machdep.c revision 1.1 1 1.1 cgd /* $NetBSD: machdep.c,v 1.1 1995/02/13 23:07:02 cgd Exp $ */
2 1.1 cgd
3 1.1 cgd /*
4 1.1 cgd * Copyright (c) 1994, 1995 Carnegie-Mellon University.
5 1.1 cgd * All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Author: Chris G. Demetriou
8 1.1 cgd *
9 1.1 cgd * Permission to use, copy, modify and distribute this software and
10 1.1 cgd * its documentation is hereby granted, provided that both the copyright
11 1.1 cgd * notice and this permission notice appear in all copies of the
12 1.1 cgd * software, derivative works or modified versions, and any portions
13 1.1 cgd * thereof, and that both notices appear in supporting documentation.
14 1.1 cgd *
15 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 1.1 cgd *
19 1.1 cgd * Carnegie Mellon requests users of this software to return to
20 1.1 cgd *
21 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 1.1 cgd * School of Computer Science
23 1.1 cgd * Carnegie Mellon University
24 1.1 cgd * Pittsburgh PA 15213-3890
25 1.1 cgd *
26 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
27 1.1 cgd * rights to redistribute these changes.
28 1.1 cgd */
29 1.1 cgd
30 1.1 cgd #include <sys/param.h>
31 1.1 cgd #include <sys/systm.h>
32 1.1 cgd #include <sys/signalvar.h>
33 1.1 cgd #include <sys/kernel.h>
34 1.1 cgd #include <sys/map.h>
35 1.1 cgd #include <sys/proc.h>
36 1.1 cgd #include <sys/buf.h>
37 1.1 cgd #include <sys/reboot.h>
38 1.1 cgd #include <sys/conf.h>
39 1.1 cgd #include <sys/file.h>
40 1.1 cgd #ifdef REAL_CLISTS
41 1.1 cgd #include <sys/clist.h>
42 1.1 cgd #endif
43 1.1 cgd #include <sys/callout.h>
44 1.1 cgd #include <sys/malloc.h>
45 1.1 cgd #include <sys/mbuf.h>
46 1.1 cgd #include <sys/msgbuf.h>
47 1.1 cgd #include <sys/ioctl.h>
48 1.1 cgd #include <sys/tty.h>
49 1.1 cgd #include <sys/user.h>
50 1.1 cgd #include <sys/exec.h>
51 1.1 cgd #include <sys/exec_ecoff.h>
52 1.1 cgd #include <sys/sysctl.h>
53 1.1 cgd #ifdef SYSVMSG
54 1.1 cgd #include <sys/msg.h>
55 1.1 cgd #endif
56 1.1 cgd #ifdef SYSVSEM
57 1.1 cgd #include <sys/sem.h>
58 1.1 cgd #endif
59 1.1 cgd #ifdef SYSVSHM
60 1.1 cgd #include <sys/shm.h>
61 1.1 cgd #endif
62 1.1 cgd
63 1.1 cgd #include <sys/mount.h>
64 1.1 cgd #include <sys/syscallargs.h>
65 1.1 cgd
66 1.1 cgd #include <vm/vm_kern.h>
67 1.1 cgd
68 1.1 cgd #include <dev/cons.h>
69 1.1 cgd
70 1.1 cgd #include <machine/cpu.h>
71 1.1 cgd #include <machine/reg.h>
72 1.1 cgd #include <machine/rpb.h>
73 1.1 cgd #include <machine/prom.h>
74 1.1 cgd
75 1.1 cgd #include <net/netisr.h>
76 1.1 cgd #include "ether.h"
77 1.1 cgd
78 1.1 cgd #include "le.h" /* XXX for le_iomem creation */
79 1.1 cgd #include "esp.h" /* XXX for esp_iomem creation */
80 1.1 cgd
81 1.1 cgd vm_map_t buffer_map;
82 1.1 cgd
83 1.1 cgd /*
84 1.1 cgd * Declare these as initialized data so we can patch them.
85 1.1 cgd */
86 1.1 cgd int nswbuf = 0;
87 1.1 cgd #ifdef NBUF
88 1.1 cgd int nbuf = NBUF;
89 1.1 cgd #else
90 1.1 cgd int nbuf = 0;
91 1.1 cgd #endif
92 1.1 cgd #ifdef BUFPAGES
93 1.1 cgd int bufpages = BUFPAGES;
94 1.1 cgd #else
95 1.1 cgd int bufpages = 0;
96 1.1 cgd #endif
97 1.1 cgd int msgbufmapped = 0; /* set when safe to use msgbuf */
98 1.1 cgd int maxmem; /* max memory per process */
99 1.1 cgd int physmem; /* amount of physical memory in system */
100 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
101 1.1 cgd
102 1.1 cgd int cputype; /* system type, from the RPB */
103 1.1 cgd
104 1.1 cgd /*
105 1.1 cgd * XXX We need an address to which we can assign things so that they
106 1.1 cgd * won't be optimized away because we didn't use the value.
107 1.1 cgd */
108 1.1 cgd u_int32_t no_optimize;
109 1.1 cgd
110 1.1 cgd /* the following is used externally (sysctl_hw) */
111 1.1 cgd char machine[] = "alpha";
112 1.1 cgd char cpu_model[64];
113 1.1 cgd char *model_names[] = {
114 1.1 cgd "UNKNOWN (0)", "Alpha ADU", "DEC 4000", "DEC 7000", "DEC 3000/[4568]00",
115 1.1 cgd "UNKNOWN (5)", "DEC 2000/300", "DEC 3000/300",
116 1.1 cgd };
117 1.1 cgd int nmodel_names = sizeof model_names/sizeof model_names[0];
118 1.1 cgd
119 1.1 cgd struct user *proc0paddr;
120 1.1 cgd
121 1.1 cgd /* Number of machine cycles per microsecond */
122 1.1 cgd u_int64_t cycles_per_usec;
123 1.1 cgd
124 1.1 cgd /* some memory areas for device DMA. "ick." */
125 1.1 cgd caddr_t le_iomem; /* XXX iomem for LANCE DMA */
126 1.1 cgd caddr_t esp_iomem; /* XXX iomem for SCSI DMA */
127 1.1 cgd
128 1.1 cgd /* Interrupt vectors (in locore) */
129 1.1 cgd extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
130 1.1 cgd
131 1.1 cgd int
132 1.1 cgd alpha_init(pfn, ptb, argc, argv, envp)
133 1.1 cgd u_long pfn; /* first free PFN number */
134 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
135 1.1 cgd u_long argc;
136 1.1 cgd char *argv[], *envp[];
137 1.1 cgd {
138 1.1 cgd #ifdef __GNUC__ /* XXX */
139 1.1 cgd extern char _end[]; /* XXX */
140 1.1 cgd #else /* __GNUC__ */ /* XXX */
141 1.1 cgd extern char end[]; /* XXX */
142 1.1 cgd #endif /* __GNUC__ */ /* XXX */
143 1.1 cgd caddr_t start, v;
144 1.1 cgd struct mddt *mddtp;
145 1.1 cgd int i;
146 1.1 cgd char *p;
147 1.1 cgd
148 1.1 cgd /*
149 1.1 cgd * Turn off interrupts and floating point.
