Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.106
      1  1.106       cgd /* $NetBSD: machdep.c,v 1.106 1998/02/13 02:09:05 cgd Exp $ */
      2    1.1       cgd 
      3    1.1       cgd /*
      4   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
      5    1.1       cgd  * All rights reserved.
      6    1.1       cgd  *
      7    1.1       cgd  * Author: Chris G. Demetriou
      8    1.1       cgd  *
      9    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     10    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     11    1.1       cgd  * notice and this permission notice appear in all copies of the
     12    1.1       cgd  * software, derivative works or modified versions, and any portions
     13    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     14    1.1       cgd  *
     15    1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16    1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18    1.1       cgd  *
     19    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     20    1.1       cgd  *
     21    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22    1.1       cgd  *  School of Computer Science
     23    1.1       cgd  *  Carnegie Mellon University
     24    1.1       cgd  *  Pittsburgh PA 15213-3890
     25    1.1       cgd  *
     26    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     27    1.1       cgd  * rights to redistribute these changes.
     28    1.1       cgd  */
     29   1.74       cgd 
     30   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     31   1.75       cgd 
     32  1.106       cgd __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.106 1998/02/13 02:09:05 cgd Exp $");
     33    1.1       cgd 
     34    1.1       cgd #include <sys/param.h>
     35    1.1       cgd #include <sys/systm.h>
     36    1.1       cgd #include <sys/signalvar.h>
     37    1.1       cgd #include <sys/kernel.h>
     38    1.1       cgd #include <sys/map.h>
     39    1.1       cgd #include <sys/proc.h>
     40    1.1       cgd #include <sys/buf.h>
     41    1.1       cgd #include <sys/reboot.h>
     42   1.28       cgd #include <sys/device.h>
     43    1.1       cgd #include <sys/file.h>
     44    1.1       cgd #ifdef REAL_CLISTS
     45    1.1       cgd #include <sys/clist.h>
     46    1.1       cgd #endif
     47    1.1       cgd #include <sys/callout.h>
     48    1.1       cgd #include <sys/malloc.h>
     49    1.1       cgd #include <sys/mbuf.h>
     50    1.1       cgd #include <sys/msgbuf.h>
     51    1.1       cgd #include <sys/ioctl.h>
     52    1.1       cgd #include <sys/tty.h>
     53    1.1       cgd #include <sys/user.h>
     54    1.1       cgd #include <sys/exec.h>
     55    1.1       cgd #include <sys/exec_ecoff.h>
     56   1.91    mjacob #include <vm/vm.h>
     57    1.1       cgd #include <sys/sysctl.h>
     58   1.43       cgd #include <sys/core.h>
     59   1.43       cgd #include <sys/kcore.h>
     60   1.43       cgd #include <machine/kcore.h>
     61    1.1       cgd #ifdef SYSVMSG
     62    1.1       cgd #include <sys/msg.h>
     63    1.1       cgd #endif
     64    1.1       cgd #ifdef SYSVSEM
     65    1.1       cgd #include <sys/sem.h>
     66    1.1       cgd #endif
     67    1.1       cgd #ifdef SYSVSHM
     68    1.1       cgd #include <sys/shm.h>
     69    1.1       cgd #endif
     70    1.1       cgd 
     71    1.1       cgd #include <sys/mount.h>
     72    1.1       cgd #include <sys/syscallargs.h>
     73    1.1       cgd 
     74    1.1       cgd #include <vm/vm_kern.h>
     75    1.1       cgd 
     76    1.1       cgd #include <dev/cons.h>
     77    1.1       cgd 
     78   1.81   thorpej #include <machine/autoconf.h>
     79    1.1       cgd #include <machine/cpu.h>
     80    1.1       cgd #include <machine/reg.h>
     81    1.1       cgd #include <machine/rpb.h>
     82    1.1       cgd #include <machine/prom.h>
     83   1.73       cgd #include <machine/conf.h>
     84    1.8       cgd 
     85   1.49       cgd #include <net/netisr.h>
     86   1.33       cgd #include <net/if.h>
     87   1.49       cgd 
     88   1.49       cgd #ifdef INET
     89   1.33       cgd #include <netinet/in.h>
     90   1.72       cgd #include <netinet/ip_var.h>
     91   1.72       cgd #include "arp.h"
     92   1.72       cgd #if NARP > 0
     93   1.67        is #include <netinet/if_inarp.h>
     94   1.72       cgd #endif
     95   1.49       cgd #endif
     96   1.49       cgd #ifdef NS
     97   1.49       cgd #include <netns/ns_var.h>
     98   1.49       cgd #endif
     99   1.49       cgd #ifdef ISO
    100   1.49       cgd #include <netiso/iso.h>
    101   1.49       cgd #include <netiso/clnp.h>
    102   1.49       cgd #endif
    103   1.55       cgd #ifdef CCITT
    104   1.55       cgd #include <netccitt/x25.h>
    105   1.55       cgd #include <netccitt/pk.h>
    106   1.55       cgd #include <netccitt/pk_extern.h>
    107   1.55       cgd #endif
    108   1.55       cgd #ifdef NATM
    109   1.55       cgd #include <netnatm/natm.h>
    110   1.55       cgd #endif
    111   1.70  christos #ifdef NETATALK
    112   1.70  christos #include <netatalk/at_extern.h>
    113   1.70  christos #endif
    114   1.49       cgd #include "ppp.h"
    115   1.49       cgd #if NPPP > 0
    116   1.49       cgd #include <net/ppp_defs.h>
    117   1.49       cgd #include <net/if_ppp.h>
    118   1.49       cgd #endif
    119    1.1       cgd 
    120   1.81   thorpej #ifdef DDB
    121   1.81   thorpej #include <machine/db_machdep.h>
    122   1.81   thorpej #include <ddb/db_access.h>
    123   1.81   thorpej #include <ddb/db_sym.h>
    124   1.81   thorpej #include <ddb/db_extern.h>
    125   1.81   thorpej #include <ddb/db_interface.h>
    126   1.81   thorpej #endif
    127   1.81   thorpej 
    128    1.1       cgd vm_map_t buffer_map;
    129    1.1       cgd 
    130    1.1       cgd /*
    131    1.1       cgd  * Declare these as initialized data so we can patch them.
    132    1.1       cgd  */
    133    1.1       cgd int	nswbuf = 0;
    134    1.1       cgd #ifdef	NBUF
    135    1.1       cgd int	nbuf = NBUF;
    136    1.1       cgd #else
    137    1.1       cgd int	nbuf = 0;
    138    1.1       cgd #endif
    139    1.1       cgd #ifdef	BUFPAGES
    140    1.1       cgd int	bufpages = BUFPAGES;
    141    1.1       cgd #else
    142    1.1       cgd int	bufpages = 0;
    143    1.1       cgd #endif
    144   1.86       leo caddr_t msgbufaddr;
    145   1.86       leo 
    146    1.1       cgd int	maxmem;			/* max memory per process */
    147    1.7       cgd 
    148    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    149    1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    150    1.7       cgd int	firstusablepage;	/* first usable memory page */
    151    1.7       cgd int	lastusablepage;		/* last usable memory page */
    152    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    153    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    154    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    155    1.1       cgd 
    156    1.1       cgd int	cputype;		/* system type, from the RPB */
    157    1.1       cgd 
    158    1.1       cgd /*
    159    1.1       cgd  * XXX We need an address to which we can assign things so that they
    160    1.1       cgd  * won't be optimized away because we didn't use the value.
    161    1.1       cgd  */
    162    1.1       cgd u_int32_t no_optimize;
    163    1.1       cgd 
    164    1.1       cgd /* the following is used externally (sysctl_hw) */
    165   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    166   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    167   1.29       cgd char	cpu_model[128];
    168    1.1       cgd 
    169    1.1       cgd struct	user *proc0paddr;
    170    1.1       cgd 
    171    1.1       cgd /* Number of machine cycles per microsecond */
    172    1.1       cgd u_int64_t	cycles_per_usec;
    173    1.1       cgd 
    174    1.7       cgd /* number of cpus in the box.  really! */
    175    1.7       cgd int		ncpus;
    176    1.7       cgd 
    177  1.102       cgd struct bootinfo_kernel bootinfo;
    178   1.81   thorpej 
    179   1.89    mjacob struct platform platform;
    180   1.89    mjacob 
    181  1.100   thorpej u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
    182  1.100   thorpej u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
    183  1.100   thorpej u_int32_t vm_phys_size = _VM_PHYS_SIZE;
    184   1.90    mjacob 
    185   1.81   thorpej #ifdef DDB
    186   1.81   thorpej /* start and end of kernel symbol table */
    187   1.81   thorpej void	*ksym_start, *ksym_end;
    188   1.81   thorpej #endif
    189   1.81   thorpej 
    190   1.30       cgd /* for cpu_sysctl() */
    191   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    192   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    193   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    194   1.30       cgd 
    195   1.95   thorpej caddr_t	allocsys __P((caddr_t));
    196   1.55       cgd int	cpu_dump __P((void));
    197   1.55       cgd int	cpu_dumpsize __P((void));
    198   1.55       cgd void	dumpsys __P((void));
    199   1.55       cgd void	identifycpu __P((void));
    200   1.55       cgd void	netintr __P((void));
    201   1.55       cgd void	printregs __P((struct reg *));
    202   1.33       cgd 
    203   1.55       cgd void
    204  1.102       cgd alpha_init(pfn, ptb, bim, bip, biv)
    205    1.1       cgd 	u_long pfn;		/* first free PFN number */
    206    1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    207   1.81   thorpej 	u_long bim;		/* bootinfo magic */
    208   1.81   thorpej 	u_long bip;		/* bootinfo pointer */
    209  1.102       cgd 	u_long biv;		/* bootinfo version */
    210    1.1       cgd {
    211   1.95   thorpej 	extern char kernel_text[], _end[];
    212    1.1       cgd 	struct mddt *mddtp;
    213    1.7       cgd 	int i, mddtweird;
    214   1.95   thorpej 	vm_offset_t kernstart, kernend;
    215   1.95   thorpej 	vm_size_t size;
    216    1.1       cgd 	char *p;
    217   1.95   thorpej 	caddr_t v;
    218   1.95   thorpej 	caddr_t start, w;
    219  1.106       cgd 	char *bootinfo_msg;
    220  1.106       cgd 
    221  1.106       cgd 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    222    1.1       cgd 
    223    1.1       cgd 	/*
    224   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    225    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    226    1.1       cgd 	 */
    227   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    228   1.32       cgd 	alpha_pal_wrfen(0);
    229   1.37       cgd 	ALPHA_TBIA();
    230   1.32       cgd 	alpha_pal_imb();
    231    1.1       cgd 
    232    1.1       cgd 	/*
    233  1.106       cgd 	 * Get critical system information (if possible, from the
    234  1.106       cgd 	 * information provided by the boot program).
