Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.111
      1  1.111   thorpej /* $NetBSD: machdep.c,v 1.111 1998/02/19 04:18:30 thorpej Exp $ */
      2  1.110   thorpej 
      3  1.110   thorpej /*-
      4  1.110   thorpej  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  1.110   thorpej  * All rights reserved.
      6  1.110   thorpej  *
      7  1.110   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.110   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.110   thorpej  * NASA Ames Research Center and by Chris G. Demetriou.
     10  1.110   thorpej  *
     11  1.110   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.110   thorpej  * modification, are permitted provided that the following conditions
     13  1.110   thorpej  * are met:
     14  1.110   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.110   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.110   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.110   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.110   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.110   thorpej  * 3. All advertising materials mentioning features or use of this software
     20  1.110   thorpej  *    must display the following acknowledgement:
     21  1.110   thorpej  *	This product includes software developed by the NetBSD
     22  1.110   thorpej  *	Foundation, Inc. and its contributors.
     23  1.110   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.110   thorpej  *    contributors may be used to endorse or promote products derived
     25  1.110   thorpej  *    from this software without specific prior written permission.
     26  1.110   thorpej  *
     27  1.110   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.110   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.110   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.110   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.110   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.110   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.110   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.110   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.110   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.110   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.110   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38  1.110   thorpej  */
     39    1.1       cgd 
     40    1.1       cgd /*
     41   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42    1.1       cgd  * All rights reserved.
     43    1.1       cgd  *
     44    1.1       cgd  * Author: Chris G. Demetriou
     45    1.1       cgd  *
     46    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     47    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     48    1.1       cgd  * notice and this permission notice appear in all copies of the
     49    1.1       cgd  * software, derivative works or modified versions, and any portions
     50    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     51    1.1       cgd  *
     52    1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53    1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55    1.1       cgd  *
     56    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     57    1.1       cgd  *
     58    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59    1.1       cgd  *  School of Computer Science
     60    1.1       cgd  *  Carnegie Mellon University
     61    1.1       cgd  *  Pittsburgh PA 15213-3890
     62    1.1       cgd  *
     63    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     64    1.1       cgd  * rights to redistribute these changes.
     65    1.1       cgd  */
     66   1.74       cgd 
     67   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     68   1.75       cgd 
     69  1.111   thorpej __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.111 1998/02/19 04:18:30 thorpej Exp $");
     70    1.1       cgd 
     71    1.1       cgd #include <sys/param.h>
     72    1.1       cgd #include <sys/systm.h>
     73    1.1       cgd #include <sys/signalvar.h>
     74    1.1       cgd #include <sys/kernel.h>
     75    1.1       cgd #include <sys/map.h>
     76    1.1       cgd #include <sys/proc.h>
     77    1.1       cgd #include <sys/buf.h>
     78    1.1       cgd #include <sys/reboot.h>
     79   1.28       cgd #include <sys/device.h>
     80    1.1       cgd #include <sys/file.h>
     81    1.1       cgd #ifdef REAL_CLISTS
     82    1.1       cgd #include <sys/clist.h>
     83    1.1       cgd #endif
     84    1.1       cgd #include <sys/callout.h>
     85    1.1       cgd #include <sys/malloc.h>
     86    1.1       cgd #include <sys/mbuf.h>
     87  1.110   thorpej #include <sys/mman.h>
     88    1.1       cgd #include <sys/msgbuf.h>
     89    1.1       cgd #include <sys/ioctl.h>
     90    1.1       cgd #include <sys/tty.h>
     91    1.1       cgd #include <sys/user.h>
     92    1.1       cgd #include <sys/exec.h>
     93    1.1       cgd #include <sys/exec_ecoff.h>
     94   1.91    mjacob #include <vm/vm.h>
     95    1.1       cgd #include <sys/sysctl.h>
     96   1.43       cgd #include <sys/core.h>
     97   1.43       cgd #include <sys/kcore.h>
     98   1.43       cgd #include <machine/kcore.h>
     99    1.1       cgd #ifdef SYSVMSG
    100    1.1       cgd #include <sys/msg.h>
    101    1.1       cgd #endif
    102    1.1       cgd #ifdef SYSVSEM
    103    1.1       cgd #include <sys/sem.h>
    104    1.1       cgd #endif
    105    1.1       cgd #ifdef SYSVSHM
    106    1.1       cgd #include <sys/shm.h>
    107    1.1       cgd #endif
    108    1.1       cgd 
    109    1.1       cgd #include <sys/mount.h>
    110    1.1       cgd #include <sys/syscallargs.h>
    111    1.1       cgd 
    112    1.1       cgd #include <vm/vm_kern.h>
    113    1.1       cgd 
    114    1.1       cgd #include <dev/cons.h>
    115    1.1       cgd 
    116   1.81   thorpej #include <machine/autoconf.h>
    117    1.1       cgd #include <machine/cpu.h>
    118    1.1       cgd #include <machine/reg.h>
    119    1.1       cgd #include <machine/rpb.h>
    120    1.1       cgd #include <machine/prom.h>
    121   1.73       cgd #include <machine/conf.h>
    122    1.8       cgd 
    123   1.49       cgd #include <net/netisr.h>
    124   1.33       cgd #include <net/if.h>
    125   1.49       cgd 
    126   1.49       cgd #ifdef INET
    127   1.33       cgd #include <netinet/in.h>
    128   1.72       cgd #include <netinet/ip_var.h>
    129   1.72       cgd #include "arp.h"
    130   1.72       cgd #if NARP > 0
    131   1.67        is #include <netinet/if_inarp.h>
    132   1.72       cgd #endif
    133   1.49       cgd #endif
    134   1.49       cgd #ifdef NS
    135   1.49       cgd #include <netns/ns_var.h>
    136   1.49       cgd #endif
    137   1.49       cgd #ifdef ISO
    138   1.49       cgd #include <netiso/iso.h>
    139   1.49       cgd #include <netiso/clnp.h>
    140   1.49       cgd #endif
    141   1.55       cgd #ifdef CCITT
    142   1.55       cgd #include <netccitt/x25.h>
    143   1.55       cgd #include <netccitt/pk.h>
    144   1.55       cgd #include <netccitt/pk_extern.h>
    145   1.55       cgd #endif
    146   1.55       cgd #ifdef NATM
    147   1.55       cgd #include <netnatm/natm.h>
    148   1.55       cgd #endif
    149   1.70  christos #ifdef NETATALK
    150   1.70  christos #include <netatalk/at_extern.h>
    151   1.70  christos #endif
    152   1.49       cgd #include "ppp.h"
    153   1.49       cgd #if NPPP > 0
    154   1.49       cgd #include <net/ppp_defs.h>
    155   1.49       cgd #include <net/if_ppp.h>
    156   1.49       cgd #endif
    157    1.1       cgd 
    158   1.81   thorpej #ifdef DDB
    159   1.81   thorpej #include <machine/db_machdep.h>
    160   1.81   thorpej #include <ddb/db_access.h>
    161   1.81   thorpej #include <ddb/db_sym.h>
    162   1.81   thorpej #include <ddb/db_extern.h>
    163   1.81   thorpej #include <ddb/db_interface.h>
    164   1.81   thorpej #endif
    165   1.81   thorpej 
    166    1.1       cgd vm_map_t buffer_map;
    167    1.1       cgd 
    168    1.1       cgd /*
    169    1.1       cgd  * Declare these as initialized data so we can patch them.
    170    1.1       cgd  */
    171    1.1       cgd int	nswbuf = 0;
    172    1.1       cgd #ifdef	NBUF
    173    1.1       cgd int	nbuf = NBUF;
    174    1.1       cgd #else
    175    1.1       cgd int	nbuf = 0;
    176    1.1       cgd #endif
    177    1.1       cgd #ifdef	BUFPAGES
    178    1.1       cgd int	bufpages = BUFPAGES;
    179    1.1       cgd #else
    180    1.1       cgd int	bufpages = 0;
    181    1.1       cgd #endif
    182   1.86       leo caddr_t msgbufaddr;
    183   1.86       leo 
    184    1.1       cgd int	maxmem;			/* max memory per process */
    185    1.7       cgd 
    186    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    187    1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    188    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    189    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    190    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    191    1.1       cgd 
    192    1.1       cgd int	cputype;		/* system type, from the RPB */
    193    1.1       cgd 
    194    1.1       cgd /*
    195    1.1       cgd  * XXX We need an address to which we can assign things so that they
    196    1.1       cgd  * won't be optimized away because we didn't use the value.
    197    1.1       cgd  */
    198    1.1       cgd u_int32_t no_optimize;
    199    1.1       cgd 
    200    1.1       cgd /* the following is used externally (sysctl_hw) */
    201   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    202   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    203   1.29       cgd char	cpu_model[128];
    204    1.1       cgd 
    205    1.1       cgd struct	user *proc0paddr;
    206    1.1       cgd 
    207    1.1       cgd /* Number of machine cycles per microsecond */
    208    1.1       cgd u_int64_t	cycles_per_usec;
    209    1.1       cgd 
    210    1.7       cgd /* number of cpus in the box.  really! */
    211    1.7       cgd int		ncpus;
    212    1.7       cgd 
    213  1.102       cgd struct bootinfo_kernel bootinfo;
    214   1.81   thorpej 
    215   1.89    mjacob struct platform platform;
    216   1.89    mjacob 
    217  1.100   thorpej u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
    218  1.100   thorpej u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
    219  1.100   thorpej u_int32_t vm_phys_size = _VM_PHYS_SIZE;
    220   1.90    mjacob 
    221   1.81   thorpej #ifdef DDB
    222   1.81   thorpej /* start and end of kernel symbol table */
    223   1.81   thorpej void	*ksym_start, *ksym_end;
    224   1.81   thorpej #endif
    225   1.81   thorpej 
    226   1.30       cgd /* for cpu_sysctl() */
    227   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    228   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    229   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    230   1.30       cgd 
    231  1.110   thorpej /*
    232  1.110   thorpej  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    233  1.110   thorpej  * XXX it should also be larger than it is, because not all of the mddt
    234  1.110   thorpej  * XXX clusters end up being used for VM.
    235  1.110   thorpej  */
    236  1.110   thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    237  1.110   thorpej int	mem_cluster_cnt;
    238  1.110   thorpej 
    239   1.95   thorpej caddr_t	allocsys __P((caddr_t));
    240   1.55       cgd int	cpu_dump __P((void));
    241   1.55       cgd int	cpu_dumpsize __P((void));
    242  1.110   thorpej u_long	cpu_dump_mempagecnt __P((void));
    243   1.55       cgd void	dumpsys __P((void));
    244   1.55       cgd void	identifycpu __P((void));
    245   1.55       cgd void	netintr __P((void));
    246   1.55       cgd void	printregs __P((struct reg *));
    247   1.33       cgd 
    248   1.55       cgd void
    249  1.102       cgd alpha_init(pfn, ptb, bim, bip, biv)
    250    1.1       cgd 	u_long pfn;		/* first free PFN number */
    251    1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    252   1.81   thorpej 	u_long bim;		/* bootinfo magic */
    253   1.81   thorpej 	u_long bip;		/* bootinfo pointer */
    254  1.102       cgd 	u_long biv;		/* bootinfo version */
    255    1.1       cgd {
    256   1.95   thorpej 	extern char kernel_text[], _end[];
    257    1.1       cgd 	struct mddt *mddtp;
    258  1.110   thorpej 	struct mddt_cluster *memc;
    259    1.7       cgd 	int i, mddtweird;
    260  1.110   thorpej 	struct vm_physseg *vps;
    261   1.95   thorpej 	vm_offset_t kernstart, kernend;
    262  1.110   thorpej 	vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
    263   1.95   thorpej 	vm_size_t size;
    264    1.1       cgd 	char *p;
    265   1.95   thorpej 	caddr_t v;
    266  1.106       cgd 	char *bootinfo_msg;
    267  1.106       cgd 
    268  1.106       cgd 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    269    1.1       cgd 
    270    1.1       cgd 	/*
    271   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    272    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    273    1.1       cgd 	 */
    274   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    275   1.32       cgd 	alpha_pal_wrfen(0);
    276   1.37       cgd 	ALPHA_TBIA();
    277   1.32       cgd 	alpha_pal_imb();
    278    1.1       cgd 
    279    1.1       cgd 	/*
    280  1.106       cgd 	 * Get critical system information (if possible, from the
    281  1.106       cgd 	 * information provided by the boot program).
