Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.100
      1  1.100   thorpej /* $NetBSD: machdep.c,v 1.100 1998/02/10 03:52:05 thorpej Exp $ */
      2    1.1       cgd 
      3    1.1       cgd /*
      4   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
      5    1.1       cgd  * All rights reserved.
      6    1.1       cgd  *
      7    1.1       cgd  * Author: Chris G. Demetriou
      8    1.1       cgd  *
      9    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     10    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     11    1.1       cgd  * notice and this permission notice appear in all copies of the
     12    1.1       cgd  * software, derivative works or modified versions, and any portions
     13    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     14    1.1       cgd  *
     15    1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16    1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18    1.1       cgd  *
     19    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     20    1.1       cgd  *
     21    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22    1.1       cgd  *  School of Computer Science
     23    1.1       cgd  *  Carnegie Mellon University
     24    1.1       cgd  *  Pittsburgh PA 15213-3890
     25    1.1       cgd  *
     26    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     27    1.1       cgd  * rights to redistribute these changes.
     28    1.1       cgd  */
     29   1.74       cgd 
     30   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     31   1.75       cgd 
     32  1.100   thorpej __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.100 1998/02/10 03:52:05 thorpej Exp $");
     33    1.1       cgd 
     34    1.1       cgd #include <sys/param.h>
     35    1.1       cgd #include <sys/systm.h>
     36    1.1       cgd #include <sys/signalvar.h>
     37    1.1       cgd #include <sys/kernel.h>
     38    1.1       cgd #include <sys/map.h>
     39    1.1       cgd #include <sys/proc.h>
     40    1.1       cgd #include <sys/buf.h>
     41    1.1       cgd #include <sys/reboot.h>
     42   1.28       cgd #include <sys/device.h>
     43    1.1       cgd #include <sys/file.h>
     44    1.1       cgd #ifdef REAL_CLISTS
     45    1.1       cgd #include <sys/clist.h>
     46    1.1       cgd #endif
     47    1.1       cgd #include <sys/callout.h>
     48    1.1       cgd #include <sys/malloc.h>
     49    1.1       cgd #include <sys/mbuf.h>
     50    1.1       cgd #include <sys/msgbuf.h>
     51    1.1       cgd #include <sys/ioctl.h>
     52    1.1       cgd #include <sys/tty.h>
     53    1.1       cgd #include <sys/user.h>
     54    1.1       cgd #include <sys/exec.h>
     55    1.1       cgd #include <sys/exec_ecoff.h>
     56   1.91    mjacob #include <vm/vm.h>
     57    1.1       cgd #include <sys/sysctl.h>
     58   1.43       cgd #include <sys/core.h>
     59   1.43       cgd #include <sys/kcore.h>
     60   1.43       cgd #include <machine/kcore.h>
     61    1.1       cgd #ifdef SYSVMSG
     62    1.1       cgd #include <sys/msg.h>
     63    1.1       cgd #endif
     64    1.1       cgd #ifdef SYSVSEM
     65    1.1       cgd #include <sys/sem.h>
     66    1.1       cgd #endif
     67    1.1       cgd #ifdef SYSVSHM
     68    1.1       cgd #include <sys/shm.h>
     69    1.1       cgd #endif
     70    1.1       cgd 
     71    1.1       cgd #include <sys/mount.h>
     72    1.1       cgd #include <sys/syscallargs.h>
     73    1.1       cgd 
     74    1.1       cgd #include <vm/vm_kern.h>
     75    1.1       cgd 
     76    1.1       cgd #include <dev/cons.h>
     77    1.1       cgd 
     78   1.81   thorpej #include <machine/autoconf.h>
     79    1.1       cgd #include <machine/cpu.h>
     80    1.1       cgd #include <machine/reg.h>
     81    1.1       cgd #include <machine/rpb.h>
     82    1.1       cgd #include <machine/prom.h>
     83   1.73       cgd #include <machine/conf.h>
     84    1.8       cgd 
     85   1.49       cgd #include <net/netisr.h>
     86   1.33       cgd #include <net/if.h>
     87   1.49       cgd 
     88   1.49       cgd #ifdef INET
     89   1.33       cgd #include <netinet/in.h>
     90   1.72       cgd #include <netinet/ip_var.h>
     91   1.72       cgd #include "arp.h"
     92   1.72       cgd #if NARP > 0
     93   1.67        is #include <netinet/if_inarp.h>
     94   1.72       cgd #endif
     95   1.49       cgd #endif
     96   1.49       cgd #ifdef NS
     97   1.49       cgd #include <netns/ns_var.h>
     98   1.49       cgd #endif
     99   1.49       cgd #ifdef ISO
    100   1.49       cgd #include <netiso/iso.h>
    101   1.49       cgd #include <netiso/clnp.h>
    102   1.49       cgd #endif
    103   1.55       cgd #ifdef CCITT
    104   1.55       cgd #include <netccitt/x25.h>
    105   1.55       cgd #include <netccitt/pk.h>
    106   1.55       cgd #include <netccitt/pk_extern.h>
    107   1.55       cgd #endif
    108   1.55       cgd #ifdef NATM
    109   1.55       cgd #include <netnatm/natm.h>
    110   1.55       cgd #endif
    111   1.70  christos #ifdef NETATALK
    112   1.70  christos #include <netatalk/at_extern.h>
    113   1.70  christos #endif
    114   1.49       cgd #include "ppp.h"
    115   1.49       cgd #if NPPP > 0
    116   1.49       cgd #include <net/ppp_defs.h>
    117   1.49       cgd #include <net/if_ppp.h>
    118   1.49       cgd #endif
    119    1.1       cgd 
    120   1.81   thorpej #ifdef DDB
    121   1.81   thorpej #include <machine/db_machdep.h>
    122   1.81   thorpej #include <ddb/db_access.h>
    123   1.81   thorpej #include <ddb/db_sym.h>
    124   1.81   thorpej #include <ddb/db_extern.h>
    125   1.81   thorpej #include <ddb/db_interface.h>
    126   1.81   thorpej #endif
    127   1.81   thorpej 
    128    1.1       cgd vm_map_t buffer_map;
    129    1.1       cgd 
    130    1.1       cgd /*
    131    1.1       cgd  * Declare these as initialized data so we can patch them.
    132    1.1       cgd  */
    133    1.1       cgd int	nswbuf = 0;
    134    1.1       cgd #ifdef	NBUF
    135    1.1       cgd int	nbuf = NBUF;
    136    1.1       cgd #else
    137    1.1       cgd int	nbuf = 0;
    138    1.1       cgd #endif
    139    1.1       cgd #ifdef	BUFPAGES
    140    1.1       cgd int	bufpages = BUFPAGES;
    141    1.1       cgd #else
    142    1.1       cgd int	bufpages = 0;
    143    1.1       cgd #endif
    144   1.86       leo caddr_t msgbufaddr;
    145   1.86       leo 
    146    1.1       cgd int	maxmem;			/* max memory per process */
    147    1.7       cgd 
    148    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    149    1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    150    1.7       cgd int	firstusablepage;	/* first usable memory page */
    151    1.7       cgd int	lastusablepage;		/* last usable memory page */
    152    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    153    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    154    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    155    1.1       cgd 
    156    1.1       cgd int	cputype;		/* system type, from the RPB */
    157    1.1       cgd 
    158    1.1       cgd /*
    159    1.1       cgd  * XXX We need an address to which we can assign things so that they
    160    1.1       cgd  * won't be optimized away because we didn't use the value.
    161    1.1       cgd  */
    162    1.1       cgd u_int32_t no_optimize;
    163    1.1       cgd 
    164    1.1       cgd /* the following is used externally (sysctl_hw) */
    165   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    166   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    167   1.29       cgd char	cpu_model[128];
    168    1.1       cgd 
    169    1.1       cgd struct	user *proc0paddr;
    170    1.1       cgd 
    171    1.1       cgd /* Number of machine cycles per microsecond */
    172    1.1       cgd u_int64_t	cycles_per_usec;
    173    1.1       cgd 
    174    1.7       cgd /* number of cpus in the box.  really! */
    175    1.7       cgd int		ncpus;
    176    1.7       cgd 
    177   1.25       cgd char boot_flags[64];
    178   1.61       cgd char booted_kernel[64];
    179    1.8       cgd 
    180   1.81   thorpej int bootinfo_valid;
    181   1.81   thorpej struct bootinfo bootinfo;
    182   1.81   thorpej 
    183   1.89    mjacob struct platform platform;
    184   1.89    mjacob 
    185  1.100   thorpej u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
    186  1.100   thorpej u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
    187  1.100   thorpej u_int32_t vm_phys_size = _VM_PHYS_SIZE;
    188   1.90    mjacob 
    189   1.81   thorpej #ifdef DDB
    190   1.81   thorpej /* start and end of kernel symbol table */
    191   1.81   thorpej void	*ksym_start, *ksym_end;
    192   1.81   thorpej #endif
    193   1.81   thorpej 
    194   1.30       cgd /* for cpu_sysctl() */
    195   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    196   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    197   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    198   1.30       cgd 
    199   1.95   thorpej caddr_t	allocsys __P((caddr_t));
    200   1.55       cgd int	cpu_dump __P((void));
    201   1.55       cgd int	cpu_dumpsize __P((void));
    202   1.55       cgd void	dumpsys __P((void));
    203   1.55       cgd void	identifycpu __P((void));
    204   1.55       cgd void	netintr __P((void));
    205   1.55       cgd void	printregs __P((struct reg *));
    206   1.33       cgd 
    207   1.55       cgd void
    208   1.81   thorpej alpha_init(pfn, ptb, bim, bip)
    209    1.1       cgd 	u_long pfn;		/* first free PFN number */
    210    1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    211   1.81   thorpej 	u_long bim;		/* bootinfo magic */
    212   1.81   thorpej 	u_long bip;		/* bootinfo pointer */
    213    1.1       cgd {
    214   1.95   thorpej 	extern char kernel_text[], _end[];
    215    1.1       cgd 	struct mddt *mddtp;
    216    1.7       cgd 	int i, mddtweird;
    217   1.95   thorpej 	vm_offset_t kernstart, kernend;
    218   1.95   thorpej 	vm_size_t size;
    219    1.1       cgd 	char *p;
    220   1.95   thorpej 	caddr_t v;
    221   1.95   thorpej 	caddr_t start, w;
    222    1.1       cgd 
    223    1.1       cgd 	/*
    224   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    225    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    226    1.1       cgd 	 */
    227   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    228   1.32       cgd 	alpha_pal_wrfen(0);
    229   1.37       cgd 	ALPHA_TBIA();
    230   1.32       cgd 	alpha_pal_imb();
    231    1.1       cgd 
    232    1.1       cgd 	/*
    233    1.1       cgd 	 * get address of the restart block, while we the bootstrap
    234    1.1       cgd 	 * mapping is still around.