    235   1.81   thorpej 	 */
    236  1.106       cgd 	bootinfo_msg = NULL;
    237   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    238  1.102       cgd 		if (biv == 0) {		/* backward compat */
    239  1.102       cgd 			biv = *(u_long *)bip;
    240  1.102       cgd 			bip += 8;
    241  1.102       cgd 		}
    242  1.102       cgd 		switch (biv) {
    243  1.102       cgd 		case 1: {
    244  1.102       cgd 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    245  1.102       cgd 
    246  1.102       cgd 			bootinfo.ssym = v1p->ssym;
    247  1.102       cgd 			bootinfo.esym = v1p->esym;
    248  1.106       cgd 			/* hwrpb may not be provided by boot block in v1 */
    249  1.106       cgd 			if (v1p->hwrpb != NULL) {
    250  1.106       cgd 				bootinfo.hwrpb_phys =
    251  1.106       cgd 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    252  1.106       cgd 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    253  1.106       cgd 			} else {
    254  1.106       cgd 				bootinfo.hwrpb_phys =
    255  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    256  1.106       cgd 				bootinfo.hwrpb_size =
    257  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    258  1.106       cgd 			}
    259  1.102       cgd 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    260  1.102       cgd 			    min(sizeof v1p->boot_flags,
    261  1.102       cgd 			      sizeof bootinfo.boot_flags));
    262  1.102       cgd 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    263  1.102       cgd 			    min(sizeof v1p->booted_kernel,
    264  1.102       cgd 			      sizeof bootinfo.booted_kernel));
    265  1.106       cgd 			/* booted dev not provided in bootinfo */
    266  1.106       cgd 			init_prom_interface((struct rpb *)
    267  1.106       cgd 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    268  1.102       cgd                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    269  1.102       cgd 			    sizeof bootinfo.booted_dev);
    270   1.81   thorpej 			break;
    271  1.102       cgd 		}
    272   1.81   thorpej 		default:
    273  1.106       cgd 			bootinfo_msg = "unknown bootinfo version";
    274  1.102       cgd 			goto nobootinfo;
    275   1.81   thorpej 		}
    276  1.102       cgd 	} else {
    277  1.106       cgd 		bootinfo_msg = "boot program did not pass bootinfo";
    278  1.102       cgd nobootinfo:
    279  1.102       cgd 		bootinfo.ssym = (u_long)_end;
    280  1.102       cgd 		bootinfo.esym = (u_long)_end;
    281  1.106       cgd 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    282  1.106       cgd 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    283  1.106       cgd 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    284  1.102       cgd 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    285  1.102       cgd 		    sizeof bootinfo.boot_flags);
    286  1.102       cgd 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    287  1.102       cgd 		    sizeof bootinfo.booted_kernel);
    288  1.102       cgd 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    289  1.102       cgd 		    sizeof bootinfo.booted_dev);
    290  1.102       cgd 	}
    291  1.102       cgd 
    292   1.81   thorpej 	/*
    293  1.106       cgd 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    294  1.106       cgd 	 * lots of things.
    295  1.106       cgd 	 */
    296  1.106       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    297  1.106       cgd 
    298  1.106       cgd 	/*
    299  1.106       cgd 	 * Remember how many cycles there are per microsecond,
    300  1.106       cgd 	 * so that we can use delay().  Round up, for safety.
    301  1.106       cgd 	 */
    302  1.106       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    303  1.106       cgd 
    304  1.106       cgd 	/*
    305  1.106       cgd 	 * Initalize the (temporary) bootstrap console interface, so
    306  1.106       cgd 	 * we can use printf until the VM system starts being setup.
    307  1.106       cgd 	 * The real console is initialized before then.
    308  1.106       cgd 	 */
    309  1.106       cgd 	init_bootstrap_console();
    310  1.106       cgd 
    311  1.106       cgd 	/* OUTPUT NOW ALLOWED */
    312  1.106       cgd 
    313  1.106       cgd 	/* delayed from above */
    314  1.106       cgd 	if (bootinfo_msg)
    315  1.106       cgd 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    316  1.106       cgd 		    bootinfo_msg, bim, bip, biv);
    317  1.106       cgd 
    318  1.106       cgd 	/*
    319    1.1       cgd 	 * Point interrupt/exception vectors to our own.
    320    1.1       cgd 	 */
    321   1.36       cgd 	alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
    322   1.36       cgd 	alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
    323   1.36       cgd 	alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
    324   1.36       cgd 	alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
    325   1.36       cgd 	alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
    326   1.36       cgd 	alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
    327   1.36       cgd 
    328   1.36       cgd 	/*
    329   1.76       cgd 	 * Clear pending machine checks and error reports, and enable
    330   1.76       cgd 	 * system- and processor-correctable error reporting.
    331   1.36       cgd 	 */
    332   1.76       cgd 	alpha_pal_wrmces(alpha_pal_rdmces() &
    333   1.76       cgd 	    ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
    334    1.1       cgd 
    335    1.1       cgd 	/*
    336  1.106       cgd 	 * Find out what hardware we're on, and do basic initialization.
    337  1.106       cgd 	 */
    338  1.106       cgd 	cputype = hwrpb->rpb_type;
    339  1.106       cgd 	if (cputype >= ncpuinit) {
    340  1.106       cgd 		platform_not_supported();
    341  1.106       cgd 		/* NOTREACHED */
    342  1.106       cgd 	}
    343  1.106       cgd 	(*cpuinit[cputype].init)();
    344  1.106       cgd 	strcpy(cpu_model, platform.model);
    345  1.106       cgd 
    346  1.106       cgd 	/*
    347  1.106       cgd 	 * Initalize the real console, so the the bootstrap console is
    348  1.106       cgd 	 * no longer necessary.
    349  1.106       cgd 	 */
    350  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    351  1.106       cgd 	if (!pmap_uses_prom_console())
    352  1.106       cgd #endif
    353  1.106       cgd 		(*platform.cons_init)();
    354  1.106       cgd 
    355  1.106       cgd #ifdef DIAGNOSTIC
    356  1.106       cgd 	/* Paranoid sanity checking */
    357  1.106       cgd 
    358  1.106       cgd 	/* We should always be running on the the primary. */
    359  1.106       cgd 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
    360  1.106       cgd 
    361  1.106       cgd 	/* On single-CPU systypes, the primary should always be CPU 0. */
    362  1.106       cgd 	if (cputype != ST_DEC_21000)
    363  1.106       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);
    364  1.106       cgd #endif
    365  1.106       cgd 
    366  1.106       cgd 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    367  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    368  1.106       cgd 	/*
    369  1.106       cgd 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    370  1.106       cgd 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    371  1.106       cgd 	 */
    372  1.106       cgd #endif
    373  1.106       cgd 
    374  1.106       cgd 	/*
    375  1.106       cgd 	 * find out this system's page size
    376   1.95   thorpej 	 */
    377   1.95   thorpej 	PAGE_SIZE = hwrpb->rpb_page_size;
    378   1.95   thorpej 	if (PAGE_SIZE != 8192)
    379   1.95   thorpej 		panic("page size %d != 8192?!", PAGE_SIZE);
    380   1.95   thorpej 
    381   1.95   thorpej 	/*
    382   1.95   thorpej 	 * Initialize PAGE_SIZE-dependent variables.
    383   1.95   thorpej 	 */
    384   1.95   thorpej 	vm_set_page_size();
    385   1.95   thorpej 
    386   1.95   thorpej 	/*
    387  1.101       cgd 	 * Find the beginning and end of the kernel (and leave a
    388  1.101       cgd 	 * bit of space before the beginning for the bootstrap
    389  1.101       cgd 	 * stack).
    390   1.95   thorpej 	 */
    391  1.101       cgd 	kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
    392   1.95   thorpej #ifdef DDB
    393  1.102       cgd 	ksym_start = (void *)bootinfo.ssym;
    394  1.102       cgd 	ksym_end   = (void *)bootinfo.esym;
    395  1.102       cgd 	kernend = (vm_offset_t)round_page(ksym_end);
    396  1.102       cgd #else
    397  1.102       cgd 	kernend = (vm_offset_t)round_page(_end);
    398   1.95   thorpej #endif
    399   1.95   thorpej 
    400   1.95   thorpej 	/*
    401    1.1       cgd 	 * Find out how much memory is available, by looking at
    402    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    403    1.7       cgd 	 * its best to detect things things that have never been seen
    404    1.7       cgd 	 * before...
    405    1.7       cgd 	 *
    406    1.1       cgd 	 * XXX Assumes that the first "system" cluster is the
    407    1.7       cgd 	 * only one we can use. Is the second (etc.) system cluster
    408    1.7       cgd 	 * (if one happens to exist) guaranteed to be contiguous?  or...?
