machdep.c revision 1.108 1 1.108 cgd /* $NetBSD: machdep.c,v 1.108 1998/02/14 01:17:19 cgd Exp $ */
2 1.1 cgd
3 1.1 cgd /*
4 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 1.1 cgd * All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Author: Chris G. Demetriou
8 1.1 cgd *
9 1.1 cgd * Permission to use, copy, modify and distribute this software and
10 1.1 cgd * its documentation is hereby granted, provided that both the copyright
11 1.1 cgd * notice and this permission notice appear in all copies of the
12 1.1 cgd * software, derivative works or modified versions, and any portions
13 1.1 cgd * thereof, and that both notices appear in supporting documentation.
14 1.1 cgd *
15 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 1.1 cgd *
19 1.1 cgd * Carnegie Mellon requests users of this software to return to
20 1.1 cgd *
21 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 1.1 cgd * School of Computer Science
23 1.1 cgd * Carnegie Mellon University
24 1.1 cgd * Pittsburgh PA 15213-3890
25 1.1 cgd *
26 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
27 1.1 cgd * rights to redistribute these changes.
28 1.1 cgd */
29 1.74 cgd
30 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
31 1.75 cgd
32 1.108 cgd __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.108 1998/02/14 01:17:19 cgd Exp $");
33 1.1 cgd
34 1.1 cgd #include <sys/param.h>
35 1.1 cgd #include <sys/systm.h>
36 1.1 cgd #include <sys/signalvar.h>
37 1.1 cgd #include <sys/kernel.h>
38 1.1 cgd #include <sys/map.h>
39 1.1 cgd #include <sys/proc.h>
40 1.1 cgd #include <sys/buf.h>
41 1.1 cgd #include <sys/reboot.h>
42 1.28 cgd #include <sys/device.h>
43 1.1 cgd #include <sys/file.h>
44 1.1 cgd #ifdef REAL_CLISTS
45 1.1 cgd #include <sys/clist.h>
46 1.1 cgd #endif
47 1.1 cgd #include <sys/callout.h>
48 1.1 cgd #include <sys/malloc.h>
49 1.1 cgd #include <sys/mbuf.h>
50 1.1 cgd #include <sys/msgbuf.h>
51 1.1 cgd #include <sys/ioctl.h>
52 1.1 cgd #include <sys/tty.h>
53 1.1 cgd #include <sys/user.h>
54 1.1 cgd #include <sys/exec.h>
55 1.1 cgd #include <sys/exec_ecoff.h>
56 1.91 mjacob #include <vm/vm.h>
57 1.1 cgd #include <sys/sysctl.h>
58 1.43 cgd #include <sys/core.h>
59 1.43 cgd #include <sys/kcore.h>
60 1.43 cgd #include <machine/kcore.h>
61 1.1 cgd #ifdef SYSVMSG
62 1.1 cgd #include <sys/msg.h>
63 1.1 cgd #endif
64 1.1 cgd #ifdef SYSVSEM
65 1.1 cgd #include <sys/sem.h>
66 1.1 cgd #endif
67 1.1 cgd #ifdef SYSVSHM
68 1.1 cgd #include <sys/shm.h>
69 1.1 cgd #endif
70 1.1 cgd
71 1.1 cgd #include <sys/mount.h>
72 1.1 cgd #include <sys/syscallargs.h>
73 1.1 cgd
74 1.1 cgd #include <vm/vm_kern.h>
75 1.1 cgd
76 1.1 cgd #include <dev/cons.h>
77 1.1 cgd
78 1.81 thorpej #include <machine/autoconf.h>
79 1.1 cgd #include <machine/cpu.h>
80 1.1 cgd #include <machine/reg.h>
81 1.1 cgd #include <machine/rpb.h>
82 1.1 cgd #include <machine/prom.h>
83 1.73 cgd #include <machine/conf.h>
84 1.8 cgd
85 1.49 cgd #include <net/netisr.h>
86 1.33 cgd #include <net/if.h>
87 1.49 cgd
88 1.49 cgd #ifdef INET
89 1.33 cgd #include <netinet/in.h>
90 1.72 cgd #include <netinet/ip_var.h>
91 1.72 cgd #include "arp.h"
92 1.72 cgd #if NARP > 0
93 1.67 is #include <netinet/if_inarp.h>
94 1.72 cgd #endif
95 1.49 cgd #endif
96 1.49 cgd #ifdef NS
97 1.49 cgd #include <netns/ns_var.h>
98 1.49 cgd #endif
99 1.49 cgd #ifdef ISO
100 1.49 cgd #include <netiso/iso.h>
101 1.49 cgd #include <netiso/clnp.h>
102 1.49 cgd #endif
103 1.55 cgd #ifdef CCITT
104 1.55 cgd #include <netccitt/x25.h>
105 1.55 cgd #include <netccitt/pk.h>
106 1.55 cgd #include <netccitt/pk_extern.h>
107 1.55 cgd #endif
108 1.55 cgd #ifdef NATM
109 1.55 cgd #include <netnatm/natm.h>
110 1.55 cgd #endif
111 1.70 christos #ifdef NETATALK
112 1.70 christos #include <netatalk/at_extern.h>
113 1.70 christos #endif
114 1.49 cgd #include "ppp.h"
115 1.49 cgd #if NPPP > 0
116 1.49 cgd #include <net/ppp_defs.h>
117 1.49 cgd #include <net/if_ppp.h>
118 1.49 cgd #endif
119 1.1 cgd
120 1.81 thorpej #ifdef DDB
121 1.81 thorpej #include <machine/db_machdep.h>
122 1.81 thorpej #include <ddb/db_access.h>
123 1.81 thorpej #include <ddb/db_sym.h>
124 1.81 thorpej #include <ddb/db_extern.h>
125 1.81 thorpej #include <ddb/db_interface.h>
126 1.81 thorpej #endif
127 1.81 thorpej
128 1.1 cgd vm_map_t buffer_map;
129 1.1 cgd
130 1.1 cgd /*
131 1.1 cgd * Declare these as initialized data so we can patch them.
132 1.1 cgd */
133 1.1 cgd int nswbuf = 0;
134 1.1 cgd #ifdef NBUF
135 1.1 cgd int nbuf = NBUF;
136 1.1 cgd #else
137 1.1 cgd int nbuf = 0;
138 1.1 cgd #endif
139 1.1 cgd #ifdef BUFPAGES
140 1.1 cgd int bufpages = BUFPAGES;
141 1.1 cgd #else
142 1.1 cgd int bufpages = 0;
143 1.1 cgd #endif
144 1.86 leo caddr_t msgbufaddr;
145 1.86 leo
146 1.1 cgd int maxmem; /* max memory per process */
147 1.7 cgd
148 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
149 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
150 1.7 cgd int firstusablepage; /* first usable memory page */
151 1.7 cgd int lastusablepage; /* last usable memory page */
152 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
153 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
154 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
155 1.1 cgd
156 1.1 cgd int cputype; /* system type, from the RPB */
157 1.1 cgd
158 1.1 cgd /*
159 1.1 cgd * XXX We need an address to which we can assign things so that they
160 1.1 cgd * won't be optimized away because we didn't use the value.
161 1.1 cgd */
162 1.1 cgd u_int32_t no_optimize;
163 1.1 cgd
164 1.1 cgd /* the following is used externally (sysctl_hw) */
165 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
166 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
167 1.29 cgd char cpu_model[128];
168 1.1 cgd
169 1.1 cgd struct user *proc0paddr;
170 1.1 cgd
171 1.1 cgd /* Number of machine cycles per microsecond */
172 1.1 cgd u_int64_t cycles_per_usec;
173 1.1 cgd
174 1.7 cgd /* number of cpus in the box. really! */
175 1.7 cgd int ncpus;
176 1.7 cgd
177 1.102 cgd struct bootinfo_kernel bootinfo;
178 1.81 thorpej
179 1.89 mjacob struct platform platform;
180 1.89 mjacob
181 1.100 thorpej u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
182 1.100 thorpej u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
183 1.100 thorpej u_int32_t vm_phys_size = _VM_PHYS_SIZE;
184 1.90 mjacob
185 1.81 thorpej #ifdef DDB
186 1.81 thorpej /* start and end of kernel symbol table */
187 1.81 thorpej void *ksym_start, *ksym_end;
188 1.81 thorpej #endif
189 1.81 thorpej
190 1.30 cgd /* for cpu_sysctl() */
191 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
192 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
193 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
194 1.30 cgd
195 1.95 thorpej caddr_t allocsys __P((caddr_t));
196 1.55 cgd int cpu_dump __P((void));
197 1.55 cgd int cpu_dumpsize __P((void));
198 1.55 cgd void dumpsys __P((void));
199 1.55 cgd void identifycpu __P((void));
200 1.55 cgd void netintr __P((void));
201 1.55 cgd void printregs __P((struct reg *));
202 1.33 cgd
203 1.55 cgd void
204 1.102 cgd alpha_init(pfn, ptb, bim, bip, biv)
205 1.1 cgd u_long pfn; /* first free PFN number */
206 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
207 1.81 thorpej u_long bim; /* bootinfo magic */
208 1.81 thorpej u_long bip; /* bootinfo pointer */
209 1.102 cgd u_long biv; /* bootinfo version */
210 1.1 cgd {
211 1.95 thorpej extern char kernel_text[], _end[];
212 1.1 cgd struct mddt *mddtp;
213 1.7 cgd int i, mddtweird;
214 1.95 thorpej vm_offset_t kernstart, kernend;
215 1.95 thorpej vm_size_t size;
216 1.1 cgd char *p;
217 1.95 thorpej caddr_t v;
218 1.95 thorpej caddr_t start, w;
219 1.106 cgd char *bootinfo_msg;
220 1.106 cgd
221 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
222 1.1 cgd
223 1.1 cgd /*
224 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
225 1.1 cgd * Make sure the instruction and data streams are consistent.
