l_md.md_tf; 1527 1.141 thorpej 1528 1.141 thorpej /* Allocate space for the signal handler context. */ 1529 1.383 riastrad fp = getframe(l, ksi->ksi_signo, &onstack, sizeof(*fp), _Alignof(*fp)); 1530 1.141 thorpej 1531 1.1 cgd #ifdef DEBUG 1532 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid) 1533 1.274 skd printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid, 1534 1.276 nathanw sig, &onstack, fp); 1535 1.125 ross #endif 1536 1.1 cgd 1537 1.141 thorpej /* Build stack frame for signal trampoline. */ 1538 1.352 maxv memset(&frame, 0, sizeof(frame)); 1539 1.275 enami frame.sf_si._info = ksi->ksi_info; 1540 1.274 skd frame.sf_uc.uc_flags = _UC_SIGMASK; 1541 1.274 skd frame.sf_uc.uc_sigmask = *mask; 1542 1.299 pooka frame.sf_uc.uc_link = l->l_ctxlink; 1543 1.372 thorpej frame.sf_uc.uc_flags |= (l->l_sigstk.ss_flags & SS_ONSTACK) 1544 1.372 thorpej ? _UC_SETSTACK : _UC_CLRSTACK; 1545 1.293 ad sendsig_reset(l, sig); 1546 1.304 ad mutex_exit(p->p_lock); 1547 1.274 skd cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags); 1548 1.293 ad error = copyout(&frame, fp, sizeof(frame)); 1549 1.304 ad mutex_enter(p->p_lock); 1550 1.1 cgd 1551 1.293 ad if (error != 0) { 1552 1.141 thorpej /* 1553 1.141 thorpej * Process has trashed its stack; give it an illegal 1554 1.141 thorpej * instruction to halt it in its tracks. 1555 1.141 thorpej */ 1556 1.141 thorpej #ifdef DEBUG 1557 1.141 thorpej if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid) 1558 1.274 skd printf("sendsig_siginfo(%d): copyout failed on sig %d\n", 1559 1.141 thorpej p->p_pid, sig); 1560 1.141 thorpej #endif 1561 1.261 thorpej sigexit(l, SIGILL); 1562 1.141 thorpej /* NOTREACHED */ 1563 1.141 thorpej } 1564 1.274 skd 1565 1.1 cgd #ifdef DEBUG 1566 1.1 cgd if (sigdebug & SDB_FOLLOW) 1567 1.276 nathanw printf("sendsig_siginfo(%d): sig %d usp %p code %x\n", 1568 1.276 nathanw p->p_pid, sig, fp, ksi->ksi_code); 1569 1.1 cgd #endif 1570 1.1 cgd 1571 1.256 thorpej /* 1572 1.256 thorpej * Set up the registers to directly invoke the signal handler. The 1573 1.256 thorpej * signal trampoline is then used to return from the signal. Note 1574 1.256 thorpej * the trampoline version numbers are coordinated with machine- 1575 1.256 thorpej * dependent code in libc. 1576 1.256 thorpej */ 1577 1.362 riastrad 1578 1.274 skd tf->tf_regs[FRAME_A0] = sig; 1579 1.337 matt tf->tf_regs[FRAME_A1] = (uint64_t)&fp->sf_si; 1580 1.337 matt tf->tf_regs[FRAME_A2] = (uint64_t)&fp->sf_uc; 1581 1.256 thorpej 1582 1.274 skd buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp); 1583 1.142 mycroft 1584 1.142 mycroft /* Remember that we're now on the signal stack. */ 1585 1.142 mycroft if (onstack) 1586 1.293 ad l->l_sigstk.ss_flags |= SS_ONSTACK; 1587 1.1 cgd 1588 1.1 cgd #ifdef DEBUG 1589 1.1 cgd if (sigdebug & SDB_FOLLOW) 1590 1.274 skd printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid, 1591 1.276 nathanw tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]); 1592 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid) 1593 1.274 skd printf("sendsig_siginfo(%d): sig %d returns\n", 1594 1.1 cgd p->p_pid, sig); 1595 1.1 cgd #endif 1596 1.1 cgd } 1597 1.1 cgd 1598 1.1 cgd /* 1599 1.1 cgd * machine dependent system variables. 