machdep.c revision 1.111 1 1.111 thorpej /* $NetBSD: machdep.c,v 1.111 1998/02/19 04:18:30 thorpej Exp $ */
2 1.110 thorpej
3 1.110 thorpej /*-
4 1.110 thorpej * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 1.110 thorpej * All rights reserved.
6 1.110 thorpej *
7 1.110 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.110 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.110 thorpej * NASA Ames Research Center and by Chris G. Demetriou.
10 1.110 thorpej *
11 1.110 thorpej * Redistribution and use in source and binary forms, with or without
12 1.110 thorpej * modification, are permitted provided that the following conditions
13 1.110 thorpej * are met:
14 1.110 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.110 thorpej * notice, this list of conditions and the following disclaimer.
16 1.110 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.110 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.110 thorpej * documentation and/or other materials provided with the distribution.
19 1.110 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.110 thorpej * must display the following acknowledgement:
21 1.110 thorpej * This product includes software developed by the NetBSD
22 1.110 thorpej * Foundation, Inc. and its contributors.
23 1.110 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.110 thorpej * contributors may be used to endorse or promote products derived
25 1.110 thorpej * from this software without specific prior written permission.
26 1.110 thorpej *
27 1.110 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.110 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.110 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.110 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.110 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.110 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.110 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.110 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.110 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.110 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.110 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.110 thorpej */
39 1.1 cgd
40 1.1 cgd /*
41 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 1.1 cgd * All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Author: Chris G. Demetriou
45 1.1 cgd *
46 1.1 cgd * Permission to use, copy, modify and distribute this software and
47 1.1 cgd * its documentation is hereby granted, provided that both the copyright
48 1.1 cgd * notice and this permission notice appear in all copies of the
49 1.1 cgd * software, derivative works or modified versions, and any portions
50 1.1 cgd * thereof, and that both notices appear in supporting documentation.
51 1.1 cgd *
52 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 1.1 cgd *
56 1.1 cgd * Carnegie Mellon requests users of this software to return to
57 1.1 cgd *
58 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 1.1 cgd * School of Computer Science
60 1.1 cgd * Carnegie Mellon University
61 1.1 cgd * Pittsburgh PA 15213-3890
62 1.1 cgd *
63 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
64 1.1 cgd * rights to redistribute these changes.
65 1.1 cgd */
66 1.74 cgd
67 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
68 1.75 cgd
69 1.111 thorpej __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.111 1998/02/19 04:18:30 thorpej Exp $");
70 1.1 cgd
71 1.1 cgd #include <sys/param.h>
72 1.1 cgd #include <sys/systm.h>
73 1.1 cgd #include <sys/signalvar.h>
74 1.1 cgd #include <sys/kernel.h>
75 1.1 cgd #include <sys/map.h>
76 1.1 cgd #include <sys/proc.h>
77 1.1 cgd #include <sys/buf.h>
78 1.1 cgd #include <sys/reboot.h>
79 1.28 cgd #include <sys/device.h>