226 1.1 cgd */
227 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
228 1.32 cgd alpha_pal_wrfen(0);
229 1.37 cgd ALPHA_TBIA();
230 1.32 cgd alpha_pal_imb();
231 1.1 cgd
232 1.1 cgd /*
233 1.106 cgd * Get critical system information (if possible, from the
234 1.106 cgd * information provided by the boot program).
235 1.81 thorpej */
236 1.106 cgd bootinfo_msg = NULL;
237 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
238 1.102 cgd if (biv == 0) { /* backward compat */
239 1.102 cgd biv = *(u_long *)bip;
240 1.102 cgd bip += 8;
241 1.102 cgd }
242 1.102 cgd switch (biv) {
243 1.102 cgd case 1: {
244 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
245 1.102 cgd
246 1.102 cgd bootinfo.ssym = v1p->ssym;
247 1.102 cgd bootinfo.esym = v1p->esym;
248 1.106 cgd /* hwrpb may not be provided by boot block in v1 */
249 1.106 cgd if (v1p->hwrpb != NULL) {
250 1.106 cgd bootinfo.hwrpb_phys =
251 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys;
252 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize;
253 1.106 cgd } else {
254 1.106 cgd bootinfo.hwrpb_phys =
255 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys;
256 1.106 cgd bootinfo.hwrpb_size =
257 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size;
258 1.106 cgd }
259 1.102 cgd bcopy(v1p->boot_flags, bootinfo.boot_flags,
260 1.102 cgd min(sizeof v1p->boot_flags,
261 1.102 cgd sizeof bootinfo.boot_flags));
262 1.102 cgd bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
263 1.102 cgd min(sizeof v1p->booted_kernel,
264 1.102 cgd sizeof bootinfo.booted_kernel));
265 1.106 cgd /* booted dev not provided in bootinfo */
266 1.106 cgd init_prom_interface((struct rpb *)
267 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
268 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
269 1.102 cgd sizeof bootinfo.booted_dev);
270 1.81 thorpej break;
271 1.102 cgd }
272 1.81 thorpej default:
273 1.106 cgd bootinfo_msg = "unknown bootinfo version";
274 1.102 cgd goto nobootinfo;
275 1.81 thorpej }
276 1.102 cgd } else {
277 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo";
278 1.102 cgd nobootinfo:
279 1.102 cgd bootinfo.ssym = (u_long)_end;
280 1.102 cgd bootinfo.esym = (u_long)_end;
281 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
282 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
283 1.106 cgd init_prom_interface((struct rpb *)HWRPB_ADDR);
284 1.102 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
285 1.102 cgd sizeof bootinfo.boot_flags);
286 1.102 cgd prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
287 1.102 cgd sizeof bootinfo.booted_kernel);
288 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
289 1.102 cgd sizeof bootinfo.booted_dev);
290 1.102 cgd }
291 1.102 cgd
292 1.81 thorpej /*
293 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for
294 1.106 cgd * lots of things.
295 1.106 cgd */
296 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
297 1.106 cgd
298 1.106 cgd /*
299 1.106 cgd * Remember how many cycles there are per microsecond,
300 1.106 cgd * so that we can use delay(). Round up, for safety.
301 1.106 cgd */
302 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
303 1.106 cgd
304 1.106 cgd /*
305 1.106 cgd * Initalize the (temporary) bootstrap console interface, so
306 1.106 cgd * we can use printf until the VM system starts being setup.
307 1.106 cgd * The real console is initialized before then.
308 1.106 cgd */
309 1.106 cgd init_bootstrap_console();
310 1.106 cgd
311 1.106 cgd /* OUTPUT NOW ALLOWED */
312 1.106 cgd
313 1.106 cgd /* delayed from above */
314 1.106 cgd if (bootinfo_msg)
315 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
316 1.106 cgd bootinfo_msg, bim, bip, biv);
317 1.106 cgd
318 1.106 cgd /*
319 1.1 cgd * Point interrupt/exception vectors to our own.
320 1.1 cgd */
321 1.36 cgd alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
322 1.36 cgd alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
323 1.36 cgd alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
324 1.36 cgd alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
325 1.36 cgd alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
326 1.36 cgd alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
327 1.36 cgd
328 1.36 cgd /*
329 1.76 cgd * Clear pending machine checks and error reports, and enable
330 1.76 cgd * system- and processor-correctable error reporting.
331 1.36 cgd */
332 1.76 cgd alpha_pal_wrmces(alpha_pal_rdmces() &
333 1.76 cgd ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
334 1.1 cgd
335 1.1 cgd /*
336 1.106 cgd * Find out what hardware we're on, and do basic initialization.
337 1.106 cgd */
338 1.106 cgd cputype = hwrpb->rpb_type;
339 1.106 cgd if (cputype >= ncpuinit) {
340 1.106 cgd platform_not_supported();
341 1.106 cgd /* NOTREACHED */
342 1.106 cgd }
343 1.106 cgd (*cpuinit[cputype].init)();
344 1.106 cgd strcpy(cpu_model, platform.model);
345 1.106 cgd
346 1.106 cgd /*
347 1.106 cgd * Initalize the real console, so the the bootstrap console is
348 1.106 cgd * no longer necessary.
349 1.106 cgd */
350 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
351 1.106 cgd if (!pmap_uses_prom_console())
352 1.106 cgd #endif
353 1.106 cgd (*platform.cons_init)();
354 1.106 cgd
355 1.106 cgd #ifdef DIAGNOSTIC
356 1.106 cgd /* Paranoid sanity checking */
357 1.106 cgd
358 1.106 cgd /* We should always be running on the the primary. */
359 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
360 1.106 cgd
361 1.106 cgd /* On single-CPU systypes, the primary should always be CPU 0. */
362 1.106 cgd if (cputype != ST_DEC_21000)
363 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0);
364 1.106 cgd #endif
365 1.106 cgd
366 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */
367 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
368 1.106 cgd /*
369 1.106 cgd * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
370 1.106 cgd * XXX pmap_uses_prom_console() evaluates to non-zero.)
371 1.106 cgd */
372 1.106 cgd #endif
373 1.106 cgd
374 1.106 cgd /*
375 1.106 cgd * find out this system's page size
376 1.95 thorpej */
377 1.95 thorpej PAGE_SIZE = hwrpb->rpb_page_size;
378 1.95 thorpej if (PAGE_SIZE != 8192)
379 1.95 thorpej panic("page size %d != 8192?!", PAGE_SIZE);
380 1.95 thorpej
381 1.95 thorpej /*
382 1.95 thorpej * Initialize PAGE_SIZE-dependent variables.
383 1.95 thorpej */
384 1.95 thorpej vm_set_page_size();
385 1.95 thorpej
386 1.95 thorpej /*
387 1.101 cgd * Find the beginning and end of the kernel (and leave a
388 1.101 cgd * bit of space before the beginning for the bootstrap
389 1.101 cgd * stack).
390 1.95 thorpej */
391 1.101 cgd kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
392 1.95 thorpej #ifdef DDB
393 1.102 cgd ksym_start = (void *)bootinfo.ssym;
394 1.102 cgd ksym_end = (void *)bootinfo.esym;
395 1.102 cgd kernend = (vm_offset_t)round_page(ksym_end);
396 1.102 cgd #else
397 1.102 cgd kernend = (vm_offset_t)round_page(_end);
398 1.95 thorpej #endif
399 1.95 thorpej
400 1.95 thorpej /*
401 1.1 cgd * Find out how much memory is available, by looking at
402 1.7 cgd * the memory cluster descriptors. This also tries to do
403 1.7 cgd * its best to detect things things that have never been seen
404 1.7 cgd * before...
405 1.7 cgd *
406 1.1 cgd * XXX Assumes that the first "system" cluster is the
407 1.7 cgd * only one we can use. Is the second (etc.) system cluster
408 1.7 cgd * (if one happens to exist) guaranteed to be contiguous? or...?
409 1.1 cgd */
410 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
411 1.7 cgd
412 1.7 cgd /*
413 1.7 cgd * BEGIN MDDT WEIRDNESS CHECKING
414 1.7 cgd */
415 1.7 cgd mddtweird = 0;
416 1.7 cgd
417 1.7 cgd #define cnt mddtp->mddt_cluster_cnt
418 1.7 cgd #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
419 1.7 cgd if (cnt != 2 && cnt != 3) {
420 1.46 christos printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
421 1.7 cgd mddtweird = 1;
422 1.7 cgd } else if (usage(0) != MDDT_PALCODE ||
423 1.7 cgd usage(1) != MDDT_SYSTEM ||
424 1.7 cgd (cnt == 3 && usage(2) != MDDT_PALCODE)) {
425 1.7 cgd mddtweird = 1;
426 1.46 christos printf("WARNING: %ld mem clusters, but weird config\n", cnt);
427 1.7 cgd }
428 1.7 cgd
429 1.7 cgd for (i = 0; i < cnt; i++) {
430 1.7 cgd if ((usage(i) & MDDT_mbz) != 0) {
431 1.46 christos printf("WARNING: mem cluster %d has weird usage %lx\n",
432 1.7 cgd i, usage(i));
433 1.7 cgd mddtweird = 1;
434 1.7 cgd }
435 1.7 cgd if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
436 1.46 christos printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
437 1.7 cgd mddtweird = 1;
438 1.7 cgd }
439 1.7 cgd /* XXX other things to check? */
440 1.7 cgd }
441 1.7 cgd #undef cnt
442 1.7 cgd #undef usage
443 1.7 cgd
444 1.7 cgd if (mddtweird) {
445 1.46 christos printf("\n");
446 1.46 christos printf("complete memory cluster information:\n");
447 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
448 1.46 christos printf("mddt %d:\n", i);
449 1.46 christos printf("\tpfn %lx\n",
450 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
451 1.46 christos printf("\tcnt %lx\n",
452 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
453 1.46 christos printf("\ttest %lx\n",
454 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
455 1.46 christos printf("\tbva %lx\n",
456 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
457 1.46 christos printf("\tbpa %lx\n",
458 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
459 1.46 christos printf("\tbcksum %lx\n",
460 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
461 1.46 christos printf("\tusage %lx\n",
462 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
463 1.2 cgd }
464 1.46 christos printf("\n");
465 1.2 cgd }
466 1.7 cgd /*
467 1.7 cgd * END MDDT WEIRDNESS CHECKING
468 1.7 cgd */
469 1.2 cgd
470 1.1 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
471 1.7 cgd totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
472 1.7 cgd #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
473 1.7 cgd #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
474 1.7 cgd if ((usage(i) & MDDT_mbz) != 0)
475 1.7 cgd unknownmem += pgcnt(i);
476 1.7 cgd else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
477 1.7 cgd resvmem += pgcnt(i);
478 1.7 cgd else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
479 1.7 cgd /*
480 1.7 cgd * assumes that the system cluster listed is
481 1.7 cgd * one we're in...