150 1.1 cgd * Make sure the instruction and data streams are consistent.
151 1.1 cgd */
152 1.1 cgd (void)splhigh();
153 1.1 cgd pal_wrfen(0);
154 1.1 cgd TBIA();
155 1.1 cgd IMB();
156 1.1 cgd
157 1.1 cgd /*
158 1.1 cgd * get address of the restart block, while we the bootstrap
159 1.1 cgd * mapping is still around.
160 1.1 cgd */
161 1.1 cgd hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
162 1.1 cgd
163 1.1 cgd /*
164 1.1 cgd * Remember how many cycles there are per microsecond,
165 1.1 cgd * so that we can use delay()
166 1.1 cgd */
167 1.1 cgd cycles_per_usec = hwrpb->rpb_cc_freq / 1000000;
168 1.1 cgd
169 1.1 cgd /*
170 1.1 cgd * Init the PROM interface, so we can use printf
171 1.1 cgd * until PROM mappings go away in consinit.
172 1.1 cgd */
173 1.1 cgd init_prom_interface();
174 1.1 cgd
175 1.1 cgd /*
176 1.1 cgd * Point interrupt/exception vectors to our own.
177 1.1 cgd */
178 1.1 cgd pal_wrent(XentInt, 0);
179 1.1 cgd pal_wrent(XentArith, 1);
180 1.1 cgd pal_wrent(XentMM, 2);
181 1.1 cgd pal_wrent(XentIF, 3);
182 1.1 cgd pal_wrent(XentUna, 4);
183 1.1 cgd pal_wrent(XentSys, 5);
184 1.1 cgd
185 1.1 cgd /*
186 1.1 cgd * Find out how much memory is available, by looking at
187 1.1 cgd * the memory cluster descriptors.
188 1.1 cgd * XXX Assumes that the first "system" cluster is the
189 1.1 cgd * only one we can use. Can there be more than two clusters?
190 1.1 cgd * Is the second (etc.) system cluster guaranteed to be
191 1.1 cgd * discontiguous?
192 1.1 cgd */
193 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
194 1.1 cgd physmem = 0;
195 1.1 cgd if (mddtp->mddt_cluster_cnt != 2)
196 1.1 cgd printf("warning: strange number of memory clusters (%d).\n",
197 1.1 cgd mddtp->mddt_cluster_cnt);
198 1.1 cgd physmem = 0;
199 1.1 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
200 1.1 cgd /* add up physmem, stopping on first OS-available space. */
201 1.1 cgd physmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
202 1.1 cgd if ((mddtp->mddt_clusters[i].mddt_usage & 0x01) == 0)
203 1.1 cgd break;
204 1.1 cgd else
205 1.1 cgd resvmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
206 1.1 cgd }
207 1.1 cgd if (physmem == 0)
208 1.1 cgd panic("can't happen: system seems to have no memory!");
209 1.1 cgd maxmem = physmem;
210 1.1 cgd
211 1.1 cgd /*
212 1.1 cgd * find out this CPU's page size
213 1.1 cgd */
214 1.1 cgd PAGE_SIZE = hwrpb->rpb_page_size;
215 1.1 cgd
216 1.1 cgd #ifdef __GNUC__ /* XXX */
217 1.1 cgd v = (caddr_t)alpha_round_page(_end); /* XXX */
218 1.1 cgd #else /* __GNUC__ */ /* XXX */
219 1.1 cgd v = (caddr_t)alpha_round_page(end); /* XXX */
220 1.1 cgd #endif /* __GNUC__ */ /* XXX */
221 1.1 cgd /*
222 1.1 cgd * Init mapping for u page(s) for proc 0
223 1.1 cgd */
224 1.1 cgd start = v;
225 1.1 cgd curproc->p_addr = proc0paddr = (struct user *)v;
226 1.1 cgd v += UPAGES * NBPG;
227 1.1 cgd
228 1.1 cgd /*
229 1.1 cgd * Find out what hardware we're on, and remember its type name.
230 1.1 cgd * XXX and start dealing with config?
231 1.1 cgd */
232 1.1 cgd cputype = hwrpb->rpb_type;
233 1.1 cgd switch (cputype) {
234 1.1 cgd #ifdef ADU
235 1.1 cgd case ST_ADU:
236 1.1 cgd THIS SYSTEM NOT SUPPORTED
237 1.1 cgd #endif /* ADU */
238 1.1 cgd #ifdef DEC_4000
239 1.1 cgd case ST_DEC_4000:
240 1.1 cgd THIS SYSTEM NOT SUPPORTED
241 1.1 cgd #endif /* DEC_4000 */
242 1.1 cgd #ifdef DEC_7000
243 1.1 cgd case ST_DEC_7000:
244 1.1 cgd THIS SYSTEM NOT SUPPORTED
245 1.1 cgd #endif /* DEC_7000 */
246 1.1 cgd #ifdef DEC_3000_500 /* and 400, and 600 and 800 */
247 1.1 cgd case ST_DEC_3000_500:
248 1.1 cgd /* XXX XXX XXX */
249 1.1 cgd break;
250 1.1 cgd #endif /* DEC_3000_500 */
251 1.1 cgd #ifdef DEC_2000_300
252 1.1 cgd case ST_DEC_2000_300:
253 1.1 cgd THIS SYSTEM NOT SUPPORTED
254 1.1 cgd #endif /* DEC_2000_300 */
255 1.1 cgd #ifdef DEC_3000_300
256 1.1 cgd case DEC_3000_300:
257 1.1 cgd THIS SYSTEM NOT SUPPORTED
258 1.1 cgd #endif /* DEC_3000_300*/
259 1.1 cgd default:
260 1.1 cgd if (cputype > nmodel_names)
261 1.1 cgd panic("Unknown system type %d", cputype);
262 1.1 cgd else
263 1.1 cgd panic("Support for %s system type not in kernel.",
264 1.1 cgd model_names[cputype]);
265 1.1 cgd }
266 1.1 cgd strcpy(cpu_model, model_names[cputype]);
267 1.1 cgd
268 1.1 cgd #if NLE > 0
269 1.1 cgd /*
270 1.1 cgd * Grab 128K at the top of physical memory for the lance chip
271 1.1 cgd * on machines where it does dma through the I/O ASIC.
272 1.1 cgd * It must be physically contiguous and aligned on a 128K boundary.
273 1.1 cgd */
274 1.1 cgd if (cputype == ST_DEC_3000_500 ||
275 1.1 cgd cputype == ST_DEC_3000_300) { /* XXX possibly others? */
276 1.1 cgd maxmem -= btoc(128 * 1024);
277 1.1 cgd le_iomem = (caddr_t)phystok0seg(maxmem << PGSHIFT);
278 1.1 cgd }
279 1.1 cgd #endif /* NLE */
280 1.1 cgd #if NESP > 0
281 1.1 cgd /*
282 1.1 cgd * Ditto for the scsi chip. There is probably a way to make esp.c
283 1.1 cgd * do dma without these buffers, but it would require major
284 1.1 cgd * re-engineering of the esp driver.