    235    1.1       cgd 	 */
    236   1.32       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
    237   1.32       cgd 	    (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
    238    1.1       cgd 
    239    1.1       cgd 	/*
    240    1.1       cgd 	 * Remember how many cycles there are per microsecond,
    241    1.7       cgd 	 * so that we can use delay().  Round up, for safety.
    242    1.1       cgd 	 */
    243    1.7       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    244    1.1       cgd 
    245    1.1       cgd 	/*
    246    1.1       cgd 	 * Init the PROM interface, so we can use printf
    247    1.1       cgd 	 * until PROM mappings go away in consinit.
    248    1.1       cgd 	 */
    249    1.1       cgd 	init_prom_interface();
    250   1.99      ross 
    251   1.99      ross 	hz = hwrpb->rpb_intr_freq >> 12;
    252   1.99      ross 	if (!(60 <= hz && hz <= 10240)) {
    253   1.99      ross 		hz = 1024;
    254   1.99      ross #ifdef DIAGNOSTIC
    255   1.99      ross 		printf("rpb_intr_freq of %ld=>%d hz was not believed\n",
    256   1.99      ross 			hwrpb->rpb_intr_freq, hz);
    257   1.99      ross #endif
    258   1.99      ross 	}
    259    1.1       cgd 
    260    1.1       cgd 	/*
    261   1.81   thorpej 	 * Check for a bootinfo from the boot program.
    262   1.81   thorpej 	 */
    263   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    264   1.81   thorpej 		/*
    265   1.81   thorpej 		 * Have boot info.  Copy it to our own storage.
    266   1.81   thorpej 		 * We'll sanity-check it later.
    267   1.81   thorpej 		 */
    268   1.81   thorpej 		bcopy((void *)bip, &bootinfo, sizeof(bootinfo));
    269   1.81   thorpej 		switch (bootinfo.version) {
    270   1.81   thorpej 		case 1:
    271   1.81   thorpej 			bootinfo_valid = 1;
    272   1.81   thorpej 			break;
    273   1.81   thorpej 
    274   1.81   thorpej 		default:
    275   1.82       cgd 			printf("warning: unknown bootinfo version %d\n",
    276   1.81   thorpej 			    bootinfo.version);
    277   1.81   thorpej 		}
    278   1.81   thorpej 	} else
    279   1.81   thorpej 		printf("warning: boot program did not pass bootinfo\n");
    280   1.81   thorpej 
    281   1.81   thorpej 	/*
    282    1.1       cgd 	 * Point interrupt/exception vectors to our own.
    283    1.1       cgd 	 */
    284   1.36       cgd 	alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
    285   1.36       cgd 	alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
    286   1.36       cgd 	alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
    287   1.36       cgd 	alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
    288   1.36       cgd 	alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
    289   1.36       cgd 	alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
    290   1.36       cgd 
    291   1.36       cgd 	/*
    292   1.76       cgd 	 * Clear pending machine checks and error reports, and enable
    293   1.76       cgd 	 * system- and processor-correctable error reporting.
    294   1.36       cgd 	 */
    295   1.76       cgd 	alpha_pal_wrmces(alpha_pal_rdmces() &
    296   1.76       cgd 	    ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
    297    1.1       cgd 
    298    1.1       cgd 	/*
    299   1.95   thorpej 	 * find out this CPU's page size
    300   1.95   thorpej 	 */
    301   1.95   thorpej 	PAGE_SIZE = hwrpb->rpb_page_size;
    302   1.95   thorpej 	if (PAGE_SIZE != 8192)
    303   1.95   thorpej 		panic("page size %d != 8192?!", PAGE_SIZE);
    304   1.95   thorpej 
    305   1.95   thorpej 	/*
    306   1.95   thorpej 	 * Initialize PAGE_SIZE-dependent variables.
    307   1.95   thorpej 	 */
    308   1.95   thorpej 	vm_set_page_size();
    309   1.95   thorpej 
    310   1.95   thorpej 	/*
    311   1.95   thorpej 	 * Find the beginning and end of the kernel.
    312   1.95   thorpej 	 */
    313   1.95   thorpej 	kernstart = trunc_page(kernel_text);
    314   1.95   thorpej #ifdef DDB
    315   1.95   thorpej 	if (bootinfo_valid) {
    316   1.95   thorpej 		/*
    317   1.95   thorpej 		 * Save the kernel symbol table.
    318   1.95   thorpej 		 */
    319   1.95   thorpej 		switch (bootinfo.version) {
    320   1.95   thorpej 		case 1:
    321   1.95   thorpej 			ksym_start = (void *)bootinfo.un.v1.ssym;
    322   1.95   thorpej 			ksym_end   = (void *)bootinfo.un.v1.esym;
    323   1.95   thorpej 			break;
    324   1.95   thorpej 		}
    325   1.95   thorpej 		kernend = (vm_offset_t)round_page(ksym_end);
    326   1.95   thorpej 	} else
    327   1.95   thorpej #endif
    328   1.95   thorpej 		kernend = (vm_offset_t)round_page(_end);
    329   1.95   thorpej 
    330   1.95   thorpej 	/*
    331    1.1       cgd 	 * Find out how much memory is available, by looking at
    332    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    333    1.7       cgd 	 * its best to detect things things that have never been seen
    334    1.7       cgd 	 * before...
    335    1.7       cgd 	 *
    336    1.1       cgd 	 * XXX Assumes that the first "system" cluster is the
    337    1.7       cgd 	 * only one we can use. Is the second (etc.) system cluster
    338    1.7       cgd 	 * (if one happens to exist) guaranteed to be contiguous?  or...?
    339    1.1       cgd 	 */
    340    1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    341    1.7       cgd 
    342    1.7       cgd 	/*
    343    1.7       cgd 	 * BEGIN MDDT WEIRDNESS CHECKING
    344    1.7       cgd 	 */
    345    1.7       cgd 	mddtweird = 0;
    346    1.7       cgd 
    347    1.7       cgd #define cnt	 mddtp->mddt_cluster_cnt
    348    1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    349    1.7       cgd 	if (cnt != 2 && cnt != 3) {
    350   1.46  christos 		printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
    351    1.7       cgd 		mddtweird = 1;
    352    1.7       cgd 	} else if (usage(0) != MDDT_PALCODE ||
    353    1.7       cgd 		   usage(1) != MDDT_SYSTEM ||
    354    1.7       cgd 	           (cnt == 3 && usage(2) != MDDT_PALCODE)) {
    355    1.7       cgd 		mddtweird = 1;
    356   1.46  christos 		printf("WARNING: %ld mem clusters, but weird config\n", cnt);
    357    1.7       cgd 	}
    358    1.7       cgd 
    359    1.7       cgd 	for (i = 0; i < cnt; i++) {
    360    1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0) {
    361   1.46  christos 			printf("WARNING: mem cluster %d has weird usage %lx\n",
    362    1.7       cgd 			    i, usage(i));
    363    1.7       cgd 			mddtweird = 1;
    364    1.7       cgd 		}
    365    1.7       cgd 		if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
    366   1.46  christos 			printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
    367    1.7       cgd 			mddtweird = 1;
    368    1.7       cgd 		}
    369    1.7       cgd 		/* XXX other things to check? */
    370    1.7       cgd 	}
    371    1.7       cgd #undef cnt
    372    1.7       cgd #undef usage
    373    1.7       cgd 
    374    1.7       cgd 	if (mddtweird) {
    375   1.46  christos 		printf("\n");
    376   1.46  christos 		printf("complete memory cluster information:\n");
    377    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    378   1.46  christos 			printf("mddt %d:\n", i);
    379   1.46  christos 			printf("\tpfn %lx\n",
    380    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    381   1.46  christos 			printf("\tcnt %lx\n",
    382    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    383   1.46  christos 			printf("\ttest %lx\n",
    384    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    385   1.46  christos 			printf("\tbva %lx\n",
    386    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    387   1.46  christos 			printf("\tbpa %lx\n",
    388    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    389   1.46  christos 			printf("\tbcksum %lx\n",
    390    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    391   1.46  christos 			printf("\tusage %lx\n",
    392    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    393    1.2       cgd 		}
    394   1.46  christos 		printf("\n");
    395    1.2       cgd 	}
    396    1.7       cgd 	/*
    397    1.7       cgd 	 * END MDDT WEIRDNESS CHECKING
    398    1.7       cgd 	 */
    399    1.2       cgd 
    400    1.1       cgd 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    401    1.7       cgd 		totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    402    1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    403    1.7       cgd #define	pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
    404    1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0)
    405    1.7       cgd 			unknownmem += pgcnt(i);
    406    1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
    407    1.7       cgd 			resvmem += pgcnt(i);
    408    1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
    409    1.7       cgd 			/*
    410    1.7       cgd 			 * assumes that the system cluster listed is
    411    1.7       cgd 			 * one we're in...