482 1.7 cgd */
483 1.7 cgd if (physmem != resvmem) {
484 1.7 cgd physmem += pgcnt(i);
485 1.7 cgd firstusablepage =
486 1.7 cgd mddtp->mddt_clusters[i].mddt_pfn;
487 1.7 cgd lastusablepage = firstusablepage + pgcnt(i) - 1;
488 1.7 cgd } else
489 1.7 cgd unusedmem += pgcnt(i);
490 1.7 cgd }
491 1.7 cgd #undef usage
492 1.7 cgd #undef pgcnt
493 1.1 cgd }
494 1.7 cgd if (totalphysmem == 0)
495 1.1 cgd panic("can't happen: system seems to have no memory!");
496 1.88 mjacob #ifdef LIMITMEM
497 1.88 mjacob if (totalphysmem >= btoc(LIMITMEM << 20)) {
498 1.88 mjacob u_int64_t ovf = totalphysmem - btoc(LIMITMEM << 20);
499 1.88 mjacob printf("********LIMITING MEMORY TO %dMB**********\n", LIMITMEM);
500 1.88 mjacob physmem = totalphysmem = btoc(LIMITMEM << 20);
501 1.88 mjacob unusedmem += ovf;
502 1.88 mjacob lastusablepage = firstusablepage + physmem - 1;
503 1.88 mjacob }
504 1.88 mjacob #endif
505 1.1 cgd maxmem = physmem;
506 1.1 cgd
507 1.7 cgd #if 0
508 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
509 1.46 christos printf("physmem = %d\n", physmem);
510 1.46 christos printf("firstusablepage = %d\n", firstusablepage);
511 1.46 christos printf("lastusablepage = %d\n", lastusablepage);
512 1.46 christos printf("resvmem = %d\n", resvmem);
513 1.46 christos printf("unusedmem = %d\n", unusedmem);
514 1.46 christos printf("unknownmem = %d\n", unknownmem);
515 1.7 cgd #endif
516 1.90 mjacob
517 1.90 mjacob /*
518 1.90 mjacob * Adjust some parameters if the amount of physmem
519 1.90 mjacob * available would cause us to croak. This is completely
520 1.90 mjacob * eyeballed and isn't meant to be the final answer.
521 1.90 mjacob * vm_phys_size is probably the only one to really worry
522 1.90 mjacob * about.
523 1.90 mjacob *
524 1.90 mjacob * It's for booting a GENERIC kernel on a large memory platform.
525 1.90 mjacob */
526 1.90 mjacob if (physmem >= btoc(128 << 20)) {
527 1.90 mjacob vm_mbuf_size <<= 1;
528 1.93 mjacob vm_kmem_size <<= 3;
529 1.93 mjacob vm_phys_size <<= 2;
530 1.90 mjacob }
531 1.7 cgd
532 1.1 cgd /*
533 1.1 cgd * Initialize error message buffer (at end of core).
534 1.1 cgd */
535 1.86 leo lastusablepage -= btoc(MSGBUFSIZE);
536 1.87 mjacob msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
537 1.86 leo initmsgbuf(msgbufaddr, alpha_round_page(MSGBUFSIZE));
538 1.1 cgd
539 1.1 cgd /*
540 1.95 thorpej * Init mapping for u page(s) for proc 0
541 1.1 cgd */
542 1.95 thorpej start = v = (caddr_t)kernend;
543 1.95 thorpej curproc->p_addr = proc0paddr = (struct user *)v;
544 1.95 thorpej v += UPAGES * NBPG;
545 1.1 cgd
546 1.1 cgd /*
547 1.95 thorpej * Allocate space for system data structures. These data structures
548 1.95 thorpej * are allocated here instead of cpu_startup() because physical
549 1.95 thorpej * memory is directly addressable. We don't have to map these into
550 1.95 thorpej * virtual address space.
551 1.95 thorpej */
552 1.95 thorpej size = (vm_size_t)allocsys(0);
553 1.95 thorpej w = allocsys(v);
554 1.95 thorpej if ((w - v) != size)
555 1.95 thorpej panic("alpha_init: table size inconsistency");
556 1.95 thorpej v = w;
557 1.1 cgd
558 1.1 cgd /*
559 1.1 cgd * Clear allocated memory.
560 1.1 cgd */
561 1.1 cgd bzero(start, v - start);
562 1.1 cgd
563 1.1 cgd /*
564 1.1 cgd * Initialize the virtual memory system, and set the
565 1.1 cgd * page table base register in proc 0's PCB.
566 1.1 cgd */
567 1.40 cgd #ifndef NEW_PMAP
568 1.32 cgd pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
569 1.40 cgd #else
570 1.40 cgd pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
571 1.40 cgd hwrpb->rpb_max_asn);
572 1.40 cgd #endif
573 1.1 cgd
574 1.1 cgd /*
575 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
576 1.3 cgd * address.
577 1.3 cgd */
578 1.3 cgd proc0.p_md.md_pcbpaddr =
579 1.32 cgd (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
580 1.3 cgd
581 1.3 cgd /*
582 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
583 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
584 1.3 cgd */
585 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
586 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
587 1.81 thorpej proc0.p_md.md_tf =
588 1.81 thorpej (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
589 1.38 cgd
590 1.40 cgd #ifdef NEW_PMAP
591 1.84 thorpej /*
592 1.84 thorpej * Set up the kernel address space in proc0's hwpcb.
593 1.84 thorpej */
594 1.84 thorpej PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
595 1.38 cgd #endif
596 1.1 cgd
597 1.1 cgd /*
598 1.25 cgd * Look at arguments passed to us and compute boothowto.
599 1.8 cgd */
600 1.1 cgd
601 1.8 cgd boothowto = RB_SINGLE;
602 1.1 cgd #ifdef KADB
603 1.1 cgd boothowto |= RB_KDB;
604 1.1 cgd #endif
605 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
606 1.26 cgd /*
607 1.26 cgd * Note that we'd really like to differentiate case here,
608 1.26 cgd * but the Alpha AXP Architecture Reference Manual
609 1.26 cgd * says that we shouldn't.
610 1.26 cgd */
611 1.8 cgd switch (*p) {
612 1.26 cgd case 'a': /* autoboot */
613 1.26 cgd case 'A':
614 1.26 cgd boothowto &= ~RB_SINGLE;
615 1.21 cgd break;
616 1.21 cgd
617 1.43 cgd #ifdef DEBUG
618 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
619 1.43 cgd case 'C':
620 1.43 cgd boothowto |= RB_DUMP;
621 1.43 cgd break;
622 1.43 cgd #endif
623 1.43 cgd
624 1.81 thorpej #if defined(KGDB) || defined(DDB)
625 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
626 1.81 thorpej case 'D':
627 1.81 thorpej boothowto |= RB_KDB;
628 1.81 thorpej break;
629 1.81 thorpej #endif
630 1.81 thorpej
631 1.36 cgd case 'h': /* always halt, never reboot */
632 1.36 cgd case 'H':
633 1.36 cgd boothowto |= RB_HALT;
634 1.8 cgd break;
635 1.8 cgd
636 1.21 cgd #if 0
637 1.8 cgd case 'm': /* mini root present in memory */
638 1.26 cgd case 'M':
639 1.8 cgd boothowto |= RB_MINIROOT;
640 1.8 cgd break;
641 1.21 cgd #endif
642 1.36 cgd
643 1.36 cgd case 'n': /* askname */
644 1.36 cgd case 'N':
645 1.36 cgd boothowto |= RB_ASKNAME;
646 1.65 cgd break;
647 1.65 cgd
648 1.65 cgd case 's': /* single-user (default, supported for sanity) */
649 1.65 cgd case 'S':
650 1.65 cgd boothowto |= RB_SINGLE;
651 1.65 cgd break;
652 1.65 cgd
653 1.65 cgd default:
654 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
655 1.36 cgd break;
656 1.1 cgd }
657 1.1 cgd }
658 1.1 cgd
659 1.7 cgd /*
660 1.106 cgd * Initialize debuggers, and break into them if appropriate.
661 1.106 cgd */
662 1.106 cgd #ifdef DDB
663 1.106 cgd db_machine_init();
664 1.106 cgd ddb_init(ksym_start, ksym_end);
665 1.106 cgd if (boothowto & RB_KDB)
666 1.106 cgd Debugger();
667 1.106 cgd #endif
668 1.106 cgd #ifdef KGDB
669 1.106 cgd if (boothowto & RB_KDB)
670 1.106 cgd kgdb_connect(0);
671 1.106 cgd #endif
672 1.106 cgd
673 1.106 cgd /*
674 1.7 cgd * Figure out the number of cpus in the box, from RPB fields.
675 1.7 cgd * Really. We mean it.
676 1.7 cgd */
677 1.7 cgd for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
678 1.7 cgd struct pcs *pcsp;
679 1.7 cgd
680 1.7 cgd pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
681 1.7 cgd (i * hwrpb->rpb_pcs_size));
682 1.7 cgd if ((pcsp->pcs_flags & PCS_PP) != 0)
683 1.7 cgd ncpus++;
684 1.7 cgd }
685 1.106 cgd
686 1.106 cgd /*
687 1.106 cgd * Figure out our clock frequency, from RPB fields.
