machdep.c revision 1.100 1 1.100 thorpej /* $NetBSD: machdep.c,v 1.100 1998/02/10 03:52:05 thorpej Exp $ */
2 1.1 cgd
3 1.1 cgd /*
4 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 1.1 cgd * All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Author: Chris G. Demetriou
8 1.1 cgd *
9 1.1 cgd * Permission to use, copy, modify and distribute this software and
10 1.1 cgd * its documentation is hereby granted, provided that both the copyright
11 1.1 cgd * notice and this permission notice appear in all copies of the
12 1.1 cgd * software, derivative works or modified versions, and any portions
13 1.1 cgd * thereof, and that both notices appear in supporting documentation.
14 1.1 cgd *
15 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 1.1 cgd *
19 1.1 cgd * Carnegie Mellon requests users of this software to return to
20 1.1 cgd *
21 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 1.1 cgd * School of Computer Science
23 1.1 cgd * Carnegie Mellon University
24 1.1 cgd * Pittsburgh PA 15213-3890
25 1.1 cgd *
26 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
27 1.1 cgd * rights to redistribute these changes.
28 1.1 cgd */
29 1.74 cgd
30 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
31 1.75 cgd
32 1.100 thorpej __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.100 1998/02/10 03:52:05 thorpej Exp $");
33 1.1 cgd
34 1.1 cgd #include <sys/param.h>
35 1.1 cgd #include <sys/systm.h>
36 1.1 cgd #include <sys/signalvar.h>
37 1.1 cgd #include <sys/kernel.h>
38 1.1 cgd #include <sys/map.h>
39 1.1 cgd #include <sys/proc.h>
40 1.1 cgd #include <sys/buf.h>
41 1.1 cgd #include <sys/reboot.h>
42 1.28 cgd #include <sys/device.h>
43 1.1 cgd #include <sys/file.h>
44 1.1 cgd #ifdef REAL_CLISTS
45 1.1 cgd #include <sys/clist.h>
46 1.1 cgd #endif
47 1.1 cgd #include <sys/callout.h>
48 1.1 cgd #include <sys/malloc.h>
49 1.1 cgd #include <sys/mbuf.h>
50 1.1 cgd #include <sys/msgbuf.h>
51 1.1 cgd #include <sys/ioctl.h>
52 1.1 cgd #include <sys/tty.h>
53 1.1 cgd #include <sys/user.h>
54 1.1 cgd #include <sys/exec.h>
55 1.1 cgd #include <sys/exec_ecoff.h>
56 1.91 mjacob #include <vm/vm.h>
57 1.1 cgd #include <sys/sysctl.h>
58 1.43 cgd #include <sys/core.h>
59 1.43 cgd #include <sys/kcore.h>
60 1.43 cgd #include <machine/kcore.h>
61 1.1 cgd #ifdef SYSVMSG
62 1.1 cgd #include <sys/msg.h>
63 1.1 cgd #endif
64 1.1 cgd #ifdef SYSVSEM
65 1.1 cgd #include <sys/sem.h>
66 1.1 cgd #endif
67 1.1 cgd #ifdef SYSVSHM
68 1.1 cgd #include <sys/shm.h>
69 1.1 cgd #endif
70 1.1 cgd
71 1.1 cgd #include <sys/mount.h>
72 1.1 cgd #include <sys/syscallargs.h>
73 1.1 cgd
74 1.1 cgd #include <vm/vm_kern.h>
75 1.1 cgd
76 1.1 cgd #include <dev/cons.h>
77 1.1 cgd
78 1.81 thorpej #include <machine/autoconf.h>
79 1.1 cgd #include <machine/cpu.h>
80 1.1 cgd #include <machine/reg.h>
81 1.1 cgd #include <machine/rpb.h>
82 1.1 cgd #include <machine/prom.h>
83 1.73 cgd #include <machine/conf.h>
84 1.8 cgd
85 1.49 cgd #include <net/netisr.h>
86 1.33 cgd #include <net/if.h>
87 1.49 cgd
88 1.49 cgd #ifdef INET
89 1.33 cgd #include <netinet/in.h>
90 1.72 cgd #include <netinet/ip_var.h>
91 1.72 cgd #include "arp.h"
92 1.72 cgd #if NARP > 0
93 1.67 is #include <netinet/if_inarp.h>
94 1.72 cgd #endif
95 1.49 cgd #endif
96 1.49 cgd #ifdef NS
97 1.49 cgd #include <netns/ns_var.h>
98 1.49 cgd #endif
99 1.49 cgd #ifdef ISO
100 1.49 cgd #include <netiso/iso.h>
101 1.49 cgd #include <netiso/clnp.h>
102 1.49 cgd #endif
103 1.55 cgd #ifdef CCITT
104 1.55 cgd #include <netccitt/x25.h>
105 1.55 cgd #include <netccitt/pk.h>
106 1.55 cgd #include <netccitt/pk_extern.h>
107 1.55 cgd #endif
108 1.55 cgd #ifdef NATM
109 1.55 cgd #include <netnatm/natm.h>
110 1.55 cgd #endif
111 1.70 christos #ifdef NETATALK
112 1.70 christos #include <netatalk/at_extern.h>
113 1.70 christos #endif
114 1.49 cgd #include "ppp.h"
115 1.49 cgd #if NPPP > 0
116 1.49 cgd #include <net/ppp_defs.h>
117 1.49 cgd #include <net/if_ppp.h>
118 1.49 cgd #endif
119 1.1 cgd
120 1.81 thorpej #ifdef DDB
121 1.81 thorpej #include <machine/db_machdep.h>
122 1.81 thorpej #include <ddb/db_access.h>
123 1.81 thorpej #include <ddb/db_sym.h>
124 1.81 thorpej #include <ddb/db_extern.h>
125 1.81 thorpej #include <ddb/db_interface.h>
126 1.81 thorpej #endif
127 1.81 thorpej
128 1.1 cgd vm_map_t buffer_map;
129 1.1 cgd
130 1.1 cgd /*
131 1.1 cgd * Declare these as initialized data so we can patch them.
132 1.1 cgd */
133 1.1 cgd int nswbuf = 0;
134 1.1 cgd #ifdef NBUF
135 1.1 cgd int nbuf = NBUF;
136 1.1 cgd #else
137 1.1 cgd int nbuf = 0;
138 1.1 cgd #endif
139 1.1 cgd #ifdef BUFPAGES
140 1.1 cgd int bufpages = BUFPAGES;
141 1.1 cgd #else
142 1.1 cgd int bufpages = 0;
143 1.1 cgd #endif
144 1.86 leo caddr_t msgbufaddr;
145 1.86 leo
146 1.1 cgd int maxmem; /* max memory per process */
147 1.7 cgd
148 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
149 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
150 1.7 cgd int firstusablepage; /* first usable memory page */
151 1.7 cgd int lastusablepage; /* last usable memory page */
152 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
153 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
154 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
155 1.1 cgd
156 1.1 cgd int cputype; /* system type, from the RPB */
157 1.1 cgd
158 1.1 cgd /*
159 1.1 cgd * XXX We need an address to which we can assign things so that they
160 1.1 cgd * won't be optimized away because we didn't use the value.
161 1.1 cgd */
162 1.1 cgd u_int32_t no_optimize;
163 1.1 cgd
164 1.1 cgd /* the following is used externally (sysctl_hw) */
165 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
166 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
167 1.29 cgd char cpu_model[128];
168 1.1 cgd
169 1.1 cgd struct user *proc0paddr;
170 1.1 cgd
171 1.1 cgd /* Number of machine cycles per microsecond */
172 1.1 cgd u_int64_t cycles_per_usec;
173 1.1 cgd
174 1.7 cgd /* number of cpus in the box. really! */
175 1.7 cgd int ncpus;
176 1.7 cgd
177 1.25 cgd char boot_flags[64];
178 1.61 cgd char booted_kernel[64];
179 1.8 cgd
180 1.81 thorpej int bootinfo_valid;
181 1.81 thorpej struct bootinfo bootinfo;
182 1.81 thorpej
183 1.89 mjacob struct platform platform;
184 1.89 mjacob
185 1.100 thorpej u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
186 1.100 thorpej u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
187 1.100 thorpej u_int32_t vm_phys_size = _VM_PHYS_SIZE;
188 1.90 mjacob
189 1.81 thorpej #ifdef DDB
190 1.81 thorpej /* start and end of kernel symbol table */
191 1.81 thorpej void *ksym_start, *ksym_end;
192 1.81 thorpej #endif
193 1.81 thorpej
194 1.30 cgd /* for cpu_sysctl() */
195 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
196 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
197 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
198 1.30 cgd
199 1.95 thorpej caddr_t allocsys __P((caddr_t));
200 1.55 cgd int cpu_dump __P((void));
201 1.55 cgd int cpu_dumpsize __P((void));
202 1.55 cgd void dumpsys __P((void));
203 1.55 cgd void identifycpu __P((void));
204 1.55 cgd void netintr __P((void));
205 1.55 cgd void printregs __P((struct reg *));
206 1.33 cgd
207 1.55 cgd void
208 1.81 thorpej alpha_init(pfn, ptb, bim, bip)
209 1.1 cgd u_long pfn; /* first free PFN number */
210 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
211 1.81 thorpej u_long bim; /* bootinfo magic */
212 1.81 thorpej u_long bip; /* bootinfo pointer */
213 1.1 cgd {
214 1.95 thorpej extern char kernel_text[], _end[];
215 1.1 cgd struct mddt *mddtp;
216 1.7 cgd int i, mddtweird;
217 1.95 thorpej vm_offset_t kernstart, kernend;
218 1.95 thorpej vm_size_t size;
219 1.1 cgd char *p;
220 1.95 thorpej caddr_t v;
221 1.95 thorpej caddr_t start, w;
222 1.1 cgd
223 1.1 cgd /*
224 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
225 1.1 cgd * Make sure the instruction and data streams are consistent.