    412    1.7       cgd 			 */
    413    1.7       cgd 			if (physmem != resvmem) {
    414    1.7       cgd 				physmem += pgcnt(i);
    415    1.7       cgd 				firstusablepage =
    416    1.7       cgd 				    mddtp->mddt_clusters[i].mddt_pfn;
    417    1.7       cgd 				lastusablepage = firstusablepage + pgcnt(i) - 1;
    418    1.7       cgd 			} else
    419    1.7       cgd 				unusedmem += pgcnt(i);
    420    1.7       cgd 		}
    421    1.7       cgd #undef usage
    422    1.7       cgd #undef pgcnt
    423    1.1       cgd 	}
    424    1.7       cgd 	if (totalphysmem == 0)
    425    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    426   1.88    mjacob #ifdef        LIMITMEM
    427   1.88    mjacob 	if (totalphysmem >= btoc(LIMITMEM << 20)) {
    428   1.88    mjacob 		u_int64_t ovf = totalphysmem - btoc(LIMITMEM << 20);
    429   1.88    mjacob 		printf("********LIMITING MEMORY TO %dMB**********\n", LIMITMEM);
    430   1.88    mjacob 		physmem = totalphysmem = btoc(LIMITMEM << 20);
    431   1.88    mjacob 		unusedmem += ovf;
    432   1.88    mjacob 		lastusablepage = firstusablepage + physmem - 1;
    433   1.88    mjacob 	}
    434   1.88    mjacob #endif
    435    1.1       cgd 	maxmem = physmem;
    436    1.1       cgd 
    437    1.7       cgd #if 0
    438   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    439   1.46  christos 	printf("physmem = %d\n", physmem);
    440   1.46  christos 	printf("firstusablepage = %d\n", firstusablepage);
    441   1.46  christos 	printf("lastusablepage = %d\n", lastusablepage);
    442   1.46  christos 	printf("resvmem = %d\n", resvmem);
    443   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    444   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    445    1.7       cgd #endif
    446   1.90    mjacob 
    447   1.90    mjacob 	/*
    448   1.90    mjacob 	 * Adjust some parameters if the amount of physmem
    449   1.90    mjacob 	 * available would cause us to croak. This is completely
    450   1.90    mjacob 	 * eyeballed and isn't meant to be the final answer.
    451   1.90    mjacob 	 * vm_phys_size is probably the only one to really worry
    452   1.90    mjacob 	 * about.
    453   1.90    mjacob  	 *
    454   1.90    mjacob 	 * It's for booting a GENERIC kernel on a large memory platform.
    455   1.90    mjacob 	 */
    456   1.90    mjacob 	if (physmem >= btoc(128 << 20)) {
    457   1.90    mjacob 		vm_mbuf_size <<= 1;
    458   1.93    mjacob 		vm_kmem_size <<= 3;
    459   1.93    mjacob 		vm_phys_size <<= 2;
    460   1.90    mjacob 	}
    461    1.7       cgd 
    462    1.1       cgd 	/*
    463    1.1       cgd 	 * Find out what hardware we're on, and remember its type name.
    464    1.1       cgd 	 */
    465    1.1       cgd 	cputype = hwrpb->rpb_type;
    466   1.92   thorpej 	if (cputype >= ncpuinit) {
    467   1.92   thorpej 		platform_not_supported();
    468   1.89    mjacob 		/* NOTREACHED */
    469   1.54       cgd 	}
    470   1.92   thorpej 	(*cpuinit[cputype].init)();
    471   1.89    mjacob 	strcpy(cpu_model, platform.model);
    472   1.66       cgd 
    473   1.66       cgd 	/* XXX SANITY CHECKING.  SHOULD GO AWAY */
    474   1.66       cgd 	/* XXX We should always be running on the the primary. */
    475   1.66       cgd 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());		/*XXX*/
    476   1.66       cgd 	/* XXX On single-CPU boxes, the primary should always be CPU 0. */
    477   1.66       cgd 	if (cputype != ST_DEC_21000)					/*XXX*/
    478   1.66       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);			/*XXX*/
    479    1.1       cgd 
    480    1.1       cgd 	/*
    481    1.1       cgd 	 * Initialize error message buffer (at end of core).
    482    1.1       cgd 	 */
    483   1.86       leo 	lastusablepage -= btoc(MSGBUFSIZE);
    484   1.87    mjacob 	msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
    485   1.86       leo 	initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
    486    1.1       cgd 
    487    1.1       cgd 	/*
    488   1.95   thorpej 	 * Init mapping for u page(s) for proc 0
    489    1.1       cgd 	 */
    490   1.95   thorpej 	start = v = (caddr_t)kernend;
    491   1.95   thorpej 	curproc->p_addr = proc0paddr = (struct user *)v;
    492   1.95   thorpej 	v += UPAGES * NBPG;
    493    1.1       cgd 
    494    1.1       cgd 	/*
    495   1.95   thorpej 	 * Allocate space for system data structures.  These data structures
    496   1.95   thorpej 	 * are allocated here instead of cpu_startup() because physical
    497   1.95   thorpej 	 * memory is directly addressable.  We don't have to map these into
    498   1.95   thorpej 	 * virtual address space.
    499   1.95   thorpej 	 */
    500   1.95   thorpej 	size = (vm_size_t)allocsys(0);
    501   1.95   thorpej 	w = allocsys(v);
    502   1.95   thorpej 	if ((w - v) != size)
    503   1.95   thorpej 		panic("alpha_init: table size inconsistency");
    504   1.95   thorpej 	v = w;
    505    1.1       cgd 
    506    1.1       cgd 	/*
    507    1.1       cgd 	 * Clear allocated memory.
    508    1.1       cgd 	 */
    509    1.1       cgd 	bzero(start, v - start);
    510    1.1       cgd 
    511    1.1       cgd 	/*
    512    1.1       cgd 	 * Initialize the virtual memory system, and set the
    513    1.1       cgd 	 * page table base register in proc 0's PCB.
    514    1.1       cgd 	 */
    515   1.40       cgd #ifndef NEW_PMAP
    516   1.32       cgd 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
    517   1.40       cgd #else
    518   1.40       cgd 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    519   1.40       cgd 	    hwrpb->rpb_max_asn);
    520   1.40       cgd #endif
    521    1.1       cgd 
    522    1.1       cgd 	/*
    523    1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    524    1.3       cgd 	 * address.
    525    1.3       cgd 	 */
    526    1.3       cgd 	proc0.p_md.md_pcbpaddr =
    527   1.32       cgd 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
    528    1.3       cgd 
    529    1.3       cgd 	/*
    530    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    531    1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    532    1.3       cgd 	 */
    533   1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    534    1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    535   1.81   thorpej 	proc0.p_md.md_tf =
    536   1.81   thorpej 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    537   1.38       cgd 
    538   1.40       cgd #ifdef NEW_PMAP
    539   1.84   thorpej 	/*
    540   1.84   thorpej 	 * Set up the kernel address space in proc0's hwpcb.
    541   1.84   thorpej 	 */
    542   1.84   thorpej 	PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
    543   1.38       cgd #endif
    544    1.1       cgd 
    545    1.1       cgd 	/*
    546   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    547   1.61       cgd 	 * Also, get kernel name so it can be used in user-land.
    548    1.8       cgd 	 */
    549   1.81   thorpej 	if (bootinfo_valid) {
    550   1.81   thorpej 		switch (bootinfo.version) {
    551   1.81   thorpej 		case 1:
    552   1.81   thorpej 			bcopy(bootinfo.un.v1.boot_flags, boot_flags,
    553   1.81   thorpej 			    sizeof(boot_flags));
    554   1.81   thorpej 			bcopy(bootinfo.un.v1.booted_kernel, booted_kernel,
    555   1.81   thorpej 			    sizeof(booted_kernel));
    556   1.81   thorpej 		}
    557   1.81   thorpej 	} else {
    558   1.81   thorpej 		prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags,
    559   1.81   thorpej 		    sizeof(boot_flags));
    560   1.81   thorpej 		prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
    561   1.81   thorpej 		    sizeof(booted_kernel));
    562   1.81   thorpej 	}
    563   1.81   thorpej 
    564   1.25       cgd #if 0
    565   1.46  christos 	printf("boot flags = \"%s\"\n", boot_flags);
    566   1.61       cgd 	printf("booted kernel = \"%s\"\n", booted_kernel);
    567   1.61       cgd #endif
    568    1.1       cgd 
    569    1.8       cgd 	boothowto = RB_SINGLE;
    570    1.1       cgd #ifdef KADB
    571    1.1       cgd 	boothowto |= RB_KDB;
    572    1.1       cgd #endif
    573    1.8       cgd 	for (p = boot_flags; p && *p != '\0'; p++) {
    574   1.26       cgd 		/*
    575   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    576   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    577   1.26       cgd 		 * says that we shouldn't.
    578   1.26       cgd 		 */
    579    1.8       cgd 		switch (*p) {
    580   1.26       cgd 		case 'a': /* autoboot */
    581   1.26       cgd 		case 'A':
    582   1.26       cgd 			boothowto &= ~RB_SINGLE;
    583   1.21       cgd 			break;
    584   1.21       cgd 
    585   1.43       cgd #ifdef DEBUG
    586   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    587   1.43       cgd 		case 'C':
    588   1.43       cgd 			boothowto |= RB_DUMP;
    589   1.43       cgd 			break;
    590   1.43       cgd #endif
    591   1.43       cgd 
    592   1.81   thorpej #if defined(KGDB) || defined(DDB)
    593   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    594   1.81   thorpej 		case 'D':
    595   1.81   thorpej 			boothowto |= RB_KDB;
    596   1.81   thorpej 			break;
    597   1.81   thorpej #endif
    598   1.81   thorpej 
    599   1.36       cgd 		case 'h': /* always halt, never reboot */
    600   1.36       cgd 		case 'H':
    601   1.36       cgd 			boothowto |= RB_HALT;
    602    1.8       cgd 			break;
    603    1.8       cgd 
    604   1.21       cgd #if 0
    605    1.8       cgd 		case 'm': /* mini root present in memory */
    606   1.26       cgd 		case 'M':
    607    1.8       cgd 			boothowto |= RB_MINIROOT;
    608    1.8       cgd 			break;
    609   1.21       cgd #endif
    610   1.36       cgd 
    611   1.36       cgd 		case 'n': /* askname */
    612   1.36       cgd 		case 'N':
    613   1.36       cgd 			boothowto |= RB_ASKNAME;
    614   1.65       cgd 			break;
    615   1.65       cgd 
    616   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    617   1.65       cgd 		case 'S':
    618   1.65       cgd 			boothowto |= RB_SINGLE;
    619   1.65       cgd 			break;
    620   1.65       cgd 
    621   1.65       cgd 		default:
    622   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    623   1.36       cgd 			break;
    624    1.1       cgd 		}
    625    1.1       cgd 	}
    626    1.1       cgd 
    627    1.7       cgd 	/*
    628    1.7       cgd 	 * Figure out the number of cpus in the box, from RPB fields.