80 1.1 cgd #include <sys/file.h>
81 1.1 cgd #ifdef REAL_CLISTS
82 1.1 cgd #include <sys/clist.h>
83 1.1 cgd #endif
84 1.1 cgd #include <sys/callout.h>
85 1.1 cgd #include <sys/malloc.h>
86 1.1 cgd #include <sys/mbuf.h>
87 1.110 thorpej #include <sys/mman.h>
88 1.1 cgd #include <sys/msgbuf.h>
89 1.1 cgd #include <sys/ioctl.h>
90 1.1 cgd #include <sys/tty.h>
91 1.1 cgd #include <sys/user.h>
92 1.1 cgd #include <sys/exec.h>
93 1.1 cgd #include <sys/exec_ecoff.h>
94 1.91 mjacob #include <vm/vm.h>
95 1.1 cgd #include <sys/sysctl.h>
96 1.43 cgd #include <sys/core.h>
97 1.43 cgd #include <sys/kcore.h>
98 1.43 cgd #include <machine/kcore.h>
99 1.1 cgd #ifdef SYSVMSG
100 1.1 cgd #include <sys/msg.h>
101 1.1 cgd #endif
102 1.1 cgd #ifdef SYSVSEM
103 1.1 cgd #include <sys/sem.h>
104 1.1 cgd #endif
105 1.1 cgd #ifdef SYSVSHM
106 1.1 cgd #include <sys/shm.h>
107 1.1 cgd #endif
108 1.1 cgd
109 1.1 cgd #include <sys/mount.h>
110 1.1 cgd #include <sys/syscallargs.h>
111 1.1 cgd
112 1.1 cgd #include <vm/vm_kern.h>
113 1.1 cgd
114 1.1 cgd #include <dev/cons.h>
115 1.1 cgd
116 1.81 thorpej #include <machine/autoconf.h>
117 1.1 cgd #include <machine/cpu.h>
118 1.1 cgd #include <machine/reg.h>
119 1.1 cgd #include <machine/rpb.h>
120 1.1 cgd #include <machine/prom.h>
121 1.73 cgd #include <machine/conf.h>
122 1.8 cgd
123 1.49 cgd #include <net/netisr.h>
124 1.33 cgd #include <net/if.h>
125 1.49 cgd
126 1.49 cgd #ifdef INET
127 1.33 cgd #include <netinet/in.h>
128 1.72 cgd #include <netinet/ip_var.h>
129 1.72 cgd #include "arp.h"
130 1.72 cgd #if NARP > 0
131 1.67 is #include <netinet/if_inarp.h>
132 1.72 cgd #endif
133 1.49 cgd #endif
134 1.49 cgd #ifdef NS
135 1.49 cgd #include <netns/ns_var.h>
136 1.49 cgd #endif
137 1.49 cgd #ifdef ISO
138 1.49 cgd #include <netiso/iso.h>
139 1.49 cgd #include <netiso/clnp.h>
140 1.49 cgd #endif
141 1.55 cgd #ifdef CCITT
142 1.55 cgd #include <netccitt/x25.h>
143 1.55 cgd #include <netccitt/pk.h>
144 1.55 cgd #include <netccitt/pk_extern.h>
145 1.55 cgd #endif
146 1.55 cgd #ifdef NATM
147 1.55 cgd #include <netnatm/natm.h>
148 1.55 cgd #endif
149 1.70 christos #ifdef NETATALK
150 1.70 christos #include <netatalk/at_extern.h>
151 1.70 christos #endif
152 1.49 cgd #include "ppp.h"
153 1.49 cgd #if NPPP > 0
154 1.49 cgd #include <net/ppp_defs.h>
155 1.49 cgd #include <net/if_ppp.h>
156 1.49 cgd #endif
157 1.1 cgd
158 1.81 thorpej #ifdef DDB
159 1.81 thorpej #include <machine/db_machdep.h>
160 1.81 thorpej #include <ddb/db_access.h>
161 1.81 thorpej #include <ddb/db_sym.h>
162 1.81 thorpej #include <ddb/db_extern.h>
163 1.81 thorpej #include <ddb/db_interface.h>
164 1.81 thorpej #endif
165 1.81 thorpej
166 1.1 cgd vm_map_t buffer_map;
167 1.1 cgd
168 1.1 cgd /*
169 1.1 cgd * Declare these as initialized data so we can patch them.
170 1.1 cgd */
171 1.1 cgd int nswbuf = 0;
172 1.1 cgd #ifdef NBUF
173 1.1 cgd int nbuf = NBUF;
174 1.1 cgd #else
175 1.1 cgd int nbuf = 0;
176 1.1 cgd #endif
177 1.1 cgd #ifdef BUFPAGES
178 1.1 cgd int bufpages = BUFPAGES;
179 1.1 cgd #else
180 1.1 cgd int bufpages = 0;
181 1.1 cgd #endif
182 1.86 leo caddr_t msgbufaddr;
183 1.86 leo
184 1.1 cgd int maxmem; /* max memory per process */
185 1.7 cgd
186 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
187 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
188 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
189 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
190 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
191 1.1 cgd
192 1.1 cgd int cputype; /* system type, from the RPB */
193 1.1 cgd
194 1.1 cgd /*
195 1.1 cgd * XXX We need an address to which we can assign things so that they
196 1.1 cgd * won't be optimized away because we didn't use the value.