    282   1.81   thorpej 	 */
    283  1.106       cgd 	bootinfo_msg = NULL;
    284   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    285  1.102       cgd 		if (biv == 0) {		/* backward compat */
    286  1.102       cgd 			biv = *(u_long *)bip;
    287  1.102       cgd 			bip += 8;
    288  1.102       cgd 		}
    289  1.102       cgd 		switch (biv) {
    290  1.102       cgd 		case 1: {
    291  1.102       cgd 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    292  1.102       cgd 
    293  1.102       cgd 			bootinfo.ssym = v1p->ssym;
    294  1.102       cgd 			bootinfo.esym = v1p->esym;
    295  1.106       cgd 			/* hwrpb may not be provided by boot block in v1 */
    296  1.106       cgd 			if (v1p->hwrpb != NULL) {
    297  1.106       cgd 				bootinfo.hwrpb_phys =
    298  1.106       cgd 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    299  1.106       cgd 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    300  1.106       cgd 			} else {
    301  1.106       cgd 				bootinfo.hwrpb_phys =
    302  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    303  1.106       cgd 				bootinfo.hwrpb_size =
    304  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    305  1.106       cgd 			}
    306  1.102       cgd 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    307  1.102       cgd 			    min(sizeof v1p->boot_flags,
    308  1.102       cgd 			      sizeof bootinfo.boot_flags));
    309  1.102       cgd 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    310  1.102       cgd 			    min(sizeof v1p->booted_kernel,
    311  1.102       cgd 			      sizeof bootinfo.booted_kernel));
    312  1.106       cgd 			/* booted dev not provided in bootinfo */
    313  1.106       cgd 			init_prom_interface((struct rpb *)
    314  1.106       cgd 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    315  1.102       cgd                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    316  1.102       cgd 			    sizeof bootinfo.booted_dev);
    317   1.81   thorpej 			break;
    318  1.102       cgd 		}
    319   1.81   thorpej 		default:
    320  1.106       cgd 			bootinfo_msg = "unknown bootinfo version";
    321  1.102       cgd 			goto nobootinfo;
    322   1.81   thorpej 		}
    323  1.102       cgd 	} else {
    324  1.106       cgd 		bootinfo_msg = "boot program did not pass bootinfo";
    325  1.102       cgd nobootinfo:
    326  1.102       cgd 		bootinfo.ssym = (u_long)_end;
    327  1.102       cgd 		bootinfo.esym = (u_long)_end;
    328  1.106       cgd 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    329  1.106       cgd 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    330  1.106       cgd 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    331  1.102       cgd 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    332  1.102       cgd 		    sizeof bootinfo.boot_flags);
    333  1.102       cgd 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    334  1.102       cgd 		    sizeof bootinfo.booted_kernel);
    335  1.102       cgd 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    336  1.102       cgd 		    sizeof bootinfo.booted_dev);
    337  1.102       cgd 	}
    338  1.102       cgd 
    339   1.81   thorpej 	/*
    340  1.106       cgd 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    341  1.106       cgd 	 * lots of things.
    342  1.106       cgd 	 */
    343  1.106       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    344  1.106       cgd 
    345  1.106       cgd 	/*
    346  1.106       cgd 	 * Remember how many cycles there are per microsecond,
    347  1.106       cgd 	 * so that we can use delay().  Round up, for safety.
    348  1.106       cgd 	 */
    349  1.106       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    350  1.106       cgd 
    351  1.106       cgd 	/*
    352  1.106       cgd 	 * Initalize the (temporary) bootstrap console interface, so
    353  1.106       cgd 	 * we can use printf until the VM system starts being setup.
    354  1.106       cgd 	 * The real console is initialized before then.
    355  1.106       cgd 	 */
    356  1.106       cgd 	init_bootstrap_console();
    357  1.106       cgd 
    358  1.106       cgd 	/* OUTPUT NOW ALLOWED */
    359  1.106       cgd 
    360  1.106       cgd 	/* delayed from above */
    361  1.106       cgd 	if (bootinfo_msg)
    362  1.106       cgd 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    363  1.106       cgd 		    bootinfo_msg, bim, bip, biv);
    364  1.106       cgd 
    365  1.106       cgd 	/*
    366    1.1       cgd 	 * Point interrupt/exception vectors to our own.
    367    1.1       cgd 	 */
    368   1.36       cgd 	alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
    369   1.36       cgd 	alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
    370   1.36       cgd 	alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
    371   1.36       cgd 	alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
    372   1.36       cgd 	alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
    373   1.36       cgd 	alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
    374   1.36       cgd 
    375   1.36       cgd 	/*
    376   1.76       cgd 	 * Clear pending machine checks and error reports, and enable
    377   1.76       cgd 	 * system- and processor-correctable error reporting.
    378   1.36       cgd 	 */
    379   1.76       cgd 	alpha_pal_wrmces(alpha_pal_rdmces() &
    380   1.76       cgd 	    ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
    381    1.1       cgd 
    382    1.1       cgd 	/*
    383  1.106       cgd 	 * Find out what hardware we're on, and do basic initialization.
    384  1.106       cgd 	 */
    385  1.106       cgd 	cputype = hwrpb->rpb_type;
    386  1.106       cgd 	if (cputype >= ncpuinit) {
    387  1.106       cgd 		platform_not_supported();
    388  1.106       cgd 		/* NOTREACHED */
    389  1.106       cgd 	}
    390  1.106       cgd 	(*cpuinit[cputype].init)();
    391  1.106       cgd 	strcpy(cpu_model, platform.model);
    392  1.106       cgd 
    393  1.106       cgd 	/*
    394  1.106       cgd 	 * Initalize the real console, so the the bootstrap console is
    395  1.106       cgd 	 * no longer necessary.
    396  1.106       cgd 	 */
    397  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    398  1.106       cgd 	if (!pmap_uses_prom_console())
    399  1.106       cgd #endif
    400  1.106       cgd 		(*platform.cons_init)();
    401  1.106       cgd 
    402  1.106       cgd #ifdef DIAGNOSTIC
    403  1.106       cgd 	/* Paranoid sanity checking */
    404  1.106       cgd 
    405  1.106       cgd 	/* We should always be running on the the primary. */
    406  1.106       cgd 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
    407  1.106       cgd 
    408  1.106       cgd 	/* On single-CPU systypes, the primary should always be CPU 0. */
    409  1.106       cgd 	if (cputype != ST_DEC_21000)
    410  1.106       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);
    411  1.106       cgd #endif
    412  1.106       cgd 
    413  1.106       cgd 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    414  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    415  1.106       cgd 	/*
    416  1.106       cgd 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    417  1.106       cgd 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    418  1.106       cgd 	 */
    419  1.106       cgd #endif
    420  1.106       cgd 
    421  1.106       cgd 	/*
    422  1.106       cgd 	 * find out this system's page size
    423   1.95   thorpej 	 */
    424   1.95   thorpej 	PAGE_SIZE = hwrpb->rpb_page_size;
    425   1.95   thorpej 	if (PAGE_SIZE != 8192)
    426   1.95   thorpej 		panic("page size %d != 8192?!", PAGE_SIZE);
    427   1.95   thorpej 
    428   1.95   thorpej 	/*
    429   1.95   thorpej 	 * Initialize PAGE_SIZE-dependent variables.
    430   1.95   thorpej 	 */
    431   1.95   thorpej 	vm_set_page_size();
    432   1.95   thorpej 
    433   1.95   thorpej 	/*
    434  1.101       cgd 	 * Find the beginning and end of the kernel (and leave a
    435  1.101       cgd 	 * bit of space before the beginning for the bootstrap
    436  1.101       cgd 	 * stack).
    437   1.95   thorpej 	 */
    438  1.101       cgd 	kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
    439   1.95   thorpej #ifdef DDB
    440  1.102       cgd 	ksym_start = (void *)bootinfo.ssym;
    441  1.102       cgd 	ksym_end   = (void *)bootinfo.esym;
    442  1.102       cgd 	kernend = (vm_offset_t)round_page(ksym_end);
    443  1.102       cgd #else
    444  1.102       cgd 	kernend = (vm_offset_t)round_page(_end);
    445   1.95   thorpej #endif
    446   1.95   thorpej 
    447  1.110   thorpej 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    448  1.110   thorpej 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    449  1.110   thorpej 
    450   1.95   thorpej 	/*
    451    1.1       cgd 	 * Find out how much memory is available, by looking at
    452    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    453    1.7       cgd 	 * its best to detect things things that have never been seen
    454    1.7       cgd 	 * before...
    455    1.1       cgd 	 */
    456    1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    457    1.7       cgd 
    458  1.110   thorpej 	/* MDDT SANITY CHECKING */
    459    1.7       cgd 	mddtweird = 0;
    460  1.110   thorpej 	if (mddtp->mddt_cluster_cnt < 2) {
    461    1.7       cgd 		mddtweird = 1;
    462  1.110   thorpej 		printf("WARNING: weird number of mem clusters: %d\n",
    463  1.110   thorpej 		    mddtp->mddt_cluster_cnt);
    464    1.7       cgd 	}
    465    1.7       cgd 
    466  1.110   thorpej #if 0
    467  1.110   thorpej 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    468  1.110   thorpej #endif
    469  1.110   thorpej 
    470  1.110   thorpej 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    471  1.110   thorpej 		memc = &mddtp->mddt_clusters[i];
    472  1.110   thorpej #if 0
    473  1.110   thorpej 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    474  1.110   thorpej 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    475  1.110   thorpej #endif
    476  1.110   thorpej 		totalphysmem += memc->mddt_pg_cnt;
    477  1.110   thorpej 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    478  1.110   thorpej 			mem_clusters[mem_cluster_cnt].start =
    479  1.110   thorpej 			    ptoa(memc->mddt_pfn);
    480  1.110   thorpej 			mem_clusters[mem_cluster_cnt].size =
    481  1.110   thorpej 			    ptoa(memc->mddt_pg_cnt);
    482  1.110   thorpej 			if (memc->mddt_usage & MDDT_mbz ||
    483  1.110   thorpej 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    484  1.110   thorpej 			    memc->mddt_usage & MDDT_PALCODE)
    485  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    486  1.110   thorpej 				    PROT_READ;
    487  1.110   thorpej 			else
    488  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    489  1.110   thorpej 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    490  1.110   thorpej 			mem_cluster_cnt++;
    491  1.110   thorpej 		}
    492  1.110   thorpej 
    493  1.110   thorpej 		if (memc->mddt_usage & MDDT_mbz) {
    494    1.7       cgd 			mddtweird = 1;
    495  1.110   thorpej 			printf("WARNING: mem cluster %d has weird "
    496  1.110   thorpej 			    "usage 0x%lx\n", i, memc->mddt_usage);
    497  1.110   thorpej 			unknownmem += memc->mddt_pg_cnt;
    498  1.110   thorpej 			continue;
    499    1.7       cgd 		}
    500  1.110   thorpej 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    501  1.110   thorpej 			/* XXX should handle these... */
    502  1.110   thorpej 			printf("WARNING: skipping non-volatile mem "
    503  1.110   thorpej 			    "cluster %d\n", i);
    504  1.110   thorpej 			unusedmem += memc->mddt_pg_cnt;
    505  1.110   thorpej 			continue;
    506  1.110   thorpej 		}
    507  1.110   thorpej 		if (memc->mddt_usage & MDDT_PALCODE) {
    508  1.110   thorpej 			resvmem += memc->mddt_pg_cnt;
    509  1.110   thorpej 			continue;
    510  1.110   thorpej 		}
    511  1.110   thorpej 
    512  1.110   thorpej 		/*
    513  1.110   thorpej 		 * We have a memory cluster available for system
    514  1.110   thorpej 		 * software use.  We must determine if this cluster
    515  1.110   thorpej 		 * holds the kernel.