    629    1.7       cgd 	 * Really.  We mean it.
    630    1.7       cgd 	 */
    631    1.7       cgd 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    632    1.7       cgd 		struct pcs *pcsp;
    633    1.7       cgd 
    634    1.7       cgd 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    635    1.7       cgd 		    (i * hwrpb->rpb_pcs_size));
    636    1.7       cgd 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    637    1.7       cgd 			ncpus++;
    638    1.7       cgd 	}
    639   1.95   thorpej }
    640   1.95   thorpej 
    641   1.95   thorpej /*
    642   1.95   thorpej  * Allocate space for system data structures.  We are given
    643   1.95   thorpej  * a starting virtual address and we return a final virtual
    644   1.95   thorpej  * address; along the way we set each data structure pointer.
    645   1.95   thorpej  *
    646   1.95   thorpej  * We call allocsys() with 0 to find out how much space we want,
    647   1.95   thorpej  * allocate that much and fill it with zeroes, and the call
    648   1.95   thorpej  * allocsys() again with the correct base virtual address.
    649   1.95   thorpej  */
    650   1.95   thorpej caddr_t
    651   1.95   thorpej allocsys(v)
    652   1.95   thorpej 	caddr_t v;
    653   1.95   thorpej {
    654   1.95   thorpej 
    655   1.95   thorpej #define valloc(name, type, num) \
    656   1.95   thorpej 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    657   1.95   thorpej #ifdef REAL_CLISTS
    658   1.95   thorpej 	valloc(cfree, struct cblock, nclist);
    659   1.95   thorpej #endif
    660   1.95   thorpej 	valloc(callout, struct callout, ncallout);
    661   1.95   thorpej #ifdef SYSVSHM
    662   1.95   thorpej 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    663   1.95   thorpej #endif
    664   1.95   thorpej #ifdef SYSVSEM
    665   1.95   thorpej 	valloc(sema, struct semid_ds, seminfo.semmni);
    666   1.95   thorpej 	valloc(sem, struct sem, seminfo.semmns);
    667   1.95   thorpej 	/* This is pretty disgusting! */
    668   1.95   thorpej 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    669   1.95   thorpej #endif
    670   1.95   thorpej #ifdef SYSVMSG
    671   1.95   thorpej 	valloc(msgpool, char, msginfo.msgmax);
    672   1.95   thorpej 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    673   1.95   thorpej 	valloc(msghdrs, struct msg, msginfo.msgtql);
    674   1.95   thorpej 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    675   1.95   thorpej #endif
    676   1.95   thorpej 
    677   1.95   thorpej 	/*
    678   1.95   thorpej 	 * Determine how many buffers to allocate.
    679   1.95   thorpej 	 * We allocate 10% of memory for buffer space.  Insure a
    680   1.95   thorpej 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    681   1.95   thorpej 	 * headers as file i/o buffers.
    682   1.95   thorpej 	 */
    683   1.95   thorpej 	if (bufpages == 0)
    684   1.95   thorpej 		bufpages = (physmem * 10) / (CLSIZE * 100);
    685   1.95   thorpej 	if (nbuf == 0) {
    686   1.95   thorpej 		nbuf = bufpages;
    687   1.95   thorpej 		if (nbuf < 16)
    688   1.95   thorpej 			nbuf = 16;
    689   1.95   thorpej 	}
    690   1.95   thorpej 	if (nswbuf == 0) {
    691   1.95   thorpej 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    692   1.95   thorpej 		if (nswbuf > 256)
    693   1.95   thorpej 			nswbuf = 256;		/* sanity */
    694   1.95   thorpej 	}
    695   1.95   thorpej 	valloc(swbuf, struct buf, nswbuf);
    696   1.95   thorpej 	valloc(buf, struct buf, nbuf);
    697   1.95   thorpej 	return (v);
    698   1.98       cgd #undef valloc
    699    1.1       cgd }
    700    1.1       cgd 
    701   1.18       cgd void
    702    1.1       cgd consinit()
    703    1.1       cgd {
    704   1.89    mjacob 	if (platform.cons_init)
    705   1.89    mjacob 		(*platform.cons_init)();
    706    1.1       cgd 	pmap_unmap_prom();
    707   1.81   thorpej 
    708   1.81   thorpej #ifdef DDB
    709   1.81   thorpej 	db_machine_init();
    710   1.81   thorpej 	ddb_init(ksym_start, ksym_end);
    711   1.81   thorpej 	if (boothowto & RB_KDB)
    712   1.81   thorpej 		Debugger();
    713   1.81   thorpej #endif
    714   1.81   thorpej #ifdef KGDB
    715   1.81   thorpej 	if (boothowto & RB_KDB)
    716   1.81   thorpej 		kgdb_connect(0);
    717   1.81   thorpej #endif
    718    1.1       cgd }
    719    1.1       cgd 
    720   1.18       cgd void
    721    1.1       cgd cpu_startup()
    722    1.1       cgd {
    723    1.1       cgd 	register unsigned i;
    724    1.1       cgd 	int base, residual;
    725    1.1       cgd 	vm_offset_t minaddr, maxaddr;
    726    1.1       cgd 	vm_size_t size;
    727   1.40       cgd #if defined(DEBUG)
    728    1.1       cgd 	extern int pmapdebug;
    729    1.1       cgd 	int opmapdebug = pmapdebug;
    730    1.1       cgd 
    731    1.1       cgd 	pmapdebug = 0;
    732    1.1       cgd #endif
    733    1.1       cgd 
    734    1.1       cgd 	/*
    735    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    736    1.1       cgd 	 */
    737   1.46  christos 	printf(version);
    738    1.1       cgd 	identifycpu();
    739   1.88    mjacob 	printf("real mem = %u (%u reserved for PROM, %u used by NetBSD)\n",
    740    1.7       cgd 	    ctob(totalphysmem), ctob(resvmem), ctob(physmem));
    741    1.7       cgd 	if (unusedmem)
    742   1.46  christos 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    743    1.7       cgd 	if (unknownmem)
    744   1.46  christos 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    745    1.7       cgd 		    ctob(unknownmem));
    746    1.1       cgd 
    747    1.1       cgd 	/*
    748    1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    749    1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    750    1.1       cgd 	 * and usually occupy more virtual memory than physical.
    751    1.1       cgd 	 */
    752    1.1       cgd 	size = MAXBSIZE * nbuf;
    753    1.1       cgd 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    754    1.1       cgd 	    &maxaddr, size, TRUE);
    755    1.1       cgd 	minaddr = (vm_offset_t)buffers;
    756    1.1       cgd 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    757    1.1       cgd 			&minaddr, size, FALSE) != KERN_SUCCESS)
    758    1.1       cgd 		panic("startup: cannot allocate buffers");
    759    1.1       cgd 	base = bufpages / nbuf;
    760    1.1       cgd 	residual = bufpages % nbuf;
    761    1.1       cgd 	for (i = 0; i < nbuf; i++) {
    762    1.1       cgd 		vm_size_t curbufsize;
    763    1.1       cgd 		vm_offset_t curbuf;
    764    1.1       cgd 
    765    1.1       cgd 		/*
    766    1.1       cgd 		 * First <residual> buffers get (base+1) physical pages
    767    1.1       cgd 		 * allocated for them.  The rest get (base) physical pages.
    768    1.1       cgd 		 *
    769    1.1       cgd 		 * The rest of each buffer occupies virtual space,
    770    1.1       cgd 		 * but has no physical memory allocated for it.
    771    1.1       cgd 		 */
    772    1.1       cgd 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    773    1.1       cgd 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    774    1.1       cgd 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    775    1.1       cgd 		vm_map_simplify(buffer_map, curbuf);
    776    1.1       cgd 	}
    777    1.1       cgd 	/*
    778    1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    779    1.1       cgd 	 * limits the number of processes exec'ing at any time.
    780    1.1       cgd 	 */
    781    1.1       cgd 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    782    1.1       cgd 				 16 * NCARGS, TRUE);
    783    1.1       cgd 
    784    1.1       cgd 	/*
    785    1.1       cgd 	 * Allocate a submap for physio
    786    1.1       cgd 	 */
    787    1.1       cgd 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    788    1.1       cgd 				 VM_PHYS_SIZE, TRUE);
    789    1.1       cgd 
    790    1.1       cgd 	/*
    791   1.69   thorpej 	 * Finally, allocate mbuf cluster submap.
    792    1.1       cgd 	 */
    793    1.1       cgd 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    794    1.1       cgd 	    VM_MBUF_SIZE, FALSE);
    795    1.1       cgd 	/*
    796    1.1       cgd 	 * Initialize callouts
    797    1.1       cgd 	 */
    798    1.1       cgd 	callfree = callout;
    799    1.1       cgd 	for (i = 1; i < ncallout; i++)
    800    1.1       cgd 		callout[i-1].c_next = &callout[i];
    801    1.1       cgd 	callout[i-1].c_next = NULL;
    802    1.1       cgd 
    803   1.40       cgd #if defined(DEBUG)
    804    1.1       cgd 	pmapdebug = opmapdebug;
    805    1.1       cgd #endif
    806   1.46  christos 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
    807   1.46  christos 	printf("using %ld buffers containing %ld bytes of memory\n",
    808    1.1       cgd 		(long)nbuf, (long)(bufpages * CLBYTES));
    809    1.1       cgd 
    810    1.1       cgd 	/*
    811    1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
    812    1.1       cgd 	 */
    813    1.1       cgd 	bufinit();
    814    1.1       cgd 
    815    1.1       cgd 	/*
    816    1.1       cgd 	 * Configure the system.