1600 1.1 cgd */ 1601 1.278 atatat SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup") 1602 1.1 cgd { 1603 1.241 ross 1604 1.282 atatat sysctl_createv(clog, 0, NULL, NULL, 1605 1.282 atatat CTLFLAG_PERMANENT, 1606 1.278 atatat CTLTYPE_NODE, "machdep", NULL, 1607 1.278 atatat NULL, 0, NULL, 0, 1608 1.278 atatat CTL_MACHDEP, CTL_EOL); 1609 1.278 atatat 1610 1.282 atatat sysctl_createv(clog, 0, NULL, NULL, 1611 1.282 atatat CTLFLAG_PERMANENT, 1612 1.278 atatat CTLTYPE_STRUCT, "console_device", NULL, 1613 1.278 atatat sysctl_consdev, 0, NULL, sizeof(dev_t), 1614 1.278 atatat CTL_MACHDEP, CPU_CONSDEV, CTL_EOL); 1615 1.282 atatat sysctl_createv(clog, 0, NULL, NULL, 1616 1.282 atatat CTLFLAG_PERMANENT, 1617 1.278 atatat CTLTYPE_STRING, "root_device", NULL, 1618 1.278 atatat sysctl_root_device, 0, NULL, 0, 1619 1.278 atatat CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL); 1620 1.282 atatat sysctl_createv(clog, 0, NULL, NULL, 1621 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1622 1.340 njoly CTLTYPE_INT, "unaligned_print", 1623 1.340 njoly SYSCTL_DESCR("Warn about unaligned accesses"), 1624 1.278 atatat NULL, 0, &alpha_unaligned_print, 0, 1625 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL); 1626 1.282 atatat sysctl_createv(clog, 0, NULL, NULL, 1627 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1628 1.340 njoly CTLTYPE_INT, "unaligned_fix", 1629 1.340 njoly SYSCTL_DESCR("Fix up unaligned accesses"), 1630 1.278 atatat NULL, 0, &alpha_unaligned_fix, 0, 1631 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL); 1632 1.282 atatat sysctl_createv(clog, 0, NULL, NULL, 1633 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1634 1.340 njoly CTLTYPE_INT, "unaligned_sigbus", 1635 1.340 njoly SYSCTL_DESCR("Do SIGBUS for fixed unaligned accesses"), 1636 1.278 atatat NULL, 0, &alpha_unaligned_sigbus, 0, 1637 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL); 1638 1.282 atatat sysctl_createv(clog, 0, NULL, NULL, 1639 1.282 atatat CTLFLAG_PERMANENT, 1640 1.278 atatat CTLTYPE_STRING, "booted_kernel", NULL, 1641 1.278 atatat NULL, 0, bootinfo.booted_kernel, 0, 1642 1.278 atatat CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL); 1643 1.282 atatat sysctl_createv(clog, 0, NULL, NULL, 1644 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1645 1.278 atatat CTLTYPE_INT, "fp_sync_complete", NULL, 1646 1.278 atatat NULL, 0, &alpha_fp_sync_complete, 0, 1647 1.278 atatat CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL); 1648 1.369 thorpej sysctl_createv(clog, 0, NULL, NULL, 1649 1.369 thorpej CTLFLAG_PERMANENT, 1650 1.369 thorpej CTLTYPE_INT, "cctr", NULL, 1651 1.369 thorpej NULL, 0, &alpha_use_cctr, 0, 1652 1.369 thorpej CTL_MACHDEP, CPU_CCTR, CTL_EOL); 1653 1.369 thorpej sysctl_createv(clog, 0, NULL, NULL, 1654 1.369 thorpej CTLFLAG_PERMANENT, 1655 1.369 thorpej CTLTYPE_BOOL, "is_qemu", NULL, 1656 1.369 thorpej NULL, 0, &alpha_is_qemu, 0, 1657 1.369 thorpej CTL_MACHDEP, CPU_IS_QEMU, CTL_EOL); 1658 1.375 thorpej sysctl_createv(clog, 0, NULL, NULL, 1659 1.375 thorpej CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1660 1.375 thorpej CTLTYPE_INT, "fp_complete_debug", NULL, 1661 1.375 thorpej NULL, 0, &alpha_fp_complete_debug, 0, 1662 1.375 thorpej CTL_MACHDEP, CPU_FP_COMPLETE_DEBUG, CTL_EOL); 1663 1.379 thorpej sysctl_createv(clog, 0, NULL, NULL, 1664 1.379 thorpej CTLFLAG_PERMANENT, 1665 1.379 thorpej