285 1.1 cgd * They must be 8K in size and page aligned.
286 1.1 cgd */
287 1.1 cgd if (cputype == ST_DEC_3000_500 ||
288 1.1 cgd cputype == ST_DEC_3000_300) { /* XXX possibly others? */
289 1.1 cgd maxmem -= btoc(NESP * 8192);
290 1.1 cgd esp_iomem = (caddr_t)phystok0seg(maxmem << PGSHIFT);
291 1.1 cgd }
292 1.1 cgd #endif /* NESP */
293 1.1 cgd
294 1.1 cgd /*
295 1.1 cgd * Initialize error message buffer (at end of core).
296 1.1 cgd */
297 1.1 cgd maxmem -= btoc(sizeof (struct msgbuf));
298 1.1 cgd msgbufp = (struct msgbuf *)phystok0seg(maxmem << PGSHIFT);
299 1.1 cgd msgbufmapped = 1;
300 1.1 cgd
301 1.1 cgd /*
302 1.1 cgd * Allocate space for system data structures.
303 1.1 cgd * The first available kernel virtual address is in "v".
304 1.1 cgd * As pages of kernel virtual memory are allocated, "v" is incremented.
305 1.1 cgd *
306 1.1 cgd * These data structures are allocated here instead of cpu_startup()
307 1.1 cgd * because physical memory is directly addressable. We don't have
308 1.1 cgd * to map these into virtual address space.
309 1.1 cgd */
310 1.1 cgd #define valloc(name, type, num) \
311 1.1 cgd (name) = (type *)v; v = (caddr_t)((name)+(num))
312 1.1 cgd #define valloclim(name, type, num, lim) \
313 1.1 cgd (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
314 1.1 cgd #ifdef REAL_CLISTS
315 1.1 cgd valloc(cfree, struct cblock, nclist);
316 1.1 cgd #endif
317 1.1 cgd valloc(callout, struct callout, ncallout);
318 1.1 cgd valloc(swapmap, struct map, nswapmap = maxproc * 2);
319 1.1 cgd #ifdef SYSVSHM
320 1.1 cgd valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
321 1.1 cgd #endif
322 1.1 cgd #ifdef SYSVSEM
323 1.1 cgd valloc(sema, struct semid_ds, seminfo.semmni);
324 1.1 cgd valloc(sem, struct sem, seminfo.semmns);
325 1.1 cgd /* This is pretty disgusting! */
326 1.1 cgd valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
327 1.1 cgd #endif
328 1.1 cgd #ifdef SYSVMSG
329 1.1 cgd valloc(msgpool, char, msginfo.msgmax);
330 1.1 cgd valloc(msgmaps, struct msgmap, msginfo.msgseg);
331 1.1 cgd valloc(msghdrs, struct msg, msginfo.msgtql);
332 1.1 cgd valloc(msqids, struct msqid_ds, msginfo.msgmni);
333 1.1 cgd #endif
334 1.1 cgd
335 1.1 cgd /*
336 1.1 cgd * Determine how many buffers to allocate.
337 1.1 cgd * We allocate the BSD standard of 10% of memory for the first
338 1.1 cgd * 2 Meg, and 5% of remaining memory for buffer space. Insure a
339 1.1 cgd * minimum of 16 buffers. We allocate 1/2 as many swap buffer
340 1.1 cgd * headers as file i/o buffers.
341 1.1 cgd */
342 1.1 cgd if (bufpages == 0)
343 1.1 cgd bufpages = (btoc(2 * 1024 * 1024) + (physmem - resvmem)) /
344 1.1 cgd (20 * CLSIZE);
345 1.1 cgd if (nbuf == 0) {
346 1.1 cgd nbuf = bufpages;
347 1.1 cgd if (nbuf < 16)
348 1.1 cgd nbuf = 16;
349 1.1 cgd }
350 1.1 cgd if (nswbuf == 0) {
351 1.1 cgd nswbuf = (nbuf / 2) &~ 1; /* force even */
352 1.1 cgd if (nswbuf > 256)
353 1.1 cgd nswbuf = 256; /* sanity */
354 1.1 cgd }
355 1.1 cgd valloc(swbuf, struct buf, nswbuf);
356 1.1 cgd valloc(buf, struct buf, nbuf);
357 1.1 cgd
358 1.1 cgd /*
359 1.1 cgd * Clear allocated memory.
360 1.1 cgd */
361 1.1 cgd bzero(start, v - start);
362 1.1 cgd
363 1.1 cgd /*
364 1.1 cgd * Initialize the virtual memory system, and set the
365 1.1 cgd * page table base register in proc 0's PCB.
366 1.1 cgd */
367 1.1 cgd pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
368 1.1 cgd
369 1.1 cgd /*
370 1.1 cgd * Initialize the rest of proc 0's PCB, and init the ptes
371 1.1 cgd * which are cached in its md_proc structure, so we can switch
372 1.1 cgd * to it in locore. Also cache the physical address of the pcb.
373 1.1 cgd */
374 1.1 cgd for (i = 0; i < UPAGES; i++)
375 1.1 cgd proc0.p_md.md_upte[i] = PG_V | PG_KRE | PG_KWE |
376 1.1 cgd (((k0segtophys(proc0paddr) >> PGSHIFT) + i) << PG_SHIFT);
377 1.1 cgd proc0.p_md.md_pcbpaddr = (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
378 1.1 cgd proc0paddr->u_pcb.pcb_ksp = KSTACKTOP; /* set the kernel sp */
379 1.1 cgd
380 1.1 cgd /*
381 1.1 cgd * Look at arguments and compute bootdev.
382 1.1 cgd *
383 1.1 cgd * XXX
384 1.1 cgd * Boot currently doesn't pass any arguments concerning booting
385 1.1 cgd * or the root device.
386 1.1 cgd */
387 1.1 cgd { extern dev_t bootdev;
388 1.1 cgd bootdev = MAKEBOOTDEV(8, 0, 0, 0, 0); /* sd0a. XXX */
389 1.1 cgd }
390 1.1 cgd
391 1.1 cgd /*
392 1.1 cgd * Look at arguments passed to us and compute boothowto.