    516  1.110   thorpej 		 */
    517  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    518  1.110   thorpej 		/*
    519  1.110   thorpej 		 * XXX If the kernel uses the PROM console, we only use the
    520  1.110   thorpej 		 * XXX memory after the kernel in the first system segment,
    521  1.110   thorpej 		 * XXX to avoid clobbering prom mapping, data, etc.
    522  1.110   thorpej 		 */
    523  1.110   thorpej 	    if (!pmap_uses_prom_console() || physmem == 0) {
    524  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    525  1.110   thorpej 		physmem += memc->mddt_pg_cnt;
    526  1.110   thorpej 		pfn0 = memc->mddt_pfn;
    527  1.110   thorpej 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    528  1.110   thorpej 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    529  1.110   thorpej 			/*
    530  1.110   thorpej 			 * Must compute the location of the kernel
    531  1.110   thorpej 			 * within the segment.
    532  1.110   thorpej 			 */
    533  1.110   thorpej #if 0
    534  1.110   thorpej 			printf("Cluster %d contains kernel\n", i);
    535  1.110   thorpej #endif
    536  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    537  1.110   thorpej 		    if (!pmap_uses_prom_console()) {
    538  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    539  1.110   thorpej 			if (pfn0 < kernstartpfn) {
    540  1.110   thorpej 				/*
    541  1.110   thorpej 				 * There is a chunk before the kernel.
    542  1.110   thorpej 				 */
    543  1.110   thorpej #if 0
    544  1.110   thorpej 				printf("Loading chunk before kernel: "
    545  1.110   thorpej 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    546  1.110   thorpej #endif
    547  1.110   thorpej 				vm_page_physload(pfn0, kernstartpfn,
    548  1.110   thorpej 				    pfn0, kernstartpfn);
    549  1.110   thorpej 			}
    550  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    551  1.110   thorpej 		    }
    552  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    553  1.110   thorpej 			if (kernendpfn < pfn1) {
    554  1.110   thorpej 				/*
    555  1.110   thorpej 				 * There is a chunk after the kernel.
    556  1.110   thorpej 				 */
    557  1.110   thorpej #if 0
    558  1.110   thorpej 				printf("Loading chunk after kernel: "
    559  1.110   thorpej 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    560  1.110   thorpej #endif
    561  1.110   thorpej 				vm_page_physload(kernendpfn, pfn1,
    562  1.110   thorpej 				    kernendpfn, pfn1);
    563  1.110   thorpej 			}
    564  1.110   thorpej 		} else {
    565  1.110   thorpej 			/*
    566  1.110   thorpej 			 * Just load this cluster as one chunk.
    567  1.110   thorpej 			 */
    568  1.110   thorpej #if 0
    569  1.110   thorpej 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    570  1.110   thorpej 			    pfn0, pfn1);
    571  1.110   thorpej #endif
    572  1.110   thorpej 			vm_page_physload(pfn0, pfn1, pfn0, pfn1);
    573    1.7       cgd 		}
    574  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    575  1.110   thorpej 	    }
    576  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    577    1.7       cgd 	}
    578    1.7       cgd 
    579  1.110   thorpej 	/*
    580  1.110   thorpej 	 * Dump out the MDDT if it looks odd...
    581  1.110   thorpej 	 */
    582    1.7       cgd 	if (mddtweird) {
    583   1.46  christos 		printf("\n");
    584   1.46  christos 		printf("complete memory cluster information:\n");
    585    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    586   1.46  christos 			printf("mddt %d:\n", i);
    587   1.46  christos 			printf("\tpfn %lx\n",
    588    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    589   1.46  christos 			printf("\tcnt %lx\n",
    590    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    591   1.46  christos 			printf("\ttest %lx\n",
    592    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    593   1.46  christos 			printf("\tbva %lx\n",
    594    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    595   1.46  christos 			printf("\tbpa %lx\n",
    596    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    597   1.46  christos 			printf("\tbcksum %lx\n",
    598    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    599   1.46  christos 			printf("\tusage %lx\n",
    600    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    601    1.2       cgd 		}
    602   1.46  christos 		printf("\n");
    603    1.2       cgd 	}
    604    1.2       cgd 
    605    1.7       cgd 	if (totalphysmem == 0)
    606    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    607  1.110   thorpej 
    608  1.110   thorpej #ifdef LIMITMEM
    609  1.110   thorpej 	/*
    610  1.110   thorpej 	 * XXX Kludge so we can run on machines with memory larger
    611  1.110   thorpej 	 * XXX than 1G until all device drivers are converted to
    612  1.110   thorpej 	 * XXX use bus_dma.  (Relies on the fact that vm_physmem
    613  1.110   thorpej 	 * XXX sorted in order of increasing addresses.)
    614  1.110   thorpej 	 */
    615  1.110   thorpej 	if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
    616  1.110   thorpej 
    617  1.110   thorpej 		printf("******** LIMITING MEMORY TO %dMB **********\n",
    618  1.110   thorpej 		    LIMITMEM);
    619  1.110   thorpej 
    620  1.110   thorpej 		do {
    621  1.110   thorpej 			u_long ovf;
    622  1.110   thorpej 
    623  1.110   thorpej 			vps = &vm_physmem[vm_nphysseg - 1];
    624  1.110   thorpej 
    625  1.110   thorpej 			if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
    626  1.110   thorpej 				/*
    627  1.110   thorpej 				 * If the start is too high, just drop
    628  1.110   thorpej 				 * the whole segment.
    629  1.110   thorpej 				 *
    630  1.110   thorpej 				 * XXX can start != avail_start in this
    631  1.110   thorpej 				 * XXX case?  wouldn't that mean that
    632  1.110   thorpej 				 * XXX some memory was stolen above the
    633  1.110   thorpej 				 * XXX limit?  What to do?
    634  1.110   thorpej 				 */
    635  1.110   thorpej 				ovf = vps->end - vps->start;
    636  1.110   thorpej 				vm_nphysseg--;
    637  1.110   thorpej 			} else {
    638  1.110   thorpej 				/*
    639  1.110   thorpej 				 * If the start is OK, calculate how much
    640  1.110   thorpej 				 * to drop and drop it.
    641  1.110   thorpej 				 */
    642  1.110   thorpej 				ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
    643  1.110   thorpej 				vps->end -= ovf;
    644  1.110   thorpej 				vps->avail_end -= ovf;
    645  1.110   thorpej 			}
    646  1.110   thorpej 			physmem -= ovf;
    647  1.110   thorpej 			unusedmem += ovf;
    648  1.110   thorpej 		} while (vps->end > atop(LIMITMEM * 1024 * 1024));
    649   1.88    mjacob 	}
    650  1.110   thorpej #endif /* LIMITMEM */
    651  1.110   thorpej 
    652    1.1       cgd 	maxmem = physmem;
    653    1.1       cgd 
    654    1.7       cgd #if 0
    655   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    656   1.46  christos 	printf("physmem = %d\n", physmem);
    657   1.46  christos 	printf("resvmem = %d\n", resvmem);
    658   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    659   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    660    1.7       cgd #endif
    661   1.90    mjacob 
    662   1.90    mjacob 	/*
    663   1.90    mjacob 	 * Adjust some parameters if the amount of physmem
    664   1.90    mjacob 	 * available would cause us to croak. This is completely
    665   1.90    mjacob 	 * eyeballed and isn't meant to be the final answer.
    666   1.90    mjacob 	 * vm_phys_size is probably the only one to really worry
    667   1.90    mjacob 	 * about.
    668   1.90    mjacob  	 *
    669   1.90    mjacob 	 * It's for booting a GENERIC kernel on a large memory platform.
    670   1.90    mjacob 	 */
    671  1.110   thorpej 	if (physmem >= atop(128 * 1024 * 1024)) {
    672   1.90    mjacob 		vm_mbuf_size <<= 1;
    673   1.93    mjacob 		vm_kmem_size <<= 3;
    674   1.93    mjacob 		vm_phys_size <<= 2;
    675   1.90    mjacob 	}
    676    1.7       cgd 
    677    1.1       cgd 	/*
    678    1.1       cgd 	 * Initialize error message buffer (at end of core).
    679    1.1       cgd 	 */
    680  1.110   thorpej 	{
    681  1.110   thorpej 		size_t sz = round_page(MSGBUFSIZE);
    682  1.110   thorpej 
    683  1.110   thorpej 		vps = &vm_physmem[vm_nphysseg - 1];
    684  1.110   thorpej 
    685  1.110   thorpej 		/* shrink so that it'll fit in the last segment */
    686  1.110   thorpej 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    687  1.110   thorpej 			sz = ptoa(vps->avail_end - vps->avail_start);
    688  1.110   thorpej 
    689  1.110   thorpej 		vps->end -= atop(sz);
    690  1.110   thorpej 		vps->avail_end -= atop(sz);
    691  1.110   thorpej 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    692  1.110   thorpej 		initmsgbuf(msgbufaddr, sz);
    693  1.110   thorpej 
    694  1.110   thorpej 		/* Remove the last segment if it now has no pages. */
    695  1.110   thorpej 		if (vps->start == vps->end)
    696  1.110   thorpej 			vm_nphysseg--;
    697  1.110   thorpej 
    698  1.110   thorpej 		/* warn if the message buffer had to be shrunk */
    699  1.110   thorpej 		if (sz != round_page(MSGBUFSIZE))
    700  1.110   thorpej 			printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
    701  1.110   thorpej 			    round_page(MSGBUFSIZE), sz);
    702  1.110   thorpej 
    703  1.110   thorpej 	}
    704    1.1       cgd 
    705    1.1       cgd 	/*
    706   1.95   thorpej 	 * Init mapping for u page(s) for proc 0
    707    1.1       cgd 	 */
    708  1.110   thorpej 	proc0.p_addr = proc0paddr =
    709  1.110   thorpej 	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
    710    1.1       cgd 
    711    1.1       cgd 	/*
    712   1.95   thorpej 	 * Allocate space for system data structures.  These data structures
    713   1.95   thorpej 	 * are allocated here instead of cpu_startup() because physical
    714   1.95   thorpej 	 * memory is directly addressable.  We don't have to map these into
    715   1.95   thorpej 	 * virtual address space.
    716   1.95   thorpej 	 */
    717   1.95   thorpej 	size = (vm_size_t)allocsys(0);
    718  1.110   thorpej 	v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
    719  1.110   thorpej 	if ((allocsys(v) - v) != size)
    720   1.95   thorpej 		panic("alpha_init: table size inconsistency");
    721    1.1       cgd 
    722    1.1       cgd 	/*
    723    1.1       cgd 	 * Initialize the virtual memory system, and set the
    724    1.1       cgd 	 * page table base register in proc 0's PCB.
    725    1.1       cgd 	 */
    726   1.40       cgd #ifndef NEW_PMAP
    727  1.110   thorpej 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
    728   1.40       cgd #else
    729  1.110   thorpej 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    730   1.40       cgd 	    hwrpb->rpb_max_asn);
    731   1.40       cgd #endif
    732    1.1       cgd 
    733    1.1       cgd 	/*
    734    1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    735    1.3       cgd 	 * address.