226 1.1 cgd */
227 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
228 1.32 cgd alpha_pal_wrfen(0);
229 1.37 cgd ALPHA_TBIA();
230 1.32 cgd alpha_pal_imb();
231 1.1 cgd
232 1.1 cgd /*
233 1.1 cgd * get address of the restart block, while we the bootstrap
234 1.1 cgd * mapping is still around.
235 1.1 cgd */
236 1.32 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
237 1.32 cgd (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
238 1.1 cgd
239 1.1 cgd /*
240 1.1 cgd * Remember how many cycles there are per microsecond,
241 1.7 cgd * so that we can use delay(). Round up, for safety.
242 1.1 cgd */
243 1.7 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
244 1.1 cgd
245 1.1 cgd /*
246 1.1 cgd * Init the PROM interface, so we can use printf
247 1.1 cgd * until PROM mappings go away in consinit.
248 1.1 cgd */
249 1.1 cgd init_prom_interface();
250 1.99 ross
251 1.99 ross hz = hwrpb->rpb_intr_freq >> 12;
252 1.99 ross if (!(60 <= hz && hz <= 10240)) {
253 1.99 ross hz = 1024;
254 1.99 ross #ifdef DIAGNOSTIC
255 1.99 ross printf("rpb_intr_freq of %ld=>%d hz was not believed\n",
256 1.99 ross hwrpb->rpb_intr_freq, hz);
257 1.99 ross #endif
258 1.99 ross }
259 1.1 cgd
260 1.1 cgd /*
261 1.81 thorpej * Check for a bootinfo from the boot program.
262 1.81 thorpej */
263 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
264 1.81 thorpej /*
265 1.81 thorpej * Have boot info. Copy it to our own storage.
266 1.81 thorpej * We'll sanity-check it later.
267 1.81 thorpej */
268 1.81 thorpej bcopy((void *)bip, &bootinfo, sizeof(bootinfo));
269 1.81 thorpej switch (bootinfo.version) {
270 1.81 thorpej case 1:
271 1.81 thorpej bootinfo_valid = 1;
272 1.81 thorpej break;
273 1.81 thorpej
274 1.81 thorpej default:
275 1.82 cgd printf("warning: unknown bootinfo version %d\n",
276 1.81 thorpej bootinfo.version);
277 1.81 thorpej }
278 1.81 thorpej } else
279 1.81 thorpej printf("warning: boot program did not pass bootinfo\n");
280 1.81 thorpej
281 1.81 thorpej /*
282 1.1 cgd * Point interrupt/exception vectors to our own.
283 1.1 cgd */
284 1.36 cgd alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
285 1.36 cgd alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
286 1.36 cgd alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
287 1.36 cgd alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
288 1.36 cgd alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
289 1.36 cgd alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
290 1.36 cgd
291 1.36 cgd /*
292 1.76 cgd * Clear pending machine checks and error reports, and enable
293 1.76 cgd * system- and processor-correctable error reporting.
294 1.36 cgd */
295 1.76 cgd alpha_pal_wrmces(alpha_pal_rdmces() &
296 1.76 cgd ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
297 1.1 cgd
298 1.1 cgd /*
299 1.95 thorpej * find out this CPU's page size
300 1.95 thorpej */
301 1.95 thorpej PAGE_SIZE = hwrpb->rpb_page_size;
302 1.95 thorpej if (PAGE_SIZE != 8192)
303 1.95 thorpej panic("page size %d != 8192?!", PAGE_SIZE);
304 1.95 thorpej
305 1.95 thorpej /*
306 1.95 thorpej * Initialize PAGE_SIZE-dependent variables.
307 1.95 thorpej */
308 1.95 thorpej vm_set_page_size();
309 1.95 thorpej
310 1.95 thorpej /*
311 1.95 thorpej * Find the beginning and end of the kernel.
312 1.95 thorpej */
313 1.95 thorpej kernstart = trunc_page(kernel_text);
314 1.95 thorpej #ifdef DDB
315 1.95 thorpej if (bootinfo_valid) {
316 1.95 thorpej /*
317 1.95 thorpej * Save the kernel symbol table.
318 1.95 thorpej */
319 1.95 thorpej switch (bootinfo.version) {
320 1.95 thorpej case 1:
321 1.95 thorpej ksym_start = (void *)bootinfo.un.v1.ssym;
322 1.95 thorpej ksym_end = (void *)bootinfo.un.v1.esym;
323 1.95 thorpej break;
324 1.95 thorpej }
325 1.95 thorpej kernend = (vm_offset_t)round_page(ksym_end);
326 1.95 thorpej } else
327 1.95 thorpej #endif
328 1.95 thorpej kernend = (vm_offset_t)round_page(_end);
329 1.95 thorpej
330 1.95 thorpej /*
331 1.1 cgd * Find out how much memory is available, by looking at
332 1.7 cgd * the memory cluster descriptors. This also tries to do
333 1.7 cgd * its best to detect things things that have never been seen
334 1.7 cgd * before...
335 1.7 cgd *
336 1.1 cgd * XXX Assumes that the first "system" cluster is the
337 1.7 cgd * only one we can use. Is the second (etc.) system cluster
338 1.7 cgd * (if one happens to exist) guaranteed to be contiguous? or...?
339 1.1 cgd */
340 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
341 1.7 cgd
342 1.7 cgd /*
343 1.7 cgd * BEGIN MDDT WEIRDNESS CHECKING
344 1.7 cgd */
345 1.7 cgd mddtweird = 0;
346 1.7 cgd
347 1.7 cgd #define cnt mddtp->mddt_cluster_cnt
348 1.7 cgd #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
349 1.7 cgd if (cnt != 2 && cnt != 3) {
350 1.46 christos printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
351 1.7 cgd mddtweird = 1;
352 1.7 cgd } else if (usage(0) != MDDT_PALCODE ||
353 1.7 cgd usage(1) != MDDT_SYSTEM ||
354 1.7 cgd (cnt == 3 && usage(2) != MDDT_PALCODE)) {
355 1.7 cgd mddtweird = 1;
356 1.46 christos printf("WARNING: %ld mem clusters, but weird config\n", cnt);
357 1.7 cgd }
358 1.7 cgd
359 1.7 cgd for (i = 0; i < cnt; i++) {
360 1.7 cgd if ((usage(i) & MDDT_mbz) != 0) {
361 1.46 christos printf("WARNING: mem cluster %d has weird usage %lx\n",
362 1.7 cgd i, usage(i));
363 1.7 cgd mddtweird = 1;
364 1.7 cgd }
365 1.7 cgd if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
366 1.46 christos printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
367 1.7 cgd mddtweird = 1;
368 1.7 cgd }
369 1.7 cgd /* XXX other things to check? */
370 1.7 cgd }
371 1.7 cgd #undef cnt
372 1.7 cgd #undef usage
373 1.7 cgd
374 1.7 cgd if (mddtweird) {
375 1.46 christos printf("\n");
376 1.46 christos printf("complete memory cluster information:\n");
377 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
378 1.46 christos printf("mddt %d:\n", i);
379 1.46 christos printf("\tpfn %lx\n",
380 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
381 1.46 christos printf("\tcnt %lx\n",
382 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
383 1.46 christos printf("\ttest %lx\n",
384 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
385 1.46 christos printf("\tbva %lx\n",
386 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
387 1.46 christos printf("\tbpa %lx\n",
388 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
389 1.46 christos printf("\tbcksum %lx\n",
390 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
391 1.46 christos printf("\tusage %lx\n",
392 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
393 1.2 cgd }
394 1.46 christos printf("\n");
395 1.2 cgd }
396 1.7 cgd /*
397 1.7 cgd * END MDDT WEIRDNESS CHECKING
398 1.7 cgd */
399 1.2 cgd
400 1.1 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
401 1.7 cgd totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
402 1.7 cgd #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
403 1.7 cgd #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
404 1.7 cgd if ((usage(i) & MDDT_mbz) != 0)
405 1.7 cgd unknownmem += pgcnt(i);
406 1.7 cgd else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
407 1.7 cgd resvmem += pgcnt(i);
408 1.7 cgd else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
409 1.7 cgd /*
410 1.7 cgd * assumes that the system cluster listed is
411 1.7 cgd * one we're in...