393 1.1 cgd */
394 1.1 cgd #ifdef GENERIC
395 1.1 cgd boothowto = RB_SINGLE | RB_ASKNAME;
396 1.1 cgd #else
397 1.1 cgd boothowto = RB_SINGLE;
398 1.1 cgd #endif
399 1.1 cgd #ifdef KADB
400 1.1 cgd boothowto |= RB_KDB;
401 1.1 cgd #endif
402 1.1 cgd
403 1.1 cgd printf("argc = %d\n", argc);
404 1.1 cgd printf("argv = %lx\n", argv);
405 1.1 cgd for (i = 0; i < argc; i++)
406 1.1 cgd printf("argv[%d] = (%lx) \"%s\"\n", i, argv[i], argv[i]);
407 1.1 cgd
408 1.1 cgd if (argc > 1) {
409 1.1 cgd /* we have arguments. argv[1] is the flags. */
410 1.1 cgd for (p = argv[1]; *p != '\0'; p++) {
411 1.1 cgd switch (*p) {
412 1.1 cgd case 'a': /* autoboot */
413 1.1 cgd case 'A': /* DEC's notion of autoboot */
414 1.1 cgd boothowto &= ~RB_SINGLE;
415 1.1 cgd break;
416 1.1 cgd
417 1.1 cgd case 'd': /* use compiled in default root */
418 1.1 cgd boothowto |= RB_DFLTROOT;
419 1.1 cgd break;
420 1.1 cgd
421 1.1 cgd case 'm': /* mini root present in memory */
422 1.1 cgd boothowto |= RB_MINIROOT;
423 1.1 cgd break;
424 1.1 cgd
425 1.1 cgd case 'n': /* ask for names */
426 1.1 cgd boothowto |= RB_ASKNAME;
427 1.1 cgd break;
428 1.1 cgd
429 1.1 cgd case 'N': /* don't ask for names */
430 1.1 cgd boothowto &= ~RB_ASKNAME;
431 1.1 cgd }
432 1.1 cgd }
433 1.1 cgd }
434 1.1 cgd
435 1.1 cgd return (0);
436 1.1 cgd }
437 1.1 cgd
438 1.1 cgd /* for cons.c */
439 1.1 cgd struct consdev constab[] = {
440 1.1 cgd { 0 },
441 1.1 cgd };
442 1.1 cgd
443 1.1 cgd consinit()
444 1.1 cgd {
445 1.1 cgd /* XXX SET UP THE CONSOLE TAB TO HAVE REASONABLE ENTRIES */
446 1.1 cgd /* XXX */
447 1.1 cgd
448 1.1 cgd /* XXX PICK A NEW CONSOLE DEVICE */
449 1.1 cgd /* cninit(); */
450 1.1 cgd
451 1.1 cgd pmap_unmap_prom();
452 1.1 cgd }
453 1.1 cgd
454 1.1 cgd cpu_startup()
455 1.1 cgd {
456 1.1 cgd register unsigned i;
457 1.1 cgd register caddr_t v;
458 1.1 cgd int base, residual;
459 1.1 cgd vm_offset_t minaddr, maxaddr;
460 1.1 cgd vm_size_t size;
461 1.1 cgd #ifdef DEBUG
462 1.1 cgd extern int pmapdebug;
463 1.1 cgd int opmapdebug = pmapdebug;
464 1.1 cgd
465 1.1 cgd pmapdebug = 0;
466 1.1 cgd #endif
467 1.1 cgd
468 1.1 cgd /*
469 1.1 cgd * Good {morning,afternoon,evening,night}.
470 1.1 cgd */
471 1.1 cgd printf(version);
472 1.1 cgd identifycpu();
473 1.1 cgd printf("real mem = %d (%d reserved for PROM)\n", ctob(physmem),
474 1.1 cgd ctob(resvmem));
475 1.1 cgd
476 1.1 cgd /*
477 1.1 cgd * Allocate virtual address space for file I/O buffers.
478 1.1 cgd * Note they are different than the array of headers, 'buf',
479 1.1 cgd * and usually occupy more virtual memory than physical.
480 1.1 cgd */
481 1.1 cgd size = MAXBSIZE * nbuf;
482 1.1 cgd buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
483 1.1 cgd &maxaddr, size, TRUE);
484 1.1 cgd minaddr = (vm_offset_t)buffers;
485 1.1 cgd if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
486 1.1 cgd &minaddr, size, FALSE) != KERN_SUCCESS)
487 1.1 cgd panic("startup: cannot allocate buffers");
488 1.1 cgd base = bufpages / nbuf;
489 1.1 cgd residual = bufpages % nbuf;
490 1.1 cgd for (i = 0; i < nbuf; i++) {
491 1.1 cgd vm_size_t curbufsize;
492 1.1 cgd vm_offset_t curbuf;
493 1.1 cgd
494 1.1 cgd /*
495 1.1 cgd * First <residual> buffers get (base+1) physical pages
496 1.1 cgd * allocated for them. The rest get (base) physical pages.
497 1.1 cgd *
498 1.1 cgd * The rest of each buffer occupies virtual space,
499 1.1 cgd * but has no physical memory allocated for it.
500 1.1 cgd */
501 1.1 cgd curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
502 1.1 cgd curbufsize = CLBYTES * (i < residual ? base+1 : base);
503 1.1 cgd vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
504 1.1 cgd vm_map_simplify(buffer_map, curbuf);
505 1.1 cgd }
506 1.1 cgd /*
507 1.1 cgd * Allocate a submap for exec arguments. This map effectively
508 1.1 cgd * limits the number of processes exec'ing at any time.
509 1.1 cgd */
510 1.1 cgd exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
511 1.1 cgd 16 * NCARGS, TRUE);
512 1.1 cgd
513 1.1 cgd /*
514 1.1 cgd * Allocate a submap for physio
515 1.1 cgd */
516 1.1 cgd phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
517 1.1 cgd VM_PHYS_SIZE, TRUE);
518 1.1 cgd
519 1.1 cgd /*
520 1.1 cgd * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
521 1.1 cgd * we use the more space efficient malloc in place of kmem_alloc.
522 1.1 cgd */
523 1.1 cgd mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
524 1.1 cgd M_MBUF, M_NOWAIT);
525 1.1 cgd bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
526 1.1 cgd mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
527 1.1 cgd VM_MBUF_SIZE, FALSE);
528 1.1 cgd /*
529 1.1 cgd * Initialize callouts
530 1.1 cgd */
531 1.1 cgd callfree = callout;
532 1.1 cgd for (i = 1; i < ncallout; i++)
533 1.1 cgd callout[i-1].c_next = &callout[i];
534 1.1 cgd callout[i-1].c_next = NULL;
535 1.1 cgd
536 1.1 cgd #ifdef DEBUG
537 1.1 cgd pmapdebug = opmapdebug;
538 1.1 cgd #endif
539 1.1 cgd printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
540 1.1 cgd printf("using %ld buffers containing %ld bytes of memory\n",
541 1.1 cgd (long)nbuf, (long)(bufpages * CLBYTES));
542 1.1 cgd
543 1.1 cgd /*
544 1.1 cgd * Set up buffers, so they can be used to read disk labels.
545 1.1 cgd */
546 1.1 cgd bufinit();
547 1.1 cgd
548 1.1 cgd /*
549 1.1 cgd * Configure the system.