688 1.106 cgd */
689 1.106 cgd hz = hwrpb->rpb_intr_freq >> 12;
690 1.106 cgd if (!(60 <= hz && hz <= 10240)) {
691 1.106 cgd hz = 1024;
692 1.106 cgd #ifdef DIAGNOSTIC
693 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
694 1.106 cgd hwrpb->rpb_intr_freq, hz);
695 1.106 cgd #endif
696 1.106 cgd }
697 1.106 cgd
698 1.95 thorpej }
699 1.95 thorpej
700 1.95 thorpej /*
701 1.95 thorpej * Allocate space for system data structures. We are given
702 1.95 thorpej * a starting virtual address and we return a final virtual
703 1.95 thorpej * address; along the way we set each data structure pointer.
704 1.95 thorpej *
705 1.95 thorpej * We call allocsys() with 0 to find out how much space we want,
706 1.95 thorpej * allocate that much and fill it with zeroes, and the call
707 1.95 thorpej * allocsys() again with the correct base virtual address.
708 1.95 thorpej */
709 1.95 thorpej caddr_t
710 1.95 thorpej allocsys(v)
711 1.95 thorpej caddr_t v;
712 1.95 thorpej {
713 1.95 thorpej
714 1.95 thorpej #define valloc(name, type, num) \
715 1.95 thorpej (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
716 1.95 thorpej #ifdef REAL_CLISTS
717 1.95 thorpej valloc(cfree, struct cblock, nclist);
718 1.95 thorpej #endif
719 1.95 thorpej valloc(callout, struct callout, ncallout);
720 1.95 thorpej #ifdef SYSVSHM
721 1.95 thorpej valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
722 1.95 thorpej #endif
723 1.95 thorpej #ifdef SYSVSEM
724 1.95 thorpej valloc(sema, struct semid_ds, seminfo.semmni);
725 1.95 thorpej valloc(sem, struct sem, seminfo.semmns);
726 1.95 thorpej /* This is pretty disgusting! */
727 1.95 thorpej valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
728 1.95 thorpej #endif
729 1.95 thorpej #ifdef SYSVMSG
730 1.95 thorpej valloc(msgpool, char, msginfo.msgmax);
731 1.95 thorpej valloc(msgmaps, struct msgmap, msginfo.msgseg);
732 1.95 thorpej valloc(msghdrs, struct msg, msginfo.msgtql);
733 1.95 thorpej valloc(msqids, struct msqid_ds, msginfo.msgmni);
734 1.95 thorpej #endif
735 1.95 thorpej
736 1.95 thorpej /*
737 1.95 thorpej * Determine how many buffers to allocate.
738 1.95 thorpej * We allocate 10% of memory for buffer space. Insure a
739 1.95 thorpej * minimum of 16 buffers. We allocate 1/2 as many swap buffer
740 1.95 thorpej * headers as file i/o buffers.
741 1.95 thorpej */
742 1.95 thorpej if (bufpages == 0)
743 1.95 thorpej bufpages = (physmem * 10) / (CLSIZE * 100);
744 1.95 thorpej if (nbuf == 0) {
745 1.95 thorpej nbuf = bufpages;
746 1.95 thorpej if (nbuf < 16)
747 1.95 thorpej nbuf = 16;
748 1.95 thorpej }
749 1.95 thorpej if (nswbuf == 0) {
750 1.95 thorpej nswbuf = (nbuf / 2) &~ 1; /* force even */
751 1.95 thorpej if (nswbuf > 256)
752 1.95 thorpej nswbuf = 256; /* sanity */
753 1.95 thorpej }
754 1.95 thorpej valloc(swbuf, struct buf, nswbuf);
755 1.95 thorpej valloc(buf, struct buf, nbuf);
756 1.95 thorpej return (v);
757 1.98 cgd #undef valloc
758 1.1 cgd }
759 1.1 cgd
760 1.18 cgd void
761 1.1 cgd consinit()
762 1.1 cgd {
763 1.81 thorpej
764 1.106 cgd /*
765 1.106 cgd * Everything related to console initialization is done
766 1.106 cgd * in alpha_init().
767 1.106 cgd */
768 1.106 cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
769 1.106 cgd printf("consinit: %susing prom console\n",
770 1.106 cgd pmap_uses_prom_console() ? "" : "not ");
771 1.81 thorpej #endif
772 1.1 cgd }
773 1.1 cgd
774 1.18 cgd void
775 1.1 cgd cpu_startup()
776 1.1 cgd {
777 1.1 cgd register unsigned i;
778 1.1 cgd int base, residual;
779 1.1 cgd vm_offset_t minaddr, maxaddr;
780 1.1 cgd vm_size_t size;
781 1.40 cgd #if defined(DEBUG)
782 1.1 cgd extern int pmapdebug;
783 1.1 cgd int opmapdebug = pmapdebug;
784 1.1 cgd
785 1.1 cgd pmapdebug = 0;
786 1.1 cgd #endif
787 1.1 cgd
788 1.1 cgd /*
789 1.1 cgd * Good {morning,afternoon,evening,night}.
790 1.1 cgd */
791 1.46 christos printf(version);
792 1.1 cgd identifycpu();
793 1.88 mjacob printf("real mem = %u (%u reserved for PROM, %u used by NetBSD)\n",
794 1.7 cgd ctob(totalphysmem), ctob(resvmem), ctob(physmem));
795 1.7 cgd if (unusedmem)
796 1.46 christos printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
797 1.7 cgd if (unknownmem)
798 1.46 christos printf("WARNING: %d bytes of memory with unknown purpose\n",
799 1.7 cgd ctob(unknownmem));
800 1.1 cgd
801 1.1 cgd /*
802 1.1 cgd * Allocate virtual address space for file I/O buffers.
803 1.1 cgd * Note they are different than the array of headers, 'buf',
804 1.1 cgd * and usually occupy more virtual memory than physical.
805 1.1 cgd */
806 1.1 cgd size = MAXBSIZE * nbuf;
807 1.1 cgd buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
808 1.1 cgd &maxaddr, size, TRUE);
809 1.1 cgd minaddr = (vm_offset_t)buffers;
810 1.1 cgd if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
811 1.1 cgd &minaddr, size, FALSE) != KERN_SUCCESS)
812 1.1 cgd panic("startup: cannot allocate buffers");
813 1.1 cgd base = bufpages / nbuf;
814 1.1 cgd residual = bufpages % nbuf;
815 1.1 cgd for (i = 0; i < nbuf; i++) {
816 1.1 cgd vm_size_t curbufsize;
817 1.1 cgd vm_offset_t curbuf;
818 1.1 cgd
819 1.1 cgd /*
820 1.1 cgd * First <residual> buffers get (base+1) physical pages
821 1.1 cgd * allocated for them. The rest get (base) physical pages.
822 1.1 cgd *
823 1.1 cgd * The rest of each buffer occupies virtual space,
824 1.1 cgd * but has no physical memory allocated for it.
825 1.1 cgd */
826 1.1 cgd curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
827 1.1 cgd curbufsize = CLBYTES * (i < residual ? base+1 : base);
828 1.1 cgd vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
829 1.1 cgd vm_map_simplify(buffer_map, curbuf);
830 1.1 cgd }
831 1.1 cgd /*
832 1.1 cgd * Allocate a submap for exec arguments. This map effectively
833 1.1 cgd * limits the number of processes exec'ing at any time.
834 1.1 cgd */
835 1.1 cgd exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
836 1.1 cgd 16 * NCARGS, TRUE);
837 1.1 cgd
838 1.1 cgd /*
839 1.1 cgd * Allocate a submap for physio
840 1.1 cgd */
841 1.1 cgd phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
842 1.1 cgd VM_PHYS_SIZE, TRUE);
843 1.1 cgd
844 1.1 cgd /*
845 1.69 thorpej * Finally, allocate mbuf cluster submap.
846 1.1 cgd */
847 1.1 cgd mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
848 1.1 cgd VM_MBUF_SIZE, FALSE);
849 1.1 cgd /*
850 1.1 cgd * Initialize callouts
851 1.1 cgd */
852 1.1 cgd callfree = callout;
853 1.1 cgd for (i = 1; i < ncallout; i++)
854 1.1 cgd callout[i-1].c_next = &callout[i];
855 1.1 cgd callout[i-1].c_next = NULL;
856 1.1 cgd
857 1.40 cgd #if defined(DEBUG)
858 1.1 cgd pmapdebug = opmapdebug;
859 1.1 cgd #endif
860 1.46 christos printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
861 1.46 christos printf("using %ld buffers containing %ld bytes of memory\n",
862 1.1 cgd (long)nbuf, (long)(bufpages * CLBYTES));
863 1.1 cgd
864 1.1 cgd /*
865 1.1 cgd * Set up buffers, so they can be used to read disk labels.
866 1.1 cgd */
867 1.1 cgd bufinit();
868 1.1 cgd
869 1.1 cgd /*
870 1.1 cgd * Configure the system.
871 1.1 cgd */
872 1.1 cgd configure();
873 1.48 cgd
874 1.48 cgd /*
875 1.48 cgd * Note that bootstrapping is finished, and set the HWRPB up
876 1.48 cgd * to do restarts.
877 1.48 cgd */
878 1.55 cgd hwrpb_restart_setup();
879 1.104 thorpej }
880 1.104 thorpej
881 1.104 thorpej /*
882 1.104 thorpej * Retrieve the platform name from the DSR.
883 1.104 thorpej */
884 1.104 thorpej const char *
885 1.104 thorpej alpha_dsr_sysname()
886 1.104 thorpej {
887 1.104 thorpej struct dsrdb *dsr;
888 1.104 thorpej const char *sysname;
889 1.104 thorpej
890 1.104 thorpej /*
891 1.104 thorpej * DSR does not exist on early HWRPB versions.