CTLTYPE_QUAD, "rpb_type", NULL, 1666 1.379 thorpej NULL, 0, &hwrpb->rpb_type, 0, 1667 1.379 thorpej CTL_MACHDEP, CPU_RPB_TYPE, CTL_EOL); 1668 1.379 thorpej sysctl_createv(clog, 0, NULL, NULL, 1669 1.379 thorpej CTLFLAG_PERMANENT, 1670 1.379 thorpej CTLTYPE_QUAD, "rpb_variation", NULL, 1671 1.379 thorpej NULL, 0, &hwrpb->rpb_variation, 0, 1672 1.379 thorpej CTL_MACHDEP, CPU_RPB_VARIATION, CTL_EOL); 1673 1.1 cgd } 1674 1.1 cgd 1675 1.1 cgd /* 1676 1.1 cgd * Set registers on exec. 1677 1.1 cgd */ 1678 1.1 cgd void 1679 1.325 matt setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack) 1680 1.1 cgd { 1681 1.261 thorpej struct trapframe *tfp = l->l_md.md_tf; 1682 1.322 rmind struct pcb *pcb; 1683 1.56 cgd #ifdef DEBUG 1684 1.1 cgd int i; 1685 1.56 cgd #endif 1686 1.43 cgd 1687 1.43 cgd #ifdef DEBUG 1688 1.43 cgd /* 1689 1.43 cgd * Crash and dump, if the user requested it. 1690 1.43 cgd */ 1691 1.43 cgd if (boothowto & RB_DUMP) 1692 1.43 cgd panic("crash requested by boot flags"); 1693 1.43 cgd #endif 1694 1.1 cgd 1695 1.380 riastrad memset(tfp, 0, sizeof(*tfp)); 1696 1.380 riastrad 1697 1.1 cgd #ifdef DEBUG 1698 1.34 cgd for (i = 0; i < FRAME_SIZE; i++) 1699 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef; 1700 1.1 cgd #endif 1701 1.322 rmind pcb = lwp_getpcb(l); 1702 1.322 rmind memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp)); 1703 1.35 cgd alpha_pal_wrusp(stack); 1704 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET; 1705 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3; 1706 1.41 cgd 1707 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */ 1708 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */ 1709 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */ 1710 1.330 joerg tfp->tf_regs[FRAME_A3] = l->l_proc->p_psstrp; /* a3 = ps_strings */ 1711 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */ 1712 1.1 cgd 1713 1.261 thorpej if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) { 1714 1.375 thorpej l->l_md.md_flags = 1715 1.375 thorpej (l->l_md.md_flags & ~(MDLWP_FP_C | MDLWP_FPACTIVE)) | 1716 1.375 thorpej FP_C_DEFAULT; 1717 1.375 thorpej pcb->pcb_fp.fpr_cr = FPCR_DEFAULT; 1718 1.241 ross } 1719 1.15 cgd } 1720 1.15 cgd 1721 1.366 thorpej void (*alpha_delay_fn)(unsigned long); 1722 1.366 thorpej 1723 1.15 cgd /* 1724 1.15 cgd * Wait "n" microseconds. 1725 1.15 cgd */ 1726 1.32 cgd void 1727 1.317 dsl delay(unsigned long n) 1728 1.15 cgd { 1729 1.216 thorpej unsigned long pcc0, pcc1, curcycle, cycles, usec; 1730 1.15 cgd 1731 1.216 thorpej if (n == 0) 1732 1.216 thorpej return; 1733 1.216 thorpej 1734 1.366 thorpej /* 1735 1.366 thorpej * If we have an alternative delay function, go ahead and 1736 1.366 thorpej * use it. 1737 1.366 thorpej */ 1738 1.366 thorpej if (alpha_delay_fn != NULL) { 1739 1.366 thorpej (*alpha_delay_fn)(n); 1740 1.366 thorpej return; 1741 1.366 thorpej } 1742 1.366 thorpej 1743 1.370 thorpej lwp_t * const l = curlwp; 1744 1.370 thorpej KPREEMPT_DISABLE(l); 1745 1.370 thorpej 1746 1.216 thorpej pcc0 = alpha_rpcc() & 0xffffffffUL; 1747 1.216 thorpej cycles = 0; 1748 1.216 thorpej usec = 0; 1749 1.216 thorpej 1750 1.216 thorpej while (usec <= n) { 1751 1.216 thorpej /* 1752 1.216 thorpej * Get the next CPU cycle count- assumes that we cannot 1753 1.216 thorpej * have had more than one 32 bit overflow. 