    409    1.1       cgd 	 */
    410    1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    411    1.7       cgd 
    412    1.7       cgd 	/*
    413    1.7       cgd 	 * BEGIN MDDT WEIRDNESS CHECKING
    414    1.7       cgd 	 */
    415    1.7       cgd 	mddtweird = 0;
    416    1.7       cgd 
    417    1.7       cgd #define cnt	 mddtp->mddt_cluster_cnt
    418    1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    419    1.7       cgd 	if (cnt != 2 && cnt != 3) {
    420   1.46  christos 		printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
    421    1.7       cgd 		mddtweird = 1;
    422    1.7       cgd 	} else if (usage(0) != MDDT_PALCODE ||
    423    1.7       cgd 		   usage(1) != MDDT_SYSTEM ||
    424    1.7       cgd 	           (cnt == 3 && usage(2) != MDDT_PALCODE)) {
    425    1.7       cgd 		mddtweird = 1;
    426   1.46  christos 		printf("WARNING: %ld mem clusters, but weird config\n", cnt);
    427    1.7       cgd 	}
    428    1.7       cgd 
    429    1.7       cgd 	for (i = 0; i < cnt; i++) {
    430    1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0) {
    431   1.46  christos 			printf("WARNING: mem cluster %d has weird usage %lx\n",
    432    1.7       cgd 			    i, usage(i));
    433    1.7       cgd 			mddtweird = 1;
    434    1.7       cgd 		}
    435    1.7       cgd 		if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
    436   1.46  christos 			printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
    437    1.7       cgd 			mddtweird = 1;
    438    1.7       cgd 		}
    439    1.7       cgd 		/* XXX other things to check? */
    440    1.7       cgd 	}
    441    1.7       cgd #undef cnt
    442    1.7       cgd #undef usage
    443    1.7       cgd 
    444    1.7       cgd 	if (mddtweird) {
    445   1.46  christos 		printf("\n");
    446   1.46  christos 		printf("complete memory cluster information:\n");
    447    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    448   1.46  christos 			printf("mddt %d:\n", i);
    449   1.46  christos 			printf("\tpfn %lx\n",
    450    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    451   1.46  christos 			printf("\tcnt %lx\n",
    452    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    453   1.46  christos 			printf("\ttest %lx\n",
    454    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    455   1.46  christos 			printf("\tbva %lx\n",
    456    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    457   1.46  christos 			printf("\tbpa %lx\n",
    458    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    459   1.46  christos 			printf("\tbcksum %lx\n",
    460    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    461   1.46  christos 			printf("\tusage %lx\n",
    462    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    463    1.2       cgd 		}
    464   1.46  christos 		printf("\n");
    465    1.2       cgd 	}
    466    1.7       cgd 	/*
    467    1.7       cgd 	 * END MDDT WEIRDNESS CHECKING
    468    1.7       cgd 	 */
    469    1.2       cgd 
    470    1.1       cgd 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    471    1.7       cgd 		totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    472    1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    473    1.7       cgd #define	pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
    474    1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0)
    475    1.7       cgd 			unknownmem += pgcnt(i);
    476    1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
    477    1.7       cgd 			resvmem += pgcnt(i);
    478    1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
    479    1.7       cgd 			/*
    480    1.7       cgd 			 * assumes that the system cluster listed is
    481    1.7       cgd 			 * one we're in...
    482    1.7       cgd 			 */
    483    1.7       cgd 			if (physmem != resvmem) {
    484    1.7       cgd 				physmem += pgcnt(i);
    485    1.7       cgd 				firstusablepage =
    486    1.7       cgd 				    mddtp->mddt_clusters[i].mddt_pfn;
    487    1.7       cgd 				lastusablepage = firstusablepage + pgcnt(i) - 1;
    488    1.7       cgd 			} else
    489    1.7       cgd 				unusedmem += pgcnt(i);
    490    1.7       cgd 		}
    491    1.7       cgd #undef usage
    492    1.7       cgd #undef pgcnt
    493    1.1       cgd 	}
    494    1.7       cgd 	if (totalphysmem == 0)
    495    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    496   1.88    mjacob #ifdef        LIMITMEM
    497   1.88    mjacob 	if (totalphysmem >= btoc(LIMITMEM << 20)) {
    498   1.88    mjacob 		u_int64_t ovf = totalphysmem - btoc(LIMITMEM << 20);
    499   1.88    mjacob 		printf("********LIMITING MEMORY TO %dMB**********\n", LIMITMEM);
    500   1.88    mjacob 		physmem = totalphysmem = btoc(LIMITMEM << 20);
    501   1.88    mjacob 		unusedmem += ovf;
    502   1.88    mjacob 		lastusablepage = firstusablepage + physmem - 1;
    503   1.88    mjacob 	}
    504   1.88    mjacob #endif
    505    1.1       cgd 	maxmem = physmem;
    506    1.1       cgd 
    507    1.7       cgd #if 0
    508   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    509   1.46  christos 	printf("physmem = %d\n", physmem);
    510   1.46  christos 	printf("firstusablepage = %d\n", firstusablepage);
    511   1.46  christos 	printf("lastusablepage = %d\n", lastusablepage);
    512   1.46  christos 	printf("resvmem = %d\n", resvmem);
    513   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    514   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    515    1.7       cgd #endif
    516   1.90    mjacob 
    517   1.90    mjacob 	/*
    518   1.90    mjacob 	 * Adjust some parameters if the amount of physmem
    519   1.90    mjacob 	 * available would cause us to croak. This is completely
    520   1.90    mjacob 	 * eyeballed and isn't meant to be the final answer.
    521   1.90    mjacob 	 * vm_phys_size is probably the only one to really worry
    522   1.90    mjacob 	 * about.
    523   1.90    mjacob  	 *
    524   1.90    mjacob 	 * It's for booting a GENERIC kernel on a large memory platform.
    525   1.90    mjacob 	 */
    526   1.90    mjacob 	if (physmem >= btoc(128 << 20)) {
    527   1.90    mjacob 		vm_mbuf_size <<= 1;
    528   1.93    mjacob 		vm_kmem_size <<= 3;
    529   1.93    mjacob 		vm_phys_size <<= 2;
    530   1.90    mjacob 	}
    531    1.7       cgd 
    532    1.1       cgd 	/*
    533    1.1       cgd 	 * Initialize error message buffer (at end of core).
    534    1.1       cgd 	 */
    535   1.86       leo 	lastusablepage -= btoc(MSGBUFSIZE);
    536   1.87    mjacob 	msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
    537   1.86       leo 	initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
    538    1.1       cgd 
    539    1.1       cgd 	/*
    540   1.95   thorpej 	 * Init mapping for u page(s) for proc 0
    541    1.1       cgd 	 */
    542   1.95   thorpej 	start = v = (caddr_t)kernend;
    543   1.95   thorpej 	curproc->p_addr = proc0paddr = (struct user *)v;
    544   1.95   thorpej 	v += UPAGES * NBPG;
    545    1.1       cgd 
    546    1.1       cgd 	/*
    547   1.95   thorpej 	 * Allocate space for system data structures.  These data structures
    548   1.95   thorpej 	 * are allocated here instead of cpu_startup() because physical
    549   1.95   thorpej 	 * memory is directly addressable.  We don't have to map these into
    550   1.95   thorpej 	 * virtual address space.
    551   1.95   thorpej 	 */
    552   1.95   thorpej 	size = (vm_size_t)allocsys(0);
    553   1.95   thorpej 	w = allocsys(v);
    554   1.95   thorpej 	if ((w - v) != size)
    555   1.95   thorpej 		panic("alpha_init: table size inconsistency");
    556   1.95   thorpej 	v = w;
    557    1.1       cgd 
    558    1.1       cgd 	/*
    559    1.1       cgd 	 * Clear allocated memory.
    560    1.1       cgd 	 */
    561    1.1       cgd 	bzero(start, v - start);
    562    1.1       cgd 
    563    1.1       cgd 	/*
    564    1.1       cgd 	 * Initialize the virtual memory system, and set the
    565    1.1       cgd 	 * page table base register in proc 0's PCB.
    566    1.1       cgd 	 */
    567   1.40       cgd #ifndef NEW_PMAP
    568   1.32       cgd 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
    569   1.40       cgd #else
    570   1.40       cgd 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    571   1.40       cgd 	    hwrpb->rpb_max_asn);
    572   1.40       cgd #endif
    573    1.1       cgd 
    574    1.1       cgd 	/*
    575    1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    576    1.3       cgd 	 * address.
    577    1.3       cgd 	 */
    578    1.3       cgd 	proc0.p_md.md_pcbpaddr =
    579   1.32       cgd 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
    580    1.3       cgd 
    581    1.3       cgd 	/*
    582    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    583    1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    584    1.3       cgd 	 */
    585   1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    586    1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    587   1.81   thorpej 	proc0.p_md.md_tf =
    588   1.81   thorpej 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    589   1.38       cgd 
    590   1.40       cgd #ifdef NEW_PMAP
    591   1.84   thorpej 	/*
    592   1.84   thorpej 	 * Set up the kernel address space in proc0's hwpcb.
    593   1.84   thorpej 	 */
    594   1.84   thorpej 	PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
    595   1.38       cgd #endif
    596    1.1       cgd 
    597    1.1       cgd 	/*
    598   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    599    1.8       cgd 	 */
    600    1.1       cgd 
    601    1.8       cgd 	boothowto = RB_SINGLE;
    602    1.1       cgd #ifdef KADB
    603    1.1       cgd 	boothowto |= RB_KDB;
    604    1.1       cgd #endif
    605  1.102       cgd 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    606   1.26       cgd 		/*
    607   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    608   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    609   1.26       cgd 		 * says that we shouldn't.
    610   1.26       cgd 		 */
    611    1.8       cgd 		switch (*p) {
    612   1.26       cgd 		case 'a': /* autoboot */
    613   1.26       cgd 		case 'A':
    614   1.26       cgd 			boothowto &= ~RB_SINGLE;
    615   1.21       cgd 			break;
    616   1.21       cgd 
    617   1.43       cgd #ifdef DEBUG
    618   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    619   1.43       cgd 		case 'C':
    620   1.43       cgd 			boothowto |= RB_DUMP;
    621   1.43       cgd 			break;
    622   1.43       cgd #endif
    623   1.43       cgd 
    624   1.81   thorpej #if defined(KGDB) || defined(DDB)
    625   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    626   1.81   thorpej 		case 'D':
    627   1.81   thorpej 			boothowto |= RB_KDB;
    628   1.81   thorpej 			break;
    629   1.81   thorpej #endif
    630   1.81   thorpej 
    631   1.36       cgd 		case 'h': /* always halt, never reboot */
    632   1.36       cgd 		case 'H':
    633   1.36       cgd 			boothowto |= RB_HALT;
    634    1.8       cgd 			break;
    635    1.8       cgd 
    636   1.21       cgd #if 0
    637    1.8       cgd 		case 'm': /* mini root present in memory */
    638   1.26       cgd 		case 'M':
    639    1.8       cgd 			boothowto |= RB_MINIROOT;
    640    1.8       cgd 			break;
    641   1.21       cgd #endif
    642   1.36       cgd 
    643   1.36       cgd 		case 'n': /* askname */
    644   1.36       cgd 		case 'N':
    645   1.36       cgd 			boothowto |= RB_ASKNAME;
    646   1.65       cgd 			break;
    647   1.65       cgd 
    648   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    649   1.65       cgd 		case 'S':
    650   1.65       cgd 			boothowto |= RB_SINGLE;
    651   1.65       cgd 			break;
    652   1.65       cgd 
    653   1.65       cgd 		default:
    654   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    655   1.36       cgd 			break;
    656    1.1       cgd 		}
    657    1.1       cgd 	}
    658    1.1       cgd 
    659    1.7       cgd 	/*
    660  1.106       cgd 	 * Initialize debuggers, and break into them if appropriate.