892 1.104 thorpej */
893 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
894 1.104 thorpej return (NULL);
895 1.104 thorpej
896 1.104 thorpej dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
897 1.104 thorpej sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
898 1.104 thorpej sizeof(u_int64_t)));
899 1.104 thorpej return (sysname);
900 1.104 thorpej }
901 1.104 thorpej
902 1.104 thorpej /*
903 1.104 thorpej * Lookup the system specified system variation in the provided table,
904 1.104 thorpej * returning the model string on match.
905 1.104 thorpej */
906 1.104 thorpej const char *
907 1.104 thorpej alpha_variation_name(variation, avtp)
908 1.104 thorpej u_int64_t variation;
909 1.104 thorpej const struct alpha_variation_table *avtp;
910 1.104 thorpej {
911 1.104 thorpej int i;
912 1.104 thorpej
913 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++)
914 1.104 thorpej if (avtp[i].avt_variation == variation)
915 1.104 thorpej return (avtp[i].avt_model);
916 1.104 thorpej return (NULL);
917 1.104 thorpej }
918 1.104 thorpej
919 1.104 thorpej /*
920 1.104 thorpej * Generate a default platform name based for unknown system variations.
921 1.104 thorpej */
922 1.104 thorpej const char *
923 1.104 thorpej alpha_unknown_sysname()
924 1.104 thorpej {
925 1.105 thorpej static char s[128]; /* safe size */
926 1.104 thorpej
927 1.105 thorpej sprintf(s, "%s family, unknown model variation 0x%lx",
928 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK);
929 1.104 thorpej return ((const char *)s);
930 1.1 cgd }
931 1.1 cgd
932 1.33 cgd void
933 1.1 cgd identifycpu()
934 1.1 cgd {
935 1.1 cgd
936 1.7 cgd /*
937 1.7 cgd * print out CPU identification information.
938 1.7 cgd */
939 1.46 christos printf("%s, %ldMHz\n", cpu_model,
940 1.7 cgd hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
941 1.46 christos printf("%ld byte page size, %d processor%s.\n",
942 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
943 1.7 cgd #if 0
944 1.7 cgd /* this isn't defined for any systems that we run on? */
945 1.46 christos printf("serial number 0x%lx 0x%lx\n",
946 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
947 1.7 cgd
948 1.7 cgd /* and these aren't particularly useful! */
949 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
950 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
951 1.7 cgd #endif
952 1.1 cgd }
953 1.1 cgd
954 1.1 cgd int waittime = -1;
955 1.7 cgd struct pcb dumppcb;
956 1.1 cgd
957 1.18 cgd void
958 1.68 gwr cpu_reboot(howto, bootstr)
959 1.1 cgd int howto;
960 1.39 mrg char *bootstr;
961 1.1 cgd {
962 1.1 cgd extern int cold;
963 1.1 cgd
964 1.1 cgd /* If system is cold, just halt. */
965 1.1 cgd if (cold) {
966 1.1 cgd howto |= RB_HALT;
967 1.1 cgd goto haltsys;
968 1.1 cgd }
969 1.1 cgd
970 1.36 cgd /* If "always halt" was specified as a boot flag, obey. */
971 1.36 cgd if ((boothowto & RB_HALT) != 0)
972 1.36 cgd howto |= RB_HALT;
973 1.36 cgd
974 1.7 cgd boothowto = howto;
975 1.7 cgd if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
976 1.1 cgd waittime = 0;
977 1.7 cgd vfs_shutdown();
978 1.1 cgd /*
979 1.1 cgd * If we've been adjusting the clock, the todr
980 1.1 cgd * will be out of synch; adjust it now.
981 1.1 cgd */
982 1.1 cgd resettodr();
983 1.1 cgd }
984 1.1 cgd
985 1.1 cgd /* Disable interrupts. */
986 1.1 cgd splhigh();
987 1.1 cgd
988 1.7 cgd /* If rebooting and a dump is requested do it. */
989 1.42 cgd #if 0
990 1.42 cgd if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
991 1.42 cgd #else
992 1.42 cgd if (howto & RB_DUMP)
993 1.42 cgd #endif
994 1.1 cgd dumpsys();
995 1.6 cgd
996 1.12 cgd haltsys:
997 1.12 cgd
998 1.6 cgd /* run any shutdown hooks */
999 1.6 cgd doshutdownhooks();
1000 1.1 cgd
1001 1.7 cgd #ifdef BOOTKEY
1002 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1003 1.7 cgd cngetc();
1004 1.46 christos printf("\n");
1005 1.7 cgd #endif
1006 1.7 cgd
1007 1.1 cgd /* Finally, halt/reboot the system. */
1008 1.46 christos printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1009 1.1 cgd prom_halt(howto & RB_HALT);
1010 1.1 cgd /*NOTREACHED*/
1011 1.1 cgd }
1012 1.1 cgd
1013 1.7 cgd /*
1014 1.7 cgd * These variables are needed by /sbin/savecore
1015 1.7 cgd */
1016 1.7 cgd u_long dumpmag = 0x8fca0101; /* magic number */
1017 1.7 cgd int dumpsize = 0; /* pages */
1018 1.7 cgd long dumplo = 0; /* blocks */
1019 1.7 cgd
1020 1.7 cgd /*
1021 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1022 1.43 cgd */
1023 1.43 cgd int
1024 1.43 cgd cpu_dumpsize()
1025 1.43 cgd {
1026 1.43 cgd int size;
1027 1.43 cgd
1028 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1029 1.108 cgd ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1030 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
1031 1.43 cgd return -1;
1032 1.43 cgd
1033 1.43 cgd return (1);
1034 1.43 cgd }
1035 1.43 cgd
1036 1.43 cgd /*
1037 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
1038 1.43 cgd */
1039 1.43 cgd int
1040 1.43 cgd cpu_dump()
1041 1.43 cgd {
1042 1.43 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1043 1.107 cgd char buf[dbtob(1)];
1044 1.107 cgd kcore_seg_t *segp;
1045 1.107 cgd cpu_kcore_hdr_t *cpuhdrp;
1046 1.107 cgd phys_ram_seg_t *memsegp;
1047 1.43 cgd
1048 1.107 cgd dump = bdevsw[major(dumpdev)].d_dump;
1049 1.43 cgd
1050 1.107 cgd bzero(buf, sizeof buf);
1051 1.43 cgd segp = (kcore_seg_t *)buf;
1052 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1053 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1054 1.107 cgd ALIGN(sizeof(*cpuhdrp))];
1055 1.43 cgd
1056 1.43 cgd /*
1057 1.43 cgd * Generate a segment header.
1058 1.43 cgd */
1059 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1060 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1061 1.43 cgd
1062 1.43 cgd /*
1063 1.107 cgd * Add the machine-dependent header info.
1064 1.43 cgd */
1065 1.44 cgd cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
1066 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
1067 1.107 cgd cpuhdrp->nmemsegs = 1;
1068 1.107 cgd
1069 1.107 cgd /*
1070 1.107 cgd * Fill in the memory segment descriptors.
1071 1.107 cgd */
1072 1.107 cgd memsegp[0].start = ctob(firstusablepage);
1073 1.107 cgd memsegp[0].size = ctob(physmem);
1074 1.43 cgd
1075 1.43 cgd return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1076 1.43 cgd }
1077 1.43 cgd
1078 1.43 cgd /*
1079 1.68 gwr * This is called by main to set dumplo and dumpsize.
1080 1.7 cgd * Dumps always skip the first CLBYTES of disk space
1081 1.7 cgd * in case there might be a disk label stored there.
1082 1.7 cgd * If there is extra space, put dump at the end to
1083 1.7 cgd * reduce the chance that swapping trashes it.
1084 1.7 cgd */
1085 1.7 cgd void
1086 1.68 gwr cpu_dumpconf()
1087 1.7 cgd {
1088 1.43 cgd int nblks, dumpblks; /* size of dump area */
1089 1.7 cgd int maj;
1090 1.7 cgd
1091 1.7 cgd if (dumpdev == NODEV)
1092 1.43 cgd goto bad;
1093 1.7 cgd maj = major(dumpdev);
1094 1.7 cgd if (maj < 0 || maj >= nblkdev)
1095 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1096 1.7 cgd if (bdevsw[maj].d_psize == NULL)
1097 1.43 cgd goto bad;
1098 1.7 cgd nblks = (*bdevsw[maj].d_psize)(dumpdev);
1099 1.7 cgd if (nblks <= ctod(1))
1100 1.43 cgd goto bad;
1101 1.43 cgd
1102 1.43 cgd dumpblks = cpu_dumpsize();
1103 1.43 cgd if (dumpblks < 0)
1104 1.43 cgd goto bad;
1105 1.43 cgd dumpblks += ctod(physmem);
1106 1.43 cgd
1107 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
1108 1.43 cgd if (dumpblks > (nblks - ctod(1)))
1109 1.43 cgd goto bad;
1110 1.43 cgd
1111 1.43 cgd /* Put dump at end of partition */
1112 1.43 cgd dumplo = nblks - dumpblks;
1113 1.7 cgd
1114 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1115 1.7 cgd dumpsize = physmem;
1116 1.43 cgd return;
1117 1.7 cgd
1118 1.43 cgd bad:
1119 1.43 cgd dumpsize = 0;
1120 1.43 cgd return;
1121 1.7 cgd }
1122 1.7 cgd
1123 1.7 cgd /*
1124 1.42 cgd * Dump the kernel's image to the swap partition.
1125 1.7 cgd */
1126 1.42 cgd #define BYTES_PER_DUMP NBPG
1127 1.42 cgd
1128 1.7 cgd void
1129 1.7 cgd dumpsys()
1130 1.7 cgd {
1131 1.42 cgd unsigned bytes, i, n;
1132 1.42 cgd int maddr, psize;
1133 1.42 cgd daddr_t blkno;
1134 1.42 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1135 1.42 cgd int error;
1136 1.42 cgd
1137 1.42 cgd /* Save registers. */
1138 1.42 cgd savectx(&dumppcb);
1139 1.7 cgd
1140 1.42 cgd msgbufmapped = 0; /* don't record dump msgs in msgbuf */
1141 1.7 cgd if (dumpdev == NODEV)
1142 1.7 cgd return;
1143 1.42 cgd
1144 1.42 cgd /*
1145 1.42 cgd * For dumps during autoconfiguration,
1146 1.42 cgd * if dump device has already configured...