1754 1.216 thorpej */ 1755 1.216 thorpej pcc1 = alpha_rpcc() & 0xffffffffUL; 1756 1.216 thorpej if (pcc1 < pcc0) 1757 1.216 thorpej curcycle = (pcc1 + 0x100000000UL) - pcc0; 1758 1.216 thorpej else 1759 1.216 thorpej curcycle = pcc1 - pcc0; 1760 1.186 thorpej 1761 1.216 thorpej /* 1762 1.216 thorpej * We now have the number of processor cycles since we 1763 1.216 thorpej * last checked. Add the current cycle count to the 1764 1.216 thorpej * running total. If it's over cycles_per_usec, increment 1765 1.216 thorpej * the usec counter. 1766 1.216 thorpej */ 1767 1.216 thorpej cycles += curcycle; 1768 1.216 thorpej while (cycles > cycles_per_usec) { 1769 1.216 thorpej usec++; 1770 1.216 thorpej cycles -= cycles_per_usec; 1771 1.216 thorpej } 1772 1.216 thorpej pcc0 = pcc1; 1773 1.216 thorpej } 1774 1.370 thorpej 1775 1.370 thorpej KPREEMPT_ENABLE(l); 1776 1.1 cgd } 1777 1.225 thorpej 1778 1.250 jdolecek #ifdef EXEC_ECOFF 1779 1.1 cgd void 1780 1.325 matt cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack) 1781 1.1 cgd { 1782 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr; 1783 1.1 cgd 1784 1.261 thorpej l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value; 1785 1.1 cgd } 1786 1.1 cgd 1787 1.1 cgd /* 1788 1.1 cgd * cpu_exec_ecoff_hook(): 1789 1.1 cgd * cpu-dependent ECOFF format hook for execve(). 1790 1.337 matt * 1791 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF. 1792 1.1 cgd * 1793 1.1 cgd */ 1794 1.1 cgd int 1795 1.317 dsl cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp) 1796 1.1 cgd { 1797 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr; 1798 1.171 cgd int error; 1799 1.1 cgd 1800 1.224 jdolecek if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA) 1801 1.171 cgd error = 0; 1802 1.224 jdolecek else 1803 1.224 jdolecek error = ENOEXEC; 1804 1.1 cgd 1805 1.171 cgd return (error); 1806 1.1 cgd } 1807 1.250 jdolecek #endif /* EXEC_ECOFF */ 1808 1.110 thorpej 1809 1.110 thorpej int 1810 1.335 rmind mm_md_physacc(paddr_t pa, vm_prot_t prot) 1811 1.110 thorpej { 1812 1.335 rmind u_quad_t size; 1813 1.110 thorpej int i; 1814 1.110 thorpej 1815 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) { 1816 1.110 thorpej if (pa < mem_clusters[i].start) 1817 1.110 thorpej continue; 1818 1.335 rmind size = mem_clusters[i].size & ~PAGE_MASK; 1819 1.335 rmind if (pa >= (mem_clusters[i].start + size)) 1820 1.110 thorpej continue; 1821 1.335 rmind if ((prot & mem_clusters[i].size & PAGE_MASK) == prot) 1822 1.335 rmind return 0; 1823 1.110 thorpej } 1824 1.335 rmind return EFAULT; 1825 1.335 rmind } 1826 1.335 rmind 1827 1.335 rmind bool 1828 1.335 rmind mm_md_direct_mapped_io(void *addr, paddr_t *paddr) 1829 1.335 rmind { 1830 1.335 rmind vaddr_t va = (vaddr_t)addr; 1831 1.335 rmind 1832 1.335 rmind if (va >= ALPHA_K0SEG_BASE && va <= ALPHA_K0SEG_END) { 1833 1.335 rmind *paddr = ALPHA_K0SEG_TO_PHYS(va); 1834 1.335 rmind return true; 1835 1.335 rmind } 1836 1.335 rmind return false; 1837 1.335 rmind } 1838 1.337 matt 1839 1.335 rmind bool 1840 1.335 rmind mm_md_direct_mapped_phys(paddr_t paddr, vaddr_t *vaddr) 1841 1.335 rmind { 1842 1.197 thorpej 1843 1.335 rmind *vaddr = ALPHA_PHYS_TO_K0SEG(paddr); 1844 1.335 rmind return true; 1845 1.110 thorpej } 1846 1.50 cgd 1847 1.261 thorpej void 1848 1.317 dsl cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags) 