550 1.1 cgd */
551 1.1 cgd configure();
552 1.1 cgd }
553 1.1 cgd
554 1.1 cgd identifycpu()
555 1.1 cgd {
556 1.1 cgd
557 1.1 cgd /* most of the work here is taken care of in alpha_init(). */
558 1.1 cgd printf("%s, serial number 0x%lx 0x%lx\n", cpu_model,
559 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
560 1.1 cgd printf("variation: 0x%lx, revision 0x%lx\n",
561 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
562 1.1 cgd printf("%d byte page size, %d processor%s.\n", hwrpb->rpb_page_size,
563 1.1 cgd hwrpb->rpb_pcs_cnt, hwrpb->rpb_pcs_cnt == 1 ? "" : "s");
564 1.1 cgd }
565 1.1 cgd
566 1.1 cgd int waittime = -1;
567 1.1 cgd
568 1.1 cgd boot(howto)
569 1.1 cgd int howto;
570 1.1 cgd {
571 1.1 cgd extern int cold;
572 1.1 cgd
573 1.1 cgd /* Take a snapshot before clobbering any registers. */
574 1.1 cgd if (curproc)
575 1.1 cgd savectx(curproc->p_addr, 0);
576 1.1 cgd
577 1.1 cgd /* If system is cold, just halt. */
578 1.1 cgd if (cold) {
579 1.1 cgd howto |= RB_HALT;
580 1.1 cgd goto haltsys;
581 1.1 cgd }
582 1.1 cgd
583 1.1 cgd /* Sync the disks, if appropriate */
584 1.1 cgd if ((howto & RB_NOSYNC) == 0 && waittime < 0 && 0 /* XXX */) {
585 1.1 cgd register struct buf *bp;
586 1.1 cgd int iter, nbusy;
587 1.1 cgd
588 1.1 cgd waittime = 0;
589 1.1 cgd (void) spl0();
590 1.1 cgd printf("syncing disks... ");
591 1.1 cgd #ifdef notdef /* XXX */
592 1.1 cgd /*
593 1.1 cgd * Release vnodes held by texts before sync.
594 1.1 cgd */
595 1.1 cgd if (panicstr == 0)
596 1.1 cgd vnode_pager_umount(NULL);
597 1.1 cgd
598 1.1 cgd sync(&proc0, (void *)NULL, (int *)NULL);
599 1.1 cgd
600 1.1 cgd for (iter = 0; iter < 20; iter++) {
601 1.1 cgd nbusy = 0;
602 1.1 cgd for (bp = &buf[nbuf]; --bp >= buf; )
603 1.1 cgd if ((bp->b_flags & (B_BUSY|B_INVAL)) == B_BUSY)
604 1.1 cgd nbusy++;
605 1.1 cgd if (nbusy == 0)
606 1.1 cgd break;
607 1.1 cgd printf("%d ", nbusy);
608 1.1 cgd DELAY(40000 * iter);
609 1.1 cgd }
610 1.1 cgd if (nbusy)
611 1.1 cgd printf("giving up\n");
612 1.1 cgd else
613 1.1 cgd #endif
614 1.1 cgd printf("done\n");
615 1.1 cgd #ifdef notdef /* XXX */
616 1.1 cgd /*
617 1.1 cgd * If we've been adjusting the clock, the todr
618 1.1 cgd * will be out of synch; adjust it now.
619 1.1 cgd */
620 1.1 cgd resettodr();
621 1.1 cgd #endif
622 1.1 cgd }
623 1.1 cgd
624 1.1 cgd /* Disable interrupts. */
625 1.1 cgd splhigh();
626 1.1 cgd
627 1.1 cgd #ifdef notdef /* XXX */
628 1.1 cgd /* If rebooting and a dump is requested do the dump. */
629 1.1 cgd if ((howto & (RB_DUMP|RB_HALT)) == RB_DUMP)
630 1.1 cgd dumpsys();
631 1.1 cgd #endif
632 1.1 cgd
633 1.1 cgd haltsys:
634 1.1 cgd /* Finally, halt/reboot the system. */
635 1.1 cgd printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
636 1.1 cgd prom_halt(howto & RB_HALT);
637 1.1 cgd /*NOTREACHED*/
638 1.1 cgd }
639 1.1 cgd
640 1.1 cgd void
641 1.1 cgd frametoreg(framep, regp)
642 1.1 cgd struct trapframe *framep;
643 1.1 cgd struct reg *regp;
644 1.1 cgd {
645 1.1 cgd
646 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
647 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
648 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
649 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
650 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
651 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
652 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
653 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
654 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
655 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
656 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
657 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
658 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
659 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
660 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
661 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
662 1.1 cgd regp->r_regs[R_A0] = framep->tf_a0;
663 1.1 cgd regp->r_regs[R_A1] = framep->tf_a1;
664 1.1 cgd regp->r_regs[R_A2] = framep->tf_a2;
665 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
666 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
667 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
668 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
669 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
670 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
671 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
672 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
673 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
674 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
675 1.1 cgd regp->r_regs[R_GP] = framep->tf_gp;
676 1.1 cgd regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
677 1.1 cgd regp->r_regs[R_ZERO] = 0;
678 1.1 cgd }
679 1.1 cgd
680 1.1 cgd void
681 1.1 cgd regtoframe(regp, framep)
682 1.1 cgd struct reg *regp;
683 1.1 cgd struct trapframe *framep;
684 1.1 cgd {
685 1.1 cgd
686 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
687 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
688 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
689 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
690 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
691 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
692 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
693 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
694 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
695 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
696 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
697 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
698 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
699 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
700 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
701 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
702 1.1 cgd framep->tf_a0 = regp->r_regs[R_A0];
703 1.1 cgd framep->tf_a1 = regp->r_regs[R_A1];
704 1.1 cgd framep->tf_a2 = regp->r_regs[R_A2];
705 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
706 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
707 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
708 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
709 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
710 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
711 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
712 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
713 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
714 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
715 1.1 cgd framep->tf_gp = regp->r_regs[R_GP];
716 1.1 cgd framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
717 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
718 1.1 cgd }
719 1.1 cgd
720 1.1 cgd void
721 1.1 cgd printregs(regp)
722 1.1 cgd struct reg *regp;
723 1.1 cgd {
724 1.1 cgd int i;
725 1.1 cgd
726 1.1 cgd for (i = 0; i < 32; i++)
727 1.1 cgd printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
728 1.1 cgd i & 1 ? "\n" : "\t");
729 1.1 cgd }
730 1.1 cgd
731 1.1 cgd void
732 1.1 cgd regdump(framep)
733 1.1 cgd struct trapframe *framep;
734 1.1 cgd {
735 1.1 cgd struct reg reg;
736 1.1 cgd
737 1.1 cgd frametoreg(framep, ®);
738 1.1 cgd printf("REGISTERS:\n");
739 1.1 cgd printregs(®);
740 1.1 cgd }
741 1.1 cgd
742 1.1 cgd #ifdef DEBUG
743 1.1 cgd int sigdebug = 0;
744 1.1 cgd int sigpid = 0;
745 1.1 cgd #define SDB_FOLLOW 0x01
746 1.1 cgd #define SDB_KSTACK 0x02
747 1.1 cgd #endif
748 1.1 cgd
749 1.1 cgd /*
750 1.1 cgd * Send an interrupt to process.