1147 1.42 cgd */
1148 1.42 cgd if (dumpsize == 0)
1149 1.68 gwr cpu_dumpconf();
1150 1.47 cgd if (dumplo <= 0) {
1151 1.97 mycroft printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1152 1.97 mycroft minor(dumpdev));
1153 1.42 cgd return;
1154 1.43 cgd }
1155 1.97 mycroft printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1156 1.97 mycroft minor(dumpdev), dumplo);
1157 1.7 cgd
1158 1.42 cgd psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1159 1.46 christos printf("dump ");
1160 1.42 cgd if (psize == -1) {
1161 1.46 christos printf("area unavailable\n");
1162 1.42 cgd return;
1163 1.42 cgd }
1164 1.42 cgd
1165 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1166 1.42 cgd
1167 1.43 cgd if ((error = cpu_dump()) != 0)
1168 1.43 cgd goto err;
1169 1.43 cgd
1170 1.43 cgd bytes = ctob(physmem);
1171 1.42 cgd maddr = ctob(firstusablepage);
1172 1.43 cgd blkno = dumplo + cpu_dumpsize();
1173 1.42 cgd dump = bdevsw[major(dumpdev)].d_dump;
1174 1.42 cgd error = 0;
1175 1.42 cgd for (i = 0; i < bytes; i += n) {
1176 1.42 cgd
1177 1.42 cgd /* Print out how many MBs we to go. */
1178 1.42 cgd n = bytes - i;
1179 1.42 cgd if (n && (n % (1024*1024)) == 0)
1180 1.46 christos printf("%d ", n / (1024 * 1024));
1181 1.42 cgd
1182 1.42 cgd /* Limit size for next transfer. */
1183 1.42 cgd if (n > BYTES_PER_DUMP)
1184 1.42 cgd n = BYTES_PER_DUMP;
1185 1.42 cgd
1186 1.42 cgd error = (*dump)(dumpdev, blkno,
1187 1.42 cgd (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1188 1.42 cgd if (error)
1189 1.42 cgd break;
1190 1.42 cgd maddr += n;
1191 1.42 cgd blkno += btodb(n); /* XXX? */
1192 1.42 cgd
1193 1.42 cgd /* XXX should look for keystrokes, to cancel. */
1194 1.42 cgd }
1195 1.42 cgd
1196 1.43 cgd err:
1197 1.42 cgd switch (error) {
1198 1.7 cgd
1199 1.7 cgd case ENXIO:
1200 1.46 christos printf("device bad\n");
1201 1.7 cgd break;
1202 1.7 cgd
1203 1.7 cgd case EFAULT:
1204 1.46 christos printf("device not ready\n");
1205 1.7 cgd break;
1206 1.7 cgd
1207 1.7 cgd case EINVAL:
1208 1.46 christos printf("area improper\n");
1209 1.7 cgd break;
1210 1.7 cgd
1211 1.7 cgd case EIO:
1212 1.46 christos printf("i/o error\n");
1213 1.7 cgd break;
1214 1.7 cgd
1215 1.7 cgd case EINTR:
1216 1.46 christos printf("aborted from console\n");
1217 1.7 cgd break;
1218 1.7 cgd
1219 1.42 cgd case 0:
1220 1.46 christos printf("succeeded\n");
1221 1.42 cgd break;
1222 1.42 cgd
1223 1.7 cgd default:
1224 1.46 christos printf("error %d\n", error);
1225 1.7 cgd break;
1226 1.7 cgd }
1227 1.46 christos printf("\n\n");
1228 1.7 cgd delay(1000);
1229 1.7 cgd }
1230 1.7 cgd
1231 1.1 cgd void
1232 1.1 cgd frametoreg(framep, regp)
1233 1.1 cgd struct trapframe *framep;
1234 1.1 cgd struct reg *regp;
1235 1.1 cgd {
1236 1.1 cgd
1237 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1238 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1239 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1240 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1241 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1242 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1243 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1244 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1245 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1246 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1247 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1248 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1249 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1250 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1251 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1252 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1253 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1254 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1255 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1256 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1257 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1258 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1259 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1260 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1261 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1262 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1263 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1264 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1265 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1266 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1267 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1268 1.1 cgd regp->r_regs[R_ZERO] = 0;
1269 1.1 cgd }
1270 1.1 cgd
1271 1.1 cgd void
1272 1.1 cgd regtoframe(regp, framep)
1273 1.1 cgd struct reg *regp;
1274 1.1 cgd struct trapframe *framep;
1275 1.1 cgd {
1276 1.1 cgd
1277 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1278 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1279 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1280 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1281 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1282 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1283 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1284 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1285 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1286 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1287 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1288 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1289 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1290 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1291 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1292 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1293 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1294 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1295 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1296 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1297 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1298 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1299 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1300 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1301 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1302 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1303 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1304 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1305 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1306 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1307 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1308 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1309 1.1 cgd }
1310 1.1 cgd
1311 1.1 cgd void
1312 1.1 cgd printregs(regp)
1313 1.1 cgd struct reg *regp;
1314 1.1 cgd {
1315 1.1 cgd int i;
1316 1.1 cgd
1317 1.1 cgd for (i = 0; i < 32; i++)
1318 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1319 1.1 cgd i & 1 ? "\n" : "\t");
1320 1.1 cgd }
1321 1.1 cgd
1322 1.1 cgd void
1323 1.1 cgd regdump(framep)
1324 1.1 cgd struct trapframe *framep;
1325 1.1 cgd {
1326 1.1 cgd struct reg reg;
1327 1.1 cgd
1328 1.1 cgd frametoreg(framep, ®);
1329 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1330 1.35 cgd
1331 1.46 christos printf("REGISTERS:\n");
1332 1.1 cgd printregs(®);
1333 1.1 cgd }
1334 1.1 cgd
1335 1.1 cgd #ifdef DEBUG
1336 1.1 cgd int sigdebug = 0;
1337 1.1 cgd int sigpid = 0;
1338 1.1 cgd #define SDB_FOLLOW 0x01
1339 1.1 cgd #define SDB_KSTACK 0x02
1340 1.1 cgd #endif
1341 1.1 cgd
1342 1.1 cgd /*
1343 1.1 cgd * Send an interrupt to process.
1344 1.1 cgd */
1345 1.1 cgd void
1346 1.1 cgd sendsig(catcher, sig, mask, code)
1347 1.1 cgd sig_t catcher;
1348 1.1 cgd int sig, mask;
1349 1.1 cgd u_long code;
1350 1.1 cgd {
1351 1.1 cgd struct proc *p = curproc;
1352 1.1 cgd struct sigcontext *scp, ksc;
1353 1.1 cgd struct trapframe *frame;
1354 1.1 cgd struct sigacts *psp = p->p_sigacts;
1355 1.1 cgd int oonstack, fsize, rndfsize;
1356 1.1 cgd extern char sigcode[], esigcode[];
1357 1.1 cgd extern struct proc *fpcurproc;
1358 1.1 cgd
1359 1.1 cgd frame = p->p_md.md_tf;
1360 1.9 mycroft oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1361 1.1 cgd fsize = sizeof ksc;
1362 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1363 1.1 cgd /*
1364 1.1 cgd * Allocate and validate space for the signal handler
1365 1.1 cgd * context. Note that if the stack is in P0 space, the
1366 1.1 cgd * call to grow() is a nop, and the useracc() check
1367 1.1 cgd * will fail if the process has not already allocated
1368 1.1 cgd * the space with a `brk'.
1369 1.1 cgd */
1370 1.1 cgd if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1371 1.1 cgd (psp->ps_sigonstack & sigmask(sig))) {
1372 1.14 jtc scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1373 1.1 cgd psp->ps_sigstk.ss_size - rndfsize);
1374 1.9 mycroft psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1375 1.1 cgd } else
1376 1.35 cgd scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1377 1.1 cgd if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1378 1.1 cgd (void)grow(p, (u_long)scp);
1379 1.1 cgd #ifdef DEBUG
1380 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1381 1.46 christos printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1382 1.1 cgd sig, &oonstack, scp);
1383 1.1 cgd #endif
1384 1.1 cgd if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1385 1.1 cgd #ifdef DEBUG
1386 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1387 1.46 christos printf("sendsig(%d): useracc failed on sig %d\n",
1388 1.1 cgd p->p_pid, sig);
1389 1.1 cgd #endif
1390 1.1 cgd /*
1391 1.1 cgd * Process has trashed its stack; give it an illegal
1392 1.1 cgd * instruction to halt it in its tracks.
1393 1.1 cgd */
1394 1.1 cgd SIGACTION(p, SIGILL) = SIG_DFL;
1395 1.1 cgd sig = sigmask(SIGILL);
1396 1.1 cgd p->p_sigignore &= ~sig;
1397 1.1 cgd p->p_sigcatch &= ~sig;
1398 1.1 cgd p->p_sigmask &= ~sig;
1399 1.1 cgd psignal(p, SIGILL);
1400 1.1 cgd return;
1401 1.1 cgd }
1402 1.1 cgd
1403 1.1 cgd /*
1404 1.1 cgd * Build the signal context to be used by sigreturn.