    736    1.3       cgd 	 */
    737    1.3       cgd 	proc0.p_md.md_pcbpaddr =
    738   1.32       cgd 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
    739    1.3       cgd 
    740    1.3       cgd 	/*
    741    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    742    1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    743    1.3       cgd 	 */
    744   1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    745    1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    746   1.81   thorpej 	proc0.p_md.md_tf =
    747   1.81   thorpej 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    748   1.38       cgd 
    749   1.40       cgd #ifdef NEW_PMAP
    750   1.84   thorpej 	/*
    751   1.84   thorpej 	 * Set up the kernel address space in proc0's hwpcb.
    752   1.84   thorpej 	 */
    753   1.84   thorpej 	PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
    754   1.38       cgd #endif
    755    1.1       cgd 
    756    1.1       cgd 	/*
    757   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    758    1.8       cgd 	 */
    759    1.1       cgd 
    760    1.8       cgd 	boothowto = RB_SINGLE;
    761    1.1       cgd #ifdef KADB
    762    1.1       cgd 	boothowto |= RB_KDB;
    763    1.1       cgd #endif
    764  1.102       cgd 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    765   1.26       cgd 		/*
    766   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    767   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    768   1.26       cgd 		 * says that we shouldn't.
    769   1.26       cgd 		 */
    770    1.8       cgd 		switch (*p) {
    771   1.26       cgd 		case 'a': /* autoboot */
    772   1.26       cgd 		case 'A':
    773   1.26       cgd 			boothowto &= ~RB_SINGLE;
    774   1.21       cgd 			break;
    775   1.21       cgd 
    776   1.43       cgd #ifdef DEBUG
    777   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    778   1.43       cgd 		case 'C':
    779   1.43       cgd 			boothowto |= RB_DUMP;
    780   1.43       cgd 			break;
    781   1.43       cgd #endif
    782   1.43       cgd 
    783   1.81   thorpej #if defined(KGDB) || defined(DDB)
    784   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    785   1.81   thorpej 		case 'D':
    786   1.81   thorpej 			boothowto |= RB_KDB;
    787   1.81   thorpej 			break;
    788   1.81   thorpej #endif
    789   1.81   thorpej 
    790   1.36       cgd 		case 'h': /* always halt, never reboot */
    791   1.36       cgd 		case 'H':
    792   1.36       cgd 			boothowto |= RB_HALT;
    793    1.8       cgd 			break;
    794    1.8       cgd 
    795   1.21       cgd #if 0
    796    1.8       cgd 		case 'm': /* mini root present in memory */
    797   1.26       cgd 		case 'M':
    798    1.8       cgd 			boothowto |= RB_MINIROOT;
    799    1.8       cgd 			break;
    800   1.21       cgd #endif
    801   1.36       cgd 
    802   1.36       cgd 		case 'n': /* askname */
    803   1.36       cgd 		case 'N':
    804   1.36       cgd 			boothowto |= RB_ASKNAME;
    805   1.65       cgd 			break;
    806   1.65       cgd 
    807   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    808   1.65       cgd 		case 'S':
    809   1.65       cgd 			boothowto |= RB_SINGLE;
    810   1.65       cgd 			break;
    811   1.65       cgd 
    812   1.65       cgd 		default:
    813   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    814   1.36       cgd 			break;
    815    1.1       cgd 		}
    816    1.1       cgd 	}
    817    1.1       cgd 
    818    1.7       cgd 	/*
    819  1.106       cgd 	 * Initialize debuggers, and break into them if appropriate.
    820  1.106       cgd 	 */
    821  1.106       cgd #ifdef DDB
    822  1.106       cgd 	db_machine_init();
    823  1.106       cgd 	ddb_init(ksym_start, ksym_end);
    824  1.106       cgd 	if (boothowto & RB_KDB)
    825  1.106       cgd 		Debugger();
    826  1.106       cgd #endif
    827  1.106       cgd #ifdef KGDB
    828  1.106       cgd 	if (boothowto & RB_KDB)
    829  1.106       cgd 		kgdb_connect(0);
    830  1.106       cgd #endif
    831  1.106       cgd 
    832  1.106       cgd 	/*
    833    1.7       cgd 	 * Figure out the number of cpus in the box, from RPB fields.
    834    1.7       cgd 	 * Really.  We mean it.
    835    1.7       cgd 	 */
    836    1.7       cgd 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    837    1.7       cgd 		struct pcs *pcsp;
    838    1.7       cgd 
    839    1.7       cgd 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    840    1.7       cgd 		    (i * hwrpb->rpb_pcs_size));
    841    1.7       cgd 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    842    1.7       cgd 			ncpus++;
    843    1.7       cgd 	}
    844  1.106       cgd 
    845  1.106       cgd 	/*
    846  1.106       cgd 	 * Figure out our clock frequency, from RPB fields.
    847  1.106       cgd 	 */
    848  1.106       cgd 	hz = hwrpb->rpb_intr_freq >> 12;
    849  1.106       cgd 	if (!(60 <= hz && hz <= 10240)) {
    850  1.106       cgd 		hz = 1024;
    851  1.106       cgd #ifdef DIAGNOSTIC
    852  1.106       cgd 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    853  1.106       cgd 			hwrpb->rpb_intr_freq, hz);
    854  1.106       cgd #endif
    855  1.106       cgd 	}
    856  1.106       cgd 
    857   1.95   thorpej }
    858   1.95   thorpej 
    859   1.95   thorpej /*
    860   1.95   thorpej  * Allocate space for system data structures.  We are given
    861   1.95   thorpej  * a starting virtual address and we return a final virtual
    862   1.95   thorpej  * address; along the way we set each data structure pointer.
    863   1.95   thorpej  *
    864   1.95   thorpej  * We call allocsys() with 0 to find out how much space we want,
    865   1.95   thorpej  * allocate that much and fill it with zeroes, and the call
    866   1.95   thorpej  * allocsys() again with the correct base virtual address.
    867   1.95   thorpej  */
    868   1.95   thorpej caddr_t
    869   1.95   thorpej allocsys(v)
    870   1.95   thorpej 	caddr_t v;
    871   1.95   thorpej {
    872   1.95   thorpej 
    873   1.95   thorpej #define valloc(name, type, num) \
    874   1.95   thorpej 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    875   1.95   thorpej #ifdef REAL_CLISTS
    876   1.95   thorpej 	valloc(cfree, struct cblock, nclist);
    877   1.95   thorpej #endif
    878   1.95   thorpej 	valloc(callout, struct callout, ncallout);
    879   1.95   thorpej #ifdef SYSVSHM
    880   1.95   thorpej 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    881   1.95   thorpej #endif
    882   1.95   thorpej #ifdef SYSVSEM
    883   1.95   thorpej 	valloc(sema, struct semid_ds, seminfo.semmni);
    884   1.95   thorpej 	valloc(sem, struct sem, seminfo.semmns);
    885   1.95   thorpej 	/* This is pretty disgusting! */
    886   1.95   thorpej 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    887   1.95   thorpej #endif
    888   1.95   thorpej #ifdef SYSVMSG
    889   1.95   thorpej 	valloc(msgpool, char, msginfo.msgmax);
    890   1.95   thorpej 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    891   1.95   thorpej 	valloc(msghdrs, struct msg, msginfo.msgtql);
    892   1.95   thorpej 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    893   1.95   thorpej #endif
    894   1.95   thorpej 
    895   1.95   thorpej 	/*
    896   1.95   thorpej 	 * Determine how many buffers to allocate.
    897   1.95   thorpej 	 * We allocate 10% of memory for buffer space.  Insure a
    898   1.95   thorpej 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    899   1.95   thorpej 	 * headers as file i/o buffers.
    900   1.95   thorpej 	 */
    901   1.95   thorpej 	if (bufpages == 0)
    902   1.95   thorpej 		bufpages = (physmem * 10) / (CLSIZE * 100);
    903   1.95   thorpej 	if (nbuf == 0) {
    904   1.95   thorpej 		nbuf = bufpages;
    905   1.95   thorpej 		if (nbuf < 16)
    906   1.95   thorpej 			nbuf = 16;
    907   1.95   thorpej 	}
    908   1.95   thorpej 	if (nswbuf == 0) {
    909   1.95   thorpej 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    910   1.95   thorpej 		if (nswbuf > 256)
    911   1.95   thorpej 			nswbuf = 256;		/* sanity */
    912   1.95   thorpej 	}
    913   1.95   thorpej 	valloc(swbuf, struct buf, nswbuf);
    914   1.95   thorpej 	valloc(buf, struct buf, nbuf);
    915   1.95   thorpej 	return (v);
    916   1.98       cgd #undef valloc
    917    1.1       cgd }
    918    1.1       cgd 
    919   1.18       cgd void
    920    1.1       cgd consinit()
    921    1.1       cgd {
    922   1.81   thorpej 
    923  1.106       cgd 	/*
    924  1.106       cgd 	 * Everything related to console initialization is done
    925  1.106       cgd 	 * in alpha_init().
    926  1.106       cgd 	 */
    927  1.106       cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    928  1.106       cgd 	printf("consinit: %susing prom console\n",
    929  1.106       cgd 	    pmap_uses_prom_console() ? "" : "not ");
    930   1.81   thorpej #endif
    931    1.1       cgd }
    932    1.1       cgd 
    933   1.18       cgd void
    934    1.1       cgd cpu_startup()
    935    1.1       cgd {
    936    1.1       cgd 	register unsigned i;
    937    1.1       cgd 	int base, residual;
    938    1.1       cgd 	vm_offset_t minaddr, maxaddr;
    939    1.1       cgd 	vm_size_t size;
    940   1.40       cgd #if defined(DEBUG)
    941    1.1       cgd 	extern int pmapdebug;
    942    1.1       cgd 	int opmapdebug = pmapdebug;
    943    1.1       cgd 
    944    1.1       cgd 	pmapdebug = 0;
    945    1.1       cgd #endif
    946    1.1       cgd 
    947    1.1       cgd 	/*
    948    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    949    1.1       cgd 	 */
    950   1.46  christos 	printf(version);
    951    1.1       cgd 	identifycpu();
    952  1.110   thorpej 	printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
    953  1.110   thorpej 	    ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
    954    1.7       cgd 	if (unusedmem)
    955   1.46  christos 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    956    1.7       cgd 	if (unknownmem)
    957   1.46  christos 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    958    1.7       cgd 		    ctob(unknownmem));
    959    1.1       cgd 
    960    1.1       cgd 	/*
    961    1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    962    1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    963    1.1       cgd 	 * and usually occupy more virtual memory than physical.
    964    1.1       cgd 	 */
    965    1.1       cgd 	size = MAXBSIZE * nbuf;
    966    1.1       cgd 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    967    1.1       cgd 	    &maxaddr, size, TRUE);
    968    1.1       cgd 	minaddr = (vm_offset_t)buffers;
    969    1.1       cgd 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    970    1.1       cgd 			&minaddr, size, FALSE) != KERN_SUCCESS)
    971    1.1       cgd 		panic("startup: cannot allocate buffers");
    972    1.1       cgd 	base = bufpages / nbuf;
    973    1.1       cgd 	residual = bufpages % nbuf;
    974    1.1       cgd 	for (i = 0; i < nbuf; i++) {
    975    1.1       cgd 		vm_size_t curbufsize;
    976    1.1       cgd 		vm_offset_t curbuf;
    977    1.1       cgd 
    978    1.1       cgd 		/*
    979    1.1       cgd 		 * First <residual> buffers get (base+1) physical pages
    980    1.1       cgd 		 * allocated for them.  The rest get (base) physical pages.
    981    1.1       cgd 		 *
    982    1.1       cgd 		 * The rest of each buffer occupies virtual space,
    983    1.1       cgd 		 * but has no physical memory allocated for it.