751 1.1 cgd */
752 1.1 cgd void
753 1.1 cgd sendsig(catcher, sig, mask, code)
754 1.1 cgd sig_t catcher;
755 1.1 cgd int sig, mask;
756 1.1 cgd u_long code;
757 1.1 cgd {
758 1.1 cgd struct proc *p = curproc;
759 1.1 cgd struct sigcontext *scp, ksc;
760 1.1 cgd struct trapframe *frame;
761 1.1 cgd struct sigacts *psp = p->p_sigacts;
762 1.1 cgd int oonstack, fsize, rndfsize;
763 1.1 cgd extern char sigcode[], esigcode[];
764 1.1 cgd extern struct proc *fpcurproc;
765 1.1 cgd
766 1.1 cgd frame = p->p_md.md_tf;
767 1.1 cgd oonstack = psp->ps_sigstk.ss_flags & SA_ONSTACK;
768 1.1 cgd fsize = sizeof ksc;
769 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
770 1.1 cgd /*
771 1.1 cgd * Allocate and validate space for the signal handler
772 1.1 cgd * context. Note that if the stack is in P0 space, the
773 1.1 cgd * call to grow() is a nop, and the useracc() check
774 1.1 cgd * will fail if the process has not already allocated
775 1.1 cgd * the space with a `brk'.
776 1.1 cgd */
777 1.1 cgd if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
778 1.1 cgd (psp->ps_sigonstack & sigmask(sig))) {
779 1.1 cgd scp = (struct sigcontext *)(psp->ps_sigstk.ss_base +
780 1.1 cgd psp->ps_sigstk.ss_size - rndfsize);
781 1.1 cgd psp->ps_sigstk.ss_flags |= SA_ONSTACK;
782 1.1 cgd } else
783 1.1 cgd scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
784 1.1 cgd rndfsize);
785 1.1 cgd if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
786 1.1 cgd (void)grow(p, (u_long)scp);
787 1.1 cgd #ifdef DEBUG
788 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
789 1.1 cgd printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
790 1.1 cgd sig, &oonstack, scp);
791 1.1 cgd #endif
792 1.1 cgd if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
793 1.1 cgd #ifdef DEBUG
794 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
795 1.1 cgd printf("sendsig(%d): useracc failed on sig %d\n",
796 1.1 cgd p->p_pid, sig);
797 1.1 cgd #endif
798 1.1 cgd /*
799 1.1 cgd * Process has trashed its stack; give it an illegal
800 1.1 cgd * instruction to halt it in its tracks.
801 1.1 cgd */
802 1.1 cgd SIGACTION(p, SIGILL) = SIG_DFL;
803 1.1 cgd sig = sigmask(SIGILL);
804 1.1 cgd p->p_sigignore &= ~sig;
805 1.1 cgd p->p_sigcatch &= ~sig;
806 1.1 cgd p->p_sigmask &= ~sig;
807 1.1 cgd psignal(p, SIGILL);
808 1.1 cgd return;
809 1.1 cgd }
810 1.1 cgd
811 1.1 cgd /*
812 1.1 cgd * Build the signal context to be used by sigreturn.
813 1.1 cgd */
814 1.1 cgd ksc.sc_onstack = oonstack;
815 1.1 cgd ksc.sc_mask = mask;
816 1.1 cgd ksc.sc_pc = frame->tf_pc;
817 1.1 cgd ksc.sc_ps = frame->tf_ps;
818 1.1 cgd
819 1.1 cgd /* copy the registers. */
820 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
821 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
822 1.1 cgd
823 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
824 1.1 cgd if (p == fpcurproc) {
825 1.1 cgd pal_wrfen(1);
826 1.1 cgd savefpstate(&p->p_addr->u_pcb.pcb_fp);
827 1.1 cgd pal_wrfen(0);
828 1.1 cgd fpcurproc = NULL;
829 1.1 cgd }
830 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
831 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
832 1.1 cgd sizeof(struct fpreg));
833 1.1 cgd ksc.sc_fp_control = 0; /* XXX ? */
834 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
835 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
836 1.1 cgd
837 1.1 cgd
838 1.1 cgd #ifdef COMPAT_OSF1
839 1.1 cgd /*
840 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
841 1.1 cgd */
842 1.1 cgd #endif
843 1.1 cgd
844 1.1 cgd /*
845 1.1 cgd * copy the frame out to userland.
846 1.1 cgd */
847 1.1 cgd (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
848 1.1 cgd #ifdef DEBUG
849 1.1 cgd if (sigdebug & SDB_FOLLOW)
850 1.1 cgd printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
851 1.1 cgd scp, code);
852 1.1 cgd #endif
853 1.1 cgd
854 1.1 cgd /*
855 1.1 cgd * Set up the registers to return to sigcode.
856 1.1 cgd */
857 1.1 cgd frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
858 1.1 cgd frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
859 1.1 cgd frame->tf_a0 = sig;
860 1.1 cgd frame->tf_a1 = code;
861 1.1 cgd frame->tf_a2 = (u_int64_t)scp;
862 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
863 1.1 cgd
864 1.1 cgd #ifdef DEBUG
865 1.1 cgd if (sigdebug & SDB_FOLLOW)
866 1.1 cgd printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
867 1.1 cgd frame->tf_pc, frame->tf_regs[FRAME_A3]);
868 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
869 1.1 cgd printf("sendsig(%d): sig %d returns\n",
870 1.1 cgd p->p_pid, sig);
871 1.1 cgd #endif
872 1.1 cgd }
873 1.1 cgd
874 1.1 cgd /*
875 1.1 cgd * System call to cleanup state after a signal
876 1.1 cgd * has been taken. Reset signal mask and
877 1.1 cgd * stack state from context left by sendsig (above).
878 1.1 cgd * Return to previous pc and psl as specified by
879 1.1 cgd * context left by sendsig. Check carefully to
880 1.1 cgd * make sure that the user has not modified the
881 1.1 cgd * psl to gain improper priviledges or to cause
882 1.1 cgd * a machine fault.
883 1.1 cgd */
884 1.1 cgd /* ARGSUSED */
885 1.1 cgd sigreturn(p, uap, retval)
886 1.1 cgd struct proc *p;
887 1.1 cgd struct sigreturn_args /* {
888 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
889 1.1 cgd } */ *uap;
890 1.1 cgd register_t *retval;
891 1.1 cgd {
892 1.1 cgd struct sigcontext *scp, ksc;
893 1.1 cgd extern struct proc *fpcurproc;
894 1.1 cgd
895 1.1 cgd scp = SCARG(uap, sigcntxp);
896 1.1 cgd #ifdef DEBUG
897 1.1 cgd if (sigdebug & SDB_FOLLOW)
898 1.1 cgd printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
899 1.1 cgd #endif
900 1.1 cgd
901 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
902 1.1 cgd return (EINVAL);
903 1.1 cgd
904 1.1 cgd /*
905 1.1 cgd * Test and fetch the context structure.
906 1.1 cgd * We grab it all at once for speed.
