Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.1
      1  1.1  cgd /*	$NetBSD: machdep.c,v 1.1 1995/02/13 23:07:02 cgd Exp $	*/
      2  1.1  cgd 
      3  1.1  cgd /*
      4  1.1  cgd  * Copyright (c) 1994, 1995 Carnegie-Mellon University.
      5  1.1  cgd  * All rights reserved.
      6  1.1  cgd  *
      7  1.1  cgd  * Author: Chris G. Demetriou
      8  1.1  cgd  *
      9  1.1  cgd  * Permission to use, copy, modify and distribute this software and
     10  1.1  cgd  * its documentation is hereby granted, provided that both the copyright
     11  1.1  cgd  * notice and this permission notice appear in all copies of the
     12  1.1  cgd  * software, derivative works or modified versions, and any portions
     13  1.1  cgd  * thereof, and that both notices appear in supporting documentation.
     14  1.1  cgd  *
     15  1.1  cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16  1.1  cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17  1.1  cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18  1.1  cgd  *
     19  1.1  cgd  * Carnegie Mellon requests users of this software to return to
     20  1.1  cgd  *
     21  1.1  cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22  1.1  cgd  *  School of Computer Science
     23  1.1  cgd  *  Carnegie Mellon University
     24  1.1  cgd  *  Pittsburgh PA 15213-3890
     25  1.1  cgd  *
     26  1.1  cgd  * any improvements or extensions that they make and grant Carnegie the
     27  1.1  cgd  * rights to redistribute these changes.
     28  1.1  cgd  */
     29  1.1  cgd 
     30  1.1  cgd #include <sys/param.h>
     31  1.1  cgd #include <sys/systm.h>
     32  1.1  cgd #include <sys/signalvar.h>
     33  1.1  cgd #include <sys/kernel.h>
     34  1.1  cgd #include <sys/map.h>
     35  1.1  cgd #include <sys/proc.h>
     36  1.1  cgd #include <sys/buf.h>
     37  1.1  cgd #include <sys/reboot.h>
     38  1.1  cgd #include <sys/conf.h>
     39  1.1  cgd #include <sys/file.h>
     40  1.1  cgd #ifdef REAL_CLISTS
     41  1.1  cgd #include <sys/clist.h>
     42  1.1  cgd #endif
     43  1.1  cgd #include <sys/callout.h>
     44  1.1  cgd #include <sys/malloc.h>
     45  1.1  cgd #include <sys/mbuf.h>
     46  1.1  cgd #include <sys/msgbuf.h>
     47  1.1  cgd #include <sys/ioctl.h>
     48  1.1  cgd #include <sys/tty.h>
     49  1.1  cgd #include <sys/user.h>
     50  1.1  cgd #include <sys/exec.h>
     51  1.1  cgd #include <sys/exec_ecoff.h>
     52  1.1  cgd #include <sys/sysctl.h>
     53  1.1  cgd #ifdef SYSVMSG
     54  1.1  cgd #include <sys/msg.h>
     55  1.1  cgd #endif
     56  1.1  cgd #ifdef SYSVSEM
     57  1.1  cgd #include <sys/sem.h>
     58  1.1  cgd #endif
     59  1.1  cgd #ifdef SYSVSHM
     60  1.1  cgd #include <sys/shm.h>
     61  1.1  cgd #endif
     62  1.1  cgd 
     63  1.1  cgd #include <sys/mount.h>
     64  1.1  cgd #include <sys/syscallargs.h>
     65  1.1  cgd 
     66  1.1  cgd #include <vm/vm_kern.h>
     67  1.1  cgd 
     68  1.1  cgd #include <dev/cons.h>
     69  1.1  cgd 
     70  1.1  cgd #include <machine/cpu.h>
     71  1.1  cgd #include <machine/reg.h>
     72  1.1  cgd #include <machine/rpb.h>
     73  1.1  cgd #include <machine/prom.h>
     74  1.1  cgd 
     75  1.1  cgd #include <net/netisr.h>
     76  1.1  cgd #include "ether.h"
     77  1.1  cgd 
     78  1.1  cgd #include "le.h"			/* XXX for le_iomem creation */
     79  1.1  cgd #include "esp.h"		/* XXX for esp_iomem creation */
     80  1.1  cgd 
     81  1.1  cgd vm_map_t buffer_map;
     82  1.1  cgd 
     83  1.1  cgd /*
     84  1.1  cgd  * Declare these as initialized data so we can patch them.
     85  1.1  cgd  */
     86  1.1  cgd int	nswbuf = 0;
     87  1.1  cgd #ifdef	NBUF
     88  1.1  cgd int	nbuf = NBUF;
     89  1.1  cgd #else
     90  1.1  cgd int	nbuf = 0;
     91  1.1  cgd #endif
     92  1.1  cgd #ifdef	BUFPAGES
     93  1.1  cgd int	bufpages = BUFPAGES;
     94  1.1  cgd #else
     95  1.1  cgd int	bufpages = 0;
     96  1.1  cgd #endif
     97  1.1  cgd int	msgbufmapped = 0;	/* set when safe to use msgbuf */
     98  1.1  cgd int	maxmem;			/* max memory per process */
     99  1.1  cgd int	physmem;		/* amount of physical memory in system */
    100  1.1  cgd int	resvmem;		/* amount of memory reserved for PROM */
    101  1.1  cgd 
    102  1.1  cgd int	cputype;		/* system type, from the RPB */
    103  1.1  cgd 
    104  1.1  cgd /*
    105  1.1  cgd  * XXX We need an address to which we can assign things so that they
    106  1.1  cgd  * won't be optimized away because we didn't use the value.
    107  1.1  cgd  */
    108  1.1  cgd u_int32_t no_optimize;
    109  1.1  cgd 
    110  1.1  cgd /* the following is used externally (sysctl_hw) */
    111  1.1  cgd char	machine[] = "alpha";
    112  1.1  cgd char	cpu_model[64];
    113  1.1  cgd char	*model_names[] = {
    114  1.1  cgd     "UNKNOWN (0)", "Alpha ADU", "DEC 4000", "DEC 7000", "DEC 3000/[4568]00",
    115  1.1  cgd     "UNKNOWN (5)", "DEC 2000/300", "DEC 3000/300",
    116  1.1  cgd };
    117  1.1  cgd int	nmodel_names = sizeof model_names/sizeof model_names[0];
    118  1.1  cgd 
    119  1.1  cgd struct	user *proc0paddr;
    120  1.1  cgd 
    121  1.1  cgd /* Number of machine cycles per microsecond */
    122  1.1  cgd u_int64_t	cycles_per_usec;
    123  1.1  cgd 
    124  1.1  cgd /* some memory areas for device DMA.  "ick." */
    125  1.1  cgd caddr_t		le_iomem;		/* XXX iomem for LANCE DMA */
    126  1.1  cgd caddr_t		esp_iomem;		/* XXX iomem for SCSI DMA */
    127  1.1  cgd 
    128  1.1  cgd /* Interrupt vectors (in locore) */
    129  1.1  cgd extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
    130  1.1  cgd 
    131  1.1  cgd int
    132  1.1  cgd alpha_init(pfn, ptb, argc, argv, envp)
    133  1.1  cgd 	u_long pfn;		/* first free PFN number */
    134  1.1  cgd 	u_long ptb;		/* PFN of current level 1 page table */
    135  1.1  cgd 	u_long argc;
    136  1.1  cgd 	char *argv[], *envp[];
    137  1.1  cgd {
    138  1.1  cgd #ifdef __GNUC__							/* XXX */
    139  1.1  cgd 	extern char _end[];					/* XXX */
    140  1.1  cgd #else /* __GNUC__ */						/* XXX */
    141  1.1  cgd 	extern char end[];					/* XXX */
    142  1.1  cgd #endif /* __GNUC__ */						/* XXX */
    143  1.1  cgd 	caddr_t start, v;
    144  1.1  cgd 	struct mddt *mddtp;
    145  1.1  cgd 	int i;
    146  1.1  cgd 	char *p;
    147  1.1  cgd 
    148  1.1  cgd 	/*
    149  1.1  cgd 	 * Turn off interrupts and floating point.