    817    1.1       cgd 	 */
    818    1.1       cgd 	configure();
    819   1.48       cgd 
    820   1.48       cgd 	/*
    821   1.48       cgd 	 * Note that bootstrapping is finished, and set the HWRPB up
    822   1.48       cgd 	 * to do restarts.
    823   1.48       cgd 	 */
    824   1.55       cgd 	hwrpb_restart_setup();
    825    1.1       cgd }
    826    1.1       cgd 
    827   1.33       cgd void
    828    1.1       cgd identifycpu()
    829    1.1       cgd {
    830    1.1       cgd 
    831    1.7       cgd 	/*
    832    1.7       cgd 	 * print out CPU identification information.
    833    1.7       cgd 	 */
    834   1.46  christos 	printf("%s, %ldMHz\n", cpu_model,
    835    1.7       cgd 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
    836   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
    837    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    838    1.7       cgd #if 0
    839    1.7       cgd 	/* this isn't defined for any systems that we run on? */
    840   1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
    841    1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    842    1.7       cgd 
    843    1.7       cgd 	/* and these aren't particularly useful! */
    844   1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
    845    1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    846    1.7       cgd #endif
    847    1.1       cgd }
    848    1.1       cgd 
    849    1.1       cgd int	waittime = -1;
    850    1.7       cgd struct pcb dumppcb;
    851    1.1       cgd 
    852   1.18       cgd void
    853   1.68       gwr cpu_reboot(howto, bootstr)
    854    1.1       cgd 	int howto;
    855   1.39       mrg 	char *bootstr;
    856    1.1       cgd {
    857    1.1       cgd 	extern int cold;
    858    1.1       cgd 
    859    1.1       cgd 	/* If system is cold, just halt. */
    860    1.1       cgd 	if (cold) {
    861    1.1       cgd 		howto |= RB_HALT;
    862    1.1       cgd 		goto haltsys;
    863    1.1       cgd 	}
    864    1.1       cgd 
    865   1.36       cgd 	/* If "always halt" was specified as a boot flag, obey. */
    866   1.36       cgd 	if ((boothowto & RB_HALT) != 0)
    867   1.36       cgd 		howto |= RB_HALT;
    868   1.36       cgd 
    869    1.7       cgd 	boothowto = howto;
    870    1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
    871    1.1       cgd 		waittime = 0;
    872    1.7       cgd 		vfs_shutdown();
    873    1.1       cgd 		/*
    874    1.1       cgd 		 * If we've been adjusting the clock, the todr
    875    1.1       cgd 		 * will be out of synch; adjust it now.
    876    1.1       cgd 		 */
    877    1.1       cgd 		resettodr();
    878    1.1       cgd 	}
    879    1.1       cgd 
    880    1.1       cgd 	/* Disable interrupts. */
    881    1.1       cgd 	splhigh();
    882    1.1       cgd 
    883    1.7       cgd 	/* If rebooting and a dump is requested do it. */
    884   1.42       cgd #if 0
    885   1.42       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    886   1.42       cgd #else
    887   1.42       cgd 	if (howto & RB_DUMP)
    888   1.42       cgd #endif
    889    1.1       cgd 		dumpsys();
    890    1.6       cgd 
    891   1.12       cgd haltsys:
    892   1.12       cgd 
    893    1.6       cgd 	/* run any shutdown hooks */
    894    1.6       cgd 	doshutdownhooks();
    895    1.1       cgd 
    896    1.7       cgd #ifdef BOOTKEY
    897   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
    898    1.7       cgd 	cngetc();
    899   1.46  christos 	printf("\n");
    900    1.7       cgd #endif
    901    1.7       cgd 
    902    1.1       cgd 	/* Finally, halt/reboot the system. */
    903   1.46  christos 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
    904    1.1       cgd 	prom_halt(howto & RB_HALT);
    905    1.1       cgd 	/*NOTREACHED*/
    906    1.1       cgd }
    907    1.1       cgd 
    908    1.7       cgd /*
    909    1.7       cgd  * These variables are needed by /sbin/savecore
    910    1.7       cgd  */
    911    1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
    912    1.7       cgd int 	dumpsize = 0;		/* pages */
    913    1.7       cgd long	dumplo = 0; 		/* blocks */
    914    1.7       cgd 
    915    1.7       cgd /*
    916   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
    917   1.43       cgd  */
    918   1.43       cgd int
    919   1.43       cgd cpu_dumpsize()
    920   1.43       cgd {
    921   1.43       cgd 	int size;
    922   1.43       cgd 
    923   1.43       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
    924   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
    925   1.43       cgd 		return -1;
    926   1.43       cgd 
    927   1.43       cgd 	return (1);
    928   1.43       cgd }
    929   1.43       cgd 
    930   1.43       cgd /*
    931   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
    932   1.43       cgd  */
    933   1.43       cgd int
    934   1.43       cgd cpu_dump()
    935   1.43       cgd {
    936   1.43       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
    937   1.43       cgd 	long buf[dbtob(1) / sizeof (long)];
    938   1.43       cgd 	kcore_seg_t	*segp;
    939   1.43       cgd 	cpu_kcore_hdr_t	*cpuhdrp;
    940   1.43       cgd 
    941   1.43       cgd         dump = bdevsw[major(dumpdev)].d_dump;
    942   1.43       cgd 
    943   1.43       cgd 	segp = (kcore_seg_t *)buf;
    944   1.43       cgd 	cpuhdrp =
    945   1.43       cgd 	    (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
    946   1.43       cgd 
    947   1.43       cgd 	/*
    948   1.43       cgd 	 * Generate a segment header.
    949   1.43       cgd 	 */
    950   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
    951   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
    952   1.43       cgd 
    953   1.43       cgd 	/*
    954   1.43       cgd 	 * Add the machine-dependent header info
    955   1.43       cgd 	 */
    956   1.44       cgd 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
    957   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
    958   1.43       cgd 	cpuhdrp->core_seg.start = ctob(firstusablepage);
    959   1.43       cgd 	cpuhdrp->core_seg.size = ctob(physmem);
    960   1.43       cgd 
    961   1.43       cgd 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
    962   1.43       cgd }
    963   1.43       cgd 
    964   1.43       cgd /*
    965   1.68       gwr  * This is called by main to set dumplo and dumpsize.
    966    1.7       cgd  * Dumps always skip the first CLBYTES of disk space
    967    1.7       cgd  * in case there might be a disk label stored there.
    968    1.7       cgd  * If there is extra space, put dump at the end to
    969    1.7       cgd  * reduce the chance that swapping trashes it.
    970    1.7       cgd  */
    971    1.7       cgd void
    972   1.68       gwr cpu_dumpconf()
    973    1.7       cgd {
    974   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
    975    1.7       cgd 	int maj;
    976    1.7       cgd 
    977    1.7       cgd 	if (dumpdev == NODEV)
    978   1.43       cgd 		goto bad;
    979    1.7       cgd 	maj = major(dumpdev);
    980    1.7       cgd 	if (maj < 0 || maj >= nblkdev)
    981    1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
    982    1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
    983   1.43       cgd 		goto bad;
    984    1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
    985    1.7       cgd 	if (nblks <= ctod(1))
    986   1.43       cgd 		goto bad;
    987   1.43       cgd 
    988   1.43       cgd 	dumpblks = cpu_dumpsize();
    989   1.43       cgd 	if (dumpblks < 0)
    990   1.43       cgd 		goto bad;
    991   1.43       cgd 	dumpblks += ctod(physmem);
    992   1.43       cgd 
    993   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
    994   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
    995   1.43       cgd 		goto bad;
    996   1.43       cgd 
    997   1.43       cgd 	/* Put dump at end of partition */
    998   1.43       cgd 	dumplo = nblks - dumpblks;
    999    1.7       cgd 
   1000   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1001    1.7       cgd 	dumpsize = physmem;
   1002   1.43       cgd 	return;
   1003    1.7       cgd 
   1004   1.43       cgd bad:
   1005   1.43       cgd 	dumpsize = 0;
   1006   1.43       cgd 	return;
   1007    1.7       cgd }
   1008    1.7       cgd 
   1009    1.7       cgd /*
   1010   1.42       cgd  * Dump the kernel's image to the swap partition.
   1011    1.7       cgd  */
   1012   1.42       cgd #define	BYTES_PER_DUMP	NBPG
   1013   1.42       cgd 
   1014    1.7       cgd void
   1015    1.7       cgd dumpsys()
   1016    1.7       cgd {
   1017   1.42       cgd 	unsigned bytes, i, n;
   1018   1.42       cgd 	int maddr, psize;
   1019   1.42       cgd 	daddr_t blkno;
   1020   1.42       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1021   1.42       cgd 	int error;
   1022   1.42       cgd 
   1023   1.42       cgd 	/* Save registers. */
   1024   1.42       cgd 	savectx(&dumppcb);
   1025    1.7       cgd 
   1026   1.42       cgd 	msgbufmapped = 0;	/* don't record dump msgs in msgbuf */
   1027    1.7       cgd 	if (dumpdev == NODEV)
   1028    1.7       cgd 		return;
   1029   1.42       cgd 
   1030   1.42       cgd 	/*
   1031   1.42       cgd 	 * For dumps during autoconfiguration,
   1032   1.42       cgd 	 * if dump device has already configured...