1405 1.1 cgd */
1406 1.1 cgd ksc.sc_onstack = oonstack;
1407 1.1 cgd ksc.sc_mask = mask;
1408 1.34 cgd ksc.sc_pc = frame->tf_regs[FRAME_PC];
1409 1.34 cgd ksc.sc_ps = frame->tf_regs[FRAME_PS];
1410 1.1 cgd
1411 1.1 cgd /* copy the registers. */
1412 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1413 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1414 1.35 cgd ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1415 1.1 cgd
1416 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1417 1.1 cgd if (p == fpcurproc) {
1418 1.32 cgd alpha_pal_wrfen(1);
1419 1.1 cgd savefpstate(&p->p_addr->u_pcb.pcb_fp);
1420 1.32 cgd alpha_pal_wrfen(0);
1421 1.1 cgd fpcurproc = NULL;
1422 1.1 cgd }
1423 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1424 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1425 1.1 cgd sizeof(struct fpreg));
1426 1.1 cgd ksc.sc_fp_control = 0; /* XXX ? */
1427 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1428 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1429 1.1 cgd
1430 1.1 cgd
1431 1.1 cgd #ifdef COMPAT_OSF1
1432 1.1 cgd /*
1433 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1434 1.1 cgd */
1435 1.1 cgd #endif
1436 1.1 cgd
1437 1.1 cgd /*
1438 1.1 cgd * copy the frame out to userland.
1439 1.1 cgd */
1440 1.1 cgd (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1441 1.1 cgd #ifdef DEBUG
1442 1.1 cgd if (sigdebug & SDB_FOLLOW)
1443 1.46 christos printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1444 1.1 cgd scp, code);
1445 1.1 cgd #endif
1446 1.1 cgd
1447 1.1 cgd /*
1448 1.1 cgd * Set up the registers to return to sigcode.
1449 1.1 cgd */
1450 1.34 cgd frame->tf_regs[FRAME_PC] =
1451 1.34 cgd (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1452 1.34 cgd frame->tf_regs[FRAME_A0] = sig;
1453 1.34 cgd frame->tf_regs[FRAME_A1] = code;
1454 1.34 cgd frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1455 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1456 1.35 cgd alpha_pal_wrusp((unsigned long)scp);
1457 1.1 cgd
1458 1.1 cgd #ifdef DEBUG
1459 1.1 cgd if (sigdebug & SDB_FOLLOW)
1460 1.46 christos printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1461 1.34 cgd frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1462 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1463 1.46 christos printf("sendsig(%d): sig %d returns\n",
1464 1.1 cgd p->p_pid, sig);
1465 1.1 cgd #endif
1466 1.1 cgd }
1467 1.1 cgd
1468 1.1 cgd /*
1469 1.1 cgd * System call to cleanup state after a signal
1470 1.1 cgd * has been taken. Reset signal mask and
1471 1.1 cgd * stack state from context left by sendsig (above).
1472 1.1 cgd * Return to previous pc and psl as specified by
1473 1.1 cgd * context left by sendsig. Check carefully to
1474 1.1 cgd * make sure that the user has not modified the
1475 1.1 cgd * psl to gain improper priviledges or to cause
1476 1.1 cgd * a machine fault.
1477 1.1 cgd */
1478 1.1 cgd /* ARGSUSED */
1479 1.11 mycroft int
1480 1.11 mycroft sys_sigreturn(p, v, retval)
1481 1.1 cgd struct proc *p;
1482 1.10 thorpej void *v;
1483 1.10 thorpej register_t *retval;
1484 1.10 thorpej {
1485 1.11 mycroft struct sys_sigreturn_args /* {
1486 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1487 1.10 thorpej } */ *uap = v;
1488 1.1 cgd struct sigcontext *scp, ksc;
1489 1.1 cgd extern struct proc *fpcurproc;
1490 1.1 cgd
1491 1.1 cgd scp = SCARG(uap, sigcntxp);
1492 1.1 cgd #ifdef DEBUG
1493 1.1 cgd if (sigdebug & SDB_FOLLOW)
1494 1.46 christos printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1495 1.1 cgd #endif
1496 1.1 cgd
1497 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1498 1.1 cgd return (EINVAL);
1499 1.1 cgd
1500 1.1 cgd /*
1501 1.1 cgd * Test and fetch the context structure.
1502 1.1 cgd * We grab it all at once for speed.
1503 1.1 cgd */
1504 1.1 cgd if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1505 1.1 cgd copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1506 1.1 cgd return (EINVAL);
1507 1.1 cgd
1508 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1509 1.1 cgd return (EINVAL);
1510 1.1 cgd /*
1511 1.1 cgd * Restore the user-supplied information
1512 1.1 cgd */
1513 1.1 cgd if (ksc.sc_onstack)
1514 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1515 1.1 cgd else
1516 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1517 1.1 cgd p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1518 1.1 cgd
1519 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1520 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PS] =
1521 1.32 cgd (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1522 1.1 cgd
1523 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1524 1.35 cgd alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1525 1.1 cgd
1526 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1527 1.1 cgd if (p == fpcurproc)
1528 1.1 cgd fpcurproc = NULL;
1529 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1530 1.1 cgd sizeof(struct fpreg));
1531 1.1 cgd /* XXX ksc.sc_fp_control ? */
1532 1.1 cgd
1533 1.1 cgd #ifdef DEBUG
1534 1.1 cgd if (sigdebug & SDB_FOLLOW)
1535 1.46 christos printf("sigreturn(%d): returns\n", p->p_pid);
1536 1.1 cgd #endif
1537 1.1 cgd return (EJUSTRETURN);
1538 1.1 cgd }
1539 1.1 cgd
1540 1.1 cgd /*
1541 1.1 cgd * machine dependent system variables.
1542 1.1 cgd */
1543 1.33 cgd int
1544 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1545 1.1 cgd int *name;
1546 1.1 cgd u_int namelen;
1547 1.1 cgd void *oldp;
1548 1.1 cgd size_t *oldlenp;
1549 1.1 cgd void *newp;
1550 1.1 cgd size_t newlen;
1551 1.1 cgd struct proc *p;
1552 1.1 cgd {
1553 1.1 cgd dev_t consdev;
1554 1.1 cgd
1555 1.1 cgd /* all sysctl names at this level are terminal */
1556 1.1 cgd if (namelen != 1)
1557 1.1 cgd return (ENOTDIR); /* overloaded */
1558 1.1 cgd
1559 1.1 cgd switch (name[0]) {
1560 1.1 cgd case CPU_CONSDEV:
1561 1.1 cgd if (cn_tab != NULL)
1562 1.1 cgd consdev = cn_tab->cn_dev;
1563 1.1 cgd else
1564 1.1 cgd consdev = NODEV;
1565 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1566 1.1 cgd sizeof consdev));
1567 1.30 cgd
1568 1.30 cgd case CPU_ROOT_DEVICE:
1569 1.64 thorpej return (sysctl_rdstring(oldp, oldlenp, newp,
1570 1.64 thorpej root_device->dv_xname));
1571 1.36 cgd
1572 1.36 cgd case CPU_UNALIGNED_PRINT:
1573 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1574 1.36 cgd &alpha_unaligned_print));
1575 1.36 cgd
1576 1.36 cgd case CPU_UNALIGNED_FIX:
1577 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1578 1.36 cgd &alpha_unaligned_fix));
1579 1.36 cgd
1580 1.36 cgd case CPU_UNALIGNED_SIGBUS:
1581 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1582 1.36 cgd &alpha_unaligned_sigbus));
1583 1.61 cgd
1584 1.61 cgd case CPU_BOOTED_KERNEL:
1585 1.102 cgd return (sysctl_rdstring(oldp, oldlenp, newp,
1586 1.102 cgd bootinfo.booted_kernel));
1587 1.30 cgd
1588 1.1 cgd default:
1589 1.1 cgd return (EOPNOTSUPP);
1590 1.1 cgd }
1591 1.1 cgd /* NOTREACHED */
1592 1.1 cgd }
1593 1.1 cgd
1594 1.1 cgd /*
1595 1.1 cgd * Set registers on exec.
1596 1.1 cgd */
1597 1.1 cgd void
1598 1.85 mycroft setregs(p, pack, stack)
1599 1.1 cgd register struct proc *p;
1600 1.5 christos struct exec_package *pack;
1601 1.1 cgd u_long stack;
1602 1.1 cgd {
1603 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1604 1.56 cgd extern struct proc *fpcurproc;
1605 1.56 cgd #ifdef DEBUG
1606 1.1 cgd int i;
1607 1.56 cgd #endif
1608 1.43 cgd
1609 1.43 cgd #ifdef DEBUG
1610 1.43 cgd /*
1611 1.43 cgd * Crash and dump, if the user requested it.