197 1.1 cgd */
198 1.1 cgd u_int32_t no_optimize;
199 1.1 cgd
200 1.1 cgd /* the following is used externally (sysctl_hw) */
201 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
202 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
203 1.29 cgd char cpu_model[128];
204 1.1 cgd
205 1.1 cgd struct user *proc0paddr;
206 1.1 cgd
207 1.1 cgd /* Number of machine cycles per microsecond */
208 1.1 cgd u_int64_t cycles_per_usec;
209 1.1 cgd
210 1.7 cgd /* number of cpus in the box. really! */
211 1.7 cgd int ncpus;
212 1.7 cgd
213 1.102 cgd struct bootinfo_kernel bootinfo;
214 1.81 thorpej
215 1.89 mjacob struct platform platform;
216 1.89 mjacob
217 1.100 thorpej u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
218 1.100 thorpej u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
219 1.100 thorpej u_int32_t vm_phys_size = _VM_PHYS_SIZE;
220 1.90 mjacob
221 1.81 thorpej #ifdef DDB
222 1.81 thorpej /* start and end of kernel symbol table */
223 1.81 thorpej void *ksym_start, *ksym_end;
224 1.81 thorpej #endif
225 1.81 thorpej
226 1.30 cgd /* for cpu_sysctl() */
227 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
228 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
229 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
230 1.30 cgd
231 1.110 thorpej /*
232 1.110 thorpej * XXX This should be dynamically sized, but we have the chicken-egg problem!
233 1.110 thorpej * XXX it should also be larger than it is, because not all of the mddt
234 1.110 thorpej * XXX clusters end up being used for VM.
235 1.110 thorpej */
236 1.110 thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
237 1.110 thorpej int mem_cluster_cnt;
238 1.110 thorpej
239 1.95 thorpej caddr_t allocsys __P((caddr_t));
240 1.55 cgd int cpu_dump __P((void));
241 1.55 cgd int cpu_dumpsize __P((void));
242 1.110 thorpej u_long cpu_dump_mempagecnt __P((void));
243 1.55 cgd void dumpsys __P((void));
244 1.55 cgd void identifycpu __P((void));
245 1.55 cgd void netintr __P((void));
246 1.55 cgd void printregs __P((struct reg *));
247 1.33 cgd
248 1.55 cgd void
249 1.102 cgd alpha_init(pfn, ptb, bim, bip, biv)
250 1.1 cgd u_long pfn; /* first free PFN number */
251 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
252 1.81 thorpej u_long bim; /* bootinfo magic */
253 1.81 thorpej u_long bip; /* bootinfo pointer */
254 1.102 cgd u_long biv; /* bootinfo version */
255 1.1 cgd {
256 1.95 thorpej extern char kernel_text[], _end[];
257 1.1 cgd struct mddt *mddtp;
258 1.110 thorpej struct mddt_cluster *memc;
259 1.7 cgd int i, mddtweird;
260 1.110 thorpej struct vm_physseg *vps;
261 1.95 thorpej vm_offset_t kernstart, kernend;
262 1.110 thorpej vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
263 1.95 thorpej vm_size_t size;
264 1.1 cgd char *p;
265 1.95 thorpej caddr_t v;
266 1.106 cgd char *bootinfo_msg;
267 1.106 cgd
268 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
269 1.1 cgd
270 1.1 cgd /*
271 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
272 1.1 cgd * Make sure the instruction and data streams are consistent.
273 1.1 cgd */
274 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
275 1.32 cgd alpha_pal_wrfen(0);
276 1.37 cgd ALPHA_TBIA();
277 1.32 cgd alpha_pal_imb();
278 1.1 cgd
279 1.1 cgd /*
280 1.106 cgd * Get critical system information (if possible, from the
281 1.106 cgd * information provided by the boot program).