1849 1.261 thorpej { 1850 1.261 thorpej struct trapframe *frame = l->l_md.md_tf; 1851 1.322 rmind struct pcb *pcb = lwp_getpcb(l); 1852 1.261 thorpej __greg_t *gr = mcp->__gregs; 1853 1.264 nathanw __greg_t ras_pc; 1854 1.261 thorpej 1855 1.261 thorpej /* Save register context. */ 1856 1.261 thorpej frametoreg(frame, (struct reg *)gr); 1857 1.261 thorpej /* XXX if there's a better, general way to get the USP of 1858 1.261 thorpej * an LWP that might or might not be curlwp, I'd like to know 1859 1.261 thorpej * about it. 1860 1.261 thorpej */ 1861 1.261 thorpej if (l == curlwp) { 1862 1.261 thorpej gr[_REG_SP] = alpha_pal_rdusp(); 1863 1.261 thorpej gr[_REG_UNIQUE] = alpha_pal_rdunique(); 1864 1.261 thorpej } else { 1865 1.322 rmind gr[_REG_SP] = pcb->pcb_hw.apcb_usp; 1866 1.322 rmind gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique; 1867 1.261 thorpej } 1868 1.261 thorpej gr[_REG_PC] = frame->tf_regs[FRAME_PC]; 1869 1.261 thorpej gr[_REG_PS] = frame->tf_regs[FRAME_PS]; 1870 1.264 nathanw 1871 1.264 nathanw if ((ras_pc = (__greg_t)ras_lookup(l->l_proc, 1872 1.295 christos (void *) gr[_REG_PC])) != -1) 1873 1.264 nathanw gr[_REG_PC] = ras_pc; 1874 1.264 nathanw 1875 1.342 manu *flags |= _UC_CPU | _UC_TLSBASE; 1876 1.261 thorpej 1877 1.261 thorpej /* Save floating point register context, if any, and copy it. */ 1878 1.345 matt if (fpu_valid_p(l)) { 1879 1.350 chs fpu_save(l); 1880 1.322 rmind (void)memcpy(&mcp->__fpregs, &pcb->pcb_fp, 1881 1.261 thorpej sizeof (mcp->__fpregs)); 1882 1.261 thorpej mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l); 1883 1.261 thorpej *flags |= _UC_FPU; 1884 1.261 thorpej } 1885 1.261 thorpej } 1886 1.261 thorpej 1887 1.339 martin int 1888 1.339 martin cpu_mcontext_validate(struct lwp *l, const mcontext_t *mcp) 1889 1.339 martin { 1890 1.339 martin const __greg_t *gr = mcp->__gregs; 1891 1.339 martin 1892 1.339 martin if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET || 1893 1.339 martin (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0) 1894 1.339 martin return EINVAL; 1895 1.339 martin 1896 1.339 martin return 0; 1897 1.339 martin } 1898 1.261 thorpej 1899 1.261 thorpej int 1900 1.317 dsl cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags) 1901 1.261 thorpej { 1902 1.261 thorpej struct trapframe *frame = l->l_md.md_tf; 1903 1.322 rmind struct pcb *pcb = lwp_getpcb(l); 1904 1.261 thorpej const __greg_t *gr = mcp->__gregs; 1905 1.339 martin int error; 1906 1.261 thorpej 1907 1.261 thorpej /* Restore register context, if any. */ 1908 1.261 thorpej if (flags & _UC_CPU) { 1909 1.261 thorpej /* Check for security violations first. */ 1910 1.339 martin error = cpu_mcontext_validate(l, mcp); 1911 1.339 martin if (error) 1912 1.339 martin return error; 1913 1.261 thorpej 1914 1.286 jdc regtoframe((const struct reg *)gr, l->l_md.md_tf); 1915 1.261 thorpej if (l == curlwp) 1916 1.261 thorpej alpha_pal_wrusp(gr[_REG_SP]); 1917 1.261 thorpej else 1918 1.322 rmind pcb->pcb_hw.apcb_usp = gr[_REG_SP]; 1919 1.261 thorpej frame->tf_regs[FRAME_PC] = gr[_REG_PC]; 1920 1.261 thorpej frame->tf_regs[FRAME_PS] = gr[_REG_PS]; 1921 1.261 thorpej } 1922 1.372 thorpej 1923 1.342 manu if (flags & _UC_TLSBASE) 1924 1.329 joerg lwp_setprivate(l, (void *)(uintptr_t)gr[_REG_UNIQUE]); 1925 1.372 thorpej 1926 