    150  1.1  cgd 	 * Make sure the instruction and data streams are consistent.
    151  1.1  cgd 	 */
    152  1.1  cgd 	(void)splhigh();
    153  1.1  cgd 	pal_wrfen(0);
    154  1.1  cgd 	TBIA();
    155  1.1  cgd 	IMB();
    156  1.1  cgd 
    157  1.1  cgd 	/*
    158  1.1  cgd 	 * get address of the restart block, while we the bootstrap
    159  1.1  cgd 	 * mapping is still around.
    160  1.1  cgd 	 */
    161  1.1  cgd 	hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
    162  1.1  cgd 
    163  1.1  cgd 	/*
    164  1.1  cgd 	 * Remember how many cycles there are per microsecond,
    165  1.1  cgd 	 * so that we can use delay()
    166  1.1  cgd 	 */
    167  1.1  cgd 	cycles_per_usec = hwrpb->rpb_cc_freq / 1000000;
    168  1.1  cgd 
    169  1.1  cgd 	/*
    170  1.1  cgd 	 * Init the PROM interface, so we can use printf
    171  1.1  cgd 	 * until PROM mappings go away in consinit.
    172  1.1  cgd 	 */
    173  1.1  cgd 	init_prom_interface();
    174  1.1  cgd 
    175  1.1  cgd 	/*
    176  1.1  cgd 	 * Point interrupt/exception vectors to our own.
    177  1.1  cgd 	 */
    178  1.1  cgd 	pal_wrent(XentInt, 0);
    179  1.1  cgd 	pal_wrent(XentArith, 1);
    180  1.1  cgd 	pal_wrent(XentMM, 2);
    181  1.1  cgd 	pal_wrent(XentIF, 3);
    182  1.1  cgd 	pal_wrent(XentUna, 4);
    183  1.1  cgd 	pal_wrent(XentSys, 5);
    184  1.1  cgd 
    185  1.1  cgd 	/*
    186  1.1  cgd 	 * Find out how much memory is available, by looking at
    187  1.1  cgd 	 * the memory cluster descriptors.
    188  1.1  cgd 	 * XXX Assumes that the first "system" cluster is the
    189  1.1  cgd 	 * only one we can use.  Can there be more than two clusters?
    190  1.1  cgd 	 * Is the second (etc.) system cluster guaranteed to be
    191  1.1  cgd 	 * discontiguous?
    192  1.1  cgd 	 */
    193  1.1  cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    194  1.1  cgd 	physmem = 0;
    195  1.1  cgd 	if (mddtp->mddt_cluster_cnt != 2)
    196  1.1  cgd 		printf("warning: strange number of memory clusters (%d).\n",
    197  1.1  cgd 		    mddtp->mddt_cluster_cnt);
    198  1.1  cgd 	physmem = 0;
    199  1.1  cgd 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    200  1.1  cgd 		/* add up physmem, stopping on first OS-available space. */
    201  1.1  cgd 		physmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    202  1.1  cgd 		if ((mddtp->mddt_clusters[i].mddt_usage & 0x01) == 0)
    203  1.1  cgd 			break;
    204  1.1  cgd 		else
    205  1.1  cgd 			resvmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    206  1.1  cgd 	}
    207  1.1  cgd 	if (physmem == 0)
    208  1.1  cgd 		panic("can't happen: system seems to have no memory!");
    209  1.1  cgd 	maxmem = physmem;
    210  1.1  cgd 
    211  1.1  cgd 	/*
    212  1.1  cgd 	 * find out this CPU's page size
    213  1.1  cgd 	 */
    214  1.1  cgd 	PAGE_SIZE = hwrpb->rpb_page_size;
    215  1.1  cgd 
    216  1.1  cgd #ifdef __GNUC__							/* XXX */
    217  1.1  cgd 	v = (caddr_t)alpha_round_page(_end);			/* XXX */
    218  1.1  cgd #else /* __GNUC__ */						/* XXX */
    219  1.1  cgd 	v = (caddr_t)alpha_round_page(end);			/* XXX */
    220  1.1  cgd #endif /* __GNUC__ */						/* XXX */
    221  1.1  cgd 	/*
    222  1.1  cgd 	 * Init mapping for u page(s) for proc 0
    223  1.1  cgd 	 */
    224  1.1  cgd 	start = v;
    225  1.1  cgd 	curproc->p_addr = proc0paddr = (struct user *)v;
    226  1.1  cgd 	v += UPAGES * NBPG;
    227  1.1  cgd 
    228  1.1  cgd 	/*
    229  1.1  cgd 	 * Find out what hardware we're on, and remember its type name.
    230  1.1  cgd 	 * XXX and start dealing with config?
    231  1.1  cgd 	 */
    232  1.1  cgd 	cputype = hwrpb->rpb_type;
    233  1.1  cgd 	switch (cputype) {
    234  1.1  cgd #ifdef ADU
    235  1.1  cgd 	case ST_ADU:
    236  1.1  cgd 		THIS SYSTEM NOT SUPPORTED
    237  1.1  cgd #endif /* ADU */
    238  1.1  cgd #ifdef DEC_4000
    239  1.1  cgd 	case ST_DEC_4000:
    240  1.1  cgd 		THIS SYSTEM NOT SUPPORTED
    241  1.1  cgd #endif /* DEC_4000 */
    242  1.1  cgd #ifdef DEC_7000
    243  1.1  cgd 	case ST_DEC_7000:
    244  1.1  cgd 		THIS SYSTEM NOT SUPPORTED
    245  1.1  cgd #endif /* DEC_7000 */
    246  1.1  cgd #ifdef DEC_3000_500				/* and 400, and 600 and 800 */
    247  1.1  cgd 	case ST_DEC_3000_500:
    248  1.1  cgd 		/* XXX XXX XXX */
    249  1.1  cgd 		break;
    250  1.1  cgd #endif /* DEC_3000_500 */
    251  1.1  cgd #ifdef DEC_2000_300
    252  1.1  cgd 	case ST_DEC_2000_300:
    253  1.1  cgd 		THIS SYSTEM NOT SUPPORTED
    254  1.1  cgd #endif /* DEC_2000_300 */
    255  1.1  cgd #ifdef DEC_3000_300
    256  1.1  cgd 	case DEC_3000_300:
    257  1.1  cgd 		THIS SYSTEM NOT SUPPORTED
    258  1.1  cgd #endif /* DEC_3000_300*/
    259  1.1  cgd 	default:
    260  1.1  cgd 		if (cputype > nmodel_names)
    261  1.1  cgd 			panic("Unknown system type %d", cputype);
    262  1.1  cgd 		else
    263  1.1  cgd 			panic("Support for %s system type not in kernel.",
    264  1.1  cgd 			    model_names[cputype]);
    265  1.1  cgd 	}
    266  1.1  cgd 	strcpy(cpu_model, model_names[cputype]);
    267  1.1  cgd 
    268  1.1  cgd #if NLE > 0
    269  1.1  cgd 	/*
    270  1.1  cgd 	 * Grab 128K at the top of physical memory for the lance chip
    271  1.1  cgd 	 * on machines where it does dma through the I/O ASIC.
    272  1.1  cgd 	 * It must be physically contiguous and aligned on a 128K boundary.
    273  1.1  cgd 	 */
    274  1.1  cgd 	if (cputype == ST_DEC_3000_500 ||
    275  1.1  cgd 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    276  1.1  cgd 		maxmem -= btoc(128 * 1024);
    277  1.1  cgd 		le_iomem = (caddr_t)phystok0seg(maxmem << PGSHIFT);
    278  1.1  cgd 	}
    279  1.1  cgd #endif /* NLE */
    280  1.1  cgd #if NESP > 0
    281  1.1  cgd 	/*
    282  1.1  cgd 	 * Ditto for the scsi chip. There is probably a way to make esp.c
    283  1.1  cgd 	 * do dma without these buffers, but it would require major
    284  1.1  cgd 	 * re-engineering of the esp driver.