    661  1.106       cgd 	 */
    662  1.106       cgd #ifdef DDB
    663  1.106       cgd 	db_machine_init();
    664  1.106       cgd 	ddb_init(ksym_start, ksym_end);
    665  1.106       cgd 	if (boothowto & RB_KDB)
    666  1.106       cgd 		Debugger();
    667  1.106       cgd #endif
    668  1.106       cgd #ifdef KGDB
    669  1.106       cgd 	if (boothowto & RB_KDB)
    670  1.106       cgd 		kgdb_connect(0);
    671  1.106       cgd #endif
    672  1.106       cgd 
    673  1.106       cgd 	/*
    674    1.7       cgd 	 * Figure out the number of cpus in the box, from RPB fields.
    675    1.7       cgd 	 * Really.  We mean it.
    676    1.7       cgd 	 */
    677    1.7       cgd 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    678    1.7       cgd 		struct pcs *pcsp;
    679    1.7       cgd 
    680    1.7       cgd 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    681    1.7       cgd 		    (i * hwrpb->rpb_pcs_size));
    682    1.7       cgd 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    683    1.7       cgd 			ncpus++;
    684    1.7       cgd 	}
    685  1.106       cgd 
    686  1.106       cgd 	/*
    687  1.106       cgd 	 * Figure out our clock frequency, from RPB fields.
    688  1.106       cgd 	 */
    689  1.106       cgd 	hz = hwrpb->rpb_intr_freq >> 12;
    690  1.106       cgd 	if (!(60 <= hz && hz <= 10240)) {
    691  1.106       cgd 		hz = 1024;
    692  1.106       cgd #ifdef DIAGNOSTIC
    693  1.106       cgd 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    694  1.106       cgd 			hwrpb->rpb_intr_freq, hz);
    695  1.106       cgd #endif
    696  1.106       cgd 	}
    697  1.106       cgd 
    698   1.95   thorpej }
    699   1.95   thorpej 
    700   1.95   thorpej /*
    701   1.95   thorpej  * Allocate space for system data structures.  We are given
    702   1.95   thorpej  * a starting virtual address and we return a final virtual
    703   1.95   thorpej  * address; along the way we set each data structure pointer.
    704   1.95   thorpej  *
    705   1.95   thorpej  * We call allocsys() with 0 to find out how much space we want,
    706   1.95   thorpej  * allocate that much and fill it with zeroes, and the call
    707   1.95   thorpej  * allocsys() again with the correct base virtual address.
    708   1.95   thorpej  */
    709   1.95   thorpej caddr_t
    710   1.95   thorpej allocsys(v)
    711   1.95   thorpej 	caddr_t v;
    712   1.95   thorpej {
    713   1.95   thorpej 
    714   1.95   thorpej #define valloc(name, type, num) \
    715   1.95   thorpej 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    716   1.95   thorpej #ifdef REAL_CLISTS
    717   1.95   thorpej 	valloc(cfree, struct cblock, nclist);
    718   1.95   thorpej #endif
    719   1.95   thorpej 	valloc(callout, struct callout, ncallout);
    720   1.95   thorpej #ifdef SYSVSHM
    721   1.95   thorpej 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    722   1.95   thorpej #endif
    723   1.95   thorpej #ifdef SYSVSEM
    724   1.95   thorpej 	valloc(sema, struct semid_ds, seminfo.semmni);
    725   1.95   thorpej 	valloc(sem, struct sem, seminfo.semmns);
    726   1.95   thorpej 	/* This is pretty disgusting! */
    727   1.95   thorpej 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    728   1.95   thorpej #endif
    729   1.95   thorpej #ifdef SYSVMSG
    730   1.95   thorpej 	valloc(msgpool, char, msginfo.msgmax);
    731   1.95   thorpej 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    732   1.95   thorpej 	valloc(msghdrs, struct msg, msginfo.msgtql);
    733   1.95   thorpej 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    734   1.95   thorpej #endif
    735   1.95   thorpej 
    736   1.95   thorpej 	/*
    737   1.95   thorpej 	 * Determine how many buffers to allocate.
    738   1.95   thorpej 	 * We allocate 10% of memory for buffer space.  Insure a
    739   1.95   thorpej 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    740   1.95   thorpej 	 * headers as file i/o buffers.
    741   1.95   thorpej 	 */
    742   1.95   thorpej 	if (bufpages == 0)
    743   1.95   thorpej 		bufpages = (physmem * 10) / (CLSIZE * 100);
    744   1.95   thorpej 	if (nbuf == 0) {
    745   1.95   thorpej 		nbuf = bufpages;
    746   1.95   thorpej 		if (nbuf < 16)
    747   1.95   thorpej 			nbuf = 16;
    748   1.95   thorpej 	}
    749   1.95   thorpej 	if (nswbuf == 0) {
    750   1.95   thorpej 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    751   1.95   thorpej 		if (nswbuf > 256)
    752   1.95   thorpej 			nswbuf = 256;		/* sanity */
    753   1.95   thorpej 	}
    754   1.95   thorpej 	valloc(swbuf, struct buf, nswbuf);
    755   1.95   thorpej 	valloc(buf, struct buf, nbuf);
    756   1.95   thorpej 	return (v);
    757   1.98       cgd #undef valloc
    758    1.1       cgd }
    759    1.1       cgd 
    760   1.18       cgd void
    761    1.1       cgd consinit()
    762    1.1       cgd {
    763   1.81   thorpej 
    764  1.106       cgd 	/*
    765  1.106       cgd 	 * Everything related to console initialization is done
    766  1.106       cgd 	 * in alpha_init().
    767  1.106       cgd 	 */
    768  1.106       cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    769  1.106       cgd 	printf("consinit: %susing prom console\n",
    770  1.106       cgd 	    pmap_uses_prom_console() ? "" : "not ");
    771   1.81   thorpej #endif
    772    1.1       cgd }
    773    1.1       cgd 
    774   1.18       cgd void
    775    1.1       cgd cpu_startup()
    776    1.1       cgd {
    777    1.1       cgd 	register unsigned i;
    778    1.1       cgd 	int base, residual;
    779    1.1       cgd 	vm_offset_t minaddr, maxaddr;
    780    1.1       cgd 	vm_size_t size;
    781   1.40       cgd #if defined(DEBUG)
    782    1.1       cgd 	extern int pmapdebug;
    783    1.1       cgd 	int opmapdebug = pmapdebug;
    784    1.1       cgd 
    785    1.1       cgd 	pmapdebug = 0;
    786    1.1       cgd #endif
    787    1.1       cgd 
    788    1.1       cgd 	/*
    789    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    790    1.1       cgd 	 */
    791   1.46  christos 	printf(version);
    792    1.1       cgd 	identifycpu();
    793   1.88    mjacob 	printf("real mem = %u (%u reserved for PROM, %u used by NetBSD)\n",
    794    1.7       cgd 	    ctob(totalphysmem), ctob(resvmem), ctob(physmem));
    795    1.7       cgd 	if (unusedmem)
    796   1.46  christos 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    797    1.7       cgd 	if (unknownmem)
    798   1.46  christos 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    799    1.7       cgd 		    ctob(unknownmem));
    800    1.1       cgd 
    801    1.1       cgd 	/*
    802    1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    803    1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    804    1.1       cgd 	 * and usually occupy more virtual memory than physical.
    805    1.1       cgd 	 */
    806    1.1       cgd 	size = MAXBSIZE * nbuf;
    807    1.1       cgd 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    808    1.1       cgd 	    &maxaddr, size, TRUE);
    809    1.1       cgd 	minaddr = (vm_offset_t)buffers;
    810    1.1       cgd 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    811    1.1       cgd 			&minaddr, size, FALSE) != KERN_SUCCESS)
    812    1.1       cgd 		panic("startup: cannot allocate buffers");
    813    1.1       cgd 	base = bufpages / nbuf;
    814    1.1       cgd 	residual = bufpages % nbuf;
    815    1.1       cgd 	for (i = 0; i < nbuf; i++) {
    816    1.1       cgd 		vm_size_t curbufsize;
    817    1.1       cgd 		vm_offset_t curbuf;
    818    1.1       cgd 
    819    1.1       cgd 		/*
    820    1.1       cgd 		 * First <residual> buffers get (base+1) physical pages
    821    1.1       cgd 		 * allocated for them.  The rest get (base) physical pages.
    822    1.1       cgd 		 *
    823    1.1       cgd 		 * The rest of each buffer occupies virtual space,
    824    1.1       cgd 		 * but has no physical memory allocated for it.
    825    1.1       cgd 		 */
    826    1.1       cgd 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    827    1.1       cgd 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    828    1.1       cgd 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    829    1.1       cgd 		vm_map_simplify(buffer_map, curbuf);
    830    1.1       cgd 	}
    831    1.1       cgd 	/*
    832    1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    833    1.1       cgd 	 * limits the number of processes exec'ing at any time.
    834    1.1       cgd 	 */
    835    1.1       cgd 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    836    1.1       cgd 				 16 * NCARGS, TRUE);
    837    1.1       cgd 
    838    1.1       cgd 	/*
    839    1.1       cgd 	 * Allocate a submap for physio
    840    1.1       cgd 	 */
    841    1.1       cgd 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    842    1.1       cgd 				 VM_PHYS_SIZE, TRUE);
    843    1.1       cgd 
    844    1.1       cgd 	/*
    845   1.69   thorpej 	 * Finally, allocate mbuf cluster submap.
    846    1.1       cgd 	 */
    847    1.1       cgd 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    848    1.1       cgd 	    VM_MBUF_SIZE, FALSE);
    849    1.1       cgd 	/*
    850    1.1       cgd 	 * Initialize callouts
    851    1.1       cgd 	 */
    852    1.1       cgd 	callfree = callout;
    853    1.1       cgd 	for (i = 1; i < ncallout; i++)
    854    1.1       cgd 		callout[i-1].c_next = &callout[i];
    855    1.1       cgd 	callout[i-1].c_next = NULL;
    856    1.1       cgd 
    857   1.40       cgd #if defined(DEBUG)
    858    1.1       cgd 	pmapdebug = opmapdebug;
    859    1.1       cgd #endif
    860   1.46  christos 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
    861   1.46  christos 	printf("using %ld buffers containing %ld bytes of memory\n",
    862    1.1       cgd 		(long)nbuf, (long)(bufpages * CLBYTES));
    863    1.1       cgd 
    864    1.1       cgd 	/*
    865    1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
    866    1.1       cgd 	 */
    867    1.1       cgd 	bufinit();
    868    1.1       cgd 
    869    1.1       cgd 	/*
    870    1.1       cgd 	 * Configure the system.
    871    1.1       cgd 	 */
    872    1.1       cgd 	configure();
    873   1.48       cgd 
    874   1.48       cgd 	/*
    875   1.48       cgd 	 * Note that bootstrapping is finished, and set the HWRPB up
    876   1.48       cgd 	 * to do restarts.