412 1.7 cgd */
413 1.7 cgd if (physmem != resvmem) {
414 1.7 cgd physmem += pgcnt(i);
415 1.7 cgd firstusablepage =
416 1.7 cgd mddtp->mddt_clusters[i].mddt_pfn;
417 1.7 cgd lastusablepage = firstusablepage + pgcnt(i) - 1;
418 1.7 cgd } else
419 1.7 cgd unusedmem += pgcnt(i);
420 1.7 cgd }
421 1.7 cgd #undef usage
422 1.7 cgd #undef pgcnt
423 1.1 cgd }
424 1.7 cgd if (totalphysmem == 0)
425 1.1 cgd panic("can't happen: system seems to have no memory!");
426 1.88 mjacob #ifdef LIMITMEM
427 1.88 mjacob if (totalphysmem >= btoc(LIMITMEM << 20)) {
428 1.88 mjacob u_int64_t ovf = totalphysmem - btoc(LIMITMEM << 20);
429 1.88 mjacob printf("********LIMITING MEMORY TO %dMB**********\n", LIMITMEM);
430 1.88 mjacob physmem = totalphysmem = btoc(LIMITMEM << 20);
431 1.88 mjacob unusedmem += ovf;
432 1.88 mjacob lastusablepage = firstusablepage + physmem - 1;
433 1.88 mjacob }
434 1.88 mjacob #endif
435 1.1 cgd maxmem = physmem;
436 1.1 cgd
437 1.7 cgd #if 0
438 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
439 1.46 christos printf("physmem = %d\n", physmem);
440 1.46 christos printf("firstusablepage = %d\n", firstusablepage);
441 1.46 christos printf("lastusablepage = %d\n", lastusablepage);
442 1.46 christos printf("resvmem = %d\n", resvmem);
443 1.46 christos printf("unusedmem = %d\n", unusedmem);
444 1.46 christos printf("unknownmem = %d\n", unknownmem);
445 1.7 cgd #endif
446 1.90 mjacob
447 1.90 mjacob /*
448 1.90 mjacob * Adjust some parameters if the amount of physmem
449 1.90 mjacob * available would cause us to croak. This is completely
450 1.90 mjacob * eyeballed and isn't meant to be the final answer.
451 1.90 mjacob * vm_phys_size is probably the only one to really worry
452 1.90 mjacob * about.
453 1.90 mjacob *
454 1.90 mjacob * It's for booting a GENERIC kernel on a large memory platform.
455 1.90 mjacob */
456 1.90 mjacob if (physmem >= btoc(128 << 20)) {
457 1.90 mjacob vm_mbuf_size <<= 1;
458 1.93 mjacob vm_kmem_size <<= 3;
459 1.93 mjacob vm_phys_size <<= 2;
460 1.90 mjacob }
461 1.7 cgd
462 1.1 cgd /*
463 1.1 cgd * Find out what hardware we're on, and remember its type name.
464 1.1 cgd */
465 1.1 cgd cputype = hwrpb->rpb_type;
466 1.92 thorpej if (cputype >= ncpuinit) {
467 1.92 thorpej platform_not_supported();
468 1.89 mjacob /* NOTREACHED */
469 1.54 cgd }
470 1.92 thorpej (*cpuinit[cputype].init)();
471 1.89 mjacob strcpy(cpu_model, platform.model);
472 1.66 cgd
473 1.66 cgd /* XXX SANITY CHECKING. SHOULD GO AWAY */
474 1.66 cgd /* XXX We should always be running on the the primary. */
475 1.66 cgd assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami()); /*XXX*/
476 1.66 cgd /* XXX On single-CPU boxes, the primary should always be CPU 0. */
477 1.66 cgd if (cputype != ST_DEC_21000) /*XXX*/
478 1.66 cgd assert(hwrpb->rpb_primary_cpu_id == 0); /*XXX*/
479 1.1 cgd
480 1.1 cgd /*
481 1.1 cgd * Initialize error message buffer (at end of core).
482 1.1 cgd */
483 1.86 leo lastusablepage -= btoc(MSGBUFSIZE);
484 1.87 mjacob msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
485 1.86 leo initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
486 1.1 cgd
487 1.1 cgd /*
488 1.95 thorpej * Init mapping for u page(s) for proc 0
489 1.1 cgd */
490 1.95 thorpej start = v = (caddr_t)kernend;
491 1.95 thorpej curproc->p_addr = proc0paddr = (struct user *)v;
492 1.95 thorpej v += UPAGES * NBPG;
493 1.1 cgd
494 1.1 cgd /*
495 1.95 thorpej * Allocate space for system data structures. These data structures
496 1.95 thorpej * are allocated here instead of cpu_startup() because physical
497 1.95 thorpej * memory is directly addressable. We don't have to map these into
498 1.95 thorpej * virtual address space.
499 1.95 thorpej */
500 1.95 thorpej size = (vm_size_t)allocsys(0);
501 1.95 thorpej w = allocsys(v);
502 1.95 thorpej if ((w - v) != size)
503 1.95 thorpej panic("alpha_init: table size inconsistency");
504 1.95 thorpej v = w;
505 1.1 cgd
506 1.1 cgd /*
507 1.1 cgd * Clear allocated memory.
508 1.1 cgd */
509 1.1 cgd bzero(start, v - start);
510 1.1 cgd
511 1.1 cgd /*
512 1.1 cgd * Initialize the virtual memory system, and set the
513 1.1 cgd * page table base register in proc 0's PCB.
514 1.1 cgd */
515 1.40 cgd #ifndef NEW_PMAP
516 1.32 cgd pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
517 1.40 cgd #else
518 1.40 cgd pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
519 1.40 cgd hwrpb->rpb_max_asn);
520 1.40 cgd #endif
521 1.1 cgd
522 1.1 cgd /*
523 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
524 1.3 cgd * address.
525 1.3 cgd */
526 1.3 cgd proc0.p_md.md_pcbpaddr =
527 1.32 cgd (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
528 1.3 cgd
529 1.3 cgd /*
530 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
531 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
532 1.3 cgd */
533 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
534 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
535 1.81 thorpej proc0.p_md.md_tf =
536 1.81 thorpej (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
537 1.38 cgd
538 1.40 cgd #ifdef NEW_PMAP
539 1.84 thorpej /*
540 1.84 thorpej * Set up the kernel address space in proc0's hwpcb.
541 1.84 thorpej */
542 1.84 thorpej PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
543 1.38 cgd #endif
544 1.1 cgd
545 1.1 cgd /*
546 1.25 cgd * Look at arguments passed to us and compute boothowto.
547 1.61 cgd * Also, get kernel name so it can be used in user-land.
548 1.8 cgd */
549 1.81 thorpej if (bootinfo_valid) {
550 1.81 thorpej switch (bootinfo.version) {
551 1.81 thorpej case 1:
552 1.81 thorpej bcopy(bootinfo.un.v1.boot_flags, boot_flags,
553 1.81 thorpej sizeof(boot_flags));
554 1.81 thorpej bcopy(bootinfo.un.v1.booted_kernel, booted_kernel,
555 1.81 thorpej sizeof(booted_kernel));
556 1.81 thorpej }
557 1.81 thorpej } else {
558 1.81 thorpej prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags,
559 1.81 thorpej sizeof(boot_flags));
560 1.81 thorpej prom_getenv(PROM_E_BOOTED_FILE, booted_kernel,
561 1.81 thorpej sizeof(booted_kernel));
562 1.81 thorpej }
563 1.81 thorpej
564 1.25 cgd #if 0
565 1.46 christos printf("boot flags = \"%s\"\n", boot_flags);
566 1.61 cgd printf("booted kernel = \"%s\"\n", booted_kernel);
567 1.61 cgd #endif
568 1.1 cgd
569 1.8 cgd boothowto = RB_SINGLE;
570 1.1 cgd #ifdef KADB
571 1.1 cgd boothowto |= RB_KDB;
572 1.1 cgd #endif
573 1.8 cgd for (p = boot_flags; p && *p != '\0'; p++) {
574 1.26 cgd /*
575 1.26 cgd * Note that we'd really like to differentiate case here,
576 1.26 cgd * but the Alpha AXP Architecture Reference Manual
577 1.26 cgd * says that we shouldn't.
578 1.26 cgd */
579 1.8 cgd switch (*p) {
580 1.26 cgd case 'a': /* autoboot */
581 1.26 cgd case 'A':
582 1.26 cgd boothowto &= ~RB_SINGLE;
583 1.21 cgd break;
584 1.21 cgd
585 1.43 cgd #ifdef DEBUG
586 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
587 1.43 cgd case 'C':
588 1.43 cgd boothowto |= RB_DUMP;
589 1.43 cgd break;
590 1.43 cgd #endif
591 1.43 cgd
592 1.81 thorpej #if defined(KGDB) || defined(DDB)
593 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
594 1.81 thorpej case 'D':
595 1.81 thorpej boothowto |= RB_KDB;
596 1.81 thorpej break;
597 1.81 thorpej #endif
598 1.81 thorpej
599 1.36 cgd case 'h': /* always halt, never reboot */
600 1.36 cgd case 'H':
601 1.36 cgd boothowto |= RB_HALT;
602 1.8 cgd break;
603 1.8 cgd
604 1.21 cgd #if 0
605 1.8 cgd case 'm': /* mini root present in memory */
606 1.26 cgd case 'M':
607 1.8 cgd boothowto |= RB_MINIROOT;
608 1.8 cgd break;
609 1.21 cgd #endif
610 1.36 cgd
611 1.36 cgd case 'n': /* askname */
612 1.36 cgd case 'N':
613 1.36 cgd boothowto |= RB_ASKNAME;
614 1.65 cgd break;
615 1.65 cgd
616 1.65 cgd case 's': /* single-user (default, supported for sanity) */
617 1.65 cgd case 'S':
618 1.65 cgd boothowto |= RB_SINGLE;
619 1.65 cgd break;
620 1.65 cgd
621 1.65 cgd default:
622 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
623 1.36 cgd break;
624 1.1 cgd }
625 1.1 cgd }
626 1.1 cgd
627 1.7 cgd /*
628 1.7 cgd * Figure out the number of cpus in the box, from RPB fields.
629 1.7 cgd * Really. We mean it.