    285  1.1  cgd 	 * They must be 8K in size and page aligned.
    286  1.1  cgd 	 */
    287  1.1  cgd 	if (cputype == ST_DEC_3000_500 ||
    288  1.1  cgd 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    289  1.1  cgd 		maxmem -= btoc(NESP * 8192);
    290  1.1  cgd 		esp_iomem = (caddr_t)phystok0seg(maxmem << PGSHIFT);
    291  1.1  cgd 	}
    292  1.1  cgd #endif /* NESP */
    293  1.1  cgd 
    294  1.1  cgd 	/*
    295  1.1  cgd 	 * Initialize error message buffer (at end of core).
    296  1.1  cgd 	 */
    297  1.1  cgd 	maxmem -= btoc(sizeof (struct msgbuf));
    298  1.1  cgd 	msgbufp = (struct msgbuf *)phystok0seg(maxmem << PGSHIFT);
    299  1.1  cgd 	msgbufmapped = 1;
    300  1.1  cgd 
    301  1.1  cgd 	/*
    302  1.1  cgd 	 * Allocate space for system data structures.
    303  1.1  cgd 	 * The first available kernel virtual address is in "v".
    304  1.1  cgd 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
    305  1.1  cgd 	 *
    306  1.1  cgd 	 * These data structures are allocated here instead of cpu_startup()
    307  1.1  cgd 	 * because physical memory is directly addressable. We don't have
    308  1.1  cgd 	 * to map these into virtual address space.
    309  1.1  cgd 	 */
    310  1.1  cgd #define valloc(name, type, num) \
    311  1.1  cgd 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
    312  1.1  cgd #define valloclim(name, type, num, lim) \
    313  1.1  cgd 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
    314  1.1  cgd #ifdef REAL_CLISTS
    315  1.1  cgd 	valloc(cfree, struct cblock, nclist);
    316  1.1  cgd #endif
    317  1.1  cgd 	valloc(callout, struct callout, ncallout);
    318  1.1  cgd 	valloc(swapmap, struct map, nswapmap = maxproc * 2);
    319  1.1  cgd #ifdef SYSVSHM
    320  1.1  cgd 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    321  1.1  cgd #endif
    322  1.1  cgd #ifdef SYSVSEM
    323  1.1  cgd 	valloc(sema, struct semid_ds, seminfo.semmni);
    324  1.1  cgd 	valloc(sem, struct sem, seminfo.semmns);
    325  1.1  cgd 	/* This is pretty disgusting! */
    326  1.1  cgd 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    327  1.1  cgd #endif
    328  1.1  cgd #ifdef SYSVMSG
    329  1.1  cgd 	valloc(msgpool, char, msginfo.msgmax);
    330  1.1  cgd 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    331  1.1  cgd 	valloc(msghdrs, struct msg, msginfo.msgtql);
    332  1.1  cgd 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    333  1.1  cgd #endif
    334  1.1  cgd 
    335  1.1  cgd 	/*
    336  1.1  cgd 	 * Determine how many buffers to allocate.
    337  1.1  cgd 	 * We allocate the BSD standard of 10% of memory for the first
    338  1.1  cgd 	 * 2 Meg, and 5% of remaining memory for buffer space.  Insure a
    339  1.1  cgd 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    340  1.1  cgd 	 * headers as file i/o buffers.
    341  1.1  cgd 	 */
    342  1.1  cgd 	if (bufpages == 0)
    343  1.1  cgd 		bufpages = (btoc(2 * 1024 * 1024) + (physmem - resvmem)) /
    344  1.1  cgd 		    (20 * CLSIZE);
    345  1.1  cgd 	if (nbuf == 0) {
    346  1.1  cgd 		nbuf = bufpages;
    347  1.1  cgd 		if (nbuf < 16)
    348  1.1  cgd 			nbuf = 16;
    349  1.1  cgd 	}
    350  1.1  cgd 	if (nswbuf == 0) {
    351  1.1  cgd 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    352  1.1  cgd 		if (nswbuf > 256)
    353  1.1  cgd 			nswbuf = 256;		/* sanity */
    354  1.1  cgd 	}
    355  1.1  cgd 	valloc(swbuf, struct buf, nswbuf);
    356  1.1  cgd 	valloc(buf, struct buf, nbuf);
    357  1.1  cgd 
    358  1.1  cgd 	/*
    359  1.1  cgd 	 * Clear allocated memory.
    360  1.1  cgd 	 */
    361  1.1  cgd 	bzero(start, v - start);
    362  1.1  cgd 
    363  1.1  cgd 	/*
    364  1.1  cgd 	 * Initialize the virtual memory system, and set the
    365  1.1  cgd 	 * page table base register in proc 0's PCB.
    366  1.1  cgd 	 */
    367  1.1  cgd 	pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
    368  1.1  cgd 
    369  1.1  cgd 	/*
    370  1.1  cgd 	 * Initialize the rest of proc 0's PCB, and init the ptes
    371  1.1  cgd 	 * which are cached in its md_proc structure, so we can switch
    372  1.1  cgd 	 * to it in locore.  Also cache the physical address of the pcb.
    373  1.1  cgd 	 */
    374  1.1  cgd 	for (i = 0; i < UPAGES; i++)
    375  1.1  cgd 		proc0.p_md.md_upte[i] = PG_V | PG_KRE | PG_KWE |
    376  1.1  cgd 		    (((k0segtophys(proc0paddr) >> PGSHIFT) + i) << PG_SHIFT);
    377  1.1  cgd 	proc0.p_md.md_pcbpaddr = (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
    378  1.1  cgd 	proc0paddr->u_pcb.pcb_ksp = KSTACKTOP;		/* set the kernel sp */
    379  1.1  cgd 
    380  1.1  cgd 	/*
    381  1.1  cgd 	 * Look at arguments and compute bootdev.
    382  1.1  cgd 	 *
    383  1.1  cgd 	 * XXX
    384  1.1  cgd 	 * Boot currently doesn't pass any arguments concerning booting
    385  1.1  cgd 	 * or the root device.
    386  1.1  cgd 	 */
    387  1.1  cgd 	{ extern dev_t bootdev;
    388  1.1  cgd 	bootdev = MAKEBOOTDEV(8, 0, 0, 0, 0);	/* sd0a. XXX */
    389  1.1  cgd 	}
    390  1.1  cgd 
    391  1.1  cgd 	/*
    392  1.1  cgd 	 * Look at arguments passed to us and compute boothowto.