282 1.81 thorpej */
283 1.106 cgd bootinfo_msg = NULL;
284 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
285 1.102 cgd if (biv == 0) { /* backward compat */
286 1.102 cgd biv = *(u_long *)bip;
287 1.102 cgd bip += 8;
288 1.102 cgd }
289 1.102 cgd switch (biv) {
290 1.102 cgd case 1: {
291 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
292 1.102 cgd
293 1.102 cgd bootinfo.ssym = v1p->ssym;
294 1.102 cgd bootinfo.esym = v1p->esym;
295 1.106 cgd /* hwrpb may not be provided by boot block in v1 */
296 1.106 cgd if (v1p->hwrpb != NULL) {
297 1.106 cgd bootinfo.hwrpb_phys =
298 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys;
299 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize;
300 1.106 cgd } else {
301 1.106 cgd bootinfo.hwrpb_phys =
302 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys;
303 1.106 cgd bootinfo.hwrpb_size =
304 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size;
305 1.106 cgd }
306 1.102 cgd bcopy(v1p->boot_flags, bootinfo.boot_flags,
307 1.102 cgd min(sizeof v1p->boot_flags,
308 1.102 cgd sizeof bootinfo.boot_flags));
309 1.102 cgd bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
310 1.102 cgd min(sizeof v1p->booted_kernel,
311 1.102 cgd sizeof bootinfo.booted_kernel));
312 1.106 cgd /* booted dev not provided in bootinfo */
313 1.106 cgd init_prom_interface((struct rpb *)
314 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
315 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
316 1.102 cgd sizeof bootinfo.booted_dev);
317 1.81 thorpej break;
318 1.102 cgd }
319 1.81 thorpej default:
320 1.106 cgd bootinfo_msg = "unknown bootinfo version";
321 1.102 cgd goto nobootinfo;
322 1.81 thorpej }
323 1.102 cgd } else {
324 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo";
325 1.102 cgd nobootinfo:
326 1.102 cgd bootinfo.ssym = (u_long)_end;
327 1.102 cgd bootinfo.esym = (u_long)_end;
328 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
329 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
330 1.106 cgd init_prom_interface((struct rpb *)HWRPB_ADDR);
331 1.102 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
332 1.102 cgd sizeof bootinfo.boot_flags);
333 1.102 cgd prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
334 1.102 cgd sizeof bootinfo.booted_kernel);
335 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
336 1.102 cgd sizeof bootinfo.booted_dev);
337 1.102 cgd }
338 1.102 cgd
339 1.81 thorpej /*
340 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for
341 1.106 cgd * lots of things.
342 1.106 cgd */
343 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
344 1.106 cgd
345 1.106 cgd /*
346 1.106 cgd * Remember how many cycles there are per microsecond,
347 1.106 cgd * so that we can use delay(). Round up, for safety.
348 1.106 cgd */
349 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
350 1.106 cgd
351 1.106 cgd /*
352 1.106 cgd * Initalize the (temporary) bootstrap console interface, so
353 1.106 cgd * we can use printf until the VM system starts being setup.
354 1.106 cgd * The real console is initialized before then.
355 1.106 cgd */
356 1.106 cgd init_bootstrap_console();
357 1.106 cgd
358 1.106 cgd /* OUTPUT NOW ALLOWED */
359 1.106 cgd
360 1.106 cgd /* delayed from above */
361 1.106 cgd if (bootinfo_msg)
362 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
363 1.106 cgd bootinfo_msg, bim, bip, biv);
364 1.106 cgd
365 1.106 cgd /*
366 1.1 cgd * Point interrupt/exception vectors to our own.
367 1.1 cgd */
368 1.36 cgd alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
369 1.36 cgd alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
370 1.36 cgd alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
371 1.36 cgd alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
372 1.36 cgd alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
373 1.36 cgd alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
374 1.36 cgd
375 1.36 cgd /*
376 1.76 cgd * Clear pending machine checks and error reports, and enable
377 1.76 cgd * system- and processor-correctable error reporting.
378 1.36 cgd */
379 1.76 cgd alpha_pal_wrmces(alpha_pal_rdmces() &
380 1.76 cgd ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
381 1.1 cgd
382 1.1 cgd /*
383 1.106 cgd * Find out what hardware we're on, and do basic initialization.
384 1.106 cgd */
385 1.106 cgd cputype = hwrpb->rpb_type;
386 1.106 cgd if (cputype >= ncpuinit) {
387 1.106 cgd platform_not_supported();
388 1.106 cgd /* NOTREACHED */
389 1.106 cgd }
390 1.106 cgd (*cpuinit[cputype].init)();
391 1.106 cgd strcpy(cpu_model, platform.model);
392 1.106 cgd
393 1.106 cgd /*
394 1.106 cgd * Initalize the real console, so the the bootstrap console is
395 1.106 cgd * no longer necessary.
396 1.106 cgd */
397 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
398 1.106 cgd if (!pmap_uses_prom_console())
399 1.106 cgd #endif
400 1.106 cgd (*platform.cons_init)();
401 1.106 cgd
402 1.106 cgd #ifdef DIAGNOSTIC
403 1.106 cgd /* Paranoid sanity checking */
404 1.106 cgd
405 1.106 cgd /* We should always be running on the the primary. */
406 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
407 1.106 cgd
408 1.106 cgd /* On single-CPU systypes, the primary should always be CPU 0. */
409 1.106 cgd if (cputype != ST_DEC_21000)
410 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0);
411 1.106 cgd #endif
412 1.106 cgd
413 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */
414 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
415 1.106 cgd /*
416 1.106 cgd * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
417 1.106 cgd * XXX pmap_uses_prom_console() evaluates to non-zero.)