630 1.7 cgd */
631 1.7 cgd for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
632 1.7 cgd struct pcs *pcsp;
633 1.7 cgd
634 1.7 cgd pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
635 1.7 cgd (i * hwrpb->rpb_pcs_size));
636 1.7 cgd if ((pcsp->pcs_flags & PCS_PP) != 0)
637 1.7 cgd ncpus++;
638 1.7 cgd }
639 1.95 thorpej }
640 1.95 thorpej
641 1.95 thorpej /*
642 1.95 thorpej * Allocate space for system data structures. We are given
643 1.95 thorpej * a starting virtual address and we return a final virtual
644 1.95 thorpej * address; along the way we set each data structure pointer.
645 1.95 thorpej *
646 1.95 thorpej * We call allocsys() with 0 to find out how much space we want,
647 1.95 thorpej * allocate that much and fill it with zeroes, and the call
648 1.95 thorpej * allocsys() again with the correct base virtual address.
649 1.95 thorpej */
650 1.95 thorpej caddr_t
651 1.95 thorpej allocsys(v)
652 1.95 thorpej caddr_t v;
653 1.95 thorpej {
654 1.95 thorpej
655 1.95 thorpej #define valloc(name, type, num) \
656 1.95 thorpej (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
657 1.95 thorpej #ifdef REAL_CLISTS
658 1.95 thorpej valloc(cfree, struct cblock, nclist);
659 1.95 thorpej #endif
660 1.95 thorpej valloc(callout, struct callout, ncallout);
661 1.95 thorpej #ifdef SYSVSHM
662 1.95 thorpej valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
663 1.95 thorpej #endif
664 1.95 thorpej #ifdef SYSVSEM
665 1.95 thorpej valloc(sema, struct semid_ds, seminfo.semmni);
666 1.95 thorpej valloc(sem, struct sem, seminfo.semmns);
667 1.95 thorpej /* This is pretty disgusting! */
668 1.95 thorpej valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
669 1.95 thorpej #endif
670 1.95 thorpej #ifdef SYSVMSG
671 1.95 thorpej valloc(msgpool, char, msginfo.msgmax);
672 1.95 thorpej valloc(msgmaps, struct msgmap, msginfo.msgseg);
673 1.95 thorpej valloc(msghdrs, struct msg, msginfo.msgtql);
674 1.95 thorpej valloc(msqids, struct msqid_ds, msginfo.msgmni);
675 1.95 thorpej #endif
676 1.95 thorpej
677 1.95 thorpej /*
678 1.95 thorpej * Determine how many buffers to allocate.
679 1.95 thorpej * We allocate 10% of memory for buffer space. Insure a
680 1.95 thorpej * minimum of 16 buffers. We allocate 1/2 as many swap buffer
681 1.95 thorpej * headers as file i/o buffers.
682 1.95 thorpej */
683 1.95 thorpej if (bufpages == 0)
684 1.95 thorpej bufpages = (physmem * 10) / (CLSIZE * 100);
685 1.95 thorpej if (nbuf == 0) {
686 1.95 thorpej nbuf = bufpages;
687 1.95 thorpej if (nbuf < 16)
688 1.95 thorpej nbuf = 16;
689 1.95 thorpej }
690 1.95 thorpej if (nswbuf == 0) {
691 1.95 thorpej nswbuf = (nbuf / 2) &~ 1; /* force even */
692 1.95 thorpej if (nswbuf > 256)
693 1.95 thorpej nswbuf = 256; /* sanity */
694 1.95 thorpej }
695 1.95 thorpej valloc(swbuf, struct buf, nswbuf);
696 1.95 thorpej valloc(buf, struct buf, nbuf);
697 1.95 thorpej return (v);
698 1.98 cgd #undef valloc
699 1.1 cgd }
700 1.1 cgd
701 1.18 cgd void
702 1.1 cgd consinit()
703 1.1 cgd {
704 1.89 mjacob if (platform.cons_init)
705 1.89 mjacob (*platform.cons_init)();
706 1.1 cgd pmap_unmap_prom();
707 1.81 thorpej
708 1.81 thorpej #ifdef DDB
709 1.81 thorpej db_machine_init();
710 1.81 thorpej ddb_init(ksym_start, ksym_end);
711 1.81 thorpej if (boothowto & RB_KDB)
712 1.81 thorpej Debugger();
713 1.81 thorpej #endif
714 1.81 thorpej #ifdef KGDB
715 1.81 thorpej if (boothowto & RB_KDB)
716 1.81 thorpej kgdb_connect(0);
717 1.81 thorpej #endif
718 1.1 cgd }
719 1.1 cgd
720 1.18 cgd void
721 1.1 cgd cpu_startup()
722 1.1 cgd {
723 1.1 cgd register unsigned i;
724 1.1 cgd int base, residual;
725 1.1 cgd vm_offset_t minaddr, maxaddr;
726 1.1 cgd vm_size_t size;
727 1.40 cgd #if defined(DEBUG)
728 1.1 cgd extern int pmapdebug;
729 1.1 cgd int opmapdebug = pmapdebug;
730 1.1 cgd
731 1.1 cgd pmapdebug = 0;
732 1.1 cgd #endif
733 1.1 cgd
734 1.1 cgd /*
735 1.1 cgd * Good {morning,afternoon,evening,night}.
736 1.1 cgd */
737 1.46 christos printf(version);
738 1.1 cgd identifycpu();
739 1.88 mjacob printf("real mem = %u (%u reserved for PROM, %u used by NetBSD)\n",
740 1.7 cgd ctob(totalphysmem), ctob(resvmem), ctob(physmem));
741 1.7 cgd if (unusedmem)
742 1.46 christos printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
743 1.7 cgd if (unknownmem)
744 1.46 christos printf("WARNING: %d bytes of memory with unknown purpose\n",
745 1.7 cgd ctob(unknownmem));
746 1.1 cgd
747 1.1 cgd /*
748 1.1 cgd * Allocate virtual address space for file I/O buffers.
749 1.1 cgd * Note they are different than the array of headers, 'buf',
750 1.1 cgd * and usually occupy more virtual memory than physical.
751 1.1 cgd */
752 1.1 cgd size = MAXBSIZE * nbuf;
753 1.1 cgd buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
754 1.1 cgd &maxaddr, size, TRUE);
755 1.1 cgd minaddr = (vm_offset_t)buffers;
756 1.1 cgd if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
757 1.1 cgd &minaddr, size, FALSE) != KERN_SUCCESS)
758 1.1 cgd panic("startup: cannot allocate buffers");
759 1.1 cgd base = bufpages / nbuf;
760 1.1 cgd residual = bufpages % nbuf;
761 1.1 cgd for (i = 0; i < nbuf; i++) {
762 1.1 cgd vm_size_t curbufsize;
763 1.1 cgd vm_offset_t curbuf;
764 1.1 cgd
765 1.1 cgd /*
766 1.1 cgd * First <residual> buffers get (base+1) physical pages
767 1.1 cgd * allocated for them. The rest get (base) physical pages.
768 1.1 cgd *
769 1.1 cgd * The rest of each buffer occupies virtual space,
770 1.1 cgd * but has no physical memory allocated for it.
771 1.1 cgd */
772 1.1 cgd curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
773 1.1 cgd curbufsize = CLBYTES * (i < residual ? base+1 : base);
774 1.1 cgd vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
775 1.1 cgd vm_map_simplify(buffer_map, curbuf);
776 1.1 cgd }
777 1.1 cgd /*
778 1.1 cgd * Allocate a submap for exec arguments. This map effectively
779 1.1 cgd * limits the number of processes exec'ing at any time.
780 1.1 cgd */
781 1.1 cgd exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
782 1.1 cgd 16 * NCARGS, TRUE);
783 1.1 cgd
784 1.1 cgd /*
785 1.1 cgd * Allocate a submap for physio
786 1.1 cgd */
787 1.1 cgd phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
788 1.1 cgd VM_PHYS_SIZE, TRUE);
789 1.1 cgd
790 1.1 cgd /*
791 1.69 thorpej * Finally, allocate mbuf cluster submap.
792 1.1 cgd */
793 1.1 cgd mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
794 1.1 cgd VM_MBUF_SIZE, FALSE);
795 1.1 cgd /*
796 1.1 cgd * Initialize callouts
797 1.1 cgd */
798 1.1 cgd callfree = callout;
799 1.1 cgd for (i = 1; i < ncallout; i++)
800 1.1 cgd callout[i-1].c_next = &callout[i];
801 1.1 cgd callout[i-1].c_next = NULL;
802 1.1 cgd
803 1.40 cgd #if defined(DEBUG)
804 1.1 cgd pmapdebug = opmapdebug;
805 1.1 cgd #endif
806 1.46 christos printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
807 1.46 christos printf("using %ld buffers containing %ld bytes of memory\n",
808 1.1 cgd (long)nbuf, (long)(bufpages * CLBYTES));
809 1.1 cgd
810 1.1 cgd /*
811 1.1 cgd * Set up buffers, so they can be used to read disk labels.
812 1.1 cgd */
813 1.1 cgd bufinit();
814 1.1 cgd
815 1.1 cgd /*
816 1.1 cgd * Configure the system.
817 1.1 cgd */
818 1.1 cgd configure();
819 1.48 cgd
820 1.48 cgd /*
821 1.48 cgd * Note that bootstrapping is finished, and set the HWRPB up
822 1.48 cgd * to do restarts.