    393  1.1  cgd 	 */
    394  1.1  cgd #ifdef GENERIC
    395  1.1  cgd 	boothowto = RB_SINGLE | RB_ASKNAME;
    396  1.1  cgd #else
    397  1.1  cgd 	boothowto = RB_SINGLE;
    398  1.1  cgd #endif
    399  1.1  cgd #ifdef KADB
    400  1.1  cgd 	boothowto |= RB_KDB;
    401  1.1  cgd #endif
    402  1.1  cgd 
    403  1.1  cgd 	printf("argc = %d\n", argc);
    404  1.1  cgd 	printf("argv = %lx\n", argv);
    405  1.1  cgd 	for (i = 0; i < argc; i++)
    406  1.1  cgd 		printf("argv[%d] = (%lx) \"%s\"\n", i, argv[i], argv[i]);
    407  1.1  cgd 
    408  1.1  cgd 	if (argc > 1) {
    409  1.1  cgd 		/* we have arguments. argv[1] is the flags. */
    410  1.1  cgd 		for (p = argv[1]; *p != '\0'; p++) {
    411  1.1  cgd 			switch (*p) {
    412  1.1  cgd 			case 'a': /* autoboot */
    413  1.1  cgd 			case 'A': /* DEC's notion of autoboot */
    414  1.1  cgd 				boothowto &= ~RB_SINGLE;
    415  1.1  cgd 				break;
    416  1.1  cgd 
    417  1.1  cgd 			case 'd': /* use compiled in default root */
    418  1.1  cgd 				boothowto |= RB_DFLTROOT;
    419  1.1  cgd 				break;
    420  1.1  cgd 
    421  1.1  cgd 			case 'm': /* mini root present in memory */
    422  1.1  cgd 				boothowto |= RB_MINIROOT;
    423  1.1  cgd 				break;
    424  1.1  cgd 
    425  1.1  cgd 			case 'n': /* ask for names */
    426  1.1  cgd 				boothowto |= RB_ASKNAME;
    427  1.1  cgd 				break;
    428  1.1  cgd 
    429  1.1  cgd 			case 'N': /* don't ask for names */
    430  1.1  cgd 				boothowto &= ~RB_ASKNAME;
    431  1.1  cgd 			}
    432  1.1  cgd 		}
    433  1.1  cgd 	}
    434  1.1  cgd 
    435  1.1  cgd 	return (0);
    436  1.1  cgd }
    437  1.1  cgd 
    438  1.1  cgd /* for cons.c */
    439  1.1  cgd struct  consdev constab[] = {
    440  1.1  cgd 	{ 0 },
    441  1.1  cgd };
    442  1.1  cgd 
    443  1.1  cgd consinit()
    444  1.1  cgd {
    445  1.1  cgd 	/* XXX SET UP THE CONSOLE TAB TO HAVE REASONABLE ENTRIES */
    446  1.1  cgd 	/* XXX */
    447  1.1  cgd 
    448  1.1  cgd 	/* XXX PICK A NEW CONSOLE DEVICE */
    449  1.1  cgd 	/* cninit(); */
    450  1.1  cgd 
    451  1.1  cgd 	pmap_unmap_prom();
    452  1.1  cgd }
    453  1.1  cgd 
    454  1.1  cgd cpu_startup()
    455  1.1  cgd {
    456  1.1  cgd 	register unsigned i;
    457  1.1  cgd 	register caddr_t v;
    458  1.1  cgd 	int base, residual;
    459  1.1  cgd 	vm_offset_t minaddr, maxaddr;
    460  1.1  cgd 	vm_size_t size;
    461  1.1  cgd #ifdef DEBUG
    462  1.1  cgd 	extern int pmapdebug;
    463  1.1  cgd 	int opmapdebug = pmapdebug;
    464  1.1  cgd 
    465  1.1  cgd 	pmapdebug = 0;
    466  1.1  cgd #endif
    467  1.1  cgd 
    468  1.1  cgd 	/*
    469  1.1  cgd 	 * Good {morning,afternoon,evening,night}.
    470  1.1  cgd 	 */
    471  1.1  cgd 	printf(version);
    472  1.1  cgd 	identifycpu();
    473  1.1  cgd 	printf("real mem = %d (%d reserved for PROM)\n", ctob(physmem),
    474  1.1  cgd 	    ctob(resvmem));
    475  1.1  cgd 
    476  1.1  cgd 	/*
    477  1.1  cgd 	 * Allocate virtual address space for file I/O buffers.
    478  1.1  cgd 	 * Note they are different than the array of headers, 'buf',
    479  1.1  cgd 	 * and usually occupy more virtual memory than physical.
    480  1.1  cgd 	 */
    481  1.1  cgd 	size = MAXBSIZE * nbuf;
    482  1.1  cgd 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    483  1.1  cgd 	    &maxaddr, size, TRUE);
    484  1.1  cgd 	minaddr = (vm_offset_t)buffers;
    485  1.1  cgd 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    486  1.1  cgd 			&minaddr, size, FALSE) != KERN_SUCCESS)
    487  1.1  cgd 		panic("startup: cannot allocate buffers");
    488  1.1  cgd 	base = bufpages / nbuf;
    489  1.1  cgd 	residual = bufpages % nbuf;
    490  1.1  cgd 	for (i = 0; i < nbuf; i++) {
    491  1.1  cgd 		vm_size_t curbufsize;
    492  1.1  cgd 		vm_offset_t curbuf;
    493  1.1  cgd 
    494  1.1  cgd 		/*
    495  1.1  cgd 		 * First <residual> buffers get (base+1) physical pages
    496  1.1  cgd 		 * allocated for them.  The rest get (base) physical pages.
    497  1.1  cgd 		 *
    498  1.1  cgd 		 * The rest of each buffer occupies virtual space,
    499  1.1  cgd 		 * but has no physical memory allocated for it.
    500  1.1  cgd 		 */
    501  1.1  cgd 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    502  1.1  cgd 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    503  1.1  cgd 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    504  1.1  cgd 		vm_map_simplify(buffer_map, curbuf);
    505  1.1  cgd 	}
    506  1.1  cgd 	/*
    507  1.1  cgd 	 * Allocate a submap for exec arguments.  This map effectively
    508  1.1  cgd 	 * limits the number of processes exec'ing at any time.
    509  1.1  cgd 	 */
    510  1.1  cgd 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    511  1.1  cgd 				 16 * NCARGS, TRUE);
    512  1.1  cgd 
    513  1.1  cgd 	/*
    514  1.1  cgd 	 * Allocate a submap for physio
    515  1.1  cgd 	 */
    516  1.1  cgd 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    517  1.1  cgd 				 VM_PHYS_SIZE, TRUE);
    518  1.1  cgd 
    519  1.1  cgd 	/*
    520  1.1  cgd 	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
    521  1.1  cgd 	 * we use the more space efficient malloc in place of kmem_alloc.
    522  1.1  cgd 	 */
    523  1.1  cgd 	mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
    524  1.1  cgd 	    M_MBUF, M_NOWAIT);
    525  1.1  cgd 	bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
    526  1.1  cgd 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    527  1.1  cgd 	    VM_MBUF_SIZE, FALSE);
    528  1.1  cgd 	/*
    529  1.1  cgd 	 * Initialize callouts
    530  1.1  cgd 	 */
    531  1.1  cgd 	callfree = callout;
    532  1.1  cgd 	for (i = 1; i < ncallout; i++)
    533  1.1  cgd 		callout[i-1].c_next = &callout[i];
    534  1.1  cgd 	callout[i-1].c_next = NULL;
    535  1.1  cgd 
    536  1.1  cgd #ifdef DEBUG
    537  1.1  cgd 	pmapdebug = opmapdebug;
    538  1.1  cgd #endif
    539  1.1  cgd 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
    540  1.1  cgd 	printf("using %ld buffers containing %ld bytes of memory\n",
    541  1.1  cgd 		(long)nbuf, (long)(bufpages * CLBYTES));
    542  1.1  cgd 
    543  1.1  cgd 	/*
    544  1.1  cgd 	 * Set up buffers, so they can be used to read disk labels.
    545  1.1  cgd 	 */
    546  1.1  cgd 	bufinit();
    547  1.1  cgd 
    548  1.1  cgd 	/*
    549  1.1  cgd 	 * Configure the system.
    550  1.1  cgd 	 */
    551  1.1  cgd 	configure();
    552  1.1  cgd }
    553  1.1  cgd 
    554  1.1  cgd identifycpu()
    555  1.1  cgd {
    556  1.1  cgd 
    557  1.1  cgd 	/* most of the work here is taken care of in alpha_init(). */
    558  1.1  cgd 	printf("%s, serial number 0x%lx 0x%lx\n", cpu_model,
    559  1.1  cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    560  1.1  cgd 	printf("variation: 0x%lx, revision 0x%lx\n",
    561  1.1  cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    562  1.1  cgd 	printf("%d byte page size, %d processor%s.\n", hwrpb->rpb_page_size,
    563  1.1  cgd 	    hwrpb->rpb_pcs_cnt, hwrpb->rpb_pcs_cnt == 1 ? "" : "s");
    564  1.1  cgd }
    565  1.1  cgd 
    566  1.1  cgd int	waittime = -1;
    567  1.1  cgd 
    568  1.1  cgd boot(howto)
    569  1.1  cgd 	int howto;
    570  1.1  cgd {
    571  1.1  cgd 	extern int cold;
    572  1.1  cgd 
    573  1.1  cgd 	/* Take a snapshot before clobbering any registers. */
    574  1.1  cgd 	if (curproc)
    575  1.1  cgd 		savectx(curproc->p_addr, 0);
    576  1.1  cgd 
    577  1.1  cgd 	/* If system is cold, just halt. */
    578  1.1  cgd 	if (cold) {
    579  1.1  cgd 		howto |= RB_HALT;
    580  1.1  cgd 		goto haltsys;
    581  1.1  cgd 	}
    582  1.1  cgd 
    583  1.1  cgd 	/* Sync the disks, if appropriate */
    584  1.1  cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0 && 0 /* XXX */) {
    585  1.1  cgd 		register struct buf *bp;
    586  1.1  cgd 		int iter, nbusy;
    587  1.1  cgd 
    588  1.1  cgd 		waittime = 0;
    589  1.1  cgd 		(void) spl0();
    590  1.1  cgd 		printf("syncing disks... ");
    591  1.1  cgd #ifdef notdef /* XXX */
    592  1.1  cgd 		/*
    593  1.1  cgd 		 * Release vnodes held by texts before sync.