    984    1.1       cgd 		 */
    985    1.1       cgd 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    986    1.1       cgd 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    987    1.1       cgd 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    988    1.1       cgd 		vm_map_simplify(buffer_map, curbuf);
    989    1.1       cgd 	}
    990    1.1       cgd 	/*
    991    1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    992    1.1       cgd 	 * limits the number of processes exec'ing at any time.
    993    1.1       cgd 	 */
    994    1.1       cgd 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    995    1.1       cgd 				 16 * NCARGS, TRUE);
    996    1.1       cgd 
    997    1.1       cgd 	/*
    998    1.1       cgd 	 * Allocate a submap for physio
    999    1.1       cgd 	 */
   1000    1.1       cgd 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
   1001    1.1       cgd 				 VM_PHYS_SIZE, TRUE);
   1002    1.1       cgd 
   1003    1.1       cgd 	/*
   1004   1.69   thorpej 	 * Finally, allocate mbuf cluster submap.
   1005    1.1       cgd 	 */
   1006    1.1       cgd 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
   1007    1.1       cgd 	    VM_MBUF_SIZE, FALSE);
   1008    1.1       cgd 	/*
   1009    1.1       cgd 	 * Initialize callouts
   1010    1.1       cgd 	 */
   1011    1.1       cgd 	callfree = callout;
   1012    1.1       cgd 	for (i = 1; i < ncallout; i++)
   1013    1.1       cgd 		callout[i-1].c_next = &callout[i];
   1014    1.1       cgd 	callout[i-1].c_next = NULL;
   1015    1.1       cgd 
   1016   1.40       cgd #if defined(DEBUG)
   1017    1.1       cgd 	pmapdebug = opmapdebug;
   1018    1.1       cgd #endif
   1019   1.46  christos 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
   1020   1.46  christos 	printf("using %ld buffers containing %ld bytes of memory\n",
   1021    1.1       cgd 		(long)nbuf, (long)(bufpages * CLBYTES));
   1022    1.1       cgd 
   1023    1.1       cgd 	/*
   1024    1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
   1025    1.1       cgd 	 */
   1026    1.1       cgd 	bufinit();
   1027    1.1       cgd 
   1028    1.1       cgd 	/*
   1029    1.1       cgd 	 * Configure the system.
   1030    1.1       cgd 	 */
   1031    1.1       cgd 	configure();
   1032   1.48       cgd 
   1033   1.48       cgd 	/*
   1034   1.48       cgd 	 * Note that bootstrapping is finished, and set the HWRPB up
   1035   1.48       cgd 	 * to do restarts.
   1036   1.48       cgd 	 */
   1037   1.55       cgd 	hwrpb_restart_setup();
   1038  1.104   thorpej }
   1039  1.104   thorpej 
   1040  1.104   thorpej /*
   1041  1.104   thorpej  * Retrieve the platform name from the DSR.
   1042  1.104   thorpej  */
   1043  1.104   thorpej const char *
   1044  1.104   thorpej alpha_dsr_sysname()
   1045  1.104   thorpej {
   1046  1.104   thorpej 	struct dsrdb *dsr;
   1047  1.104   thorpej 	const char *sysname;
   1048  1.104   thorpej 
   1049  1.104   thorpej 	/*
   1050  1.104   thorpej 	 * DSR does not exist on early HWRPB versions.
   1051  1.104   thorpej 	 */
   1052  1.104   thorpej 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
   1053  1.104   thorpej 		return (NULL);
   1054  1.104   thorpej 
   1055  1.104   thorpej 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
   1056  1.104   thorpej 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
   1057  1.104   thorpej 	    sizeof(u_int64_t)));
   1058  1.104   thorpej 	return (sysname);
   1059  1.104   thorpej }
   1060  1.104   thorpej 
   1061  1.104   thorpej /*
   1062  1.104   thorpej  * Lookup the system specified system variation in the provided table,
   1063  1.104   thorpej  * returning the model string on match.
   1064  1.104   thorpej  */
   1065  1.104   thorpej const char *
   1066  1.104   thorpej alpha_variation_name(variation, avtp)
   1067  1.104   thorpej 	u_int64_t variation;
   1068  1.104   thorpej 	const struct alpha_variation_table *avtp;
   1069  1.104   thorpej {
   1070  1.104   thorpej 	int i;
   1071  1.104   thorpej 
   1072  1.104   thorpej 	for (i = 0; avtp[i].avt_model != NULL; i++)
   1073  1.104   thorpej 		if (avtp[i].avt_variation == variation)
   1074  1.104   thorpej 			return (avtp[i].avt_model);
   1075  1.104   thorpej 	return (NULL);
   1076  1.104   thorpej }
   1077  1.104   thorpej 
   1078  1.104   thorpej /*
   1079  1.104   thorpej  * Generate a default platform name based for unknown system variations.
   1080  1.104   thorpej  */
   1081  1.104   thorpej const char *
   1082  1.104   thorpej alpha_unknown_sysname()
   1083  1.104   thorpej {
   1084  1.105   thorpej 	static char s[128];		/* safe size */
   1085  1.104   thorpej 
   1086  1.105   thorpej 	sprintf(s, "%s family, unknown model variation 0x%lx",
   1087  1.105   thorpej 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1088  1.104   thorpej 	return ((const char *)s);
   1089    1.1       cgd }
   1090    1.1       cgd 
   1091   1.33       cgd void
   1092    1.1       cgd identifycpu()
   1093    1.1       cgd {
   1094    1.1       cgd 
   1095    1.7       cgd 	/*
   1096    1.7       cgd 	 * print out CPU identification information.
   1097    1.7       cgd 	 */
   1098   1.46  christos 	printf("%s, %ldMHz\n", cpu_model,
   1099    1.7       cgd 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
   1100   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
   1101    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1102    1.7       cgd #if 0
   1103    1.7       cgd 	/* this isn't defined for any systems that we run on? */
   1104   1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
   1105    1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1106    1.7       cgd 
   1107    1.7       cgd 	/* and these aren't particularly useful! */
   1108   1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
   1109    1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1110    1.7       cgd #endif
   1111    1.1       cgd }
   1112    1.1       cgd 
   1113    1.1       cgd int	waittime = -1;
   1114    1.7       cgd struct pcb dumppcb;
   1115    1.1       cgd 
   1116   1.18       cgd void
   1117   1.68       gwr cpu_reboot(howto, bootstr)
   1118    1.1       cgd 	int howto;
   1119   1.39       mrg 	char *bootstr;
   1120    1.1       cgd {
   1121    1.1       cgd 	extern int cold;
   1122    1.1       cgd 
   1123    1.1       cgd 	/* If system is cold, just halt. */
   1124    1.1       cgd 	if (cold) {
   1125    1.1       cgd 		howto |= RB_HALT;
   1126    1.1       cgd 		goto haltsys;
   1127    1.1       cgd 	}
   1128    1.1       cgd 
   1129   1.36       cgd 	/* If "always halt" was specified as a boot flag, obey. */
   1130   1.36       cgd 	if ((boothowto & RB_HALT) != 0)
   1131   1.36       cgd 		howto |= RB_HALT;
   1132   1.36       cgd 
   1133    1.7       cgd 	boothowto = howto;
   1134    1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
   1135    1.1       cgd 		waittime = 0;
   1136    1.7       cgd 		vfs_shutdown();
   1137    1.1       cgd 		/*
   1138    1.1       cgd 		 * If we've been adjusting the clock, the todr
   1139    1.1       cgd 		 * will be out of synch; adjust it now.
   1140    1.1       cgd 		 */
   1141    1.1       cgd 		resettodr();
   1142    1.1       cgd 	}
   1143    1.1       cgd 
   1144    1.1       cgd 	/* Disable interrupts. */
   1145    1.1       cgd 	splhigh();
   1146    1.1       cgd 
   1147    1.7       cgd 	/* If rebooting and a dump is requested do it. */
   1148   1.42       cgd #if 0
   1149   1.42       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1150   1.42       cgd #else
   1151   1.42       cgd 	if (howto & RB_DUMP)
   1152   1.42       cgd #endif
   1153    1.1       cgd 		dumpsys();
   1154    1.6       cgd 
   1155   1.12       cgd haltsys:
   1156   1.12       cgd 
   1157    1.6       cgd 	/* run any shutdown hooks */
   1158    1.6       cgd 	doshutdownhooks();
   1159    1.1       cgd 
   1160    1.7       cgd #ifdef BOOTKEY
   1161   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1162    1.7       cgd 	cngetc();
   1163   1.46  christos 	printf("\n");
   1164    1.7       cgd #endif
   1165    1.7       cgd 
   1166    1.1       cgd 	/* Finally, halt/reboot the system. */
   1167   1.46  christos 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
   1168    1.1       cgd 	prom_halt(howto & RB_HALT);
   1169    1.1       cgd 	/*NOTREACHED*/
   1170    1.1       cgd }
   1171    1.1       cgd 
   1172    1.7       cgd /*
   1173    1.7       cgd  * These variables are needed by /sbin/savecore
   1174    1.7       cgd  */
   1175    1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
   1176    1.7       cgd int 	dumpsize = 0;		/* pages */
   1177    1.7       cgd long	dumplo = 0; 		/* blocks */
   1178    1.7       cgd 
   1179    1.7       cgd /*
   1180   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1181   1.43       cgd  */
   1182   1.43       cgd int
   1183   1.43       cgd cpu_dumpsize()
   1184   1.43       cgd {
   1185   1.43       cgd 	int size;
   1186   1.43       cgd 
   1187  1.108       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1188  1.110   thorpej 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1189   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
   1190   1.43       cgd 		return -1;
   1191   1.43       cgd 
   1192   1.43       cgd 	return (1);
   1193   1.43       cgd }
   1194   1.43       cgd 
   1195   1.43       cgd /*
   1196  1.110   thorpej  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1197  1.110   thorpej  */
   1198  1.110   thorpej u_long
   1199  1.110   thorpej cpu_dump_mempagecnt()
   1200  1.110   thorpej {
   1201  1.110   thorpej 	u_long i, n;
   1202  1.110   thorpej 
   1203  1.110   thorpej 	n = 0;
   1204  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++)
   1205  1.110   thorpej 		n += atop(mem_clusters[i].size);
   1206  1.110   thorpej 	return (n);
   1207  1.110   thorpej }
   1208  1.110   thorpej 
   1209  1.110   thorpej /*
   1210   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
   1211   1.43       cgd  */
   1212   1.43       cgd int
   1213   1.43       cgd cpu_dump()
   1214   1.43       cgd {
   1215   1.43       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1216  1.107       cgd 	char buf[dbtob(1)];
   1217  1.107       cgd 	kcore_seg_t *segp;
   1218  1.107       cgd 	cpu_kcore_hdr_t *cpuhdrp;
   1219  1.107       cgd 	phys_ram_seg_t *memsegp;
   1220  1.110   thorpej 	int i;
   1221   1.43       cgd 
   1222  1.107       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1223   1.43       cgd 
   1224  1.107       cgd 	bzero(buf, sizeof buf);
   1225   1.43       cgd 	segp = (kcore_seg_t *)buf;
   1226  1.107       cgd 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1227  1.107       cgd 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1228  1.107       cgd 	    ALIGN(sizeof(*cpuhdrp))];
   1229   1.43       cgd 
   1230   1.43       cgd 	/*
   1231   1.43       cgd 	 * Generate a segment header.
   1232   1.43       cgd 	 */
   1233   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1234   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1235   1.43       cgd 
   1236   1.43       cgd 	/*
   1237  1.107       cgd 	 * Add the machine-dependent header info.
   1238   1.43       cgd 	 */
   1239   1.44       cgd 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
   1240   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
   1241  1.110   thorpej 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1242  1.107       cgd 
   1243  1.107       cgd 	/*
   1244  1.107       cgd 	 * Fill in the memory segment descriptors.