418 1.106 cgd */
419 1.106 cgd #endif
420 1.106 cgd
421 1.106 cgd /*
422 1.106 cgd * find out this system's page size
423 1.95 thorpej */
424 1.95 thorpej PAGE_SIZE = hwrpb->rpb_page_size;
425 1.95 thorpej if (PAGE_SIZE != 8192)
426 1.95 thorpej panic("page size %d != 8192?!", PAGE_SIZE);
427 1.95 thorpej
428 1.95 thorpej /*
429 1.95 thorpej * Initialize PAGE_SIZE-dependent variables.
430 1.95 thorpej */
431 1.95 thorpej vm_set_page_size();
432 1.95 thorpej
433 1.95 thorpej /*
434 1.101 cgd * Find the beginning and end of the kernel (and leave a
435 1.101 cgd * bit of space before the beginning for the bootstrap
436 1.101 cgd * stack).
437 1.95 thorpej */
438 1.101 cgd kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
439 1.95 thorpej #ifdef DDB
440 1.102 cgd ksym_start = (void *)bootinfo.ssym;
441 1.102 cgd ksym_end = (void *)bootinfo.esym;
442 1.102 cgd kernend = (vm_offset_t)round_page(ksym_end);
443 1.102 cgd #else
444 1.102 cgd kernend = (vm_offset_t)round_page(_end);
445 1.95 thorpej #endif
446 1.95 thorpej
447 1.110 thorpej kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
448 1.110 thorpej kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
449 1.110 thorpej
450 1.95 thorpej /*
451 1.1 cgd * Find out how much memory is available, by looking at
452 1.7 cgd * the memory cluster descriptors. This also tries to do
453 1.7 cgd * its best to detect things things that have never been seen
454 1.7 cgd * before...
455 1.1 cgd */
456 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
457 1.7 cgd
458 1.110 thorpej /* MDDT SANITY CHECKING */
459 1.7 cgd mddtweird = 0;
460 1.110 thorpej if (mddtp->mddt_cluster_cnt < 2) {
461 1.7 cgd mddtweird = 1;
462 1.110 thorpej printf("WARNING: weird number of mem clusters: %d\n",
463 1.110 thorpej mddtp->mddt_cluster_cnt);
464 1.7 cgd }
465 1.7 cgd
466 1.110 thorpej #if 0
467 1.110 thorpej printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
468 1.110 thorpej #endif
469 1.110 thorpej
470 1.110 thorpej for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
471 1.110 thorpej memc = &mddtp->mddt_clusters[i];
472 1.110 thorpej #if 0
473 1.110 thorpej printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
474 1.110 thorpej memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
475 1.110 thorpej #endif
476 1.110 thorpej totalphysmem += memc->mddt_pg_cnt;
477 1.110 thorpej if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
478 1.110 thorpej mem_clusters[mem_cluster_cnt].start =
479 1.110 thorpej ptoa(memc->mddt_pfn);
480 1.110 thorpej mem_clusters[mem_cluster_cnt].size =
481 1.110 thorpej ptoa(memc->mddt_pg_cnt);
482 1.110 thorpej if (memc->mddt_usage & MDDT_mbz ||
483 1.110 thorpej memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
484 1.110 thorpej memc->mddt_usage & MDDT_PALCODE)
485 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
486 1.110 thorpej PROT_READ;
487 1.110 thorpej else
488 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
489 1.110 thorpej PROT_READ | PROT_WRITE | PROT_EXEC;
490 1.110 thorpej mem_cluster_cnt++;
491 1.110 thorpej }
492 1.110 thorpej
493 1.110 thorpej if (memc->mddt_usage & MDDT_mbz) {
494 1.7 cgd mddtweird = 1;
495 1.110 thorpej printf("WARNING: mem cluster %d has weird "
496 1.110 thorpej "usage 0x%lx\n", i, memc->mddt_usage);
497 1.110 thorpej unknownmem += memc->mddt_pg_cnt;
498 1.110 thorpej continue;
499 1.7 cgd }
500 1.110 thorpej if (memc->mddt_usage & MDDT_NONVOLATILE) {
501 1.110 thorpej /* XXX should handle these... */
502 1.110 thorpej printf("WARNING: skipping non-volatile mem "
503 1.110 thorpej "cluster %d\n", i);
504 1.110 thorpej unusedmem += memc->mddt_pg_cnt;
505 1.110 thorpej continue;
506 1.110 thorpej }
507 1.110 thorpej if (memc->mddt_usage & MDDT_PALCODE) {
508 1.110 thorpej resvmem += memc->mddt_pg_cnt;
509 1.110 thorpej continue;
510 1.110 thorpej }
511 1.110 thorpej
512 1.110 thorpej /*
513 1.110 thorpej * We have a memory cluster available for system
514 1.110 thorpej * software use. We must determine if this cluster
515 1.110 thorpej * holds the kernel.