    594  1.1  cgd 		 */
    595  1.1  cgd 		if (panicstr == 0)
    596  1.1  cgd 			vnode_pager_umount(NULL);
    597  1.1  cgd 
    598  1.1  cgd 		sync(&proc0, (void *)NULL, (int *)NULL);
    599  1.1  cgd 
    600  1.1  cgd 		for (iter = 0; iter < 20; iter++) {
    601  1.1  cgd 			nbusy = 0;
    602  1.1  cgd 			for (bp = &buf[nbuf]; --bp >= buf; )
    603  1.1  cgd 				if ((bp->b_flags & (B_BUSY|B_INVAL)) == B_BUSY)
    604  1.1  cgd 					nbusy++;
    605  1.1  cgd 			if (nbusy == 0)
    606  1.1  cgd 				break;
    607  1.1  cgd 			printf("%d ", nbusy);
    608  1.1  cgd 			DELAY(40000 * iter);
    609  1.1  cgd 		}
    610  1.1  cgd 		if (nbusy)
    611  1.1  cgd 			printf("giving up\n");
    612  1.1  cgd 		else
    613  1.1  cgd #endif
    614  1.1  cgd 			printf("done\n");
    615  1.1  cgd #ifdef notdef /* XXX */
    616  1.1  cgd 		/*
    617  1.1  cgd 		 * If we've been adjusting the clock, the todr
    618  1.1  cgd 		 * will be out of synch; adjust it now.
    619  1.1  cgd 		 */
    620  1.1  cgd 		resettodr();
    621  1.1  cgd #endif
    622  1.1  cgd 	}
    623  1.1  cgd 
    624  1.1  cgd 	/* Disable interrupts. */
    625  1.1  cgd 	splhigh();
    626  1.1  cgd 
    627  1.1  cgd #ifdef notdef /* XXX */
    628  1.1  cgd 	/* If rebooting and a dump is requested do the dump. */
    629  1.1  cgd 	if ((howto & (RB_DUMP|RB_HALT)) == RB_DUMP)
    630  1.1  cgd 		dumpsys();
    631  1.1  cgd #endif
    632  1.1  cgd 
    633  1.1  cgd haltsys:
    634  1.1  cgd 	/* Finally, halt/reboot the system. */
    635  1.1  cgd 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
    636  1.1  cgd 	prom_halt(howto & RB_HALT);
    637  1.1  cgd 	/*NOTREACHED*/
    638  1.1  cgd }
    639  1.1  cgd 
    640  1.1  cgd void
    641  1.1  cgd frametoreg(framep, regp)
    642  1.1  cgd 	struct trapframe *framep;
    643  1.1  cgd 	struct reg *regp;
    644  1.1  cgd {
    645  1.1  cgd 
    646  1.1  cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
    647  1.1  cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
    648  1.1  cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
    649  1.1  cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
    650  1.1  cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
    651  1.1  cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
    652  1.1  cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
    653  1.1  cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
    654  1.1  cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
    655  1.1  cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
    656  1.1  cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
    657  1.1  cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
    658  1.1  cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
    659  1.1  cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
    660  1.1  cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
    661  1.1  cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
    662  1.1  cgd 	regp->r_regs[R_A0] = framep->tf_a0;
    663  1.1  cgd 	regp->r_regs[R_A1] = framep->tf_a1;
    664  1.1  cgd 	regp->r_regs[R_A2] = framep->tf_a2;
    665  1.1  cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
    666  1.1  cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
    667  1.1  cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
    668  1.1  cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
    669  1.1  cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
    670  1.1  cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
    671  1.1  cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
    672  1.1  cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
    673  1.1  cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
    674  1.1  cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
    675  1.1  cgd 	regp->r_regs[R_GP] = framep->tf_gp;
    676  1.1  cgd 	regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
    677  1.1  cgd 	regp->r_regs[R_ZERO] = 0;
    678  1.1  cgd }
    679  1.1  cgd 
    680  1.1  cgd void
    681  1.1  cgd regtoframe(regp, framep)
    682  1.1  cgd 	struct reg *regp;
    683  1.1  cgd 	struct trapframe *framep;
    684  1.1  cgd {
    685  1.1  cgd 
    686  1.1  cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
    687  1.1  cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
    688  1.1  cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
    689  1.1  cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
    690  1.1  cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
    691  1.1  cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
    692  1.1  cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
    693  1.1  cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
    694  1.1  cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
    695  1.1  cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
    696  1.1  cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
    697  1.1  cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
    698  1.1  cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
    699  1.1  cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
    700  1.1  cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
    701  1.1  cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
    702  1.1  cgd 	framep->tf_a0 = regp->r_regs[R_A0];
    703  1.1  cgd 	framep->tf_a1 = regp->r_regs[R_A1];
    704  1.1  cgd 	framep->tf_a2 = regp->r_regs[R_A2];
    705  1.1  cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
    706  1.1  cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
    707  1.1  cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
    708  1.1  cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
    709  1.1  cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
    710  1.1  cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
    711  1.1  cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
    712  1.1  cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
    713  1.1  cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
    714  1.1  cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
    715  1.1  cgd 	framep->tf_gp = regp->r_regs[R_GP];
    716  1.1  cgd 	framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
    717  1.1  cgd 	/* ??? = regp->r_regs[R_ZERO]; */
    718  1.1  cgd }
    719  1.1  cgd 
    720  1.1  cgd void
    721  1.1  cgd printregs(regp)
    722  1.1  cgd 	struct reg *regp;
    723  1.1  cgd {
    724  1.1  cgd 	int i;
    725  1.1  cgd 
    726  1.1  cgd 	for (i = 0; i < 32; i++)
    727  1.1  cgd 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
    728  1.1  cgd 		   i & 1 ? "\n" : "\t");
    729  1.1  cgd }
    730  1.1  cgd 
    731  1.1  cgd void
    732  1.1  cgd regdump(framep)
    733  1.1  cgd 	struct trapframe *framep;
    734  1.1  cgd {
    735  1.1  cgd 	struct reg reg;
    736  1.1  cgd 
    737  1.1  cgd 	frametoreg(framep, &reg);
    738  1.1  cgd 	printf("REGISTERS:\n");
    739  1.1  cgd 	printregs(&reg);
    740  1.1  cgd }
    741  1.1  cgd 
    742  1.1  cgd #ifdef DEBUG
    743  1.1  cgd int sigdebug = 0;
    744  1.1  cgd int sigpid = 0;
    745  1.1  cgd #define	SDB_FOLLOW	0x01
    746  1.1  cgd #define	SDB_KSTACK	0x02
    747  1.1  cgd #endif
    748  1.1  cgd 
    749  1.1  cgd /*
    750  1.1  cgd  * Send an interrupt to process.