   1245  1.107       cgd 	 */
   1246  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1247  1.110   thorpej 		memsegp[i].start = mem_clusters[i].start;
   1248  1.110   thorpej 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1249  1.110   thorpej 	}
   1250   1.43       cgd 
   1251   1.43       cgd 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1252   1.43       cgd }
   1253   1.43       cgd 
   1254   1.43       cgd /*
   1255   1.68       gwr  * This is called by main to set dumplo and dumpsize.
   1256    1.7       cgd  * Dumps always skip the first CLBYTES of disk space
   1257    1.7       cgd  * in case there might be a disk label stored there.
   1258    1.7       cgd  * If there is extra space, put dump at the end to
   1259    1.7       cgd  * reduce the chance that swapping trashes it.
   1260    1.7       cgd  */
   1261    1.7       cgd void
   1262   1.68       gwr cpu_dumpconf()
   1263    1.7       cgd {
   1264   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
   1265    1.7       cgd 	int maj;
   1266    1.7       cgd 
   1267    1.7       cgd 	if (dumpdev == NODEV)
   1268   1.43       cgd 		goto bad;
   1269    1.7       cgd 	maj = major(dumpdev);
   1270    1.7       cgd 	if (maj < 0 || maj >= nblkdev)
   1271    1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1272    1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
   1273   1.43       cgd 		goto bad;
   1274    1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1275    1.7       cgd 	if (nblks <= ctod(1))
   1276   1.43       cgd 		goto bad;
   1277   1.43       cgd 
   1278   1.43       cgd 	dumpblks = cpu_dumpsize();
   1279   1.43       cgd 	if (dumpblks < 0)
   1280   1.43       cgd 		goto bad;
   1281  1.110   thorpej 	dumpblks += ctod(cpu_dump_mempagecnt());
   1282   1.43       cgd 
   1283   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1284   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1285   1.43       cgd 		goto bad;
   1286   1.43       cgd 
   1287   1.43       cgd 	/* Put dump at end of partition */
   1288   1.43       cgd 	dumplo = nblks - dumpblks;
   1289    1.7       cgd 
   1290   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1291  1.110   thorpej 	dumpsize = cpu_dump_mempagecnt();
   1292   1.43       cgd 	return;
   1293    1.7       cgd 
   1294   1.43       cgd bad:
   1295   1.43       cgd 	dumpsize = 0;
   1296   1.43       cgd 	return;
   1297    1.7       cgd }
   1298    1.7       cgd 
   1299    1.7       cgd /*
   1300   1.42       cgd  * Dump the kernel's image to the swap partition.
   1301    1.7       cgd  */
   1302   1.42       cgd #define	BYTES_PER_DUMP	NBPG
   1303   1.42       cgd 
   1304    1.7       cgd void
   1305    1.7       cgd dumpsys()
   1306    1.7       cgd {
   1307  1.110   thorpej 	u_long totalbytesleft, bytes, i, n, memcl;
   1308  1.110   thorpej 	u_long maddr;
   1309  1.110   thorpej 	int psize;
   1310   1.42       cgd 	daddr_t blkno;
   1311   1.42       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1312   1.42       cgd 	int error;
   1313   1.42       cgd 
   1314   1.42       cgd 	/* Save registers. */
   1315   1.42       cgd 	savectx(&dumppcb);
   1316    1.7       cgd 
   1317  1.111   thorpej 	msgbufenabled = 0;	/* don't record dump msgs in msgbuf */
   1318    1.7       cgd 	if (dumpdev == NODEV)
   1319    1.7       cgd 		return;
   1320   1.42       cgd 
   1321   1.42       cgd 	/*
   1322   1.42       cgd 	 * For dumps during autoconfiguration,
   1323   1.42       cgd 	 * if dump device has already configured...
   1324   1.42       cgd 	 */
   1325   1.42       cgd 	if (dumpsize == 0)
   1326   1.68       gwr 		cpu_dumpconf();
   1327   1.47       cgd 	if (dumplo <= 0) {
   1328   1.97   mycroft 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1329   1.97   mycroft 		    minor(dumpdev));
   1330   1.42       cgd 		return;
   1331   1.43       cgd 	}
   1332   1.97   mycroft 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1333   1.97   mycroft 	    minor(dumpdev), dumplo);
   1334    1.7       cgd 
   1335   1.42       cgd 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1336   1.46  christos 	printf("dump ");
   1337   1.42       cgd 	if (psize == -1) {
   1338   1.46  christos 		printf("area unavailable\n");
   1339   1.42       cgd 		return;
   1340   1.42       cgd 	}
   1341   1.42       cgd 
   1342   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1343   1.42       cgd 
   1344   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1345   1.43       cgd 		goto err;
   1346   1.43       cgd 
   1347  1.110   thorpej 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1348   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1349   1.42       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1350   1.42       cgd 	error = 0;
   1351   1.42       cgd 
   1352  1.110   thorpej 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1353  1.110   thorpej 		maddr = mem_clusters[memcl].start;
   1354  1.110   thorpej 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1355  1.110   thorpej 
   1356  1.110   thorpej 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1357  1.110   thorpej 
   1358  1.110   thorpej 			/* Print out how many MBs we to go. */
   1359  1.110   thorpej 			if ((totalbytesleft % (1024*1024)) == 0)
   1360  1.110   thorpej 				printf("%d ", totalbytesleft / (1024 * 1024));
   1361  1.110   thorpej 
   1362  1.110   thorpej 			/* Limit size for next transfer. */
   1363  1.110   thorpej 			n = bytes - i;
   1364  1.110   thorpej 			if (n > BYTES_PER_DUMP)
   1365  1.110   thorpej 				n =  BYTES_PER_DUMP;
   1366  1.110   thorpej 
   1367  1.110   thorpej 			error = (*dump)(dumpdev, blkno,
   1368  1.110   thorpej 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1369  1.110   thorpej 			if (error)
   1370  1.110   thorpej 				goto err;
   1371  1.110   thorpej 			maddr += n;
   1372  1.110   thorpej 			blkno += btodb(n);			/* XXX? */
   1373   1.42       cgd 
   1374  1.110   thorpej 			/* XXX should look for keystrokes, to cancel. */
   1375  1.110   thorpej 		}
   1376   1.42       cgd 	}
   1377   1.42       cgd 
   1378   1.43       cgd err:
   1379   1.42       cgd 	switch (error) {
   1380    1.7       cgd 
   1381    1.7       cgd 	case ENXIO:
   1382   1.46  christos 		printf("device bad\n");
   1383    1.7       cgd 		break;
   1384    1.7       cgd 
   1385    1.7       cgd 	case EFAULT:
   1386   1.46  christos 		printf("device not ready\n");
   1387    1.7       cgd 		break;
   1388    1.7       cgd 
   1389    1.7       cgd 	case EINVAL:
   1390   1.46  christos 		printf("area improper\n");
   1391    1.7       cgd 		break;
   1392    1.7       cgd 
   1393    1.7       cgd 	case EIO:
   1394   1.46  christos 		printf("i/o error\n");
   1395    1.7       cgd 		break;
   1396    1.7       cgd 
   1397    1.7       cgd 	case EINTR:
   1398   1.46  christos 		printf("aborted from console\n");
   1399    1.7       cgd 		break;
   1400    1.7       cgd 
   1401   1.42       cgd 	case 0:
   1402   1.46  christos 		printf("succeeded\n");
   1403   1.42       cgd 		break;
   1404   1.42       cgd 
   1405    1.7       cgd 	default:
   1406   1.46  christos 		printf("error %d\n", error);
   1407    1.7       cgd 		break;
   1408    1.7       cgd 	}
   1409   1.46  christos 	printf("\n\n");
   1410    1.7       cgd 	delay(1000);
   1411    1.7       cgd }
   1412    1.7       cgd 
   1413    1.1       cgd void
   1414    1.1       cgd frametoreg(framep, regp)
   1415    1.1       cgd 	struct trapframe *framep;
   1416    1.1       cgd 	struct reg *regp;
   1417    1.1       cgd {
   1418    1.1       cgd 
   1419    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1420    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1421    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1422    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1423    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1424    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1425    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1426    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1427    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1428    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1429    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1430    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1431    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1432    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1433    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1434    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1435   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1436   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1437   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1438    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1439    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1440    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1441    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1442    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1443    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1444    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1445    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1446    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1447    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1448   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1449   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1450    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1451    1.1       cgd }
   1452    1.1       cgd 
   1453    1.1       cgd void
   1454    1.1       cgd regtoframe(regp, framep)
   1455    1.1       cgd 	struct reg *regp;
   1456    1.1       cgd 	struct trapframe *framep;
   1457    1.1       cgd {
   1458    1.1       cgd 
   1459    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1460    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1461    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1462    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1463    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1464    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1465    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1466    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1467    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1468    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1469    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1470    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1471    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1472    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1473    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1474    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1475   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1476   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1477   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1478    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1479    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1480    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1481    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1482    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1483    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1484    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1485    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1486    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1487    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1488   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1489   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1490    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1491    1.1       cgd }
   1492    1.1       cgd 
   1493    1.1       cgd void
   1494    1.1       cgd printregs(regp)
   1495    1.1       cgd 	struct reg *regp;
   1496    1.1       cgd {
   1497    1.1       cgd 	int i;
   1498    1.1       cgd 
   1499    1.1       cgd 	for (i = 0; i < 32; i++)
   1500   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1501    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1502    1.1       cgd }
   1503    1.1       cgd 
   1504    1.1       cgd void
   1505    1.1       cgd regdump(framep)
   1506    1.1       cgd 	struct trapframe *framep;
   1507    1.1       cgd {
   1508    1.1       cgd 	struct reg reg;
   1509    1.1       cgd 
   1510    1.1       cgd 	frametoreg(framep, &reg);
   1511   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1512   1.35       cgd 
   1513   1.46  christos 	printf("REGISTERS:\n");
   1514    1.1       cgd 	printregs(&reg);
   1515    1.1       cgd }
   1516    1.1       cgd 
   1517    1.1       cgd #ifdef DEBUG
   1518    1.1       cgd int sigdebug = 0;
   1519    1.1       cgd int sigpid = 0;
   1520    1.1       cgd #define	SDB_FOLLOW	0x01
   1521    1.1       cgd #define	SDB_KSTACK	0x02
   1522    1.1       cgd #endif
   1523    1.1       cgd 
   1524    1.1       cgd /*
   1525    1.1       cgd  * Send an interrupt to process.
   1526    1.1       cgd  */
   1527    1.1       cgd void
   1528    1.1       cgd sendsig(catcher, sig, mask, code)
   1529    1.1       cgd 	sig_t catcher;
   1530    1.1       cgd 	int sig, mask;
   1531    1.1       cgd 	u_long code;
   1532    1.1       cgd {
   1533    1.1       cgd 	struct proc *p = curproc;
   1534    1.1       cgd 	struct sigcontext *scp, ksc;
   1535    1.1       cgd 	struct trapframe *frame;
   1536    1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1537    1.1       cgd 	int oonstack, fsize, rndfsize;
   1538    1.1       cgd 	extern char sigcode[], esigcode[];
   1539    1.1       cgd 	extern struct proc *fpcurproc;
   1540    1.1       cgd 
   1541    1.1       cgd 	frame = p->p_md.md_tf;
   1542    1.9   mycroft 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1543    1.1       cgd 	fsize = sizeof ksc;
   1544    1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1545    1.1       cgd 	/*
   1546    1.1       cgd 	 * Allocate and validate space for the signal handler
   1547    1.1       cgd 	 * context. Note that if the stack is in P0 space, the
   1548    1.1       cgd 	 * call to grow() is a nop, and the useracc() check
   1549    1.1       cgd 	 * will fail if the process has not already allocated
   1550    1.1       cgd 	 * the space with a `brk'.