    877   1.48       cgd 	 */
    878   1.55       cgd 	hwrpb_restart_setup();
    879  1.104   thorpej }
    880  1.104   thorpej 
    881  1.104   thorpej /*
    882  1.104   thorpej  * Retrieve the platform name from the DSR.
    883  1.104   thorpej  */
    884  1.104   thorpej const char *
    885  1.104   thorpej alpha_dsr_sysname()
    886  1.104   thorpej {
    887  1.104   thorpej 	struct dsrdb *dsr;
    888  1.104   thorpej 	const char *sysname;
    889  1.104   thorpej 
    890  1.104   thorpej 	/*
    891  1.104   thorpej 	 * DSR does not exist on early HWRPB versions.
    892  1.104   thorpej 	 */
    893  1.104   thorpej 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
    894  1.104   thorpej 		return (NULL);
    895  1.104   thorpej 
    896  1.104   thorpej 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
    897  1.104   thorpej 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
    898  1.104   thorpej 	    sizeof(u_int64_t)));
    899  1.104   thorpej 	return (sysname);
    900  1.104   thorpej }
    901  1.104   thorpej 
    902  1.104   thorpej /*
    903  1.104   thorpej  * Lookup the system specified system variation in the provided table,
    904  1.104   thorpej  * returning the model string on match.
    905  1.104   thorpej  */
    906  1.104   thorpej const char *
    907  1.104   thorpej alpha_variation_name(variation, avtp)
    908  1.104   thorpej 	u_int64_t variation;
    909  1.104   thorpej 	const struct alpha_variation_table *avtp;
    910  1.104   thorpej {
    911  1.104   thorpej 	int i;
    912  1.104   thorpej 
    913  1.104   thorpej 	for (i = 0; avtp[i].avt_model != NULL; i++)
    914  1.104   thorpej 		if (avtp[i].avt_variation == variation)
    915  1.104   thorpej 			return (avtp[i].avt_model);
    916  1.104   thorpej 	return (NULL);
    917  1.104   thorpej }
    918  1.104   thorpej 
    919  1.104   thorpej /*
    920  1.104   thorpej  * Generate a default platform name based for unknown system variations.
    921  1.104   thorpej  */
    922  1.104   thorpej const char *
    923  1.104   thorpej alpha_unknown_sysname()
    924  1.104   thorpej {
    925  1.105   thorpej 	static char s[128];		/* safe size */
    926  1.104   thorpej 
    927  1.105   thorpej 	sprintf(s, "%s family, unknown model variation 0x%lx",
    928  1.105   thorpej 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
    929  1.104   thorpej 	return ((const char *)s);
    930    1.1       cgd }
    931    1.1       cgd 
    932   1.33       cgd void
    933    1.1       cgd identifycpu()
    934    1.1       cgd {
    935    1.1       cgd 
    936    1.7       cgd 	/*
    937    1.7       cgd 	 * print out CPU identification information.
    938    1.7       cgd 	 */
    939   1.46  christos 	printf("%s, %ldMHz\n", cpu_model,
    940    1.7       cgd 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
    941   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
    942    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    943    1.7       cgd #if 0
    944    1.7       cgd 	/* this isn't defined for any systems that we run on? */
    945   1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
    946    1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    947    1.7       cgd 
    948    1.7       cgd 	/* and these aren't particularly useful! */
    949   1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
    950    1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    951    1.7       cgd #endif
    952    1.1       cgd }
    953    1.1       cgd 
    954    1.1       cgd int	waittime = -1;
    955    1.7       cgd struct pcb dumppcb;
    956    1.1       cgd 
    957   1.18       cgd void
    958   1.68       gwr cpu_reboot(howto, bootstr)
    959    1.1       cgd 	int howto;
    960   1.39       mrg 	char *bootstr;
    961    1.1       cgd {
    962    1.1       cgd 	extern int cold;
    963    1.1       cgd 
    964    1.1       cgd 	/* If system is cold, just halt. */
    965    1.1       cgd 	if (cold) {
    966    1.1       cgd 		howto |= RB_HALT;
    967    1.1       cgd 		goto haltsys;
    968    1.1       cgd 	}
    969    1.1       cgd 
    970   1.36       cgd 	/* If "always halt" was specified as a boot flag, obey. */
    971   1.36       cgd 	if ((boothowto & RB_HALT) != 0)
    972   1.36       cgd 		howto |= RB_HALT;
    973   1.36       cgd 
    974    1.7       cgd 	boothowto = howto;
    975    1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
    976    1.1       cgd 		waittime = 0;
    977    1.7       cgd 		vfs_shutdown();
    978    1.1       cgd 		/*
    979    1.1       cgd 		 * If we've been adjusting the clock, the todr
    980    1.1       cgd 		 * will be out of synch; adjust it now.
    981    1.1       cgd 		 */
    982    1.1       cgd 		resettodr();
    983    1.1       cgd 	}
    984    1.1       cgd 
    985    1.1       cgd 	/* Disable interrupts. */
    986    1.1       cgd 	splhigh();
    987    1.1       cgd 
    988    1.7       cgd 	/* If rebooting and a dump is requested do it. */
    989   1.42       cgd #if 0
    990   1.42       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
    991   1.42       cgd #else
    992   1.42       cgd 	if (howto & RB_DUMP)
    993   1.42       cgd #endif
    994    1.1       cgd 		dumpsys();
    995    1.6       cgd 
    996   1.12       cgd haltsys:
    997   1.12       cgd 
    998    1.6       cgd 	/* run any shutdown hooks */
    999    1.6       cgd 	doshutdownhooks();
   1000    1.1       cgd 
   1001    1.7       cgd #ifdef BOOTKEY
   1002   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1003    1.7       cgd 	cngetc();
   1004   1.46  christos 	printf("\n");
   1005    1.7       cgd #endif
   1006    1.7       cgd 
   1007    1.1       cgd 	/* Finally, halt/reboot the system. */
   1008   1.46  christos 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
   1009    1.1       cgd 	prom_halt(howto & RB_HALT);
   1010    1.1       cgd 	/*NOTREACHED*/
   1011    1.1       cgd }
   1012    1.1       cgd 
   1013    1.7       cgd /*
   1014    1.7       cgd  * These variables are needed by /sbin/savecore
   1015    1.7       cgd  */
   1016    1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
   1017    1.7       cgd int 	dumpsize = 0;		/* pages */
   1018    1.7       cgd long	dumplo = 0; 		/* blocks */
   1019    1.7       cgd 
   1020    1.7       cgd /*
   1021   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1022   1.43       cgd  */
   1023   1.43       cgd int
   1024   1.43       cgd cpu_dumpsize()
   1025   1.43       cgd {
   1026   1.43       cgd 	int size;
   1027   1.43       cgd 
   1028   1.43       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
   1029   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
   1030   1.43       cgd 		return -1;
   1031   1.43       cgd 
   1032   1.43       cgd 	return (1);
   1033   1.43       cgd }
   1034   1.43       cgd 
   1035   1.43       cgd /*
   1036   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
   1037   1.43       cgd  */
   1038   1.43       cgd int
   1039   1.43       cgd cpu_dump()
   1040   1.43       cgd {
   1041   1.43       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1042   1.43       cgd 	long buf[dbtob(1) / sizeof (long)];
   1043   1.43       cgd 	kcore_seg_t	*segp;
   1044   1.43       cgd 	cpu_kcore_hdr_t	*cpuhdrp;
   1045   1.43       cgd 
   1046   1.43       cgd         dump = bdevsw[major(dumpdev)].d_dump;
   1047   1.43       cgd 
   1048   1.43       cgd 	segp = (kcore_seg_t *)buf;
   1049   1.43       cgd 	cpuhdrp =
   1050   1.43       cgd 	    (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp)) / sizeof (long)];
   1051   1.43       cgd 
   1052   1.43       cgd 	/*
   1053   1.43       cgd 	 * Generate a segment header.
   1054   1.43       cgd 	 */
   1055   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1056   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1057   1.43       cgd 
   1058   1.43       cgd 	/*
   1059   1.43       cgd 	 * Add the machine-dependent header info
   1060   1.43       cgd 	 */
   1061   1.44       cgd 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
   1062   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
   1063   1.43       cgd 	cpuhdrp->core_seg.start = ctob(firstusablepage);
   1064   1.43       cgd 	cpuhdrp->core_seg.size = ctob(physmem);
   1065   1.43       cgd 
   1066   1.43       cgd 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1067   1.43       cgd }
   1068   1.43       cgd 
   1069   1.43       cgd /*
   1070   1.68       gwr  * This is called by main to set dumplo and dumpsize.
   1071    1.7       cgd  * Dumps always skip the first CLBYTES of disk space
   1072    1.7       cgd  * in case there might be a disk label stored there.
   1073    1.7       cgd  * If there is extra space, put dump at the end to
   1074    1.7       cgd  * reduce the chance that swapping trashes it.
   1075    1.7       cgd  */
   1076    1.7       cgd void
   1077   1.68       gwr cpu_dumpconf()
   1078    1.7       cgd {
   1079   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
   1080    1.7       cgd 	int maj;
   1081    1.7       cgd 
   1082    1.7       cgd 	if (dumpdev == NODEV)
   1083   1.43       cgd 		goto bad;
   1084    1.7       cgd 	maj = major(dumpdev);
   1085    1.7       cgd 	if (maj < 0 || maj >= nblkdev)
   1086    1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1087    1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
   1088   1.43       cgd 		goto bad;
   1089    1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1090    1.7       cgd 	if (nblks <= ctod(1))
   1091   1.43       cgd 		goto bad;
   1092   1.43       cgd 
   1093   1.43       cgd 	dumpblks = cpu_dumpsize();
   1094   1.43       cgd 	if (dumpblks < 0)
   1095   1.43       cgd 		goto bad;
   1096   1.43       cgd 	dumpblks += ctod(physmem);
   1097   1.43       cgd 
   1098   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1099   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1100   1.43       cgd 		goto bad;
   1101   1.43       cgd 
   1102   1.43       cgd 	/* Put dump at end of partition */
   1103   1.43       cgd 	dumplo = nblks - dumpblks;
   1104    1.7       cgd 
   1105   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1106    1.7       cgd 	dumpsize = physmem;
   1107   1.43       cgd 	return;
   1108    1.7       cgd 
   1109   1.43       cgd bad:
   1110   1.43       cgd 	dumpsize = 0;
   1111   1.43       cgd 	return;
   1112    1.7       cgd }
   1113    1.7       cgd 
   1114    1.7       cgd /*
   1115   1.42       cgd  * Dump the kernel's image to the swap partition.