823 1.48 cgd */
824 1.55 cgd hwrpb_restart_setup();
825 1.1 cgd }
826 1.1 cgd
827 1.33 cgd void
828 1.1 cgd identifycpu()
829 1.1 cgd {
830 1.1 cgd
831 1.7 cgd /*
832 1.7 cgd * print out CPU identification information.
833 1.7 cgd */
834 1.46 christos printf("%s, %ldMHz\n", cpu_model,
835 1.7 cgd hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
836 1.46 christos printf("%ld byte page size, %d processor%s.\n",
837 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
838 1.7 cgd #if 0
839 1.7 cgd /* this isn't defined for any systems that we run on? */
840 1.46 christos printf("serial number 0x%lx 0x%lx\n",
841 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
842 1.7 cgd
843 1.7 cgd /* and these aren't particularly useful! */
844 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
845 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
846 1.7 cgd #endif
847 1.1 cgd }
848 1.1 cgd
849 1.1 cgd int waittime = -1;
850 1.7 cgd struct pcb dumppcb;
851 1.1 cgd
852 1.18 cgd void
853 1.68 gwr cpu_reboot(howto, bootstr)
854 1.1 cgd int howto;
855 1.39 mrg char *bootstr;
856 1.1 cgd {
857 1.1 cgd extern int cold;
858 1.1 cgd
859 1.1 cgd /* If system is cold, just halt. */
860 1.1 cgd if (cold) {
861 1.1 cgd howto |= RB_HALT;
862 1.1 cgd goto haltsys;
863 1.1 cgd }
864 1.1 cgd
865 1.36 cgd /* If "always halt" was specified as a boot flag, obey. */
866 1.36 cgd if ((boothowto & RB_HALT) != 0)
867 1.36 cgd howto |= RB_HALT;
868 1.36 cgd
869 1.7 cgd boothowto = howto;
870 1.7 cgd if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
871 1.1 cgd waittime = 0;
872 1.7 cgd vfs_shutdown();
873 1.1 cgd /*
874 1.1 cgd * If we've been adjusting the clock, the todr
875 1.1 cgd * will be out of synch; adjust it now.
876 1.1 cgd */
877 1.1 cgd resettodr();
878 1.1 cgd }
879 1.1 cgd
880 1.1 cgd /* Disable interrupts. */
881 1.1 cgd splhigh();
882 1.1 cgd
883 1.7 cgd /* If rebooting and a dump is requested do it. */
884 1.42 cgd #if 0
885 1.42 cgd if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
886 1.42 cgd #else
887 1.42 cgd if (howto & RB_DUMP)
888 1.42 cgd #endif
889 1.1 cgd dumpsys();
890 1.6 cgd
891 1.12 cgd haltsys:
892 1.12 cgd
893 1.6 cgd /* run any shutdown hooks */
894 1.6 cgd doshutdownhooks();
895 1.1 cgd
896 1.7 cgd #ifdef BOOTKEY
897 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
898 1.7 cgd cngetc();
899 1.46 christos printf("\n");
900 1.7 cgd #endif
901 1.7 cgd
902 1.1 cgd /* Finally, halt/reboot the system. */
903 1.46 christos printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
904 1.1 cgd prom_halt(howto & RB_HALT);
905 1.1 cgd /*NOTREACHED*/
906 1.1 cgd }
907 1.1 cgd
908 1.7 cgd /*
909 1.7 cgd * These variables are needed by /sbin/savecore
910 1.7 cgd */
911 1.7 cgd u_long dumpmag = 0x8fca0101; /* magic number */
912 1.7 cgd int dumpsize = 0; /* pages */
913 1.7 cgd long dumplo = 0; /* blocks */
914 1.7 cgd
915 1.7 cgd /*
916 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
917 1.43 cgd */
918 1.43 cgd int
919 1.43 cgd cpu_dumpsize()
920 1.43 cgd {
921 1.43 cgd int size;
922 1.43 cgd
923 1.43 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
924 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
925 1.43 cgd return -1;
926 1.43 cgd
927 1.43 cgd return (1);
928 1.43 cgd }
929 1.43 cgd
930 1.43 cgd /*
931 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
932 1.43 cgd */
933 1.43 cgd int
934 1.43 cgd cpu_dump()
935 1.43 cgd {
936 1.43 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
937 1.43 cgd long buf[dbtob(1) / sizeof (long)];
938 1.43 cgd kcore_seg_t *segp;
939 1.43 cgd cpu_kcore_hdr_t *cpuhdrp;
940 1.43 cgd
941 1.43 cgd dump = bdevsw[major(dumpdev)].d_dump;
942 1.43 cgd
943 1.43 cgd segp = (kcore_seg_t *)buf;
944 1.43 cgd cpuhdrp =
945 1.43 cgd (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
946 1.43 cgd
947 1.43 cgd /*
948 1.43 cgd * Generate a segment header.
949 1.43 cgd */
950 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
951 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
952 1.43 cgd
953 1.43 cgd /*
954 1.43 cgd * Add the machine-dependent header info
955 1.43 cgd */
956 1.44 cgd cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
957 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
958 1.43 cgd cpuhdrp->core_seg.start = ctob(firstusablepage);
959 1.43 cgd cpuhdrp->core_seg.size = ctob(physmem);
960 1.43 cgd
961 1.43 cgd return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
962 1.43 cgd }
963 1.43 cgd
964 1.43 cgd /*
965 1.68 gwr * This is called by main to set dumplo and dumpsize.
966 1.7 cgd * Dumps always skip the first CLBYTES of disk space
967 1.7 cgd * in case there might be a disk label stored there.
968 1.7 cgd * If there is extra space, put dump at the end to
969 1.7 cgd * reduce the chance that swapping trashes it.
970 1.7 cgd */
971 1.7 cgd void
972 1.68 gwr cpu_dumpconf()
973 1.7 cgd {
974 1.43 cgd int nblks, dumpblks; /* size of dump area */
975 1.7 cgd int maj;
976 1.7 cgd
977 1.7 cgd if (dumpdev == NODEV)
978 1.43 cgd goto bad;
979 1.7 cgd maj = major(dumpdev);
980 1.7 cgd if (maj < 0 || maj >= nblkdev)
981 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
982 1.7 cgd if (bdevsw[maj].d_psize == NULL)
983 1.43 cgd goto bad;
984 1.7 cgd nblks = (*bdevsw[maj].d_psize)(dumpdev);
985 1.7 cgd if (nblks <= ctod(1))
986 1.43 cgd goto bad;
987 1.43 cgd
988 1.43 cgd dumpblks = cpu_dumpsize();
989 1.43 cgd if (dumpblks < 0)
990 1.43 cgd goto bad;
991 1.43 cgd dumpblks += ctod(physmem);
992 1.43 cgd
993 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
994 1.43 cgd if (dumpblks > (nblks - ctod(1)))
995 1.43 cgd goto bad;
996 1.43 cgd
997 1.43 cgd /* Put dump at end of partition */
998 1.43 cgd dumplo = nblks - dumpblks;
999 1.7 cgd
1000 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1001 1.7 cgd dumpsize = physmem;
1002 1.43 cgd return;
1003 1.7 cgd
1004 1.43 cgd bad:
1005 1.43 cgd dumpsize = 0;
1006 1.43 cgd return;
1007 1.7 cgd }
1008 1.7 cgd
1009 1.7 cgd /*
1010 1.42 cgd * Dump the kernel's image to the swap partition.
1011 1.7 cgd */
1012 1.42 cgd #define BYTES_PER_DUMP NBPG
1013 1.42 cgd
1014 1.7 cgd void
1015 1.7 cgd dumpsys()
1016 1.7 cgd {
1017 1.42 cgd unsigned bytes, i, n;
1018 1.42 cgd int maddr, psize;
1019 1.42 cgd daddr_t blkno;
1020 1.42 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1021 1.42 cgd int error;
1022 1.42 cgd
1023 1.42 cgd /* Save registers. */
1024 1.42 cgd savectx(&dumppcb);
1025 1.7 cgd
1026 1.42 cgd msgbufmapped = 0; /* don't record dump msgs in msgbuf */
1027 1.7 cgd if (dumpdev == NODEV)
1028 1.7 cgd return;
1029 1.42 cgd
1030 1.42 cgd /*
1031 1.42 cgd * For dumps during autoconfiguration,
1032 1.42 cgd * if dump device has already configured...