    751  1.1  cgd  */
    752  1.1  cgd void
    753  1.1  cgd sendsig(catcher, sig, mask, code)
    754  1.1  cgd 	sig_t catcher;
    755  1.1  cgd 	int sig, mask;
    756  1.1  cgd 	u_long code;
    757  1.1  cgd {
    758  1.1  cgd 	struct proc *p = curproc;
    759  1.1  cgd 	struct sigcontext *scp, ksc;
    760  1.1  cgd 	struct trapframe *frame;
    761  1.1  cgd 	struct sigacts *psp = p->p_sigacts;
    762  1.1  cgd 	int oonstack, fsize, rndfsize;
    763  1.1  cgd 	extern char sigcode[], esigcode[];
    764  1.1  cgd 	extern struct proc *fpcurproc;
    765  1.1  cgd 
    766  1.1  cgd 	frame = p->p_md.md_tf;
    767  1.1  cgd 	oonstack = psp->ps_sigstk.ss_flags & SA_ONSTACK;
    768  1.1  cgd 	fsize = sizeof ksc;
    769  1.1  cgd 	rndfsize = ((fsize + 15) / 16) * 16;
    770  1.1  cgd 	/*
    771  1.1  cgd 	 * Allocate and validate space for the signal handler
    772  1.1  cgd 	 * context. Note that if the stack is in P0 space, the
    773  1.1  cgd 	 * call to grow() is a nop, and the useracc() check
    774  1.1  cgd 	 * will fail if the process has not already allocated
    775  1.1  cgd 	 * the space with a `brk'.
    776  1.1  cgd 	 */
    777  1.1  cgd 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
    778  1.1  cgd 	    (psp->ps_sigonstack & sigmask(sig))) {
    779  1.1  cgd 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_base +
    780  1.1  cgd 		    psp->ps_sigstk.ss_size - rndfsize);
    781  1.1  cgd 		psp->ps_sigstk.ss_flags |= SA_ONSTACK;
    782  1.1  cgd 	} else
    783  1.1  cgd 		scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
    784  1.1  cgd 		    rndfsize);
    785  1.1  cgd 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
    786  1.1  cgd 		(void)grow(p, (u_long)scp);
    787  1.1  cgd #ifdef DEBUG
    788  1.1  cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
    789  1.1  cgd 		printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
    790  1.1  cgd 		    sig, &oonstack, scp);
    791  1.1  cgd #endif
    792  1.1  cgd 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
    793  1.1  cgd #ifdef DEBUG
    794  1.1  cgd 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
    795  1.1  cgd 			printf("sendsig(%d): useracc failed on sig %d\n",
    796  1.1  cgd 			    p->p_pid, sig);
    797  1.1  cgd #endif
    798  1.1  cgd 		/*
    799  1.1  cgd 		 * Process has trashed its stack; give it an illegal
    800  1.1  cgd 		 * instruction to halt it in its tracks.
    801  1.1  cgd 		 */
    802  1.1  cgd 		SIGACTION(p, SIGILL) = SIG_DFL;
    803  1.1  cgd 		sig = sigmask(SIGILL);
    804  1.1  cgd 		p->p_sigignore &= ~sig;
    805  1.1  cgd 		p->p_sigcatch &= ~sig;
    806  1.1  cgd 		p->p_sigmask &= ~sig;
    807  1.1  cgd 		psignal(p, SIGILL);
    808  1.1  cgd 		return;
    809  1.1  cgd 	}
    810  1.1  cgd 
    811  1.1  cgd 	/*
    812  1.1  cgd 	 * Build the signal context to be used by sigreturn.
    813  1.1  cgd 	 */
    814  1.1  cgd 	ksc.sc_onstack = oonstack;
    815  1.1  cgd 	ksc.sc_mask = mask;
    816  1.1  cgd 	ksc.sc_pc = frame->tf_pc;
    817  1.1  cgd 	ksc.sc_ps = frame->tf_ps;
    818  1.1  cgd 
    819  1.1  cgd 	/* copy the registers. */
    820  1.1  cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
    821  1.1  cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
    822  1.1  cgd 
    823  1.1  cgd 	/* save the floating-point state, if necessary, then copy it. */
    824  1.1  cgd 	if (p == fpcurproc) {
    825  1.1  cgd 		pal_wrfen(1);
    826  1.1  cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
    827  1.1  cgd 		pal_wrfen(0);
    828  1.1  cgd 		fpcurproc = NULL;
    829  1.1  cgd 	}
    830  1.1  cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
    831  1.1  cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
    832  1.1  cgd 	    sizeof(struct fpreg));
    833  1.1  cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
    834  1.1  cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
    835  1.1  cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
    836  1.1  cgd 
    837  1.1  cgd 
    838  1.1  cgd #ifdef COMPAT_OSF1
    839  1.1  cgd 	/*
    840  1.1  cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
    841  1.1  cgd 	 */
    842  1.1  cgd #endif
    843  1.1  cgd 
    844  1.1  cgd 	/*
    845  1.1  cgd 	 * copy the frame out to userland.
    846  1.1  cgd 	 */
    847  1.1  cgd 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
    848  1.1  cgd #ifdef DEBUG
    849  1.1  cgd 	if (sigdebug & SDB_FOLLOW)
    850  1.1  cgd 		printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
    851  1.1  cgd 		    scp, code);
    852  1.1  cgd #endif
    853  1.1  cgd 
    854  1.1  cgd 	/*
    855  1.1  cgd 	 * Set up the registers to return to sigcode.
    856  1.1  cgd 	 */
    857  1.1  cgd 	frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
    858  1.1  cgd 	frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
    859  1.1  cgd 	frame->tf_a0 = sig;
    860  1.1  cgd 	frame->tf_a1 = code;
    861  1.1  cgd 	frame->tf_a2 = (u_int64_t)scp;
    862  1.1  cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
    863  1.1  cgd 
    864  1.1  cgd #ifdef DEBUG
    865  1.1  cgd 	if (sigdebug & SDB_FOLLOW)
    866  1.1  cgd 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
    867  1.1  cgd 		    frame->tf_pc, frame->tf_regs[FRAME_A3]);
    868  1.1  cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
    869  1.1  cgd 		printf("sendsig(%d): sig %d returns\n",
    870  1.1  cgd 		    p->p_pid, sig);
    871  1.1  cgd #endif
    872  1.1  cgd }
    873  1.1  cgd 
    874  1.1  cgd /*
    875  1.1  cgd  * System call to cleanup state after a signal
    876  1.1  cgd  * has been taken.  Reset signal mask and
    877  1.1  cgd  * stack state from context left by sendsig (above).
    878  1.1  cgd  * Return to previous pc and psl as specified by
    879  1.1  cgd  * context left by sendsig. Check carefully to
    880  1.1  cgd  * make sure that the user has not modified the
    881  1.1  cgd  * psl to gain improper priviledges or to cause
    882  1.1  cgd  * a machine fault.
    883  1.1  cgd  */
    884  1.1  cgd /* ARGSUSED */
    885  1.1  cgd sigreturn(p, uap, retval)
    886  1.1  cgd 	struct proc *p;
    887  1.1  cgd 	struct sigreturn_args /* {
    888  1.1  cgd 		syscallarg(struct sigcontext *) sigcntxp;
    889  1.1  cgd 	} */ *uap;
    890  1.1  cgd 	register_t *retval;
    891  1.1  cgd {
    892  1.1  cgd 	struct sigcontext *scp, ksc;
    893  1.1  cgd 	extern struct proc *fpcurproc;
    894  1.1  cgd 
    895  1.1  cgd 	scp = SCARG(uap, sigcntxp);
    896  1.1  cgd #ifdef DEBUG
    897  1.1  cgd 	if (sigdebug & SDB_FOLLOW)
    898  1.1  cgd 	    printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
    899  1.1  cgd #endif
    900  1.1  cgd 
    901  1.1  cgd 	if (ALIGN(scp) != (u_int64_t)scp)
    902  1.1  cgd 		return (EINVAL);
    903  1.1  cgd 
    904  1.1  cgd 	/*
    905  1.1  cgd 	 * Test and fetch the context structure.