   1116    1.7       cgd  */
   1117   1.42       cgd #define	BYTES_PER_DUMP	NBPG
   1118   1.42       cgd 
   1119    1.7       cgd void
   1120    1.7       cgd dumpsys()
   1121    1.7       cgd {
   1122   1.42       cgd 	unsigned bytes, i, n;
   1123   1.42       cgd 	int maddr, psize;
   1124   1.42       cgd 	daddr_t blkno;
   1125   1.42       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1126   1.42       cgd 	int error;
   1127   1.42       cgd 
   1128   1.42       cgd 	/* Save registers. */
   1129   1.42       cgd 	savectx(&dumppcb);
   1130    1.7       cgd 
   1131   1.42       cgd 	msgbufmapped = 0;	/* don't record dump msgs in msgbuf */
   1132    1.7       cgd 	if (dumpdev == NODEV)
   1133    1.7       cgd 		return;
   1134   1.42       cgd 
   1135   1.42       cgd 	/*
   1136   1.42       cgd 	 * For dumps during autoconfiguration,
   1137   1.42       cgd 	 * if dump device has already configured...
   1138   1.42       cgd 	 */
   1139   1.42       cgd 	if (dumpsize == 0)
   1140   1.68       gwr 		cpu_dumpconf();
   1141   1.47       cgd 	if (dumplo <= 0) {
   1142   1.97   mycroft 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1143   1.97   mycroft 		    minor(dumpdev));
   1144   1.42       cgd 		return;
   1145   1.43       cgd 	}
   1146   1.97   mycroft 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1147   1.97   mycroft 	    minor(dumpdev), dumplo);
   1148    1.7       cgd 
   1149   1.42       cgd 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1150   1.46  christos 	printf("dump ");
   1151   1.42       cgd 	if (psize == -1) {
   1152   1.46  christos 		printf("area unavailable\n");
   1153   1.42       cgd 		return;
   1154   1.42       cgd 	}
   1155   1.42       cgd 
   1156   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1157   1.42       cgd 
   1158   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1159   1.43       cgd 		goto err;
   1160   1.43       cgd 
   1161   1.43       cgd 	bytes = ctob(physmem);
   1162   1.42       cgd 	maddr = ctob(firstusablepage);
   1163   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1164   1.42       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1165   1.42       cgd 	error = 0;
   1166   1.42       cgd 	for (i = 0; i < bytes; i += n) {
   1167   1.42       cgd 
   1168   1.42       cgd 		/* Print out how many MBs we to go. */
   1169   1.42       cgd 		n = bytes - i;
   1170   1.42       cgd 		if (n && (n % (1024*1024)) == 0)
   1171   1.46  christos 			printf("%d ", n / (1024 * 1024));
   1172   1.42       cgd 
   1173   1.42       cgd 		/* Limit size for next transfer. */
   1174   1.42       cgd 		if (n > BYTES_PER_DUMP)
   1175   1.42       cgd 			n =  BYTES_PER_DUMP;
   1176   1.42       cgd 
   1177   1.42       cgd 		error = (*dump)(dumpdev, blkno,
   1178   1.42       cgd 		    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1179   1.42       cgd 		if (error)
   1180   1.42       cgd 			break;
   1181   1.42       cgd 		maddr += n;
   1182   1.42       cgd 		blkno += btodb(n);			/* XXX? */
   1183   1.42       cgd 
   1184   1.42       cgd 		/* XXX should look for keystrokes, to cancel. */
   1185   1.42       cgd 	}
   1186   1.42       cgd 
   1187   1.43       cgd err:
   1188   1.42       cgd 	switch (error) {
   1189    1.7       cgd 
   1190    1.7       cgd 	case ENXIO:
   1191   1.46  christos 		printf("device bad\n");
   1192    1.7       cgd 		break;
   1193    1.7       cgd 
   1194    1.7       cgd 	case EFAULT:
   1195   1.46  christos 		printf("device not ready\n");
   1196    1.7       cgd 		break;
   1197    1.7       cgd 
   1198    1.7       cgd 	case EINVAL:
   1199   1.46  christos 		printf("area improper\n");
   1200    1.7       cgd 		break;
   1201    1.7       cgd 
   1202    1.7       cgd 	case EIO:
   1203   1.46  christos 		printf("i/o error\n");
   1204    1.7       cgd 		break;
   1205    1.7       cgd 
   1206    1.7       cgd 	case EINTR:
   1207   1.46  christos 		printf("aborted from console\n");
   1208    1.7       cgd 		break;
   1209    1.7       cgd 
   1210   1.42       cgd 	case 0:
   1211   1.46  christos 		printf("succeeded\n");
   1212   1.42       cgd 		break;
   1213   1.42       cgd 
   1214    1.7       cgd 	default:
   1215   1.46  christos 		printf("error %d\n", error);
   1216    1.7       cgd 		break;
   1217    1.7       cgd 	}
   1218   1.46  christos 	printf("\n\n");
   1219    1.7       cgd 	delay(1000);
   1220    1.7       cgd }
   1221    1.7       cgd 
   1222    1.1       cgd void
   1223    1.1       cgd frametoreg(framep, regp)
   1224    1.1       cgd 	struct trapframe *framep;
   1225    1.1       cgd 	struct reg *regp;
   1226    1.1       cgd {
   1227    1.1       cgd 
   1228    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1229    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1230    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1231    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1232    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1233    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1234    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1235    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1236    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1237    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1238    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1239    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1240    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1241    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1242    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1243    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1244   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1245   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1246   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1247    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1248    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1249    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1250    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1251    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1252    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1253    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1254    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1255    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1256    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1257   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1258   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1259    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1260    1.1       cgd }
   1261    1.1       cgd 
   1262    1.1       cgd void
   1263    1.1       cgd regtoframe(regp, framep)
   1264    1.1       cgd 	struct reg *regp;
   1265    1.1       cgd 	struct trapframe *framep;
   1266    1.1       cgd {
   1267    1.1       cgd 
   1268    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1269    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1270    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1271    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1272    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1273    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1274    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1275    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1276    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1277    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1278    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1279    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1280    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1281    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1282    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1283    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1284   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1285   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1286   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1287    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1288    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1289    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1290    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1291    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1292    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1293    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1294    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1295    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1296    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1297   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1298   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1299    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1300    1.1       cgd }
   1301    1.1       cgd 
   1302    1.1       cgd void
   1303    1.1       cgd printregs(regp)
   1304    1.1       cgd 	struct reg *regp;
   1305    1.1       cgd {
   1306    1.1       cgd 	int i;
   1307    1.1       cgd 
   1308    1.1       cgd 	for (i = 0; i < 32; i++)
   1309   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1310    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1311    1.1       cgd }
   1312    1.1       cgd 
   1313    1.1       cgd void
   1314    1.1       cgd regdump(framep)
   1315    1.1       cgd 	struct trapframe *framep;
   1316    1.1       cgd {
   1317    1.1       cgd 	struct reg reg;
   1318    1.1       cgd 
   1319    1.1       cgd 	frametoreg(framep, &reg);
   1320   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1321   1.35       cgd 
   1322   1.46  christos 	printf("REGISTERS:\n");
   1323    1.1       cgd 	printregs(&reg);
   1324    1.1       cgd }
   1325    1.1       cgd 
   1326    1.1       cgd #ifdef DEBUG
   1327    1.1       cgd int sigdebug = 0;
   1328    1.1       cgd int sigpid = 0;
   1329    1.1       cgd #define	SDB_FOLLOW	0x01
   1330    1.1       cgd #define	SDB_KSTACK	0x02
   1331    1.1       cgd #endif
   1332    1.1       cgd 
   1333    1.1       cgd /*
   1334    1.1       cgd  * Send an interrupt to process.
   1335    1.1       cgd  */
   1336    1.1       cgd void
   1337    1.1       cgd sendsig(catcher, sig, mask, code)
   1338    1.1       cgd 	sig_t catcher;
   1339    1.1       cgd 	int sig, mask;
   1340    1.1       cgd 	u_long code;
   1341    1.1       cgd {
   1342    1.1       cgd 	struct proc *p = curproc;
   1343    1.1       cgd 	struct sigcontext *scp, ksc;
   1344    1.1       cgd 	struct trapframe *frame;
   1345    1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1346    1.1       cgd 	int oonstack, fsize, rndfsize;
   1347    1.1       cgd 	extern char sigcode[], esigcode[];
   1348    1.1       cgd 	extern struct proc *fpcurproc;
   1349    1.1       cgd 
   1350    1.1       cgd 	frame = p->p_md.md_tf;
   1351    1.9   mycroft 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1352    1.1       cgd 	fsize = sizeof ksc;
   1353    1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1354    1.1       cgd 	/*
   1355    1.1       cgd 	 * Allocate and validate space for the signal handler
   1356    1.1       cgd 	 * context. Note that if the stack is in P0 space, the
   1357    1.1       cgd 	 * call to grow() is a nop, and the useracc() check
   1358    1.1       cgd 	 * will fail if the process has not already allocated
   1359    1.1       cgd 	 * the space with a `brk'.
   1360    1.1       cgd 	 */
   1361    1.1       cgd 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1362    1.1       cgd 	    (psp->ps_sigonstack & sigmask(sig))) {
   1363   1.14       jtc 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
   1364    1.1       cgd 		    psp->ps_sigstk.ss_size - rndfsize);
   1365    1.9   mycroft 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1366    1.1       cgd 	} else
   1367   1.35       cgd 		scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
   1368    1.1       cgd 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1369    1.1       cgd 		(void)grow(p, (u_long)scp);
   1370    1.1       cgd #ifdef DEBUG
   1371    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1372   1.46  christos 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1373    1.1       cgd 		    sig, &oonstack, scp);
   1374    1.1       cgd #endif
   1375    1.1       cgd 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1376    1.1       cgd #ifdef DEBUG
   1377    1.1       cgd 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1378   1.46  christos 			printf("sendsig(%d): useracc failed on sig %d\n",
   1379    1.1       cgd 			    p->p_pid, sig);
   1380    1.1       cgd #endif
   1381    1.1       cgd 		/*
   1382    1.1       cgd 		 * Process has trashed its stack; give it an illegal
   1383    1.1       cgd 		 * instruction to halt it in its tracks.