516 1.110 thorpej */
517 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
518 1.110 thorpej /*
519 1.110 thorpej * XXX If the kernel uses the PROM console, we only use the
520 1.110 thorpej * XXX memory after the kernel in the first system segment,
521 1.110 thorpej * XXX to avoid clobbering prom mapping, data, etc.
522 1.110 thorpej */
523 1.110 thorpej if (!pmap_uses_prom_console() || physmem == 0) {
524 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
525 1.110 thorpej physmem += memc->mddt_pg_cnt;
526 1.110 thorpej pfn0 = memc->mddt_pfn;
527 1.110 thorpej pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
528 1.110 thorpej if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
529 1.110 thorpej /*
530 1.110 thorpej * Must compute the location of the kernel
531 1.110 thorpej * within the segment.
532 1.110 thorpej */
533 1.110 thorpej #if 0
534 1.110 thorpej printf("Cluster %d contains kernel\n", i);
535 1.110 thorpej #endif
536 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
537 1.110 thorpej if (!pmap_uses_prom_console()) {
538 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
539 1.110 thorpej if (pfn0 < kernstartpfn) {
540 1.110 thorpej /*
541 1.110 thorpej * There is a chunk before the kernel.
542 1.110 thorpej */
543 1.110 thorpej #if 0
544 1.110 thorpej printf("Loading chunk before kernel: "
545 1.110 thorpej "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
546 1.110 thorpej #endif
547 1.110 thorpej vm_page_physload(pfn0, kernstartpfn,
548 1.110 thorpej pfn0, kernstartpfn);
549 1.110 thorpej }
550 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
551 1.110 thorpej }
552 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
553 1.110 thorpej if (kernendpfn < pfn1) {
554 1.110 thorpej /*
555 1.110 thorpej * There is a chunk after the kernel.
556 1.110 thorpej */
557 1.110 thorpej #if 0
558 1.110 thorpej printf("Loading chunk after kernel: "
559 1.110 thorpej "0x%lx / 0x%lx\n", kernendpfn, pfn1);
560 1.110 thorpej #endif
561 1.110 thorpej vm_page_physload(kernendpfn, pfn1,
562 1.110 thorpej kernendpfn, pfn1);
563 1.110 thorpej }
564 1.110 thorpej } else {
565 1.110 thorpej /*
566 1.110 thorpej * Just load this cluster as one chunk.
567 1.110 thorpej */
568 1.110 thorpej #if 0
569 1.110 thorpej printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
570 1.110 thorpej pfn0, pfn1);
571 1.110 thorpej #endif
572 1.110 thorpej vm_page_physload(pfn0, pfn1, pfn0, pfn1);
573 1.7 cgd }
574 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
575 1.110 thorpej }
576 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
577 1.7 cgd }
578 1.7 cgd
579 1.110 thorpej /*
580 1.110 thorpej * Dump out the MDDT if it looks odd...
581 1.110 thorpej */
582 1.7 cgd if (mddtweird) {
583 1.46 christos printf("\n");
584 1.46 christos printf("complete memory cluster information:\n");
585 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
586 1.46 christos printf("mddt %d:\n", i);
587 1.46 christos printf("\tpfn %lx\n",
588 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
589 1.46 christos printf("\tcnt %lx\n",
590 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
591 1.46 christos printf("\ttest %lx\n",
592 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
593 1.46 christos printf("\tbva %lx\n",
594 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
595 1.46 christos printf("\tbpa %lx\n",
596 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
597 1.46 christos printf("\tbcksum %lx\n",
598 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
599 1.46 christos printf("\tusage %lx\n",
600 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
601 1.2 cgd }
602 1.46 christos printf("\n");
603 1.2 cgd }
604 1.2 cgd
605 1.7 cgd if (totalphysmem == 0)
606 1.1 cgd panic("can't happen: system seems to have no memory!");
607 1.110 thorpej
608 1.110 thorpej #ifdef LIMITMEM
609 1.110 thorpej /*
610 1.110 thorpej * XXX Kludge so we can run on machines with memory larger
611 1.110 thorpej * XXX than 1G until all device drivers are converted to
612 1.110 thorpej * XXX use bus_dma. (Relies on the fact that vm_physmem
613 1.110 thorpej * XXX sorted in order of increasing addresses.)