1033 1.42 cgd */
1034 1.42 cgd if (dumpsize == 0)
1035 1.68 gwr cpu_dumpconf();
1036 1.47 cgd if (dumplo <= 0) {
1037 1.97 mycroft printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1038 1.97 mycroft minor(dumpdev));
1039 1.42 cgd return;
1040 1.43 cgd }
1041 1.97 mycroft printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1042 1.97 mycroft minor(dumpdev), dumplo);
1043 1.7 cgd
1044 1.42 cgd psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1045 1.46 christos printf("dump ");
1046 1.42 cgd if (psize == -1) {
1047 1.46 christos printf("area unavailable\n");
1048 1.42 cgd return;
1049 1.42 cgd }
1050 1.42 cgd
1051 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1052 1.42 cgd
1053 1.43 cgd if ((error = cpu_dump()) != 0)
1054 1.43 cgd goto err;
1055 1.43 cgd
1056 1.43 cgd bytes = ctob(physmem);
1057 1.42 cgd maddr = ctob(firstusablepage);
1058 1.43 cgd blkno = dumplo + cpu_dumpsize();
1059 1.42 cgd dump = bdevsw[major(dumpdev)].d_dump;
1060 1.42 cgd error = 0;
1061 1.42 cgd for (i = 0; i < bytes; i += n) {
1062 1.42 cgd
1063 1.42 cgd /* Print out how many MBs we to go. */
1064 1.42 cgd n = bytes - i;
1065 1.42 cgd if (n && (n % (1024*1024)) == 0)
1066 1.46 christos printf("%d ", n / (1024 * 1024));
1067 1.42 cgd
1068 1.42 cgd /* Limit size for next transfer. */
1069 1.42 cgd if (n > BYTES_PER_DUMP)
1070 1.42 cgd n = BYTES_PER_DUMP;
1071 1.42 cgd
1072 1.42 cgd error = (*dump)(dumpdev, blkno,
1073 1.42 cgd (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1074 1.42 cgd if (error)
1075 1.42 cgd break;
1076 1.42 cgd maddr += n;
1077 1.42 cgd blkno += btodb(n); /* XXX? */
1078 1.42 cgd
1079 1.42 cgd /* XXX should look for keystrokes, to cancel. */
1080 1.42 cgd }
1081 1.42 cgd
1082 1.43 cgd err:
1083 1.42 cgd switch (error) {
1084 1.7 cgd
1085 1.7 cgd case ENXIO:
1086 1.46 christos printf("device bad\n");
1087 1.7 cgd break;
1088 1.7 cgd
1089 1.7 cgd case EFAULT:
1090 1.46 christos printf("device not ready\n");
1091 1.7 cgd break;
1092 1.7 cgd
1093 1.7 cgd case EINVAL:
1094 1.46 christos printf("area improper\n");
1095 1.7 cgd break;
1096 1.7 cgd
1097 1.7 cgd case EIO:
1098 1.46 christos printf("i/o error\n");
1099 1.7 cgd break;
1100 1.7 cgd
1101 1.7 cgd case EINTR:
1102 1.46 christos printf("aborted from console\n");
1103 1.7 cgd break;
1104 1.7 cgd
1105 1.42 cgd case 0:
1106 1.46 christos printf("succeeded\n");
1107 1.42 cgd break;
1108 1.42 cgd
1109 1.7 cgd default:
1110 1.46 christos printf("error %d\n", error);
1111 1.7 cgd break;
1112 1.7 cgd }
1113 1.46 christos printf("\n\n");
1114 1.7 cgd delay(1000);
1115 1.7 cgd }
1116 1.7 cgd
1117 1.1 cgd void
1118 1.1 cgd frametoreg(framep, regp)
1119 1.1 cgd struct trapframe *framep;
1120 1.1 cgd struct reg *regp;
1121 1.1 cgd {
1122 1.1 cgd
1123 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1124 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1125 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1126 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1127 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1128 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1129 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1130 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1131 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1132 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1133 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1134 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1135 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1136 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1137 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1138 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1139 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1140 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1141 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1142 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1143 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1144 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1145 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1146 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1147 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1148 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1149 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1150 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1151 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1152 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1153 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1154 1.1 cgd regp->r_regs[R_ZERO] = 0;
1155 1.1 cgd }
1156 1.1 cgd
1157 1.1 cgd void
1158 1.1 cgd regtoframe(regp, framep)
1159 1.1 cgd struct reg *regp;
1160 1.1 cgd struct trapframe *framep;
1161 1.1 cgd {
1162 1.1 cgd
1163 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1164 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1165 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1166 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1167 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1168 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1169 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1170 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1171 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1172 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1173 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1174 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1175 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1176 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1177 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1178 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1179 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1180 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1181 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1182 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1183 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1184 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1185 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1186 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1187 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1188 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1189 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1190 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1191 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1192 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1193 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1194 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1195 1.1 cgd }
1196 1.1 cgd
1197 1.1 cgd void
1198 1.1 cgd printregs(regp)
1199 1.1 cgd struct reg *regp;
1200 1.1 cgd {
1201 1.1 cgd int i;
1202 1.1 cgd
1203 1.1 cgd for (i = 0; i < 32; i++)
1204 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1205 1.1 cgd i & 1 ? "\n" : "\t");
1206 1.1 cgd }
1207 1.1 cgd
1208 1.1 cgd void
1209 1.1 cgd regdump(framep)
1210 1.1 cgd struct trapframe *framep;
1211 1.1 cgd {
1212 1.1 cgd struct reg reg;
1213 1.1 cgd
1214 1.1 cgd frametoreg(framep, ®);
1215 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1216 1.35 cgd
1217 1.46 christos printf("REGISTERS:\n");
1218 1.1 cgd printregs(®);
1219 1.1 cgd }
1220 1.1 cgd
1221 1.1 cgd #ifdef DEBUG
1222 1.1 cgd int sigdebug = 0;
1223 1.1 cgd int sigpid = 0;
1224 1.1 cgd #define SDB_FOLLOW 0x01
1225 1.1 cgd #define SDB_KSTACK 0x02
1226 1.1 cgd #endif
1227 1.1 cgd
1228 1.1 cgd /*
1229 1.1 cgd * Send an interrupt to process.
1230 1.1 cgd */
1231 1.1 cgd void
1232 1.1 cgd sendsig(catcher, sig, mask, code)
1233 1.1 cgd sig_t catcher;
1234 1.1 cgd int sig, mask;
1235 1.1 cgd u_long code;
1236 1.1 cgd {
1237 1.1 cgd struct proc *p = curproc;
1238 1.1 cgd struct sigcontext *scp, ksc;
1239 1.1 cgd struct trapframe *frame;
1240 1.1 cgd struct sigacts *psp = p->p_sigacts;
1241 1.1 cgd int oonstack, fsize, rndfsize;
1242 1.1 cgd extern char sigcode[], esigcode[];
1243 1.1 cgd extern struct proc *fpcurproc;
1244 1.1 cgd
1245 1.1 cgd frame = p->p_md.md_tf;
1246 1.9 mycroft oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1247 1.1 cgd fsize = sizeof ksc;
1248 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1249 1.1 cgd /*
1250 1.1 cgd * Allocate and validate space for the signal handler
1251 1.1 cgd * context. Note that if the stack is in P0 space, the
1252 1.1 cgd * call to grow() is a nop, and the useracc() check
1253 1.1 cgd * will fail if the process has not already allocated
1254 1.1 cgd * the space with a `brk'.
1255 1.1 cgd */
1256 1.1 cgd if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1257 1.1 cgd (psp->ps_sigonstack & sigmask(sig))) {
1258 1.14 jtc scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1259 1.1 cgd psp->ps_sigstk.ss_size - rndfsize);
1260 1.9 mycroft psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1261 1.1 cgd } else
1262 1.35 cgd scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1263 1.1 cgd if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1264 1.1 cgd (void)grow(p, (u_long)scp);
1265 1.1 cgd #ifdef DEBUG
1266 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1267 1.46 christos printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1268 1.1 cgd sig, &oonstack, scp);
1269 1.1 cgd #endif
1270 1.1 cgd if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1271 1.1 cgd #ifdef DEBUG
1272 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1273 1.46 christos printf("sendsig(%d): useracc failed on sig %d\n",
1274 1.1 cgd p->p_pid, sig);
1275 1.1 cgd #endif
1276 1.1 cgd /*
1277 1.1 cgd * Process has trashed its stack; give it an illegal
1278 1.1 cgd * instruction to halt it in its tracks.
1279 1.1 cgd */
1280 1.1 cgd SIGACTION(p, SIGILL) = SIG_DFL;
1281 1.1 cgd sig = sigmask(SIGILL);
1282 1.1 cgd p->p_sigignore &= ~sig;
1283 1.1 cgd p->p_sigcatch &= ~sig;
1284 1.1 cgd p->p_sigmask &= ~sig;
1285 1.1 cgd psignal(p, SIGILL);
1286 1.1 cgd return;
1287 1.1 cgd }
1288 1.1 cgd
1289 1.1 cgd /*
1290 1.1 cgd * Build the signal context to be used by sigreturn.
1291 1.1 cgd */
1292 1.1 cgd ksc.sc_onstack = oonstack;
1293 1.1 cgd ksc.sc_mask = mask;
1294 1.34 cgd ksc.sc_pc = frame->tf_regs[FRAME_PC];
1295 1.34 cgd ksc.sc_ps = frame->tf_regs[FRAME_PS];
1296 1.1 cgd
1297 1.1 cgd /* copy the registers. */
1298 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1299 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1300 1.35 cgd ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1301 1.1 cgd
1302 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1303 1.1 cgd if (p == fpcurproc) {
1304 1.32 cgd alpha_pal_wrfen(1);
1305 1.1 cgd savefpstate(&p->p_addr->u_pcb.pcb_fp);
1306 1.32 cgd alpha_pal_wrfen(0);
1307 1.1 cgd fpcurproc = NULL;
1308 1.1 cgd }
1309 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1310 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1311 1.1 cgd sizeof(struct fpreg));
1312 1.1 cgd ksc.sc_fp_control = 0; /* XXX ? */
1313 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1314 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1315 1.1 cgd
1316 1.1 cgd
1317 1.1 cgd #ifdef COMPAT_OSF1
1318 1.1 cgd /*
1319 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1320 1.1 cgd */
1321 1.1 cgd #endif
1322 1.1 cgd
1323 1.1 cgd /*
1324 1.1 cgd * copy the frame out to userland.