907 1.1 cgd */
908 1.1 cgd if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
909 1.1 cgd copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
910 1.1 cgd return (EINVAL);
911 1.1 cgd
912 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
913 1.1 cgd return (EINVAL);
914 1.1 cgd /*
915 1.1 cgd * Restore the user-supplied information
916 1.1 cgd */
917 1.1 cgd if (ksc.sc_onstack)
918 1.1 cgd p->p_sigacts->ps_sigstk.ss_flags |= SA_ONSTACK;
919 1.1 cgd else
920 1.1 cgd p->p_sigacts->ps_sigstk.ss_flags &= ~SA_ONSTACK;
921 1.1 cgd p->p_sigmask = ksc.sc_mask &~ sigcantmask;
922 1.1 cgd
923 1.1 cgd p->p_md.md_tf->tf_pc = ksc.sc_pc;
924 1.1 cgd p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
925 1.1 cgd
926 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
927 1.1 cgd
928 1.1 cgd /* XXX ksc.sc_ownedfp ? */
929 1.1 cgd if (p == fpcurproc)
930 1.1 cgd fpcurproc = NULL;
931 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
932 1.1 cgd sizeof(struct fpreg));
933 1.1 cgd /* XXX ksc.sc_fp_control ? */
934 1.1 cgd
935 1.1 cgd #ifdef DEBUG
936 1.1 cgd if (sigdebug & SDB_FOLLOW)
937 1.1 cgd printf("sigreturn(%d): returns\n", p->p_pid);
938 1.1 cgd #endif
939 1.1 cgd return (EJUSTRETURN);
940 1.1 cgd }
941 1.1 cgd
942 1.1 cgd /*
943 1.1 cgd * machine dependent system variables.
944 1.1 cgd */
945 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
946 1.1 cgd int *name;
947 1.1 cgd u_int namelen;
948 1.1 cgd void *oldp;
949 1.1 cgd size_t *oldlenp;
950 1.1 cgd void *newp;
951 1.1 cgd size_t newlen;
952 1.1 cgd struct proc *p;
953 1.1 cgd {
954 1.1 cgd dev_t consdev;
955 1.1 cgd
956 1.1 cgd /* all sysctl names at this level are terminal */
957 1.1 cgd if (namelen != 1)
958 1.1 cgd return (ENOTDIR); /* overloaded */
959 1.1 cgd
960 1.1 cgd switch (name[0]) {
961 1.1 cgd case CPU_CONSDEV:
962 1.1 cgd if (cn_tab != NULL)
963 1.1 cgd consdev = cn_tab->cn_dev;
964 1.1 cgd else
965 1.1 cgd consdev = NODEV;
966 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
967 1.1 cgd sizeof consdev));
968 1.1 cgd default:
969 1.1 cgd return (EOPNOTSUPP);
970 1.1 cgd }
971 1.1 cgd /* NOTREACHED */
972 1.1 cgd }
973 1.1 cgd
974 1.1 cgd /*
975 1.1 cgd * Set registers on exec.
976 1.1 cgd */
977 1.1 cgd void
978 1.1 cgd setregs(p, entry, stack, retval)
979 1.1 cgd register struct proc *p;
980 1.1 cgd u_long entry;
981 1.1 cgd u_long stack;
982 1.1 cgd register_t *retval;
983 1.1 cgd {
984 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
985 1.1 cgd int i;
986 1.1 cgd extern struct proc *fpcurproc;
987 1.1 cgd
988 1.1 cgd #ifdef DEBUG
989 1.1 cgd for (i = 0; i < FRAME_NSAVEREGS; i++)
990 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
991 1.1 cgd tfp->tf_gp = 0xbabefacedeadbeef;
992 1.1 cgd tfp->tf_a0 = 0xbabefacedeadbeef;
993 1.1 cgd tfp->tf_a1 = 0xbabefacedeadbeef;
994 1.1 cgd tfp->tf_a2 = 0xbabefacedeadbeef;
995 1.1 cgd #else
996 1.1 cgd bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
997 1.1 cgd tfp->tf_gp = 0;
998 1.1 cgd tfp->tf_a0 = 0;
999 1.1 cgd tfp->tf_a1 = 0;
1000 1.1 cgd tfp->tf_a2 = 0;
1001 1.1 cgd #endif
1002 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1003 1.1 cgd
1004 1.1 cgd tfp->tf_regs[FRAME_SP] = stack; /* restored to usp in trap return */
1005 1.1 cgd tfp->tf_ps = PSL_USERSET;
1006 1.1 cgd tfp->tf_pc = entry & ~3;
1007 1.1 cgd
1008 1.1 cgd p->p_md.md_flags & ~MDP_FPUSED;
1009 1.1 cgd if (fpcurproc == p)
1010 1.1 cgd fpcurproc = NULL;
1011 1.1 cgd
1012 1.1 cgd retval[0] = retval[1] = 0;
1013 1.1 cgd }
1014 1.1 cgd
1015 1.1 cgd void
1016 1.1 cgd netintr()
1017 1.1 cgd {
1018 1.1 cgd #ifdef INET
1019 1.1 cgd #if NETHER > 0
1020 1.1 cgd if (netisr & (1 << NETISR_ARP)) {
1021 1.1 cgd netisr &= ~(1 << NETISR_ARP);
1022 1.1 cgd arpintr();
1023 1.1 cgd }
1024 1.1 cgd #endif
1025 1.1 cgd if (netisr & (1 << NETISR_IP)) {
1026 1.1 cgd netisr &= ~(1 << NETISR_IP);
1027 1.1 cgd ipintr();
1028 1.1 cgd }
1029 1.1 cgd #endif
1030 1.1 cgd #ifdef NS
1031 1.1 cgd if (netisr & (1 << NETISR_NS)) {
1032 1.1 cgd netisr &= ~(1 << NETISR_NS);
1033 1.1 cgd nsintr();
1034 1.1 cgd }
1035 1.1 cgd #endif
1036 1.1 cgd #ifdef ISO
1037 1.1 cgd if (netisr & (1 << NETISR_ISO)) {
1038 1.1 cgd netisr &= ~(1 << NETISR_ISO);
1039 1.1 cgd clnlintr();
1040 1.1 cgd }
1041 1.1 cgd #endif
1042 1.1 cgd #ifdef CCITT
1043 1.1 cgd if (netisr & (1 << NETISR_CCITT)) {
1044 1.1 cgd netisr &= ~(1 << NETISR_CCITT);
1045 1.1 cgd ccittintr();
1046 1.1 cgd }
1047 1.1 cgd #endif
1048 1.1 cgd }
1049 1.1 cgd
1050 1.1 cgd void
1051 1.1 cgd do_sir()
1052 1.1 cgd {
1053 1.1 cgd
1054 1.1 cgd if (ssir & SIR_NET) {
1055 1.1 cgd siroff(SIR_NET);
1056 1.1 cgd cnt.v_soft++;
1057 1.1 cgd netintr();
1058 1.1 cgd }
1059 1.1 cgd if (ssir & SIR_CLOCK) {
1060 1.1 cgd siroff(SIR_CLOCK);
1061 1.1 cgd cnt.v_soft++;
1062 1.1 cgd softclock();
1063 1.1 cgd }
1064 1.1 cgd }
1065 1.1 cgd
1066 1.1 cgd int
1067 1.1 cgd spl0()
1068 1.1 cgd {
1069 1.1 cgd
1070 1.1 cgd if (ssir) {
1071 1.1 cgd splsoft();
1072 1.1 cgd do_sir();
1073 1.1 cgd }
1074 1.1 cgd
1075 1.1 cgd return (pal_swpipl(PSL_IPL_0));
1076 1.1 cgd }
1077 1.1 cgd
1078 1.1 cgd /*
1079 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
1080 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1081 1.1 cgd * into queues, Remrq removes them from queues. The running process is on
1082 1.1 cgd * no queue, other processes are on a queue related to p->p_priority, divided
1083 1.1 cgd * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1084 1.1 cgd * queues.