1.261 thorpej /* Restore floating point register context, if any. */ 1927 1.261 thorpej if (flags & _UC_FPU) { 1928 1.261 thorpej /* If we have an FP register context, get rid of it. */ 1929 1.350 chs fpu_discard(l, true); 1930 1.322 rmind (void)memcpy(&pcb->pcb_fp, &mcp->__fpregs, 1931 1.322 rmind sizeof (pcb->pcb_fp)); 1932 1.334 matt l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDLWP_FP_C; 1933 1.261 thorpej } 1934 1.261 thorpej 1935 1.372 thorpej mutex_enter(l->l_proc->p_lock); 1936 1.372 thorpej if (flags & _UC_SETSTACK) 1937 1.372 thorpej l->l_sigstk.ss_flags |= SS_ONSTACK; 1938 1.372 thorpej if (flags & _UC_CLRSTACK) 1939 1.372 thorpej l->l_sigstk.ss_flags &= ~SS_ONSTACK; 1940 1.372 thorpej mutex_exit(l->l_proc->p_lock); 1941 1.372 thorpej 1942 1.261 thorpej return (0); 1943 1.138 ross } 1944 1.297 yamt 1945 1.361 thorpej static void 1946 1.361 thorpej cpu_kick(struct cpu_info * const ci) 1947 1.361 thorpej { 1948 1.361 thorpej #if defined(MULTIPROCESSOR) 1949 1.361 thorpej alpha_send_ipi(ci->ci_cpuid, ALPHA_IPI_AST); 1950 1.361 thorpej #endif /* MULTIPROCESSOR */ 1951 1.361 thorpej } 1952 1.361 thorpej 1953 1.297 yamt /* 1954 1.297 yamt * Preempt the current process if in interrupt from user mode, 1955 1.297 yamt * or after the current trap/syscall if in system mode. 1956 1.297 yamt */ 1957 1.297 yamt void 1958 1.355 ad cpu_need_resched(struct cpu_info *ci, struct lwp *l, int flags) 1959 1.297 yamt { 1960 1.361 thorpej 1961 1.361 thorpej KASSERT(kpreempt_disabled()); 1962 1.361 thorpej 1963 1.361 thorpej if ((flags & RESCHED_IDLE) != 0) { 1964 1.361 thorpej /* 1965 1.361 thorpej * Nothing to do here; we are not currently using WTINT 1966 1.361 thorpej * in cpu_idle(). 1967 1.361 thorpej */ 1968 1.361 thorpej return; 1969 1.361 thorpej } 1970 1.361 thorpej 1971 1.361 thorpej /* XXX RESCHED_KPREEMPT XXX */ 1972 1.361 thorpej 1973 1.361 thorpej KASSERT((flags & RESCHED_UPREEMPT) != 0); 1974 1.361 thorpej if ((flags & RESCHED_REMOTE) != 0) { 1975 1.361 thorpej cpu_kick(ci); 1976 1.361 thorpej } else { 1977 1.361 thorpej aston(l); 1978 1.361 thorpej } 1979 1.361 thorpej } 1980 1.361 thorpej 1981 1.361 thorpej /* 1982 1.361 thorpej * Notify the current lwp (l) that it has a signal pending, 1983 1.361 thorpej * process as soon as possible. 1984 1.361 thorpej */ 1985 1.361 thorpej void 1986 1.361 thorpej cpu_signotify(struct lwp *l) 1987 1.361 thorpej { 1988 1.362 riastrad 1989 1.361 thorpej KASSERT(kpreempt_disabled()); 1990 1.361 thorpej 1991 1.361 thorpej if (l->l_cpu != curcpu()) { 1992 1.361 thorpej cpu_kick(l->l_cpu); 1993 1.361 thorpej } else { 1994 1.361 thorpej aston(l); 1995 1.297 yamt } 1996 1.297 yamt } 1997 1.361 thorpej 1998 1.361 thorpej /* 1999 1.361 thorpej * Give a profiling tick to the current process when the user profiling 2000 1.361 thorpej * buffer pages are invalid. On the alpha, request an AST to send us 2001 1.361 thorpej * through trap, marking the proc as needing a profiling tick. 2002 1.361 thorpej */ 2003 1.361 thorpej void 2004 1.361 thorpej cpu_need_proftick(struct lwp *l) 2005 1.361 thorpej { 2006 1.361 thorpej 2007 1.361 thorpej KASSERT(kpreempt_disabled()); 2008 1.361 thorpej KASSERT(l->l_cpu == curcpu()); 2009 1.361 thorpej 2010 1.361 thorpej l->l_pflag |= LP_OWEUPC; 2011 1.361 thorpej aston(l); 2012 1.361 thorpej } 2013