   1033   1.42       cgd 	 */
   1034   1.42       cgd 	if (dumpsize == 0)
   1035   1.68       gwr 		cpu_dumpconf();
   1036   1.47       cgd 	if (dumplo <= 0) {
   1037   1.97   mycroft 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1038   1.97   mycroft 		    minor(dumpdev));
   1039   1.42       cgd 		return;
   1040   1.43       cgd 	}
   1041   1.97   mycroft 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1042   1.97   mycroft 	    minor(dumpdev), dumplo);
   1043    1.7       cgd 
   1044   1.42       cgd 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1045   1.46  christos 	printf("dump ");
   1046   1.42       cgd 	if (psize == -1) {
   1047   1.46  christos 		printf("area unavailable\n");
   1048   1.42       cgd 		return;
   1049   1.42       cgd 	}
   1050   1.42       cgd 
   1051   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1052   1.42       cgd 
   1053   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1054   1.43       cgd 		goto err;
   1055   1.43       cgd 
   1056   1.43       cgd 	bytes = ctob(physmem);
   1057   1.42       cgd 	maddr = ctob(firstusablepage);
   1058   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1059   1.42       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1060   1.42       cgd 	error = 0;
   1061   1.42       cgd 	for (i = 0; i < bytes; i += n) {
   1062   1.42       cgd 
   1063   1.42       cgd 		/* Print out how many MBs we to go. */
   1064   1.42       cgd 		n = bytes - i;
   1065   1.42       cgd 		if (n && (n % (1024*1024)) == 0)
   1066   1.46  christos 			printf("%d ", n / (1024 * 1024));
   1067   1.42       cgd 
   1068   1.42       cgd 		/* Limit size for next transfer. */
   1069   1.42       cgd 		if (n > BYTES_PER_DUMP)
   1070   1.42       cgd 			n =  BYTES_PER_DUMP;
   1071   1.42       cgd 
   1072   1.42       cgd 		error = (*dump)(dumpdev, blkno,
   1073   1.42       cgd 		    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1074   1.42       cgd 		if (error)
   1075   1.42       cgd 			break;
   1076   1.42       cgd 		maddr += n;
   1077   1.42       cgd 		blkno += btodb(n);			/* XXX? */
   1078   1.42       cgd 
   1079   1.42       cgd 		/* XXX should look for keystrokes, to cancel. */
   1080   1.42       cgd 	}
   1081   1.42       cgd 
   1082   1.43       cgd err:
   1083   1.42       cgd 	switch (error) {
   1084    1.7       cgd 
   1085    1.7       cgd 	case ENXIO:
   1086   1.46  christos 		printf("device bad\n");
   1087    1.7       cgd 		break;
   1088    1.7       cgd 
   1089    1.7       cgd 	case EFAULT:
   1090   1.46  christos 		printf("device not ready\n");
   1091    1.7       cgd 		break;
   1092    1.7       cgd 
   1093    1.7       cgd 	case EINVAL:
   1094   1.46  christos 		printf("area improper\n");
   1095    1.7       cgd 		break;
   1096    1.7       cgd 
   1097    1.7       cgd 	case EIO:
   1098   1.46  christos 		printf("i/o error\n");
   1099    1.7       cgd 		break;
   1100    1.7       cgd 
   1101    1.7       cgd 	case EINTR:
   1102   1.46  christos 		printf("aborted from console\n");
   1103    1.7       cgd 		break;
   1104    1.7       cgd 
   1105   1.42       cgd 	case 0:
   1106   1.46  christos 		printf("succeeded\n");
   1107   1.42       cgd 		break;
   1108   1.42       cgd 
   1109    1.7       cgd 	default:
   1110   1.46  christos 		printf("error %d\n", error);
   1111    1.7       cgd 		break;
   1112    1.7       cgd 	}
   1113   1.46  christos 	printf("\n\n");
   1114    1.7       cgd 	delay(1000);
   1115    1.7       cgd }
   1116    1.7       cgd 
   1117    1.1       cgd void
   1118    1.1       cgd frametoreg(framep, regp)
   1119    1.1       cgd 	struct trapframe *framep;
   1120    1.1       cgd 	struct reg *regp;
   1121    1.1       cgd {
   1122    1.1       cgd 
   1123    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1124    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1125    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1126    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1127    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1128    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1129    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1130    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1131    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1132    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1133    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1134    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1135    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1136    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1137    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1138    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1139   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1140   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1141   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1142    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1143    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1144    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1145    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1146    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1147    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1148    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1149    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1150    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1151    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1152   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1153   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1154    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1155    1.1       cgd }
   1156    1.1       cgd 
   1157    1.1       cgd void
   1158    1.1       cgd regtoframe(regp, framep)
   1159    1.1       cgd 	struct reg *regp;
   1160    1.1       cgd 	struct trapframe *framep;
   1161    1.1       cgd {
   1162    1.1       cgd 
   1163    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1164    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1165    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1166    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1167    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1168    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1169    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1170    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1171    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1172    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1173    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1174    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1175    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1176    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1177    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1178    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1179   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1180   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1181   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1182    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1183    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1184    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1185    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1186    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1187    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1188    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1189    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1190    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1191    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1192   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1193   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1194    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1195    1.1       cgd }
   1196    1.1       cgd 
   1197    1.1       cgd void
   1198    1.1       cgd printregs(regp)
   1199    1.1       cgd 	struct reg *regp;
   1200    1.1       cgd {
   1201    1.1       cgd 	int i;
   1202    1.1       cgd 
   1203    1.1       cgd 	for (i = 0; i < 32; i++)
   1204   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1205    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1206    1.1       cgd }
   1207    1.1       cgd 
   1208    1.1       cgd void
   1209    1.1       cgd regdump(framep)
   1210    1.1       cgd 	struct trapframe *framep;
   1211    1.1       cgd {
   1212    1.1       cgd 	struct reg reg;
   1213    1.1       cgd 
   1214    1.1       cgd 	frametoreg(framep, &reg);
   1215   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1216   1.35       cgd 
   1217   1.46  christos 	printf("REGISTERS:\n");
   1218    1.1       cgd 	printregs(&reg);
   1219    1.1       cgd }
   1220    1.1       cgd 
   1221    1.1       cgd #ifdef DEBUG
   1222    1.1       cgd int sigdebug = 0;
   1223    1.1       cgd int sigpid = 0;
   1224    1.1       cgd #define	SDB_FOLLOW	0x01
   1225    1.1       cgd #define	SDB_KSTACK	0x02
   1226    1.1       cgd #endif
   1227    1.1       cgd 
   1228    1.1       cgd /*
   1229    1.1       cgd  * Send an interrupt to process.
   1230    1.1       cgd  */
   1231    1.1       cgd void
   1232    1.1       cgd sendsig(catcher, sig, mask, code)
   1233    1.1       cgd 	sig_t catcher;
   1234    1.1       cgd 	int sig, mask;
   1235    1.1       cgd 	u_long code;
   1236    1.1       cgd {
   1237    1.1       cgd 	struct proc *p = curproc;
   1238    1.1       cgd 	struct sigcontext *scp, ksc;
   1239    1.1       cgd 	struct trapframe *frame;
   1240    1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1241    1.1       cgd 	int oonstack, fsize, rndfsize;
   1242    1.1       cgd 	extern char sigcode[], esigcode[];
   1243    1.1       cgd 	extern struct proc *fpcurproc;
   1244    1.1       cgd 
   1245    1.1       cgd 	frame = p->p_md.md_tf;
   1246    1.9   mycroft 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1247    1.1       cgd 	fsize = sizeof ksc;
   1248    1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1249    1.1       cgd 	/*
   1250    1.1       cgd 	 * Allocate and validate space for the signal handler
   1251    1.1       cgd 	 * context. Note that if the stack is in P0 space, the
   1252    1.1       cgd 	 * call to grow() is a nop, and the useracc() check
   1253    1.1       cgd 	 * will fail if the process has not already allocated
   1254    1.1       cgd 	 * the space with a `brk'.
   1255    1.1       cgd 	 */
   1256    1.1       cgd 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1257    1.1       cgd 	    (psp->ps_sigonstack & sigmask(sig))) {
   1258   1.14       jtc 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
   1259    1.1       cgd 		    psp->ps_sigstk.ss_size - rndfsize);
   1260    1.9   mycroft 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1261    1.1       cgd 	} else
   1262   1.35       cgd 		scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
   1263    1.1       cgd 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1264    1.1       cgd 		(void)grow(p, (u_long)scp);
   1265    1.1       cgd #ifdef DEBUG
   1266    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1267   1.46  christos 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1268    1.1       cgd 		    sig, &oonstack, scp);
   1269    1.1       cgd #endif
   1270    1.1       cgd 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1271    1.1       cgd #ifdef DEBUG
   1272    1.1       cgd 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1273   1.46  christos 			printf("sendsig(%d): useracc failed on sig %d\n",
   1274    1.1       cgd 			    p->p_pid, sig);
   1275    1.1       cgd #endif
   1276    1.1       cgd 		/*
   1277    1.1       cgd 		 * Process has trashed its stack; give it an illegal
   1278    1.1       cgd 		 * instruction to halt it in its tracks.
   1279    1.1       cgd 		 */
   1280    1.1       cgd 		SIGACTION(p, SIGILL) = SIG_DFL;
   1281    1.1       cgd 		sig = sigmask(SIGILL);
   1282    1.1       cgd 		p->p_sigignore &= ~sig;
   1283    1.1       cgd 		p->p_sigcatch &= ~sig;
   1284    1.1       cgd 		p->p_sigmask &= ~sig;
   1285    1.1       cgd 		psignal(p, SIGILL);
   1286    1.1       cgd 		return;
   1287    1.1       cgd 	}
   1288    1.1       cgd 
   1289    1.1       cgd 	/*
   1290    1.1       cgd 	 * Build the signal context to be used by sigreturn.
   1291    1.1       cgd 	 */
   1292    1.1       cgd 	ksc.sc_onstack = oonstack;
   1293    1.1       cgd 	ksc.sc_mask = mask;
   1294   1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1295   1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1296    1.1       cgd 
   1297    1.1       cgd 	/* copy the registers. */
   1298    1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1299    1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1300   1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1301    1.1       cgd 
   1302    1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1303    1.1       cgd 	if (p == fpcurproc) {
   1304   1.32       cgd 		alpha_pal_wrfen(1);
   1305    1.1       cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1306   1.32       cgd 		alpha_pal_wrfen(0);
   1307    1.1       cgd 		fpcurproc = NULL;
   1308    1.1       cgd 	}
   1309    1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1310    1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1311    1.1       cgd 	    sizeof(struct fpreg));
   1312    1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1313    1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1314    1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1315    1.1       cgd 
   1316    1.1       cgd 
   1317    1.1       cgd #ifdef COMPAT_OSF1
   1318    1.1       cgd 	/*
   1319    1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1320    1.1       cgd 	 */
   1321    1.1       cgd #endif
   1322    1.1       cgd 
   1323    1.1       cgd 	/*
   1324    1.1       cgd 	 * copy the frame out to userland.