   1384    1.1       cgd 		 */
   1385    1.1       cgd 		SIGACTION(p, SIGILL) = SIG_DFL;
   1386    1.1       cgd 		sig = sigmask(SIGILL);
   1387    1.1       cgd 		p->p_sigignore &= ~sig;
   1388    1.1       cgd 		p->p_sigcatch &= ~sig;
   1389    1.1       cgd 		p->p_sigmask &= ~sig;
   1390    1.1       cgd 		psignal(p, SIGILL);
   1391    1.1       cgd 		return;
   1392    1.1       cgd 	}
   1393    1.1       cgd 
   1394    1.1       cgd 	/*
   1395    1.1       cgd 	 * Build the signal context to be used by sigreturn.
   1396    1.1       cgd 	 */
   1397    1.1       cgd 	ksc.sc_onstack = oonstack;
   1398    1.1       cgd 	ksc.sc_mask = mask;
   1399   1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1400   1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1401    1.1       cgd 
   1402    1.1       cgd 	/* copy the registers. */
   1403    1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1404    1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1405   1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1406    1.1       cgd 
   1407    1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1408    1.1       cgd 	if (p == fpcurproc) {
   1409   1.32       cgd 		alpha_pal_wrfen(1);
   1410    1.1       cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1411   1.32       cgd 		alpha_pal_wrfen(0);
   1412    1.1       cgd 		fpcurproc = NULL;
   1413    1.1       cgd 	}
   1414    1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1415    1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1416    1.1       cgd 	    sizeof(struct fpreg));
   1417    1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1418    1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1419    1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1420    1.1       cgd 
   1421    1.1       cgd 
   1422    1.1       cgd #ifdef COMPAT_OSF1
   1423    1.1       cgd 	/*
   1424    1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1425    1.1       cgd 	 */
   1426    1.1       cgd #endif
   1427    1.1       cgd 
   1428    1.1       cgd 	/*
   1429    1.1       cgd 	 * copy the frame out to userland.
   1430    1.1       cgd 	 */
   1431    1.1       cgd 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1432    1.1       cgd #ifdef DEBUG
   1433    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1434   1.46  christos 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1435    1.1       cgd 		    scp, code);
   1436    1.1       cgd #endif
   1437    1.1       cgd 
   1438    1.1       cgd 	/*
   1439    1.1       cgd 	 * Set up the registers to return to sigcode.
   1440    1.1       cgd 	 */
   1441   1.34       cgd 	frame->tf_regs[FRAME_PC] =
   1442   1.34       cgd 	    (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1443   1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1444   1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1445   1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1446    1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1447   1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1448    1.1       cgd 
   1449    1.1       cgd #ifdef DEBUG
   1450    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1451   1.46  christos 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1452   1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1453    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1454   1.46  christos 		printf("sendsig(%d): sig %d returns\n",
   1455    1.1       cgd 		    p->p_pid, sig);
   1456    1.1       cgd #endif
   1457    1.1       cgd }
   1458    1.1       cgd 
   1459    1.1       cgd /*
   1460    1.1       cgd  * System call to cleanup state after a signal
   1461    1.1       cgd  * has been taken.  Reset signal mask and
   1462    1.1       cgd  * stack state from context left by sendsig (above).
   1463    1.1       cgd  * Return to previous pc and psl as specified by
   1464    1.1       cgd  * context left by sendsig. Check carefully to
   1465    1.1       cgd  * make sure that the user has not modified the
   1466    1.1       cgd  * psl to gain improper priviledges or to cause
   1467    1.1       cgd  * a machine fault.
   1468    1.1       cgd  */
   1469    1.1       cgd /* ARGSUSED */
   1470   1.11   mycroft int
   1471   1.11   mycroft sys_sigreturn(p, v, retval)
   1472    1.1       cgd 	struct proc *p;
   1473   1.10   thorpej 	void *v;
   1474   1.10   thorpej 	register_t *retval;
   1475   1.10   thorpej {
   1476   1.11   mycroft 	struct sys_sigreturn_args /* {
   1477    1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1478   1.10   thorpej 	} */ *uap = v;
   1479    1.1       cgd 	struct sigcontext *scp, ksc;
   1480    1.1       cgd 	extern struct proc *fpcurproc;
   1481    1.1       cgd 
   1482    1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1483    1.1       cgd #ifdef DEBUG
   1484    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1485   1.46  christos 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1486    1.1       cgd #endif
   1487    1.1       cgd 
   1488    1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1489    1.1       cgd 		return (EINVAL);
   1490    1.1       cgd 
   1491    1.1       cgd 	/*
   1492    1.1       cgd 	 * Test and fetch the context structure.
   1493    1.1       cgd 	 * We grab it all at once for speed.
   1494    1.1       cgd 	 */
   1495    1.1       cgd 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1496    1.1       cgd 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1497    1.1       cgd 		return (EINVAL);
   1498    1.1       cgd 
   1499    1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1500    1.1       cgd 		return (EINVAL);
   1501    1.1       cgd 	/*
   1502    1.1       cgd 	 * Restore the user-supplied information
   1503    1.1       cgd 	 */
   1504    1.1       cgd 	if (ksc.sc_onstack)
   1505    1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1506    1.1       cgd 	else
   1507    1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1508    1.1       cgd 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1509    1.1       cgd 
   1510   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1511   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1512   1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1513    1.1       cgd 
   1514    1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1515   1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1516    1.1       cgd 
   1517    1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1518    1.1       cgd 	if (p == fpcurproc)
   1519    1.1       cgd 		fpcurproc = NULL;
   1520    1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1521    1.1       cgd 	    sizeof(struct fpreg));
   1522    1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1523    1.1       cgd 
   1524    1.1       cgd #ifdef DEBUG
   1525    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1526   1.46  christos 		printf("sigreturn(%d): returns\n", p->p_pid);
   1527    1.1       cgd #endif
   1528    1.1       cgd 	return (EJUSTRETURN);
   1529    1.1       cgd }
   1530    1.1       cgd 
   1531    1.1       cgd /*
   1532    1.1       cgd  * machine dependent system variables.
   1533    1.1       cgd  */
   1534   1.33       cgd int
   1535    1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1536    1.1       cgd 	int *name;
   1537    1.1       cgd 	u_int namelen;
   1538    1.1       cgd 	void *oldp;
   1539    1.1       cgd 	size_t *oldlenp;
   1540    1.1       cgd 	void *newp;
   1541    1.1       cgd 	size_t newlen;
   1542    1.1       cgd 	struct proc *p;
   1543    1.1       cgd {
   1544    1.1       cgd 	dev_t consdev;
   1545    1.1       cgd 
   1546    1.1       cgd 	/* all sysctl names at this level are terminal */
   1547    1.1       cgd 	if (namelen != 1)
   1548    1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1549    1.1       cgd 
   1550    1.1       cgd 	switch (name[0]) {
   1551    1.1       cgd 	case CPU_CONSDEV:
   1552    1.1       cgd 		if (cn_tab != NULL)
   1553    1.1       cgd 			consdev = cn_tab->cn_dev;
   1554    1.1       cgd 		else
   1555    1.1       cgd 			consdev = NODEV;
   1556    1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1557    1.1       cgd 			sizeof consdev));
   1558   1.30       cgd 
   1559   1.30       cgd 	case CPU_ROOT_DEVICE:
   1560   1.64   thorpej 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1561   1.64   thorpej 		    root_device->dv_xname));
   1562   1.36       cgd 
   1563   1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1564   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1565   1.36       cgd 		    &alpha_unaligned_print));
   1566   1.36       cgd 
   1567   1.36       cgd 	case CPU_UNALIGNED_FIX:
   1568   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1569   1.36       cgd 		    &alpha_unaligned_fix));
   1570   1.36       cgd 
   1571   1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1572   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1573   1.36       cgd 		    &alpha_unaligned_sigbus));
   1574   1.61       cgd 
   1575   1.61       cgd 	case CPU_BOOTED_KERNEL:
   1576  1.102       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1577  1.102       cgd 		    bootinfo.booted_kernel));
   1578   1.30       cgd 
   1579    1.1       cgd 	default:
   1580    1.1       cgd 		return (EOPNOTSUPP);
   1581    1.1       cgd 	}
   1582    1.1       cgd 	/* NOTREACHED */
   1583    1.1       cgd }
   1584    1.1       cgd 
   1585    1.1       cgd /*
   1586    1.1       cgd  * Set registers on exec.
   1587    1.1       cgd  */
   1588    1.1       cgd void
   1589   1.85   mycroft setregs(p, pack, stack)
   1590    1.1       cgd 	register struct proc *p;
   1591    1.5  christos 	struct exec_package *pack;
   1592    1.1       cgd 	u_long stack;
   1593    1.1       cgd {
   1594    1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1595   1.56       cgd 	extern struct proc *fpcurproc;
   1596   1.56       cgd #ifdef DEBUG
   1597    1.1       cgd 	int i;
   1598   1.56       cgd #endif
   1599   1.43       cgd 
   1600   1.43       cgd #ifdef DEBUG
   1601   1.43       cgd 	/*
   1602   1.43       cgd 	 * Crash and dump, if the user requested it.