1325 1.1 cgd */
1326 1.1 cgd (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1327 1.1 cgd #ifdef DEBUG
1328 1.1 cgd if (sigdebug & SDB_FOLLOW)
1329 1.46 christos printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1330 1.1 cgd scp, code);
1331 1.1 cgd #endif
1332 1.1 cgd
1333 1.1 cgd /*
1334 1.1 cgd * Set up the registers to return to sigcode.
1335 1.1 cgd */
1336 1.34 cgd frame->tf_regs[FRAME_PC] =
1337 1.34 cgd (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1338 1.34 cgd frame->tf_regs[FRAME_A0] = sig;
1339 1.34 cgd frame->tf_regs[FRAME_A1] = code;
1340 1.34 cgd frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1341 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1342 1.35 cgd alpha_pal_wrusp((unsigned long)scp);
1343 1.1 cgd
1344 1.1 cgd #ifdef DEBUG
1345 1.1 cgd if (sigdebug & SDB_FOLLOW)
1346 1.46 christos printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1347 1.34 cgd frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1348 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1349 1.46 christos printf("sendsig(%d): sig %d returns\n",
1350 1.1 cgd p->p_pid, sig);
1351 1.1 cgd #endif
1352 1.1 cgd }
1353 1.1 cgd
1354 1.1 cgd /*
1355 1.1 cgd * System call to cleanup state after a signal
1356 1.1 cgd * has been taken. Reset signal mask and
1357 1.1 cgd * stack state from context left by sendsig (above).
1358 1.1 cgd * Return to previous pc and psl as specified by
1359 1.1 cgd * context left by sendsig. Check carefully to
1360 1.1 cgd * make sure that the user has not modified the
1361 1.1 cgd * psl to gain improper priviledges or to cause
1362 1.1 cgd * a machine fault.
1363 1.1 cgd */
1364 1.1 cgd /* ARGSUSED */
1365 1.11 mycroft int
1366 1.11 mycroft sys_sigreturn(p, v, retval)
1367 1.1 cgd struct proc *p;
1368 1.10 thorpej void *v;
1369 1.10 thorpej register_t *retval;
1370 1.10 thorpej {
1371 1.11 mycroft struct sys_sigreturn_args /* {
1372 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1373 1.10 thorpej } */ *uap = v;
1374 1.1 cgd struct sigcontext *scp, ksc;
1375 1.1 cgd extern struct proc *fpcurproc;
1376 1.1 cgd
1377 1.1 cgd scp = SCARG(uap, sigcntxp);
1378 1.1 cgd #ifdef DEBUG
1379 1.1 cgd if (sigdebug & SDB_FOLLOW)
1380 1.46 christos printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1381 1.1 cgd #endif
1382 1.1 cgd
1383 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1384 1.1 cgd return (EINVAL);
1385 1.1 cgd
1386 1.1 cgd /*
1387 1.1 cgd * Test and fetch the context structure.
1388 1.1 cgd * We grab it all at once for speed.
1389 1.1 cgd */
1390 1.1 cgd if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1391 1.1 cgd copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1392 1.1 cgd return (EINVAL);
1393 1.1 cgd
1394 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1395 1.1 cgd return (EINVAL);
1396 1.1 cgd /*
1397 1.1 cgd * Restore the user-supplied information
1398 1.1 cgd */
1399 1.1 cgd if (ksc.sc_onstack)
1400 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1401 1.1 cgd else
1402 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1403 1.1 cgd p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1404 1.1 cgd
1405 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1406 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PS] =
1407 1.32 cgd (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1408 1.1 cgd
1409 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1410 1.35 cgd alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1411 1.1 cgd
1412 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1413 1.1 cgd if (p == fpcurproc)
1414 1.1 cgd fpcurproc = NULL;
1415 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1416 1.1 cgd sizeof(struct fpreg));
1417 1.1 cgd /* XXX ksc.sc_fp_control ? */
1418 1.1 cgd
1419 1.1 cgd #ifdef DEBUG
1420 1.1 cgd if (sigdebug & SDB_FOLLOW)
1421 1.46 christos printf("sigreturn(%d): returns\n", p->p_pid);
1422 1.1 cgd #endif
1423 1.1 cgd return (EJUSTRETURN);
1424 1.1 cgd }
1425 1.1 cgd
1426 1.1 cgd /*
1427 1.1 cgd * machine dependent system variables.
1428 1.1 cgd */
1429 1.33 cgd int
1430 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1431 1.1 cgd int *name;
1432 1.1 cgd u_int namelen;
1433 1.1 cgd void *oldp;
1434 1.1 cgd size_t *oldlenp;
1435 1.1 cgd void *newp;
1436 1.1 cgd size_t newlen;
1437 1.1 cgd struct proc *p;
1438 1.1 cgd {
1439 1.1 cgd dev_t consdev;
1440 1.1 cgd
1441 1.1 cgd /* all sysctl names at this level are terminal */
1442 1.1 cgd if (namelen != 1)
1443 1.1 cgd return (ENOTDIR); /* overloaded */
1444 1.1 cgd
1445 1.1 cgd switch (name[0]) {
1446 1.1 cgd case CPU_CONSDEV:
1447 1.1 cgd if (cn_tab != NULL)
1448 1.1 cgd consdev = cn_tab->cn_dev;
1449 1.1 cgd else
1450 1.1 cgd consdev = NODEV;
1451 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1452 1.1 cgd sizeof consdev));
1453 1.30 cgd
1454 1.30 cgd case CPU_ROOT_DEVICE:
1455 1.64 thorpej return (sysctl_rdstring(oldp, oldlenp, newp,
1456 1.64 thorpej root_device->dv_xname));
1457 1.36 cgd
1458 1.36 cgd case CPU_UNALIGNED_PRINT:
1459 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1460 1.36 cgd &alpha_unaligned_print));
1461 1.36 cgd
1462 1.36 cgd case CPU_UNALIGNED_FIX:
1463 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1464 1.36 cgd &alpha_unaligned_fix));
1465 1.36 cgd
1466 1.36 cgd case CPU_UNALIGNED_SIGBUS:
1467 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1468 1.36 cgd &alpha_unaligned_sigbus));
1469 1.61 cgd
1470 1.61 cgd case CPU_BOOTED_KERNEL:
1471 1.61 cgd return (sysctl_rdstring(oldp, oldlenp, newp, booted_kernel));
1472 1.30 cgd
1473 1.1 cgd default:
1474 1.1 cgd return (EOPNOTSUPP);
1475 1.1 cgd }
1476 1.1 cgd /* NOTREACHED */
1477 1.1 cgd }
1478 1.1 cgd
1479 1.1 cgd /*
1480 1.1 cgd * Set registers on exec.
1481 1.1 cgd */
1482 1.1 cgd void
1483 1.85 mycroft setregs(p, pack, stack)
1484 1.1 cgd register struct proc *p;
1485 1.5 christos struct exec_package *pack;
1486 1.1 cgd u_long stack;
1487 1.1 cgd {
1488 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1489 1.56 cgd extern struct proc *fpcurproc;
1490 1.56 cgd #ifdef DEBUG
1491 1.1 cgd int i;
1492 1.56 cgd #endif
1493 1.43 cgd
1494 1.43 cgd #ifdef DEBUG
1495 1.43 cgd /*
1496 1.43 cgd * Crash and dump, if the user requested it.