   1551    1.1       cgd 	 */
   1552    1.1       cgd 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1553    1.1       cgd 	    (psp->ps_sigonstack & sigmask(sig))) {
   1554   1.14       jtc 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
   1555    1.1       cgd 		    psp->ps_sigstk.ss_size - rndfsize);
   1556    1.9   mycroft 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1557    1.1       cgd 	} else
   1558   1.35       cgd 		scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
   1559    1.1       cgd 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1560    1.1       cgd 		(void)grow(p, (u_long)scp);
   1561    1.1       cgd #ifdef DEBUG
   1562    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1563   1.46  christos 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1564    1.1       cgd 		    sig, &oonstack, scp);
   1565    1.1       cgd #endif
   1566    1.1       cgd 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1567    1.1       cgd #ifdef DEBUG
   1568    1.1       cgd 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1569   1.46  christos 			printf("sendsig(%d): useracc failed on sig %d\n",
   1570    1.1       cgd 			    p->p_pid, sig);
   1571    1.1       cgd #endif
   1572    1.1       cgd 		/*
   1573    1.1       cgd 		 * Process has trashed its stack; give it an illegal
   1574    1.1       cgd 		 * instruction to halt it in its tracks.
   1575    1.1       cgd 		 */
   1576    1.1       cgd 		SIGACTION(p, SIGILL) = SIG_DFL;
   1577    1.1       cgd 		sig = sigmask(SIGILL);
   1578    1.1       cgd 		p->p_sigignore &= ~sig;
   1579    1.1       cgd 		p->p_sigcatch &= ~sig;
   1580    1.1       cgd 		p->p_sigmask &= ~sig;
   1581    1.1       cgd 		psignal(p, SIGILL);
   1582    1.1       cgd 		return;
   1583    1.1       cgd 	}
   1584    1.1       cgd 
   1585    1.1       cgd 	/*
   1586    1.1       cgd 	 * Build the signal context to be used by sigreturn.
   1587    1.1       cgd 	 */
   1588    1.1       cgd 	ksc.sc_onstack = oonstack;
   1589    1.1       cgd 	ksc.sc_mask = mask;
   1590   1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1591   1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1592    1.1       cgd 
   1593    1.1       cgd 	/* copy the registers. */
   1594    1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1595    1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1596   1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1597    1.1       cgd 
   1598    1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1599    1.1       cgd 	if (p == fpcurproc) {
   1600   1.32       cgd 		alpha_pal_wrfen(1);
   1601    1.1       cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1602   1.32       cgd 		alpha_pal_wrfen(0);
   1603    1.1       cgd 		fpcurproc = NULL;
   1604    1.1       cgd 	}
   1605    1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1606    1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1607    1.1       cgd 	    sizeof(struct fpreg));
   1608    1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1609    1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1610    1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1611    1.1       cgd 
   1612    1.1       cgd 
   1613    1.1       cgd #ifdef COMPAT_OSF1
   1614    1.1       cgd 	/*
   1615    1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1616    1.1       cgd 	 */
   1617    1.1       cgd #endif
   1618    1.1       cgd 
   1619    1.1       cgd 	/*
   1620    1.1       cgd 	 * copy the frame out to userland.
   1621    1.1       cgd 	 */
   1622    1.1       cgd 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1623    1.1       cgd #ifdef DEBUG
   1624    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1625   1.46  christos 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1626    1.1       cgd 		    scp, code);
   1627    1.1       cgd #endif
   1628    1.1       cgd 
   1629    1.1       cgd 	/*
   1630    1.1       cgd 	 * Set up the registers to return to sigcode.
   1631    1.1       cgd 	 */
   1632   1.34       cgd 	frame->tf_regs[FRAME_PC] =
   1633   1.34       cgd 	    (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1634   1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1635   1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1636   1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1637    1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1638   1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1639    1.1       cgd 
   1640    1.1       cgd #ifdef DEBUG
   1641    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1642   1.46  christos 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1643   1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1644    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1645   1.46  christos 		printf("sendsig(%d): sig %d returns\n",
   1646    1.1       cgd 		    p->p_pid, sig);
   1647    1.1       cgd #endif
   1648    1.1       cgd }
   1649    1.1       cgd 
   1650    1.1       cgd /*
   1651    1.1       cgd  * System call to cleanup state after a signal
   1652    1.1       cgd  * has been taken.  Reset signal mask and
   1653    1.1       cgd  * stack state from context left by sendsig (above).
   1654    1.1       cgd  * Return to previous pc and psl as specified by
   1655    1.1       cgd  * context left by sendsig. Check carefully to
   1656    1.1       cgd  * make sure that the user has not modified the
   1657    1.1       cgd  * psl to gain improper priviledges or to cause
   1658    1.1       cgd  * a machine fault.
   1659    1.1       cgd  */
   1660    1.1       cgd /* ARGSUSED */
   1661   1.11   mycroft int
   1662   1.11   mycroft sys_sigreturn(p, v, retval)
   1663    1.1       cgd 	struct proc *p;
   1664   1.10   thorpej 	void *v;
   1665   1.10   thorpej 	register_t *retval;
   1666   1.10   thorpej {
   1667   1.11   mycroft 	struct sys_sigreturn_args /* {
   1668    1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1669   1.10   thorpej 	} */ *uap = v;
   1670    1.1       cgd 	struct sigcontext *scp, ksc;
   1671    1.1       cgd 	extern struct proc *fpcurproc;
   1672    1.1       cgd 
   1673    1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1674    1.1       cgd #ifdef DEBUG
   1675    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1676   1.46  christos 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1677    1.1       cgd #endif
   1678    1.1       cgd 
   1679    1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1680    1.1       cgd 		return (EINVAL);
   1681    1.1       cgd 
   1682    1.1       cgd 	/*
   1683    1.1       cgd 	 * Test and fetch the context structure.
   1684    1.1       cgd 	 * We grab it all at once for speed.
   1685    1.1       cgd 	 */
   1686    1.1       cgd 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1687    1.1       cgd 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1688    1.1       cgd 		return (EINVAL);
   1689    1.1       cgd 
   1690    1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1691    1.1       cgd 		return (EINVAL);
   1692    1.1       cgd 	/*
   1693    1.1       cgd 	 * Restore the user-supplied information
   1694    1.1       cgd 	 */
   1695    1.1       cgd 	if (ksc.sc_onstack)
   1696    1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1697    1.1       cgd 	else
   1698    1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1699    1.1       cgd 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1700    1.1       cgd 
   1701   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1702   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1703   1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1704    1.1       cgd 
   1705    1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1706   1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1707    1.1       cgd 
   1708    1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1709    1.1       cgd 	if (p == fpcurproc)
   1710    1.1       cgd 		fpcurproc = NULL;
   1711    1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1712    1.1       cgd 	    sizeof(struct fpreg));
   1713    1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1714    1.1       cgd 
   1715    1.1       cgd #ifdef DEBUG
   1716    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1717   1.46  christos 		printf("sigreturn(%d): returns\n", p->p_pid);
   1718    1.1       cgd #endif
   1719    1.1       cgd 	return (EJUSTRETURN);
   1720    1.1       cgd }
   1721    1.1       cgd 
   1722    1.1       cgd /*
   1723    1.1       cgd  * machine dependent system variables.
   1724    1.1       cgd  */
   1725   1.33       cgd int
   1726    1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1727    1.1       cgd 	int *name;
   1728    1.1       cgd 	u_int namelen;
   1729    1.1       cgd 	void *oldp;
   1730    1.1       cgd 	size_t *oldlenp;
   1731    1.1       cgd 	void *newp;
   1732    1.1       cgd 	size_t newlen;
   1733    1.1       cgd 	struct proc *p;
   1734    1.1       cgd {
   1735    1.1       cgd 	dev_t consdev;
   1736    1.1       cgd 
   1737    1.1       cgd 	/* all sysctl names at this level are terminal */
   1738    1.1       cgd 	if (namelen != 1)
   1739    1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1740    1.1       cgd 
   1741    1.1       cgd 	switch (name[0]) {
   1742    1.1       cgd 	case CPU_CONSDEV:
   1743    1.1       cgd 		if (cn_tab != NULL)
   1744    1.1       cgd 			consdev = cn_tab->cn_dev;
   1745    1.1       cgd 		else
   1746    1.1       cgd 			consdev = NODEV;
   1747    1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1748    1.1       cgd 			sizeof consdev));
   1749   1.30       cgd 
   1750   1.30       cgd 	case CPU_ROOT_DEVICE:
   1751   1.64   thorpej 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1752   1.64   thorpej 		    root_device->dv_xname));
   1753   1.36       cgd 
   1754   1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1755   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1756   1.36       cgd 		    &alpha_unaligned_print));
   1757   1.36       cgd 
   1758   1.36       cgd 	case CPU_UNALIGNED_FIX:
   1759   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1760   1.36       cgd 		    &alpha_unaligned_fix));
   1761   1.36       cgd 
   1762   1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1763   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1764   1.36       cgd 		    &alpha_unaligned_sigbus));
   1765   1.61       cgd 
   1766   1.61       cgd 	case CPU_BOOTED_KERNEL:
   1767  1.102       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1768  1.102       cgd 		    bootinfo.booted_kernel));
   1769   1.30       cgd 
   1770    1.1       cgd 	default:
   1771    1.1       cgd 		return (EOPNOTSUPP);
   1772    1.1       cgd 	}
   1773    1.1       cgd 	/* NOTREACHED */
   1774    1.1       cgd }
   1775    1.1       cgd 
   1776    1.1       cgd /*
   1777    1.1       cgd  * Set registers on exec.
   1778    1.1       cgd  */
   1779    1.1       cgd void
   1780   1.85   mycroft setregs(p, pack, stack)
   1781    1.1       cgd 	register struct proc *p;
   1782    1.5  christos 	struct exec_package *pack;
   1783    1.1       cgd 	u_long stack;
   1784    1.1       cgd {
   1785    1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1786   1.56       cgd 	extern struct proc *fpcurproc;
   1787   1.56       cgd #ifdef DEBUG
   1788    1.1       cgd 	int i;
   1789   1.56       cgd #endif
   1790   1.43       cgd 
   1791   1.43       cgd #ifdef DEBUG
   1792   1.43       cgd 	/*
   1793   1.43       cgd 	 * Crash and dump, if the user requested it.