1085 1.1 cgd */
1086 1.1 cgd /*
1087 1.1 cgd * setrunqueue(p)
1088 1.1 cgd * proc *p;
1089 1.1 cgd *
1090 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
1091 1.1 cgd */
1092 1.1 cgd
1093 1.1 cgd void
1094 1.1 cgd setrunqueue(p)
1095 1.1 cgd struct proc *p;
1096 1.1 cgd {
1097 1.1 cgd int bit;
1098 1.1 cgd
1099 1.1 cgd /* firewall: p->p_back must be NULL */
1100 1.1 cgd if (p->p_back != NULL)
1101 1.1 cgd panic("setrunqueue");
1102 1.1 cgd
1103 1.1 cgd bit = p->p_priority >> 2;
1104 1.1 cgd whichqs |= (1 << bit);
1105 1.1 cgd p->p_forw = (struct proc *)&qs[bit];
1106 1.1 cgd p->p_back = qs[bit].ph_rlink;
1107 1.1 cgd p->p_back->p_forw = p;
1108 1.1 cgd qs[bit].ph_rlink = p;
1109 1.1 cgd }
1110 1.1 cgd
1111 1.1 cgd /*
1112 1.1 cgd * Remrq(p)
1113 1.1 cgd *
1114 1.1 cgd * Call should be made at splclock().
1115 1.1 cgd */
1116 1.1 cgd void
1117 1.1 cgd remrq(p)
1118 1.1 cgd struct proc *p;
1119 1.1 cgd {
1120 1.1 cgd int bit;
1121 1.1 cgd
1122 1.1 cgd bit = p->p_priority >> 2;
1123 1.1 cgd if ((whichqs & (1 << bit)) == 0)
1124 1.1 cgd panic("remrq");
1125 1.1 cgd
1126 1.1 cgd p->p_back->p_forw = p->p_forw;
1127 1.1 cgd p->p_forw->p_back = p->p_back;
1128 1.1 cgd p->p_back = NULL; /* for firewall checking. */
1129 1.1 cgd
1130 1.1 cgd if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1131 1.1 cgd whichqs &= ~(1 << bit);
1132 1.1 cgd }
1133 1.1 cgd
1134 1.1 cgd /*
1135 1.1 cgd * Return the best possible estimate of the time in the timeval
1136 1.1 cgd * to which tvp points. Unfortunately, we can't read the hardware registers.
1137 1.1 cgd * We guarantee that the time will be greater than the value obtained by a
1138 1.1 cgd * previous call.
1139 1.1 cgd */
1140 1.1 cgd void
1141 1.1 cgd microtime(tvp)
1142 1.1 cgd register struct timeval *tvp;
1143 1.1 cgd {
1144 1.1 cgd int s = splclock();
1145 1.1 cgd static struct timeval lasttime;
1146 1.1 cgd
1147 1.1 cgd *tvp = time;
1148 1.1 cgd #ifdef notdef
1149 1.1 cgd tvp->tv_usec += clkread();
1150 1.1 cgd while (tvp->tv_usec > 1000000) {
1151 1.1 cgd tvp->tv_sec++;
1152 1.1 cgd tvp->tv_usec -= 1000000;
1153 1.1 cgd }
1154 1.1 cgd #endif
1155 1.1 cgd if (tvp->tv_sec == lasttime.tv_sec &&
1156 1.1 cgd tvp->tv_usec <= lasttime.tv_usec &&
1157 1.1 cgd (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1158 1.1 cgd tvp->tv_sec++;
1159 1.1 cgd tvp->tv_usec -= 1000000;
1160 1.1 cgd }
1161 1.1 cgd lasttime = *tvp;
1162 1.1 cgd splx(s);
1163 1.1 cgd }
1164 1.1 cgd
1165 1.1 cgd #ifdef COMPAT_OSF1
1166 1.1 cgd void
1167 1.1 cgd cpu_exec_ecoff_setup(cmd, p, epp, sp)
1168 1.1 cgd int cmd;
1169 1.1 cgd struct proc *p;
1170 1.1 cgd struct exec_package *epp;
1171 1.1 cgd void *sp;
1172 1.1 cgd {
1173 1.1 cgd struct ecoff_aouthdr *eap;
1174 1.1 cgd
1175 1.1 cgd if (cmd != EXEC_SETUP_FINISH)
1176 1.1 cgd return;
1177 1.1 cgd
1178 1.1 cgd eap = (struct ecoff_aouthdr *)
1179 1.1 cgd ((caddr_t)epp->ep_hdr + sizeof(struct ecoff_filehdr));
1180 1.1 cgd p->p_md.md_tf->tf_gp = eap->ea_gp_value;
1181 1.1 cgd }
1182 1.1 cgd
1183 1.1 cgd /*
1184 1.1 cgd * cpu_exec_ecoff_hook():
1185 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1186 1.1 cgd *
1187 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1188 1.1 cgd *
1189 1.1 cgd */
1190 1.1 cgd int
1191 1.1 cgd cpu_exec_ecoff_hook(p, epp, eap)
1192 1.1 cgd struct proc *p;
1193 1.1 cgd struct exec_package *epp;
1194 1.1 cgd struct ecoff_aouthdr *eap;
1195 1.1 cgd {
1196 1.1 cgd struct ecoff_filehdr *efp = epp->ep_hdr;
1197 1.1 cgd
1198 1.1 cgd switch (efp->ef_magic) {
1199 1.1 cgd case ECOFF_MAGIC_ALPHA:
1200 1.1 cgd epp->ep_emul = EMUL_OSF1;
1201 1.1 cgd break;
1202 1.1 cgd
1203 1.1 cgd case ECOFF_MAGIC_NETBSD_ALPHA:
1204 1.1 cgd epp->ep_emul = EMUL_NETBSD;
1205 1.1 cgd break;
1206 1.1 cgd
1207 1.1 cgd #ifdef DIAGNOSTIC
1208 1.1 cgd default:
1209 1.1 cgd panic("cpu_exec_ecoff_hook: can't get here from there.");
1210 1.1 cgd #endif
1211 1.1 cgd }
1212 1.1 cgd epp->ep_setup = cpu_exec_ecoff_setup;
1213 1.1 cgd return 0;
1214 1.1 cgd }
1215 1.1 cgd #endif
1216