    906  1.1  cgd 	 * We grab it all at once for speed.
    907  1.1  cgd 	 */
    908  1.1  cgd 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
    909  1.1  cgd 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
    910  1.1  cgd 		return (EINVAL);
    911  1.1  cgd 
    912  1.1  cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
    913  1.1  cgd 		return (EINVAL);
    914  1.1  cgd 	/*
    915  1.1  cgd 	 * Restore the user-supplied information
    916  1.1  cgd 	 */
    917  1.1  cgd 	if (ksc.sc_onstack)
    918  1.1  cgd 		p->p_sigacts->ps_sigstk.ss_flags |= SA_ONSTACK;
    919  1.1  cgd 	else
    920  1.1  cgd 		p->p_sigacts->ps_sigstk.ss_flags &= ~SA_ONSTACK;
    921  1.1  cgd 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
    922  1.1  cgd 
    923  1.1  cgd 	p->p_md.md_tf->tf_pc = ksc.sc_pc;
    924  1.1  cgd 	p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
    925  1.1  cgd 
    926  1.1  cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
    927  1.1  cgd 
    928  1.1  cgd 	/* XXX ksc.sc_ownedfp ? */
    929  1.1  cgd 	if (p == fpcurproc)
    930  1.1  cgd 		fpcurproc = NULL;
    931  1.1  cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
    932  1.1  cgd 	    sizeof(struct fpreg));
    933  1.1  cgd 	/* XXX ksc.sc_fp_control ? */
    934  1.1  cgd 
    935  1.1  cgd #ifdef DEBUG
    936  1.1  cgd 	if (sigdebug & SDB_FOLLOW)
    937  1.1  cgd 		printf("sigreturn(%d): returns\n", p->p_pid);
    938  1.1  cgd #endif
    939  1.1  cgd 	return (EJUSTRETURN);
    940  1.1  cgd }
    941  1.1  cgd 
    942  1.1  cgd /*
    943  1.1  cgd  * machine dependent system variables.
    944  1.1  cgd  */
    945  1.1  cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
    946  1.1  cgd 	int *name;
    947  1.1  cgd 	u_int namelen;
    948  1.1  cgd 	void *oldp;
    949  1.1  cgd 	size_t *oldlenp;
    950  1.1  cgd 	void *newp;
    951  1.1  cgd 	size_t newlen;
    952  1.1  cgd 	struct proc *p;
    953  1.1  cgd {
    954  1.1  cgd 	dev_t consdev;
    955  1.1  cgd 
    956  1.1  cgd 	/* all sysctl names at this level are terminal */
    957  1.1  cgd 	if (namelen != 1)
    958  1.1  cgd 		return (ENOTDIR);		/* overloaded */
    959  1.1  cgd 
    960  1.1  cgd 	switch (name[0]) {
    961  1.1  cgd 	case CPU_CONSDEV:
    962  1.1  cgd 		if (cn_tab != NULL)
    963  1.1  cgd 			consdev = cn_tab->cn_dev;
    964  1.1  cgd 		else
    965  1.1  cgd 			consdev = NODEV;
    966  1.1  cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
    967  1.1  cgd 			sizeof consdev));
    968  1.1  cgd 	default:
    969  1.1  cgd 		return (EOPNOTSUPP);
    970  1.1  cgd 	}
    971  1.1  cgd 	/* NOTREACHED */
    972  1.1  cgd }
    973  1.1  cgd 
    974  1.1  cgd /*
    975  1.1  cgd  * Set registers on exec.
    976  1.1  cgd  */
    977  1.1  cgd void
    978  1.1  cgd setregs(p, entry, stack, retval)
    979  1.1  cgd 	register struct proc *p;
    980  1.1  cgd 	u_long entry;
    981  1.1  cgd 	u_long stack;
    982  1.1  cgd 	register_t *retval;
    983  1.1  cgd {
    984  1.1  cgd 	struct trapframe *tfp = p->p_md.md_tf;
    985  1.1  cgd 	int i;
    986  1.1  cgd 	extern struct proc *fpcurproc;
    987  1.1  cgd 
    988  1.1  cgd #ifdef DEBUG
    989  1.1  cgd 	for (i = 0; i < FRAME_NSAVEREGS; i++)
    990  1.1  cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
    991  1.1  cgd 	tfp->tf_gp = 0xbabefacedeadbeef;
    992  1.1  cgd 	tfp->tf_a0 = 0xbabefacedeadbeef;
    993  1.1  cgd 	tfp->tf_a1 = 0xbabefacedeadbeef;
    994  1.1  cgd 	tfp->tf_a2 = 0xbabefacedeadbeef;
    995  1.1  cgd #else
    996  1.1  cgd 	bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
    997  1.1  cgd 	tfp->tf_gp = 0;
    998  1.1  cgd 	tfp->tf_a0 = 0;
    999  1.1  cgd 	tfp->tf_a1 = 0;
   1000  1.1  cgd 	tfp->tf_a2 = 0;
   1001  1.1  cgd #endif
   1002  1.1  cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1003  1.1  cgd 
   1004  1.1  cgd 	tfp->tf_regs[FRAME_SP] = stack;	/* restored to usp in trap return */
   1005  1.1  cgd 	tfp->tf_ps = PSL_USERSET;
   1006  1.1  cgd 	tfp->tf_pc = entry & ~3;
   1007  1.1  cgd 
   1008  1.1  cgd 	p->p_md.md_flags & ~MDP_FPUSED;
   1009  1.1  cgd 	if (fpcurproc == p)
   1010  1.1  cgd 		fpcurproc = NULL;
   1011  1.1  cgd 
   1012  1.1  cgd 	retval[0] = retval[1] = 0;
   1013  1.1  cgd }
   1014  1.1  cgd 
   1015  1.1  cgd void
   1016  1.1  cgd netintr()
   1017  1.1  cgd {
   1018  1.1  cgd #ifdef INET
   1019  1.1  cgd #if NETHER > 0
   1020  1.1  cgd 	if (netisr & (1 << NETISR_ARP)) {
   1021  1.1  cgd 		netisr &= ~(1 << NETISR_ARP);
   1022  1.1  cgd 		arpintr();
   1023  1.1  cgd 	}
   1024  1.1  cgd #endif
   1025  1.1  cgd 	if (netisr & (1 << NETISR_IP)) {
   1026  1.1  cgd 		netisr &= ~(1 << NETISR_IP);
   1027  1.1  cgd 		ipintr();
   1028  1.1  cgd 	}
   1029  1.1  cgd #endif
   1030  1.1  cgd #ifdef NS
   1031  1.1  cgd 	if (netisr & (1 << NETISR_NS)) {
   1032  1.1  cgd 		netisr &= ~(1 << NETISR_NS);
   1033  1.1  cgd 		nsintr();
   1034  1.1  cgd 	}
   1035  1.1  cgd #endif
   1036  1.1  cgd #ifdef ISO
   1037  1.1  cgd 	if (netisr & (1 << NETISR_ISO)) {
   1038  1.1  cgd 		netisr &= ~(1 << NETISR_ISO);
   1039  1.1  cgd 		clnlintr();
   1040  1.1  cgd 	}
   1041  1.1  cgd #endif
   1042  1.1  cgd #ifdef CCITT
   1043  1.1  cgd 	if (netisr & (1 << NETISR_CCITT)) {
   1044  1.1  cgd 		netisr &= ~(1 << NETISR_CCITT);
   1045  1.1  cgd 		ccittintr();
   1046  1.1  cgd 	}
   1047  1.1  cgd #endif
   1048  1.1  cgd }
   1049  1.1  cgd 
   1050  1.1  cgd void
   1051  1.1  cgd do_sir()
   1052  1.1  cgd {
   1053  1.1  cgd 
   1054  1.1  cgd 	if (ssir & SIR_NET) {
   1055  1.1  cgd 		siroff(SIR_NET);
   1056  1.1  cgd 		cnt.v_soft++;
   1057  1.1  cgd 		netintr();
   1058  1.1  cgd 	}
   1059  1.1  cgd 	if (ssir & SIR_CLOCK) {
   1060  1.1  cgd 		siroff(SIR_CLOCK);
   1061  1.1  cgd 		cnt.v_soft++;
   1062  1.1  cgd 		softclock();
   1063  1.1  cgd 	}
   1064  1.1  cgd }
   1065  1.1  cgd 
   1066  1.1  cgd int
   1067  1.1  cgd spl0()
   1068  1.1  cgd {
   1069  1.1  cgd 
   1070  1.1  cgd 	if (ssir) {
   1071  1.1  cgd 		splsoft();
   1072  1.1  cgd 		do_sir();
   1073  1.1  cgd 	}
   1074  1.1  cgd 
   1075  1.1  cgd 	return (pal_swpipl(PSL_IPL_0));
   1076  1.1  cgd }
   1077  1.1  cgd 
   1078  1.1  cgd /*
   1079  1.1  cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1080  1.1  cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1081  1.1  cgd  * into queues, Remrq removes them from queues.  The running process is on
   1082  1.1  cgd  * no queue, other processes are on a queue related to p->p_priority, divided
   1083  1.1  cgd  * by 4 actually to shrink the 0-127 range of priorities into the 32 available
   1084  1.1  cgd  * queues.