   1794   1.43       cgd 	 */
   1795   1.43       cgd 	if (boothowto & RB_DUMP)
   1796   1.43       cgd 		panic("crash requested by boot flags");
   1797   1.43       cgd #endif
   1798    1.1       cgd 
   1799    1.1       cgd #ifdef DEBUG
   1800   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1801    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1802    1.1       cgd #else
   1803   1.34       cgd 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1804    1.1       cgd #endif
   1805    1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1806    1.7       cgd #define FP_RN 2 /* XXX */
   1807    1.7       cgd 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1808   1.35       cgd 	alpha_pal_wrusp(stack);
   1809   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1810   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1811   1.41       cgd 
   1812   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1813   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1814   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1815   1.63       cgd 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1816   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1817    1.1       cgd 
   1818   1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   1819    1.1       cgd 	if (fpcurproc == p)
   1820    1.1       cgd 		fpcurproc = NULL;
   1821    1.1       cgd }
   1822    1.1       cgd 
   1823    1.1       cgd void
   1824    1.1       cgd netintr()
   1825    1.1       cgd {
   1826   1.49       cgd 	int n, s;
   1827   1.49       cgd 
   1828   1.49       cgd 	s = splhigh();
   1829   1.49       cgd 	n = netisr;
   1830   1.49       cgd 	netisr = 0;
   1831   1.49       cgd 	splx(s);
   1832   1.49       cgd 
   1833   1.49       cgd #define	DONETISR(bit, fn)						\
   1834   1.49       cgd 	do {								\
   1835   1.49       cgd 		if (n & (1 << (bit)))					\
   1836   1.49       cgd 			fn;						\
   1837   1.49       cgd 	} while (0)
   1838   1.49       cgd 
   1839    1.1       cgd #ifdef INET
   1840   1.72       cgd #if NARP > 0
   1841   1.49       cgd 	DONETISR(NETISR_ARP, arpintr());
   1842   1.72       cgd #endif
   1843   1.49       cgd 	DONETISR(NETISR_IP, ipintr());
   1844   1.70  christos #endif
   1845   1.70  christos #ifdef NETATALK
   1846   1.70  christos 	DONETISR(NETISR_ATALK, atintr());
   1847    1.1       cgd #endif
   1848    1.1       cgd #ifdef NS
   1849   1.49       cgd 	DONETISR(NETISR_NS, nsintr());
   1850    1.1       cgd #endif
   1851    1.1       cgd #ifdef ISO
   1852   1.49       cgd 	DONETISR(NETISR_ISO, clnlintr());
   1853    1.1       cgd #endif
   1854    1.1       cgd #ifdef CCITT
   1855   1.49       cgd 	DONETISR(NETISR_CCITT, ccittintr());
   1856   1.49       cgd #endif
   1857   1.49       cgd #ifdef NATM
   1858   1.49       cgd 	DONETISR(NETISR_NATM, natmintr());
   1859    1.1       cgd #endif
   1860   1.49       cgd #if NPPP > 1
   1861   1.49       cgd 	DONETISR(NETISR_PPP, pppintr());
   1862    1.8       cgd #endif
   1863   1.49       cgd 
   1864   1.49       cgd #undef DONETISR
   1865    1.1       cgd }
   1866    1.1       cgd 
   1867    1.1       cgd void
   1868    1.1       cgd do_sir()
   1869    1.1       cgd {
   1870   1.58       cgd 	u_int64_t n;
   1871    1.1       cgd 
   1872   1.59       cgd 	do {
   1873   1.60       cgd 		(void)splhigh();
   1874   1.58       cgd 		n = ssir;
   1875   1.58       cgd 		ssir = 0;
   1876   1.60       cgd 		splsoft();		/* don't recurse through spl0() */
   1877   1.59       cgd 
   1878   1.59       cgd #define	DO_SIR(bit, fn)							\
   1879   1.59       cgd 		do {							\
   1880   1.60       cgd 			if (n & (bit)) {				\
   1881   1.59       cgd 				cnt.v_soft++;				\
   1882   1.59       cgd 				fn;					\
   1883   1.59       cgd 			}						\
   1884   1.59       cgd 		} while (0)
   1885   1.59       cgd 
   1886   1.60       cgd 		DO_SIR(SIR_NET, netintr());
   1887   1.60       cgd 		DO_SIR(SIR_CLOCK, softclock());
   1888   1.60       cgd 
   1889   1.60       cgd #undef DO_SIR
   1890   1.59       cgd 	} while (ssir != 0);
   1891    1.1       cgd }
   1892    1.1       cgd 
   1893    1.1       cgd int
   1894    1.1       cgd spl0()
   1895    1.1       cgd {
   1896    1.1       cgd 
   1897   1.59       cgd 	if (ssir)
   1898   1.59       cgd 		do_sir();		/* it lowers the IPL itself */
   1899    1.1       cgd 
   1900   1.32       cgd 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   1901    1.1       cgd }
   1902    1.1       cgd 
   1903    1.1       cgd /*
   1904    1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1905    1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1906   1.52       cgd  * into queues, Remrunqueue removes them from queues.  The running process is
   1907   1.52       cgd  * on no queue, other processes are on a queue related to p->p_priority,
   1908   1.52       cgd  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1909   1.52       cgd  * available queues.
   1910    1.1       cgd  */
   1911    1.1       cgd /*
   1912    1.1       cgd  * setrunqueue(p)
   1913    1.1       cgd  *	proc *p;
   1914    1.1       cgd  *
   1915    1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1916    1.1       cgd  */
   1917    1.1       cgd 
   1918    1.1       cgd void
   1919    1.1       cgd setrunqueue(p)
   1920    1.1       cgd 	struct proc *p;
   1921    1.1       cgd {
   1922    1.1       cgd 	int bit;
   1923    1.1       cgd 
   1924    1.1       cgd 	/* firewall: p->p_back must be NULL */
   1925    1.1       cgd 	if (p->p_back != NULL)
   1926    1.1       cgd 		panic("setrunqueue");
   1927    1.1       cgd 
   1928    1.1       cgd 	bit = p->p_priority >> 2;
   1929    1.1       cgd 	whichqs |= (1 << bit);
   1930    1.1       cgd 	p->p_forw = (struct proc *)&qs[bit];
   1931    1.1       cgd 	p->p_back = qs[bit].ph_rlink;
   1932    1.1       cgd 	p->p_back->p_forw = p;
   1933    1.1       cgd 	qs[bit].ph_rlink = p;
   1934    1.1       cgd }
   1935    1.1       cgd 
   1936    1.1       cgd /*
   1937   1.52       cgd  * remrunqueue(p)
   1938    1.1       cgd  *
   1939    1.1       cgd  * Call should be made at splclock().
   1940    1.1       cgd  */
   1941    1.1       cgd void
   1942   1.52       cgd remrunqueue(p)
   1943    1.1       cgd 	struct proc *p;
   1944    1.1       cgd {
   1945    1.1       cgd 	int bit;
   1946    1.1       cgd 
   1947    1.1       cgd 	bit = p->p_priority >> 2;
   1948    1.1       cgd 	if ((whichqs & (1 << bit)) == 0)
   1949   1.52       cgd 		panic("remrunqueue");
   1950    1.1       cgd 
   1951    1.1       cgd 	p->p_back->p_forw = p->p_forw;
   1952    1.1       cgd 	p->p_forw->p_back = p->p_back;
   1953    1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   1954    1.1       cgd 
   1955    1.1       cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1956    1.1       cgd 		whichqs &= ~(1 << bit);
   1957    1.1       cgd }
   1958    1.1       cgd 
   1959    1.1       cgd /*
   1960    1.1       cgd  * Return the best possible estimate of the time in the timeval
   1961    1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1962    1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   1963    1.1       cgd  * previous call.
   1964    1.1       cgd  */
   1965    1.1       cgd void
   1966    1.1       cgd microtime(tvp)
   1967    1.1       cgd 	register struct timeval *tvp;
   1968    1.1       cgd {
   1969    1.1       cgd 	int s = splclock();
   1970    1.1       cgd 	static struct timeval lasttime;
   1971    1.1       cgd 
   1972    1.1       cgd 	*tvp = time;
   1973    1.1       cgd #ifdef notdef
   1974    1.1       cgd 	tvp->tv_usec += clkread();
   1975    1.1       cgd 	while (tvp->tv_usec > 1000000) {
   1976    1.1       cgd 		tvp->tv_sec++;
   1977    1.1       cgd 		tvp->tv_usec -= 1000000;
   1978    1.1       cgd 	}
   1979    1.1       cgd #endif
   1980    1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1981    1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1982    1.1       cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1983    1.1       cgd 		tvp->tv_sec++;
   1984    1.1       cgd 		tvp->tv_usec -= 1000000;
   1985    1.1       cgd 	}
   1986    1.1       cgd 	lasttime = *tvp;
   1987    1.1       cgd 	splx(s);
   1988   1.15       cgd }
   1989   1.15       cgd 
   1990   1.15       cgd /*
   1991   1.15       cgd  * Wait "n" microseconds.
   1992   1.15       cgd  */
   1993   1.32       cgd void
   1994   1.15       cgd delay(n)
   1995   1.32       cgd 	unsigned long n;
   1996   1.15       cgd {
   1997   1.15       cgd 	long N = cycles_per_usec * (n);
   1998   1.15       cgd 
   1999   1.15       cgd 	while (N > 0)				/* XXX */
   2000   1.15       cgd 		N -= 3;				/* XXX */
   2001    1.1       cgd }
   2002    1.1       cgd 
   2003    1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   2004   1.55       cgd void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   2005   1.85   mycroft 	    u_long));
   2006   1.55       cgd 
   2007    1.1       cgd void
   2008   1.85   mycroft cpu_exec_ecoff_setregs(p, epp, stack)
   2009    1.1       cgd 	struct proc *p;
   2010   1.19       cgd 	struct exec_package *epp;
   2011    1.5  christos 	u_long stack;
   2012    1.1       cgd {
   2013   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2014    1.1       cgd 
   2015   1.85   mycroft 	setregs(p, epp, stack);
   2016   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   2017    1.1       cgd }
   2018    1.1       cgd 
   2019    1.1       cgd /*
   2020    1.1       cgd  * cpu_exec_ecoff_hook():
   2021    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   2022    1.1       cgd  *
   2023    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2024    1.1       cgd  *
   2025    1.1       cgd  */
   2026    1.1       cgd int
   2027   1.19       cgd cpu_exec_ecoff_hook(p, epp)
   2028    1.1       cgd 	struct proc *p;
   2029    1.1       cgd 	struct exec_package *epp;
   2030    1.1       cgd {
   2031   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2032    1.5  christos 	extern struct emul emul_netbsd;
   2033    1.5  christos #ifdef COMPAT_OSF1
   2034    1.5  christos 	extern struct emul emul_osf1;
   2035    1.5  christos #endif
   2036    1.1       cgd 
   2037   1.19       cgd 	switch (execp->f.f_magic) {
   2038    1.5  christos #ifdef COMPAT_OSF1
   2039    1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   2040    1.5  christos 		epp->ep_emul = &emul_osf1;
   2041    1.1       cgd 		break;
   2042    1.5  christos #endif
   2043    1.1       cgd 
   2044    1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   2045    1.5  christos 		epp->ep_emul = &emul_netbsd;
   2046    1.1       cgd 		break;
   2047    1.1       cgd 
   2048    1.1       cgd 	default:
   2049   1.12       cgd 		return ENOEXEC;
   2050    1.1       cgd 	}
   2051    1.1       cgd 	return 0;
   2052    1.1       cgd }
   2053    1.1       cgd #endif
   2054  1.110   thorpej 
   2055  1.110   thorpej int
   2056  1.110   thorpej alpha_pa_access(pa)
   2057  1.110   thorpej 	u_long pa;
   2058  1.110   thorpej {
   2059  1.110   thorpej 	int i;
   2060  1.110   thorpej 
   2061  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   2062  1.110   thorpej 		if (pa < mem_clusters[i].start)
   2063  1.110   thorpej 			continue;
   2064  1.110   thorpej 		if ((pa - mem_clusters[i].start) >=
   2065  1.110   thorpej 		    (mem_clusters[i].size & ~PAGE_MASK))
   2066  1.110   thorpej 			continue;
   2067  1.110   thorpej 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2068  1.110   thorpej 	}
   2069  1.110   thorpej 	return (PROT_NONE);
   2070  1.110   thorpej }
   2071   1.50       cgd 
   2072   1.50       cgd /* XXX XXX BEGIN XXX XXX */
   2073   1.50       cgd vm_offset_t alpha_XXX_dmamap_or;				/* XXX */
   2074   1.50       cgd 								/* XXX */
   2075   1.50       cgd vm_offset_t							/* XXX */
   2076   1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   2077   1.51       cgd 	vm_offset_t v;						/* XXX */
   2078   1.50       cgd {								/* XXX */
   2079   1.50       cgd 								/* XXX */
   2080   1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2081   1.50       cgd }								/* XXX */
   2082   1.50       cgd /* XXX XXX END XXX XXX */
   2083