614 1.110 thorpej */
615 1.110 thorpej if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
616 1.110 thorpej
617 1.110 thorpej printf("******** LIMITING MEMORY TO %dMB **********\n",
618 1.110 thorpej LIMITMEM);
619 1.110 thorpej
620 1.110 thorpej do {
621 1.110 thorpej u_long ovf;
622 1.110 thorpej
623 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
624 1.110 thorpej
625 1.110 thorpej if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
626 1.110 thorpej /*
627 1.110 thorpej * If the start is too high, just drop
628 1.110 thorpej * the whole segment.
629 1.110 thorpej *
630 1.110 thorpej * XXX can start != avail_start in this
631 1.110 thorpej * XXX case? wouldn't that mean that
632 1.110 thorpej * XXX some memory was stolen above the
633 1.110 thorpej * XXX limit? What to do?
634 1.110 thorpej */
635 1.110 thorpej ovf = vps->end - vps->start;
636 1.110 thorpej vm_nphysseg--;
637 1.110 thorpej } else {
638 1.110 thorpej /*
639 1.110 thorpej * If the start is OK, calculate how much
640 1.110 thorpej * to drop and drop it.
641 1.110 thorpej */
642 1.110 thorpej ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
643 1.110 thorpej vps->end -= ovf;
644 1.110 thorpej vps->avail_end -= ovf;
645 1.110 thorpej }
646 1.110 thorpej physmem -= ovf;
647 1.110 thorpej unusedmem += ovf;
648 1.110 thorpej } while (vps->end > atop(LIMITMEM * 1024 * 1024));
649 1.88 mjacob }
650 1.110 thorpej #endif /* LIMITMEM */
651 1.110 thorpej
652 1.1 cgd maxmem = physmem;
653 1.1 cgd
654 1.7 cgd #if 0
655 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
656 1.46 christos printf("physmem = %d\n", physmem);
657 1.46 christos printf("resvmem = %d\n", resvmem);
658 1.46 christos printf("unusedmem = %d\n", unusedmem);
659 1.46 christos printf("unknownmem = %d\n", unknownmem);
660 1.7 cgd #endif
661 1.90 mjacob
662 1.90 mjacob /*
663 1.90 mjacob * Adjust some parameters if the amount of physmem
664 1.90 mjacob * available would cause us to croak. This is completely
665 1.90 mjacob * eyeballed and isn't meant to be the final answer.
666 1.90 mjacob * vm_phys_size is probably the only one to really worry
667 1.90 mjacob * about.
668 1.90 mjacob *
669 1.90 mjacob * It's for booting a GENERIC kernel on a large memory platform.
670 1.90 mjacob */
671 1.110 thorpej if (physmem >= atop(128 * 1024 * 1024)) {
672 1.90 mjacob vm_mbuf_size <<= 1;
673 1.93 mjacob vm_kmem_size <<= 3;
674 1.93 mjacob vm_phys_size <<= 2;
675 1.90 mjacob }
676 1.7 cgd
677 1.1 cgd /*
678 1.1 cgd * Initialize error message buffer (at end of core).
679 1.1 cgd */
680 1.110 thorpej {
681 1.110 thorpej size_t sz = round_page(MSGBUFSIZE);
682 1.110 thorpej
683 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
684 1.110 thorpej
685 1.110 thorpej /* shrink so that it'll fit in the last segment */
686 1.110 thorpej if ((vps->avail_end - vps->avail_start) < atop(sz))
687 1.110 thorpej sz = ptoa(vps->avail_end - vps->avail_start);
688 1.110 thorpej
689 1.110 thorpej vps->end -= atop(sz);
690 1.110 thorpej vps->avail_end -= atop(sz);
691 1.110 thorpej msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
692 1.110 thorpej initmsgbuf(msgbufaddr, sz);
693 1.110 thorpej
694 1.110 thorpej /* Remove the last segment if it now has no pages. */
695 1.110 thorpej if (vps->start == vps->end)
696 1.110 thorpej vm_nphysseg--;
697 1.110 thorpej
698 1.110 thorpej /* warn if the message buffer had to be shrunk */
699 1.110 thorpej if (sz != round_page(MSGBUFSIZE))
700 1.110 thorpej printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
701 1.110 thorpej round_page(MSGBUFSIZE), sz);
702 1.110 thorpej
703 1.110 thorpej }
704 1.1 cgd
705 1.1 cgd /*
706 1.95 thorpej * Init mapping for u page(s) for proc 0
707 1.1 cgd */
708 1.110 thorpej proc0.p_addr = proc0paddr =
709 1.110 thorpej (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
710 1.1 cgd
711 1.1 cgd /*
712 1.95 thorpej * Allocate space for system data structures. These data structures
713 1.95 thorpej * are allocated here instead of cpu_startup() because physical
714 1.95 thorpej * memory is directly addressable. We don't have to map these into
715 1.95 thorpej * virtual address space.