   1325    1.1       cgd 	 */
   1326    1.1       cgd 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1327    1.1       cgd #ifdef DEBUG
   1328    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1329   1.46  christos 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1330    1.1       cgd 		    scp, code);
   1331    1.1       cgd #endif
   1332    1.1       cgd 
   1333    1.1       cgd 	/*
   1334    1.1       cgd 	 * Set up the registers to return to sigcode.
   1335    1.1       cgd 	 */
   1336   1.34       cgd 	frame->tf_regs[FRAME_PC] =
   1337   1.34       cgd 	    (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1338   1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1339   1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1340   1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1341    1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1342   1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1343    1.1       cgd 
   1344    1.1       cgd #ifdef DEBUG
   1345    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1346   1.46  christos 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1347   1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1348    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1349   1.46  christos 		printf("sendsig(%d): sig %d returns\n",
   1350    1.1       cgd 		    p->p_pid, sig);
   1351    1.1       cgd #endif
   1352    1.1       cgd }
   1353    1.1       cgd 
   1354    1.1       cgd /*
   1355    1.1       cgd  * System call to cleanup state after a signal
   1356    1.1       cgd  * has been taken.  Reset signal mask and
   1357    1.1       cgd  * stack state from context left by sendsig (above).
   1358    1.1       cgd  * Return to previous pc and psl as specified by
   1359    1.1       cgd  * context left by sendsig. Check carefully to
   1360    1.1       cgd  * make sure that the user has not modified the
   1361    1.1       cgd  * psl to gain improper priviledges or to cause
   1362    1.1       cgd  * a machine fault.
   1363    1.1       cgd  */
   1364    1.1       cgd /* ARGSUSED */
   1365   1.11   mycroft int
   1366   1.11   mycroft sys_sigreturn(p, v, retval)
   1367    1.1       cgd 	struct proc *p;
   1368   1.10   thorpej 	void *v;
   1369   1.10   thorpej 	register_t *retval;
   1370   1.10   thorpej {
   1371   1.11   mycroft 	struct sys_sigreturn_args /* {
   1372    1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1373   1.10   thorpej 	} */ *uap = v;
   1374    1.1       cgd 	struct sigcontext *scp, ksc;
   1375    1.1       cgd 	extern struct proc *fpcurproc;
   1376    1.1       cgd 
   1377    1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1378    1.1       cgd #ifdef DEBUG
   1379    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1380   1.46  christos 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1381    1.1       cgd #endif
   1382    1.1       cgd 
   1383    1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1384    1.1       cgd 		return (EINVAL);
   1385    1.1       cgd 
   1386    1.1       cgd 	/*
   1387    1.1       cgd 	 * Test and fetch the context structure.
   1388    1.1       cgd 	 * We grab it all at once for speed.
   1389    1.1       cgd 	 */
   1390    1.1       cgd 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1391    1.1       cgd 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1392    1.1       cgd 		return (EINVAL);
   1393    1.1       cgd 
   1394    1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1395    1.1       cgd 		return (EINVAL);
   1396    1.1       cgd 	/*
   1397    1.1       cgd 	 * Restore the user-supplied information
   1398    1.1       cgd 	 */
   1399    1.1       cgd 	if (ksc.sc_onstack)
   1400    1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1401    1.1       cgd 	else
   1402    1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1403    1.1       cgd 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1404    1.1       cgd 
   1405   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1406   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1407   1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1408    1.1       cgd 
   1409    1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1410   1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1411    1.1       cgd 
   1412    1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1413    1.1       cgd 	if (p == fpcurproc)
   1414    1.1       cgd 		fpcurproc = NULL;
   1415    1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1416    1.1       cgd 	    sizeof(struct fpreg));
   1417    1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1418    1.1       cgd 
   1419    1.1       cgd #ifdef DEBUG
   1420    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1421   1.46  christos 		printf("sigreturn(%d): returns\n", p->p_pid);
   1422    1.1       cgd #endif
   1423    1.1       cgd 	return (EJUSTRETURN);
   1424    1.1       cgd }
   1425    1.1       cgd 
   1426    1.1       cgd /*
   1427    1.1       cgd  * machine dependent system variables.
   1428    1.1       cgd  */
   1429   1.33       cgd int
   1430    1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1431    1.1       cgd 	int *name;
   1432    1.1       cgd 	u_int namelen;
   1433    1.1       cgd 	void *oldp;
   1434    1.1       cgd 	size_t *oldlenp;
   1435    1.1       cgd 	void *newp;
   1436    1.1       cgd 	size_t newlen;
   1437    1.1       cgd 	struct proc *p;
   1438    1.1       cgd {
   1439    1.1       cgd 	dev_t consdev;
   1440    1.1       cgd 
   1441    1.1       cgd 	/* all sysctl names at this level are terminal */
   1442    1.1       cgd 	if (namelen != 1)
   1443    1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1444    1.1       cgd 
   1445    1.1       cgd 	switch (name[0]) {
   1446    1.1       cgd 	case CPU_CONSDEV:
   1447    1.1       cgd 		if (cn_tab != NULL)
   1448    1.1       cgd 			consdev = cn_tab->cn_dev;
   1449    1.1       cgd 		else
   1450    1.1       cgd 			consdev = NODEV;
   1451    1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1452    1.1       cgd 			sizeof consdev));
   1453   1.30       cgd 
   1454   1.30       cgd 	case CPU_ROOT_DEVICE:
   1455   1.64   thorpej 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1456   1.64   thorpej 		    root_device->dv_xname));
   1457   1.36       cgd 
   1458   1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1459   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1460   1.36       cgd 		    &alpha_unaligned_print));
   1461   1.36       cgd 
   1462   1.36       cgd 	case CPU_UNALIGNED_FIX:
   1463   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1464   1.36       cgd 		    &alpha_unaligned_fix));
   1465   1.36       cgd 
   1466   1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1467   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1468   1.36       cgd 		    &alpha_unaligned_sigbus));
   1469   1.61       cgd 
   1470   1.61       cgd 	case CPU_BOOTED_KERNEL:
   1471   1.61       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
   1472   1.30       cgd 
   1473    1.1       cgd 	default:
   1474    1.1       cgd 		return (EOPNOTSUPP);
   1475    1.1       cgd 	}
   1476    1.1       cgd 	/* NOTREACHED */
   1477    1.1       cgd }
   1478    1.1       cgd 
   1479    1.1       cgd /*
   1480    1.1       cgd  * Set registers on exec.
   1481    1.1       cgd  */
   1482    1.1       cgd void
   1483   1.85   mycroft setregs(p, pack, stack)
   1484    1.1       cgd 	register struct proc *p;
   1485    1.5  christos 	struct exec_package *pack;
   1486    1.1       cgd 	u_long stack;
   1487    1.1       cgd {
   1488    1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1489   1.56       cgd 	extern struct proc *fpcurproc;
   1490   1.56       cgd #ifdef DEBUG
   1491    1.1       cgd 	int i;
   1492   1.56       cgd #endif
   1493   1.43       cgd 
   1494   1.43       cgd #ifdef DEBUG
   1495   1.43       cgd 	/*
   1496   1.43       cgd 	 * Crash and dump, if the user requested it.