   1603   1.43       cgd 	 */
   1604   1.43       cgd 	if (boothowto & RB_DUMP)
   1605   1.43       cgd 		panic("crash requested by boot flags");
   1606   1.43       cgd #endif
   1607    1.1       cgd 
   1608    1.1       cgd #ifdef DEBUG
   1609   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1610    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1611    1.1       cgd #else
   1612   1.34       cgd 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1613    1.1       cgd #endif
   1614    1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1615    1.7       cgd #define FP_RN 2 /* XXX */
   1616    1.7       cgd 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1617   1.35       cgd 	alpha_pal_wrusp(stack);
   1618   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1619   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1620   1.41       cgd 
   1621   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1622   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1623   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1624   1.63       cgd 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1625   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1626    1.1       cgd 
   1627   1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   1628    1.1       cgd 	if (fpcurproc == p)
   1629    1.1       cgd 		fpcurproc = NULL;
   1630    1.1       cgd }
   1631    1.1       cgd 
   1632    1.1       cgd void
   1633    1.1       cgd netintr()
   1634    1.1       cgd {
   1635   1.49       cgd 	int n, s;
   1636   1.49       cgd 
   1637   1.49       cgd 	s = splhigh();
   1638   1.49       cgd 	n = netisr;
   1639   1.49       cgd 	netisr = 0;
   1640   1.49       cgd 	splx(s);
   1641   1.49       cgd 
   1642   1.49       cgd #define	DONETISR(bit, fn)						\
   1643   1.49       cgd 	do {								\
   1644   1.49       cgd 		if (n & (1 << (bit)))					\
   1645   1.49       cgd 			fn;						\
   1646   1.49       cgd 	} while (0)
   1647   1.49       cgd 
   1648    1.1       cgd #ifdef INET
   1649   1.72       cgd #if NARP > 0
   1650   1.49       cgd 	DONETISR(NETISR_ARP, arpintr());
   1651   1.72       cgd #endif
   1652   1.49       cgd 	DONETISR(NETISR_IP, ipintr());
   1653   1.70  christos #endif
   1654   1.70  christos #ifdef NETATALK
   1655   1.70  christos 	DONETISR(NETISR_ATALK, atintr());
   1656    1.1       cgd #endif
   1657    1.1       cgd #ifdef NS
   1658   1.49       cgd 	DONETISR(NETISR_NS, nsintr());
   1659    1.1       cgd #endif
   1660    1.1       cgd #ifdef ISO
   1661   1.49       cgd 	DONETISR(NETISR_ISO, clnlintr());
   1662    1.1       cgd #endif
   1663    1.1       cgd #ifdef CCITT
   1664   1.49       cgd 	DONETISR(NETISR_CCITT, ccittintr());
   1665   1.49       cgd #endif
   1666   1.49       cgd #ifdef NATM
   1667   1.49       cgd 	DONETISR(NETISR_NATM, natmintr());
   1668    1.1       cgd #endif
   1669   1.49       cgd #if NPPP > 1
   1670   1.49       cgd 	DONETISR(NETISR_PPP, pppintr());
   1671    1.8       cgd #endif
   1672   1.49       cgd 
   1673   1.49       cgd #undef DONETISR
   1674    1.1       cgd }
   1675    1.1       cgd 
   1676    1.1       cgd void
   1677    1.1       cgd do_sir()
   1678    1.1       cgd {
   1679   1.58       cgd 	u_int64_t n;
   1680    1.1       cgd 
   1681   1.59       cgd 	do {
   1682   1.60       cgd 		(void)splhigh();
   1683   1.58       cgd 		n = ssir;
   1684   1.58       cgd 		ssir = 0;
   1685   1.60       cgd 		splsoft();		/* don't recurse through spl0() */
   1686   1.59       cgd 
   1687   1.59       cgd #define	DO_SIR(bit, fn)							\
   1688   1.59       cgd 		do {							\
   1689   1.60       cgd 			if (n & (bit)) {				\
   1690   1.59       cgd 				cnt.v_soft++;				\
   1691   1.59       cgd 				fn;					\
   1692   1.59       cgd 			}						\
   1693   1.59       cgd 		} while (0)
   1694   1.59       cgd 
   1695   1.60       cgd 		DO_SIR(SIR_NET, netintr());
   1696   1.60       cgd 		DO_SIR(SIR_CLOCK, softclock());
   1697   1.60       cgd 
   1698   1.60       cgd #undef DO_SIR
   1699   1.59       cgd 	} while (ssir != 0);
   1700    1.1       cgd }
   1701    1.1       cgd 
   1702    1.1       cgd int
   1703    1.1       cgd spl0()
   1704    1.1       cgd {
   1705    1.1       cgd 
   1706   1.59       cgd 	if (ssir)
   1707   1.59       cgd 		do_sir();		/* it lowers the IPL itself */
   1708    1.1       cgd 
   1709   1.32       cgd 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   1710    1.1       cgd }
   1711    1.1       cgd 
   1712    1.1       cgd /*
   1713    1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1714    1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1715   1.52       cgd  * into queues, Remrunqueue removes them from queues.  The running process is
   1716   1.52       cgd  * on no queue, other processes are on a queue related to p->p_priority,
   1717   1.52       cgd  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1718   1.52       cgd  * available queues.
   1719    1.1       cgd  */
   1720    1.1       cgd /*
   1721    1.1       cgd  * setrunqueue(p)
   1722    1.1       cgd  *	proc *p;
   1723    1.1       cgd  *
   1724    1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1725    1.1       cgd  */
   1726    1.1       cgd 
   1727    1.1       cgd void
   1728    1.1       cgd setrunqueue(p)
   1729    1.1       cgd 	struct proc *p;
   1730    1.1       cgd {
   1731    1.1       cgd 	int bit;
   1732    1.1       cgd 
   1733    1.1       cgd 	/* firewall: p->p_back must be NULL */
   1734    1.1       cgd 	if (p->p_back != NULL)
   1735    1.1       cgd 		panic("setrunqueue");
   1736    1.1       cgd 
   1737    1.1       cgd 	bit = p->p_priority >> 2;
   1738    1.1       cgd 	whichqs |= (1 << bit);
   1739    1.1       cgd 	p->p_forw = (struct proc *)&qs[bit];
   1740    1.1       cgd 	p->p_back = qs[bit].ph_rlink;
   1741    1.1       cgd 	p->p_back->p_forw = p;
   1742    1.1       cgd 	qs[bit].ph_rlink = p;
   1743    1.1       cgd }
   1744    1.1       cgd 
   1745    1.1       cgd /*
   1746   1.52       cgd  * remrunqueue(p)
   1747    1.1       cgd  *
   1748    1.1       cgd  * Call should be made at splclock().
   1749    1.1       cgd  */
   1750    1.1       cgd void
   1751   1.52       cgd remrunqueue(p)
   1752    1.1       cgd 	struct proc *p;
   1753    1.1       cgd {
   1754    1.1       cgd 	int bit;
   1755    1.1       cgd 
   1756    1.1       cgd 	bit = p->p_priority >> 2;
   1757    1.1       cgd 	if ((whichqs & (1 << bit)) == 0)
   1758   1.52       cgd 		panic("remrunqueue");
   1759    1.1       cgd 
   1760    1.1       cgd 	p->p_back->p_forw = p->p_forw;
   1761    1.1       cgd 	p->p_forw->p_back = p->p_back;
   1762    1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   1763    1.1       cgd 
   1764    1.1       cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1765    1.1       cgd 		whichqs &= ~(1 << bit);
   1766    1.1       cgd }
   1767    1.1       cgd 
   1768    1.1       cgd /*
   1769    1.1       cgd  * Return the best possible estimate of the time in the timeval
   1770    1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1771    1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   1772    1.1       cgd  * previous call.
   1773    1.1       cgd  */
   1774    1.1       cgd void
   1775    1.1       cgd microtime(tvp)
   1776    1.1       cgd 	register struct timeval *tvp;
   1777    1.1       cgd {
   1778    1.1       cgd 	int s = splclock();
   1779    1.1       cgd 	static struct timeval lasttime;
   1780    1.1       cgd 
   1781    1.1       cgd 	*tvp = time;
   1782    1.1       cgd #ifdef notdef
   1783    1.1       cgd 	tvp->tv_usec += clkread();
   1784    1.1       cgd 	while (tvp->tv_usec > 1000000) {
   1785    1.1       cgd 		tvp->tv_sec++;
   1786    1.1       cgd 		tvp->tv_usec -= 1000000;
   1787    1.1       cgd 	}
   1788    1.1       cgd #endif
   1789    1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1790    1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1791    1.1       cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1792    1.1       cgd 		tvp->tv_sec++;
   1793    1.1       cgd 		tvp->tv_usec -= 1000000;
   1794    1.1       cgd 	}
   1795    1.1       cgd 	lasttime = *tvp;
   1796    1.1       cgd 	splx(s);
   1797   1.15       cgd }
   1798   1.15       cgd 
   1799   1.15       cgd /*
   1800   1.15       cgd  * Wait "n" microseconds.
   1801   1.15       cgd  */
   1802   1.32       cgd void
   1803   1.15       cgd delay(n)
   1804   1.32       cgd 	unsigned long n;
   1805   1.15       cgd {
   1806   1.15       cgd 	long N = cycles_per_usec * (n);
   1807   1.15       cgd 
   1808   1.15       cgd 	while (N > 0)				/* XXX */
   1809   1.15       cgd 		N -= 3;				/* XXX */
   1810    1.1       cgd }
   1811    1.1       cgd 
   1812    1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   1813   1.55       cgd void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   1814   1.85   mycroft 	    u_long));
   1815   1.55       cgd 
   1816    1.1       cgd void
   1817   1.85   mycroft cpu_exec_ecoff_setregs(p, epp, stack)
   1818    1.1       cgd 	struct proc *p;
   1819   1.19       cgd 	struct exec_package *epp;
   1820    1.5  christos 	u_long stack;
   1821    1.1       cgd {
   1822   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1823    1.1       cgd 
   1824   1.85   mycroft 	setregs(p, epp, stack);
   1825   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1826    1.1       cgd }
   1827    1.1       cgd 
   1828    1.1       cgd /*
   1829    1.1       cgd  * cpu_exec_ecoff_hook():
   1830    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   1831    1.1       cgd  *
   1832    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1833    1.1       cgd  *
   1834    1.1       cgd  */
   1835    1.1       cgd int
   1836   1.19       cgd cpu_exec_ecoff_hook(p, epp)
   1837    1.1       cgd 	struct proc *p;
   1838    1.1       cgd 	struct exec_package *epp;
   1839    1.1       cgd {
   1840   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1841    1.5  christos 	extern struct emul emul_netbsd;
   1842    1.5  christos #ifdef COMPAT_OSF1
   1843    1.5  christos 	extern struct emul emul_osf1;
   1844    1.5  christos #endif
   1845    1.1       cgd 
   1846   1.19       cgd 	switch (execp->f.f_magic) {
   1847    1.5  christos #ifdef COMPAT_OSF1
   1848    1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   1849    1.5  christos 		epp->ep_emul = &emul_osf1;
   1850    1.1       cgd 		break;
   1851    1.5  christos #endif
   1852    1.1       cgd 
   1853    1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1854    1.5  christos 		epp->ep_emul = &emul_netbsd;
   1855    1.1       cgd 		break;
   1856    1.1       cgd 
   1857    1.1       cgd 	default:
   1858   1.12       cgd 		return ENOEXEC;
   1859    1.1       cgd 	}
   1860    1.1       cgd 	return 0;
   1861    1.1       cgd }
   1862    1.1       cgd #endif
   1863   1.50       cgd 
   1864   1.50       cgd /* XXX XXX BEGIN XXX XXX */
   1865   1.50       cgd vm_offset_t alpha_XXX_dmamap_or;				/* XXX */
   1866   1.50       cgd 								/* XXX */
   1867   1.50       cgd vm_offset_t							/* XXX */
   1868   1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   1869   1.51       cgd 	vm_offset_t v;						/* XXX */
   1870   1.50       cgd {								/* XXX */
   1871   1.50       cgd 								/* XXX */
   1872   1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   1873   1.50       cgd }								/* XXX */
   1874   1.50       cgd /* XXX XXX END XXX XXX */
   1875