   1085  1.1  cgd  */
   1086  1.1  cgd /*
   1087  1.1  cgd  * setrunqueue(p)
   1088  1.1  cgd  *	proc *p;
   1089  1.1  cgd  *
   1090  1.1  cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1091  1.1  cgd  */
   1092  1.1  cgd 
   1093  1.1  cgd void
   1094  1.1  cgd setrunqueue(p)
   1095  1.1  cgd 	struct proc *p;
   1096  1.1  cgd {
   1097  1.1  cgd 	int bit;
   1098  1.1  cgd 
   1099  1.1  cgd 	/* firewall: p->p_back must be NULL */
   1100  1.1  cgd 	if (p->p_back != NULL)
   1101  1.1  cgd 		panic("setrunqueue");
   1102  1.1  cgd 
   1103  1.1  cgd 	bit = p->p_priority >> 2;
   1104  1.1  cgd 	whichqs |= (1 << bit);
   1105  1.1  cgd 	p->p_forw = (struct proc *)&qs[bit];
   1106  1.1  cgd 	p->p_back = qs[bit].ph_rlink;
   1107  1.1  cgd 	p->p_back->p_forw = p;
   1108  1.1  cgd 	qs[bit].ph_rlink = p;
   1109  1.1  cgd }
   1110  1.1  cgd 
   1111  1.1  cgd /*
   1112  1.1  cgd  * Remrq(p)
   1113  1.1  cgd  *
   1114  1.1  cgd  * Call should be made at splclock().
   1115  1.1  cgd  */
   1116  1.1  cgd void
   1117  1.1  cgd remrq(p)
   1118  1.1  cgd 	struct proc *p;
   1119  1.1  cgd {
   1120  1.1  cgd 	int bit;
   1121  1.1  cgd 
   1122  1.1  cgd 	bit = p->p_priority >> 2;
   1123  1.1  cgd 	if ((whichqs & (1 << bit)) == 0)
   1124  1.1  cgd 		panic("remrq");
   1125  1.1  cgd 
   1126  1.1  cgd 	p->p_back->p_forw = p->p_forw;
   1127  1.1  cgd 	p->p_forw->p_back = p->p_back;
   1128  1.1  cgd 	p->p_back = NULL;	/* for firewall checking. */
   1129  1.1  cgd 
   1130  1.1  cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1131  1.1  cgd 		whichqs &= ~(1 << bit);
   1132  1.1  cgd }
   1133  1.1  cgd 
   1134  1.1  cgd /*
   1135  1.1  cgd  * Return the best possible estimate of the time in the timeval
   1136  1.1  cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1137  1.1  cgd  * We guarantee that the time will be greater than the value obtained by a
   1138  1.1  cgd  * previous call.
   1139  1.1  cgd  */
   1140  1.1  cgd void
   1141  1.1  cgd microtime(tvp)
   1142  1.1  cgd 	register struct timeval *tvp;
   1143  1.1  cgd {
   1144  1.1  cgd 	int s = splclock();
   1145  1.1  cgd 	static struct timeval lasttime;
   1146  1.1  cgd 
   1147  1.1  cgd 	*tvp = time;
   1148  1.1  cgd #ifdef notdef
   1149  1.1  cgd 	tvp->tv_usec += clkread();
   1150  1.1  cgd 	while (tvp->tv_usec > 1000000) {
   1151  1.1  cgd 		tvp->tv_sec++;
   1152  1.1  cgd 		tvp->tv_usec -= 1000000;
   1153  1.1  cgd 	}
   1154  1.1  cgd #endif
   1155  1.1  cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1156  1.1  cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1157  1.1  cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1158  1.1  cgd 		tvp->tv_sec++;
   1159  1.1  cgd 		tvp->tv_usec -= 1000000;
   1160  1.1  cgd 	}
   1161  1.1  cgd 	lasttime = *tvp;
   1162  1.1  cgd 	splx(s);
   1163  1.1  cgd }
   1164  1.1  cgd 
   1165  1.1  cgd #ifdef COMPAT_OSF1
   1166  1.1  cgd void
   1167  1.1  cgd cpu_exec_ecoff_setup(cmd, p, epp, sp)
   1168  1.1  cgd 	int cmd;
   1169  1.1  cgd 	struct proc *p;
   1170  1.1  cgd 	struct exec_package *epp;
   1171  1.1  cgd 	void *sp;
   1172  1.1  cgd {
   1173  1.1  cgd 	struct ecoff_aouthdr *eap;
   1174  1.1  cgd 
   1175  1.1  cgd 	if (cmd != EXEC_SETUP_FINISH)
   1176  1.1  cgd 		return;
   1177  1.1  cgd 
   1178  1.1  cgd 	eap = (struct ecoff_aouthdr *)
   1179  1.1  cgd 	    ((caddr_t)epp->ep_hdr + sizeof(struct ecoff_filehdr));
   1180  1.1  cgd 	p->p_md.md_tf->tf_gp = eap->ea_gp_value;
   1181  1.1  cgd }
   1182  1.1  cgd 
   1183  1.1  cgd /*
   1184  1.1  cgd  * cpu_exec_ecoff_hook():
   1185  1.1  cgd  *	cpu-dependent ECOFF format hook for execve().
   1186  1.1  cgd  *
   1187  1.1  cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1188  1.1  cgd  *
   1189  1.1  cgd  */
   1190  1.1  cgd int
   1191  1.1  cgd cpu_exec_ecoff_hook(p, epp, eap)
   1192  1.1  cgd 	struct proc *p;
   1193  1.1  cgd 	struct exec_package *epp;
   1194  1.1  cgd 	struct ecoff_aouthdr *eap;
   1195  1.1  cgd {
   1196  1.1  cgd 	struct ecoff_filehdr *efp = epp->ep_hdr;
   1197  1.1  cgd 
   1198  1.1  cgd 	switch (efp->ef_magic) {
   1199  1.1  cgd 	case ECOFF_MAGIC_ALPHA:
   1200  1.1  cgd 		epp->ep_emul = EMUL_OSF1;
   1201  1.1  cgd 		break;
   1202  1.1  cgd 
   1203  1.1  cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1204  1.1  cgd 		epp->ep_emul = EMUL_NETBSD;
   1205  1.1  cgd 		break;
   1206  1.1  cgd 
   1207  1.1  cgd #ifdef DIAGNOSTIC
   1208  1.1  cgd 	default:
   1209  1.1  cgd 		panic("cpu_exec_ecoff_hook: can't get here from there.");
   1210  1.1  cgd #endif
   1211  1.1  cgd 	}
   1212  1.1  cgd 	epp->ep_setup = cpu_exec_ecoff_setup;
   1213  1.1  cgd 	return 0;
   1214  1.1  cgd }
   1215  1.1  cgd #endif
   1216