   1497   1.43       cgd 	 */
   1498   1.43       cgd 	if (boothowto & RB_DUMP)
   1499   1.43       cgd 		panic("crash requested by boot flags");
   1500   1.43       cgd #endif
   1501    1.1       cgd 
   1502    1.1       cgd #ifdef DEBUG
   1503   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1504    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1505    1.1       cgd #else
   1506   1.34       cgd 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1507    1.1       cgd #endif
   1508    1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1509    1.7       cgd #define FP_RN 2 /* XXX */
   1510    1.7       cgd 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1511   1.35       cgd 	alpha_pal_wrusp(stack);
   1512   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1513   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1514   1.41       cgd 
   1515   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1516   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1517   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1518   1.63       cgd 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1519   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1520    1.1       cgd 
   1521   1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   1522    1.1       cgd 	if (fpcurproc == p)
   1523    1.1       cgd 		fpcurproc = NULL;
   1524    1.1       cgd }
   1525    1.1       cgd 
   1526    1.1       cgd void
   1527    1.1       cgd netintr()
   1528    1.1       cgd {
   1529   1.49       cgd 	int n, s;
   1530   1.49       cgd 
   1531   1.49       cgd 	s = splhigh();
   1532   1.49       cgd 	n = netisr;
   1533   1.49       cgd 	netisr = 0;
   1534   1.49       cgd 	splx(s);
   1535   1.49       cgd 
   1536   1.49       cgd #define	DONETISR(bit, fn)						\
   1537   1.49       cgd 	do {								\
   1538   1.49       cgd 		if (n & (1 << (bit)))					\
   1539   1.49       cgd 			fn;						\
   1540   1.49       cgd 	} while (0)
   1541   1.49       cgd 
   1542    1.1       cgd #ifdef INET
   1543   1.72       cgd #if NARP > 0
   1544   1.49       cgd 	DONETISR(NETISR_ARP, arpintr());
   1545   1.72       cgd #endif
   1546   1.49       cgd 	DONETISR(NETISR_IP, ipintr());
   1547   1.70  christos #endif
   1548   1.70  christos #ifdef NETATALK
   1549   1.70  christos 	DONETISR(NETISR_ATALK, atintr());
   1550    1.1       cgd #endif
   1551    1.1       cgd #ifdef NS
   1552   1.49       cgd 	DONETISR(NETISR_NS, nsintr());
   1553    1.1       cgd #endif
   1554    1.1       cgd #ifdef ISO
   1555   1.49       cgd 	DONETISR(NETISR_ISO, clnlintr());
   1556    1.1       cgd #endif
   1557    1.1       cgd #ifdef CCITT
   1558   1.49       cgd 	DONETISR(NETISR_CCITT, ccittintr());
   1559   1.49       cgd #endif
   1560   1.49       cgd #ifdef NATM
   1561   1.49       cgd 	DONETISR(NETISR_NATM, natmintr());
   1562    1.1       cgd #endif
   1563   1.49       cgd #if NPPP > 1
   1564   1.49       cgd 	DONETISR(NETISR_PPP, pppintr());
   1565    1.8       cgd #endif
   1566   1.49       cgd 
   1567   1.49       cgd #undef DONETISR
   1568    1.1       cgd }
   1569    1.1       cgd 
   1570    1.1       cgd void
   1571    1.1       cgd do_sir()
   1572    1.1       cgd {
   1573   1.58       cgd 	u_int64_t n;
   1574    1.1       cgd 
   1575   1.59       cgd 	do {
   1576   1.60       cgd 		(void)splhigh();
   1577   1.58       cgd 		n = ssir;
   1578   1.58       cgd 		ssir = 0;
   1579   1.60       cgd 		splsoft();		/* don't recurse through spl0() */
   1580   1.59       cgd 
   1581   1.59       cgd #define	DO_SIR(bit, fn)							\
   1582   1.59       cgd 		do {							\
   1583   1.60       cgd 			if (n & (bit)) {				\
   1584   1.59       cgd 				cnt.v_soft++;				\
   1585   1.59       cgd 				fn;					\
   1586   1.59       cgd 			}						\
   1587   1.59       cgd 		} while (0)
   1588   1.59       cgd 
   1589   1.60       cgd 		DO_SIR(SIR_NET, netintr());
   1590   1.60       cgd 		DO_SIR(SIR_CLOCK, softclock());
   1591   1.60       cgd 
   1592   1.60       cgd #undef DO_SIR
   1593   1.59       cgd 	} while (ssir != 0);
   1594    1.1       cgd }
   1595    1.1       cgd 
   1596    1.1       cgd int
   1597    1.1       cgd spl0()
   1598    1.1       cgd {
   1599    1.1       cgd 
   1600   1.59       cgd 	if (ssir)
   1601   1.59       cgd 		do_sir();		/* it lowers the IPL itself */
   1602    1.1       cgd 
   1603   1.32       cgd 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   1604    1.1       cgd }
   1605    1.1       cgd 
   1606    1.1       cgd /*
   1607    1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1608    1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1609   1.52       cgd  * into queues, Remrunqueue removes them from queues.  The running process is
   1610   1.52       cgd  * on no queue, other processes are on a queue related to p->p_priority,
   1611   1.52       cgd  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1612   1.52       cgd  * available queues.
   1613    1.1       cgd  */
   1614    1.1       cgd /*
   1615    1.1       cgd  * setrunqueue(p)
   1616    1.1       cgd  *	proc *p;
   1617    1.1       cgd  *
   1618    1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1619    1.1       cgd  */
   1620    1.1       cgd 
   1621    1.1       cgd void
   1622    1.1       cgd setrunqueue(p)
   1623    1.1       cgd 	struct proc *p;
   1624    1.1       cgd {
   1625    1.1       cgd 	int bit;
   1626    1.1       cgd 
   1627    1.1       cgd 	/* firewall: p->p_back must be NULL */
   1628    1.1       cgd 	if (p->p_back != NULL)
   1629    1.1       cgd 		panic("setrunqueue");
   1630    1.1       cgd 
   1631    1.1       cgd 	bit = p->p_priority >> 2;
   1632    1.1       cgd 	whichqs |= (1 << bit);
   1633    1.1       cgd 	p->p_forw = (struct proc *)&qs[bit];
   1634    1.1       cgd 	p->p_back = qs[bit].ph_rlink;
   1635    1.1       cgd 	p->p_back->p_forw = p;
   1636    1.1       cgd 	qs[bit].ph_rlink = p;
   1637    1.1       cgd }
   1638    1.1       cgd 
   1639    1.1       cgd /*
   1640   1.52       cgd  * remrunqueue(p)
   1641    1.1       cgd  *
   1642    1.1       cgd  * Call should be made at splclock().
   1643    1.1       cgd  */
   1644    1.1       cgd void
   1645   1.52       cgd remrunqueue(p)
   1646    1.1       cgd 	struct proc *p;
   1647    1.1       cgd {
   1648    1.1       cgd 	int bit;
   1649    1.1       cgd 
   1650    1.1       cgd 	bit = p->p_priority >> 2;
   1651    1.1       cgd 	if ((whichqs & (1 << bit)) == 0)
   1652   1.52       cgd 		panic("remrunqueue");
   1653    1.1       cgd 
   1654    1.1       cgd 	p->p_back->p_forw = p->p_forw;
   1655    1.1       cgd 	p->p_forw->p_back = p->p_back;
   1656    1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   1657    1.1       cgd 
   1658    1.1       cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1659    1.1       cgd 		whichqs &= ~(1 << bit);
   1660    1.1       cgd }
   1661    1.1       cgd 
   1662    1.1       cgd /*
   1663    1.1       cgd  * Return the best possible estimate of the time in the timeval
   1664    1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1665    1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   1666    1.1       cgd  * previous call.
   1667    1.1       cgd  */
   1668    1.1       cgd void
   1669    1.1       cgd microtime(tvp)
   1670    1.1       cgd 	register struct timeval *tvp;
   1671    1.1       cgd {
   1672    1.1       cgd 	int s = splclock();
   1673    1.1       cgd 	static struct timeval lasttime;
   1674    1.1       cgd 
   1675    1.1       cgd 	*tvp = time;
   1676    1.1       cgd #ifdef notdef
   1677    1.1       cgd 	tvp->tv_usec += clkread();
   1678    1.1       cgd 	while (tvp->tv_usec > 1000000) {
   1679    1.1       cgd 		tvp->tv_sec++;
   1680    1.1       cgd 		tvp->tv_usec -= 1000000;
   1681    1.1       cgd 	}
   1682    1.1       cgd #endif
   1683    1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1684    1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1685    1.1       cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1686    1.1       cgd 		tvp->tv_sec++;
   1687    1.1       cgd 		tvp->tv_usec -= 1000000;
   1688    1.1       cgd 	}
   1689    1.1       cgd 	lasttime = *tvp;
   1690    1.1       cgd 	splx(s);
   1691   1.15       cgd }
   1692   1.15       cgd 
   1693   1.15       cgd /*
   1694   1.15       cgd  * Wait "n" microseconds.
   1695   1.15       cgd  */
   1696   1.32       cgd void
   1697   1.15       cgd delay(n)
   1698   1.32       cgd 	unsigned long n;
   1699   1.15       cgd {
   1700   1.15       cgd 	long N = cycles_per_usec * (n);
   1701   1.15       cgd 
   1702   1.15       cgd 	while (N > 0)				/* XXX */
   1703   1.15       cgd 		N -= 3;				/* XXX */
   1704    1.1       cgd }
   1705    1.1       cgd 
   1706    1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   1707   1.55       cgd void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   1708   1.85   mycroft 	    u_long));
   1709   1.55       cgd 
   1710    1.1       cgd void
   1711   1.85   mycroft cpu_exec_ecoff_setregs(p, epp, stack)
   1712    1.1       cgd 	struct proc *p;
   1713   1.19       cgd 	struct exec_package *epp;
   1714    1.5  christos 	u_long stack;
   1715    1.1       cgd {
   1716   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1717    1.1       cgd 
   1718   1.85   mycroft 	setregs(p, epp, stack);
   1719   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1720    1.1       cgd }
   1721    1.1       cgd 
   1722    1.1       cgd /*
   1723    1.1       cgd  * cpu_exec_ecoff_hook():
   1724    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   1725    1.1       cgd  *
   1726    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1727    1.1       cgd  *
   1728    1.1       cgd  */
   1729    1.1       cgd int
   1730   1.19       cgd cpu_exec_ecoff_hook(p, epp)
   1731    1.1       cgd 	struct proc *p;
   1732    1.1       cgd 	struct exec_package *epp;
   1733    1.1       cgd {
   1734   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1735    1.5  christos 	extern struct emul emul_netbsd;
   1736    1.5  christos #ifdef COMPAT_OSF1
   1737    1.5  christos 	extern struct emul emul_osf1;
   1738    1.5  christos #endif
   1739    1.1       cgd 
   1740   1.19       cgd 	switch (execp->f.f_magic) {
   1741    1.5  christos #ifdef COMPAT_OSF1
   1742    1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   1743    1.5  christos 		epp->ep_emul = &emul_osf1;
   1744    1.1       cgd 		break;
   1745    1.5  christos #endif
   1746    1.1       cgd 
   1747    1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1748    1.5  christos 		epp->ep_emul = &emul_netbsd;
   1749    1.1       cgd 		break;
   1750    1.1       cgd 
   1751    1.1       cgd 	default:
   1752   1.12       cgd 		return ENOEXEC;
   1753    1.1       cgd 	}
   1754    1.1       cgd 	return 0;
   1755    1.1       cgd }
   1756    1.1       cgd #endif
   1757   1.50       cgd 
   1758   1.50       cgd /* XXX XXX BEGIN XXX XXX */
   1759   1.50       cgd vm_offset_t alpha_XXX_dmamap_or;				/* XXX */
   1760   1.50       cgd 								/* XXX */
   1761   1.50       cgd vm_offset_t							/* XXX */
   1762   1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   1763   1.51       cgd 	vm_offset_t v;						/* XXX */
   1764   1.50       cgd {								/* XXX */
   1765   1.50       cgd 								/* XXX */
   1766   1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   1767   1.50       cgd }								/* XXX */
   1768   1.50       cgd /* XXX XXX END XXX XXX */
   1769