1612 1.43 cgd */
1613 1.43 cgd if (boothowto & RB_DUMP)
1614 1.43 cgd panic("crash requested by boot flags");
1615 1.43 cgd #endif
1616 1.1 cgd
1617 1.1 cgd #ifdef DEBUG
1618 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1619 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1620 1.1 cgd #else
1621 1.34 cgd bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1622 1.1 cgd #endif
1623 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1624 1.7 cgd #define FP_RN 2 /* XXX */
1625 1.7 cgd p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1626 1.35 cgd alpha_pal_wrusp(stack);
1627 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1628 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1629 1.41 cgd
1630 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1631 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1632 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1633 1.63 cgd tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1634 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1635 1.1 cgd
1636 1.33 cgd p->p_md.md_flags &= ~MDP_FPUSED;
1637 1.1 cgd if (fpcurproc == p)
1638 1.1 cgd fpcurproc = NULL;
1639 1.1 cgd }
1640 1.1 cgd
1641 1.1 cgd void
1642 1.1 cgd netintr()
1643 1.1 cgd {
1644 1.49 cgd int n, s;
1645 1.49 cgd
1646 1.49 cgd s = splhigh();
1647 1.49 cgd n = netisr;
1648 1.49 cgd netisr = 0;
1649 1.49 cgd splx(s);
1650 1.49 cgd
1651 1.49 cgd #define DONETISR(bit, fn) \
1652 1.49 cgd do { \
1653 1.49 cgd if (n & (1 << (bit))) \
1654 1.49 cgd fn; \
1655 1.49 cgd } while (0)
1656 1.49 cgd
1657 1.1 cgd #ifdef INET
1658 1.72 cgd #if NARP > 0
1659 1.49 cgd DONETISR(NETISR_ARP, arpintr());
1660 1.72 cgd #endif
1661 1.49 cgd DONETISR(NETISR_IP, ipintr());
1662 1.70 christos #endif
1663 1.70 christos #ifdef NETATALK
1664 1.70 christos DONETISR(NETISR_ATALK, atintr());
1665 1.1 cgd #endif
1666 1.1 cgd #ifdef NS
1667 1.49 cgd DONETISR(NETISR_NS, nsintr());
1668 1.1 cgd #endif
1669 1.1 cgd #ifdef ISO
1670 1.49 cgd DONETISR(NETISR_ISO, clnlintr());
1671 1.1 cgd #endif
1672 1.1 cgd #ifdef CCITT
1673 1.49 cgd DONETISR(NETISR_CCITT, ccittintr());
1674 1.49 cgd #endif
1675 1.49 cgd #ifdef NATM
1676 1.49 cgd DONETISR(NETISR_NATM, natmintr());
1677 1.1 cgd #endif
1678 1.49 cgd #if NPPP > 1
1679 1.49 cgd DONETISR(NETISR_PPP, pppintr());
1680 1.8 cgd #endif
1681 1.49 cgd
1682 1.49 cgd #undef DONETISR
1683 1.1 cgd }
1684 1.1 cgd
1685 1.1 cgd void
1686 1.1 cgd do_sir()
1687 1.1 cgd {
1688 1.58 cgd u_int64_t n;
1689 1.1 cgd
1690 1.59 cgd do {
1691 1.60 cgd (void)splhigh();
1692 1.58 cgd n = ssir;
1693 1.58 cgd ssir = 0;
1694 1.60 cgd splsoft(); /* don't recurse through spl0() */
1695 1.59 cgd
1696 1.59 cgd #define DO_SIR(bit, fn) \
1697 1.59 cgd do { \
1698 1.60 cgd if (n & (bit)) { \
1699 1.59 cgd cnt.v_soft++; \
1700 1.59 cgd fn; \
1701 1.59 cgd } \
1702 1.59 cgd } while (0)
1703 1.59 cgd
1704 1.60 cgd DO_SIR(SIR_NET, netintr());
1705 1.60 cgd DO_SIR(SIR_CLOCK, softclock());
1706 1.60 cgd
1707 1.60 cgd #undef DO_SIR
1708 1.59 cgd } while (ssir != 0);
1709 1.1 cgd }
1710 1.1 cgd
1711 1.1 cgd int
1712 1.1 cgd spl0()
1713 1.1 cgd {
1714 1.1 cgd
1715 1.59 cgd if (ssir)
1716 1.59 cgd do_sir(); /* it lowers the IPL itself */
1717 1.1 cgd
1718 1.32 cgd return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1719 1.1 cgd }
1720 1.1 cgd
1721 1.1 cgd /*
1722 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
1723 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1724 1.52 cgd * into queues, Remrunqueue removes them from queues. The running process is
1725 1.52 cgd * on no queue, other processes are on a queue related to p->p_priority,
1726 1.52 cgd * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1727 1.52 cgd * available queues.
1728 1.1 cgd */
1729 1.1 cgd /*
1730 1.1 cgd * setrunqueue(p)
1731 1.1 cgd * proc *p;
1732 1.1 cgd *
1733 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
1734 1.1 cgd */
1735 1.1 cgd
1736 1.1 cgd void
1737 1.1 cgd setrunqueue(p)
1738 1.1 cgd struct proc *p;
1739 1.1 cgd {
1740 1.1 cgd int bit;
1741 1.1 cgd
1742 1.1 cgd /* firewall: p->p_back must be NULL */
1743 1.1 cgd if (p->p_back != NULL)
1744 1.1 cgd panic("setrunqueue");
1745 1.1 cgd
1746 1.1 cgd bit = p->p_priority >> 2;
1747 1.1 cgd whichqs |= (1 << bit);
1748 1.1 cgd p->p_forw = (struct proc *)&qs[bit];
1749 1.1 cgd p->p_back = qs[bit].ph_rlink;
1750 1.1 cgd p->p_back->p_forw = p;
1751 1.1 cgd qs[bit].ph_rlink = p;
1752 1.1 cgd }
1753 1.1 cgd
1754 1.1 cgd /*
1755 1.52 cgd * remrunqueue(p)
1756 1.1 cgd *
1757 1.1 cgd * Call should be made at splclock().
1758 1.1 cgd */
1759 1.1 cgd void
1760 1.52 cgd remrunqueue(p)
1761 1.1 cgd struct proc *p;
1762 1.1 cgd {
1763 1.1 cgd int bit;
1764 1.1 cgd
1765 1.1 cgd bit = p->p_priority >> 2;
1766 1.1 cgd if ((whichqs & (1 << bit)) == 0)
1767 1.52 cgd panic("remrunqueue");
1768 1.1 cgd
1769 1.1 cgd p->p_back->p_forw = p->p_forw;
1770 1.1 cgd p->p_forw->p_back = p->p_back;
1771 1.1 cgd p->p_back = NULL; /* for firewall checking. */
1772 1.1 cgd
1773 1.1 cgd if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1774 1.1 cgd whichqs &= ~(1 << bit);
1775 1.1 cgd }
1776 1.1 cgd
1777 1.1 cgd /*
1778 1.1 cgd * Return the best possible estimate of the time in the timeval
1779 1.1 cgd * to which tvp points. Unfortunately, we can't read the hardware registers.
1780 1.1 cgd * We guarantee that the time will be greater than the value obtained by a
1781 1.1 cgd * previous call.
1782 1.1 cgd */
1783 1.1 cgd void
1784 1.1 cgd microtime(tvp)
1785 1.1 cgd register struct timeval *tvp;
1786 1.1 cgd {
1787 1.1 cgd int s = splclock();
1788 1.1 cgd static struct timeval lasttime;
1789 1.1 cgd
1790 1.1 cgd *tvp = time;
1791 1.1 cgd #ifdef notdef
1792 1.1 cgd tvp->tv_usec += clkread();
1793 1.1 cgd while (tvp->tv_usec > 1000000) {
1794 1.1 cgd tvp->tv_sec++;
1795 1.1 cgd tvp->tv_usec -= 1000000;
1796 1.1 cgd }
1797 1.1 cgd #endif
1798 1.1 cgd if (tvp->tv_sec == lasttime.tv_sec &&
1799 1.1 cgd tvp->tv_usec <= lasttime.tv_usec &&
1800 1.1 cgd (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1801 1.1 cgd tvp->tv_sec++;
1802 1.1 cgd tvp->tv_usec -= 1000000;
1803 1.1 cgd }
1804 1.1 cgd lasttime = *tvp;
1805 1.1 cgd splx(s);
1806 1.15 cgd }
1807 1.15 cgd
1808 1.15 cgd /*
1809 1.15 cgd * Wait "n" microseconds.
1810 1.15 cgd */
1811 1.32 cgd void
1812 1.15 cgd delay(n)
1813 1.32 cgd unsigned long n;
1814 1.15 cgd {
1815 1.15 cgd long N = cycles_per_usec * (n);
1816 1.15 cgd
1817 1.15 cgd while (N > 0) /* XXX */
1818 1.15 cgd N -= 3; /* XXX */
1819 1.1 cgd }
1820 1.1 cgd
1821 1.8 cgd #if defined(COMPAT_OSF1) || 1 /* XXX */
1822 1.55 cgd void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1823 1.85 mycroft u_long));
1824 1.55 cgd
1825 1.1 cgd void
1826 1.85 mycroft cpu_exec_ecoff_setregs(p, epp, stack)
1827 1.1 cgd struct proc *p;
1828 1.19 cgd struct exec_package *epp;
1829 1.5 christos u_long stack;
1830 1.1 cgd {
1831 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1832 1.1 cgd
1833 1.85 mycroft setregs(p, epp, stack);
1834 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1835 1.1 cgd }
1836 1.1 cgd
1837 1.1 cgd /*
1838 1.1 cgd * cpu_exec_ecoff_hook():
1839 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1840 1.1 cgd *
1841 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1842 1.1 cgd *
1843 1.1 cgd */
1844 1.1 cgd int
1845 1.19 cgd cpu_exec_ecoff_hook(p, epp)
1846 1.1 cgd struct proc *p;
1847 1.1 cgd struct exec_package *epp;
1848 1.1 cgd {
1849 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1850 1.5 christos extern struct emul emul_netbsd;
1851 1.5 christos #ifdef COMPAT_OSF1
1852 1.5 christos extern struct emul emul_osf1;
1853 1.5 christos #endif
1854 1.1 cgd
1855 1.19 cgd switch (execp->f.f_magic) {
1856 1.5 christos #ifdef COMPAT_OSF1
1857 1.1 cgd case ECOFF_MAGIC_ALPHA:
1858 1.5 christos epp->ep_emul = &emul_osf1;
1859 1.1 cgd break;
1860 1.5 christos #endif
1861 1.1 cgd
1862 1.1 cgd case ECOFF_MAGIC_NETBSD_ALPHA:
1863 1.5 christos epp->ep_emul = &emul_netbsd;
1864 1.1 cgd break;
1865 1.1 cgd
1866 1.1 cgd default:
1867 1.12 cgd return ENOEXEC;
1868 1.1 cgd }
1869 1.1 cgd return 0;
1870 1.1 cgd }
1871 1.1 cgd #endif
1872 1.50 cgd
1873 1.50 cgd /* XXX XXX BEGIN XXX XXX */
1874 1.50 cgd vm_offset_t alpha_XXX_dmamap_or; /* XXX */
1875 1.50 cgd /* XXX */
1876 1.50 cgd vm_offset_t /* XXX */
1877 1.50 cgd alpha_XXX_dmamap(v) /* XXX */
1878 1.51 cgd vm_offset_t v; /* XXX */
1879 1.50 cgd { /* XXX */
1880 1.50 cgd /* XXX */
1881 1.51 cgd return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1882 1.50 cgd } /* XXX */
1883 1.50 cgd /* XXX XXX END XXX XXX */
1884