1497 1.43 cgd */
1498 1.43 cgd if (boothowto & RB_DUMP)
1499 1.43 cgd panic("crash requested by boot flags");
1500 1.43 cgd #endif
1501 1.1 cgd
1502 1.1 cgd #ifdef DEBUG
1503 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1504 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1505 1.1 cgd #else
1506 1.34 cgd bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1507 1.1 cgd #endif
1508 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1509 1.7 cgd #define FP_RN 2 /* XXX */
1510 1.7 cgd p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1511 1.35 cgd alpha_pal_wrusp(stack);
1512 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1513 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1514 1.41 cgd
1515 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1516 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1517 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1518 1.63 cgd tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1519 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1520 1.1 cgd
1521 1.33 cgd p->p_md.md_flags &= ~MDP_FPUSED;
1522 1.1 cgd if (fpcurproc == p)
1523 1.1 cgd fpcurproc = NULL;
1524 1.1 cgd }
1525 1.1 cgd
1526 1.1 cgd void
1527 1.1 cgd netintr()
1528 1.1 cgd {
1529 1.49 cgd int n, s;
1530 1.49 cgd
1531 1.49 cgd s = splhigh();
1532 1.49 cgd n = netisr;
1533 1.49 cgd netisr = 0;
1534 1.49 cgd splx(s);
1535 1.49 cgd
1536 1.49 cgd #define DONETISR(bit, fn) \
1537 1.49 cgd do { \
1538 1.49 cgd if (n & (1 << (bit))) \
1539 1.49 cgd fn; \
1540 1.49 cgd } while (0)
1541 1.49 cgd
1542 1.1 cgd #ifdef INET
1543 1.72 cgd #if NARP > 0
1544 1.49 cgd DONETISR(NETISR_ARP, arpintr());
1545 1.72 cgd #endif
1546 1.49 cgd DONETISR(NETISR_IP, ipintr());
1547 1.70 christos #endif
1548 1.70 christos #ifdef NETATALK
1549 1.70 christos DONETISR(NETISR_ATALK, atintr());
1550 1.1 cgd #endif
1551 1.1 cgd #ifdef NS
1552 1.49 cgd DONETISR(NETISR_NS, nsintr());
1553 1.1 cgd #endif
1554 1.1 cgd #ifdef ISO
1555 1.49 cgd DONETISR(NETISR_ISO, clnlintr());
1556 1.1 cgd #endif
1557 1.1 cgd #ifdef CCITT
1558 1.49 cgd DONETISR(NETISR_CCITT, ccittintr());
1559 1.49 cgd #endif
1560 1.49 cgd #ifdef NATM
1561 1.49 cgd DONETISR(NETISR_NATM, natmintr());
1562 1.1 cgd #endif
1563 1.49 cgd #if NPPP > 1
1564 1.49 cgd DONETISR(NETISR_PPP, pppintr());
1565 1.8 cgd #endif
1566 1.49 cgd
1567 1.49 cgd #undef DONETISR
1568 1.1 cgd }
1569 1.1 cgd
1570 1.1 cgd void
1571 1.1 cgd do_sir()
1572 1.1 cgd {
1573 1.58 cgd u_int64_t n;
1574 1.1 cgd
1575 1.59 cgd do {
1576 1.60 cgd (void)splhigh();
1577 1.58 cgd n = ssir;
1578 1.58 cgd ssir = 0;
1579 1.60 cgd splsoft(); /* don't recurse through spl0() */
1580 1.59 cgd
1581 1.59 cgd #define DO_SIR(bit, fn) \
1582 1.59 cgd do { \
1583 1.60 cgd if (n & (bit)) { \
1584 1.59 cgd cnt.v_soft++; \
1585 1.59 cgd fn; \
1586 1.59 cgd } \
1587 1.59 cgd } while (0)
1588 1.59 cgd
1589 1.60 cgd DO_SIR(SIR_NET, netintr());
1590 1.60 cgd DO_SIR(SIR_CLOCK, softclock());
1591 1.60 cgd
1592 1.60 cgd #undef DO_SIR
1593 1.59 cgd } while (ssir != 0);
1594 1.1 cgd }
1595 1.1 cgd
1596 1.1 cgd int
1597 1.1 cgd spl0()
1598 1.1 cgd {
1599 1.1 cgd
1600 1.59 cgd if (ssir)
1601 1.59 cgd do_sir(); /* it lowers the IPL itself */
1602 1.1 cgd
1603 1.32 cgd return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1604 1.1 cgd }
1605 1.1 cgd
1606 1.1 cgd /*
1607 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
1608 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1609 1.52 cgd * into queues, Remrunqueue removes them from queues. The running process is
1610 1.52 cgd * on no queue, other processes are on a queue related to p->p_priority,
1611 1.52 cgd * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1612 1.52 cgd * available queues.
1613 1.1 cgd */
1614 1.1 cgd /*
1615 1.1 cgd * setrunqueue(p)
1616 1.1 cgd * proc *p;
1617 1.1 cgd *
1618 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
1619 1.1 cgd */
1620 1.1 cgd
1621 1.1 cgd void
1622 1.1 cgd setrunqueue(p)
1623 1.1 cgd struct proc *p;
1624 1.1 cgd {
1625 1.1 cgd int bit;
1626 1.1 cgd
1627 1.1 cgd /* firewall: p->p_back must be NULL */
1628 1.1 cgd if (p->p_back != NULL)
1629 1.1 cgd panic("setrunqueue");
1630 1.1 cgd
1631 1.1 cgd bit = p->p_priority >> 2;
1632 1.1 cgd whichqs |= (1 << bit);
1633 1.1 cgd p->p_forw = (struct proc *)&qs[bit];
1634 1.1 cgd p->p_back = qs[bit].ph_rlink;
1635 1.1 cgd p->p_back->p_forw = p;
1636 1.1 cgd qs[bit].ph_rlink = p;
1637 1.1 cgd }
1638 1.1 cgd
1639 1.1 cgd /*
1640 1.52 cgd * remrunqueue(p)
1641 1.1 cgd *
1642 1.1 cgd * Call should be made at splclock().
1643 1.1 cgd */
1644 1.1 cgd void
1645 1.52 cgd remrunqueue(p)
1646 1.1 cgd struct proc *p;
1647 1.1 cgd {
1648 1.1 cgd int bit;
1649 1.1 cgd
1650 1.1 cgd bit = p->p_priority >> 2;
1651 1.1 cgd if ((whichqs & (1 << bit)) == 0)
1652 1.52 cgd panic("remrunqueue");
1653 1.1 cgd
1654 1.1 cgd p->p_back->p_forw = p->p_forw;
1655 1.1 cgd p->p_forw->p_back = p->p_back;
1656 1.1 cgd p->p_back = NULL; /* for firewall checking. */
1657 1.1 cgd
1658 1.1 cgd if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1659 1.1 cgd whichqs &= ~(1 << bit);
1660 1.1 cgd }
1661 1.1 cgd
1662 1.1 cgd /*
1663 1.1 cgd * Return the best possible estimate of the time in the timeval
1664 1.1 cgd * to which tvp points. Unfortunately, we can't read the hardware registers.
1665 1.1 cgd * We guarantee that the time will be greater than the value obtained by a
1666 1.1 cgd * previous call.
1667 1.1 cgd */
1668 1.1 cgd void
1669 1.1 cgd microtime(tvp)
1670 1.1 cgd register struct timeval *tvp;
1671 1.1 cgd {
1672 1.1 cgd int s = splclock();
1673 1.1 cgd static struct timeval lasttime;
1674 1.1 cgd
1675 1.1 cgd *tvp = time;
1676 1.1 cgd #ifdef notdef
1677 1.1 cgd tvp->tv_usec += clkread();
1678 1.1 cgd while (tvp->tv_usec > 1000000) {
1679 1.1 cgd tvp->tv_sec++;
1680 1.1 cgd tvp->tv_usec -= 1000000;
1681 1.1 cgd }
1682 1.1 cgd #endif
1683 1.1 cgd if (tvp->tv_sec == lasttime.tv_sec &&
1684 1.1 cgd tvp->tv_usec <= lasttime.tv_usec &&
1685 1.1 cgd (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1686 1.1 cgd tvp->tv_sec++;
1687 1.1 cgd tvp->tv_usec -= 1000000;
1688 1.1 cgd }
1689 1.1 cgd lasttime = *tvp;
1690 1.1 cgd splx(s);
1691 1.15 cgd }
1692 1.15 cgd
1693 1.15 cgd /*
1694 1.15 cgd * Wait "n" microseconds.
1695 1.15 cgd */
1696 1.32 cgd void
1697 1.15 cgd delay(n)
1698 1.32 cgd unsigned long n;
1699 1.15 cgd {
1700 1.15 cgd long N = cycles_per_usec * (n);
1701 1.15 cgd
1702 1.15 cgd while (N > 0) /* XXX */
1703 1.15 cgd N -= 3; /* XXX */
1704 1.1 cgd }
1705 1.1 cgd
1706 1.8 cgd #if defined(COMPAT_OSF1) || 1 /* XXX */
1707 1.55 cgd void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1708 1.85 mycroft u_long));
1709 1.55 cgd
1710 1.1 cgd void
1711 1.85 mycroft cpu_exec_ecoff_setregs(p, epp, stack)
1712 1.1 cgd struct proc *p;
1713 1.19 cgd struct exec_package *epp;
1714 1.5 christos u_long stack;
1715 1.1 cgd {
1716 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1717 1.1 cgd
1718 1.85 mycroft setregs(p, epp, stack);
1719 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1720 1.1 cgd }
1721 1.1 cgd
1722 1.1 cgd /*
1723 1.1 cgd * cpu_exec_ecoff_hook():
1724 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1725 1.1 cgd *
1726 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1727 1.1 cgd *
1728 1.1 cgd */
1729 1.1 cgd int
1730 1.19 cgd cpu_exec_ecoff_hook(p, epp)
1731 1.1 cgd struct proc *p;
1732 1.1 cgd struct exec_package *epp;
1733 1.1 cgd {
1734 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1735 1.5 christos extern struct emul emul_netbsd;
1736 1.5 christos #ifdef COMPAT_OSF1
1737 1.5 christos extern struct emul emul_osf1;
1738 1.5 christos #endif
1739 1.1 cgd
1740 1.19 cgd switch (execp->f.f_magic) {
1741 1.5 christos #ifdef COMPAT_OSF1
1742 1.1 cgd case ECOFF_MAGIC_ALPHA:
1743 1.5 christos epp->ep_emul = &emul_osf1;
1744 1.1 cgd break;
1745 1.5 christos #endif
1746 1.1 cgd
1747 1.1 cgd case ECOFF_MAGIC_NETBSD_ALPHA:
1748 1.5 christos epp->ep_emul = &emul_netbsd;
1749 1.1 cgd break;
1750 1.1 cgd
1751 1.1 cgd default:
1752 1.12 cgd return ENOEXEC;
1753 1.1 cgd }
1754 1.1 cgd return 0;
1755 1.1 cgd }
1756 1.1 cgd #endif
1757 1.50 cgd
1758 1.50 cgd /* XXX XXX BEGIN XXX XXX */
1759 1.50 cgd vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1760 1.50 cgd /* XXX */
1761 1.50 cgd vm_offset_t /* XXX */
1762 1.50 cgd alpha_XXX_dmamap(v) /* XXX */
1763 1.51 cgd vm_offset_t v; /* XXX */
1764 1.50 cgd { /* XXX */
1765 1.50 cgd /* XXX */
1766 1.51 cgd return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1767 1.50 cgd } /* XXX */
1768 1.50 cgd /* XXX XXX END XXX XXX */
1769