716 1.95 thorpej */
717 1.95 thorpej size = (vm_size_t)allocsys(0);
718 1.110 thorpej v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
719 1.110 thorpej if ((allocsys(v) - v) != size)
720 1.95 thorpej panic("alpha_init: table size inconsistency");
721 1.1 cgd
722 1.1 cgd /*
723 1.1 cgd * Initialize the virtual memory system, and set the
724 1.1 cgd * page table base register in proc 0's PCB.
725 1.1 cgd */
726 1.40 cgd #ifndef NEW_PMAP
727 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
728 1.40 cgd #else
729 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
730 1.40 cgd hwrpb->rpb_max_asn);
731 1.40 cgd #endif
732 1.1 cgd
733 1.1 cgd /*
734 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
735 1.3 cgd * address.
736 1.3 cgd */
737 1.3 cgd proc0.p_md.md_pcbpaddr =
738 1.32 cgd (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
739 1.3 cgd
740 1.3 cgd /*
741 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
742 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
743 1.3 cgd */
744 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
745 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
746 1.81 thorpej proc0.p_md.md_tf =
747 1.81 thorpej (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
748 1.38 cgd
749 1.40 cgd #ifdef NEW_PMAP
750 1.84 thorpej /*
751 1.84 thorpej * Set up the kernel address space in proc0's hwpcb.
752 1.84 thorpej */
753 1.84 thorpej PMAP_ACTIVATE(kernel_pmap, &proc0paddr->u_pcb.pcb_hw, 0);
754 1.38 cgd #endif
755 1.1 cgd
756 1.1 cgd /*
757 1.25 cgd * Look at arguments passed to us and compute boothowto.
758 1.8 cgd */
759 1.1 cgd
760 1.8 cgd boothowto = RB_SINGLE;
761 1.1 cgd #ifdef KADB
762 1.1 cgd boothowto |= RB_KDB;
763 1.1 cgd #endif
764 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
765 1.26 cgd /*
766 1.26 cgd * Note that we'd really like to differentiate case here,
767 1.26 cgd * but the Alpha AXP Architecture Reference Manual
768 1.26 cgd * says that we shouldn't.
769 1.26 cgd */
770 1.8 cgd switch (*p) {
771 1.26 cgd case 'a': /* autoboot */
772 1.26 cgd case 'A':
773 1.26 cgd boothowto &= ~RB_SINGLE;
774 1.21 cgd break;
775 1.21 cgd
776 1.43 cgd #ifdef DEBUG
777 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
778 1.43 cgd case 'C':
779 1.43 cgd boothowto |= RB_DUMP;
780 1.43 cgd break;
781 1.43 cgd #endif
782 1.43 cgd
783 1.81 thorpej #if defined(KGDB) || defined(DDB)
784 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
785 1.81 thorpej case 'D':
786 1.81 thorpej boothowto |= RB_KDB;
787 1.81 thorpej break;
788 1.81 thorpej #endif
789 1.81 thorpej
790 1.36 cgd case 'h': /* always halt, never reboot */
791 1.36 cgd case 'H':
792 1.36 cgd boothowto |= RB_HALT;
793 1.8 cgd break;
794 1.8 cgd
795 1.21 cgd #if 0
796 1.8 cgd case 'm': /* mini root present in memory */
797 1.26 cgd case 'M':
798 1.8 cgd boothowto |= RB_MINIROOT;
799 1.8 cgd break;
800 1.21 cgd #endif
801 1.36 cgd
802 1.36 cgd case 'n': /* askname */
803 1.36 cgd case 'N':
804 1.36 cgd boothowto |= RB_ASKNAME;
805 1.65 cgd break;
806 1.65 cgd
807 1.65 cgd case 's': /* single-user (default, supported for sanity) */
808 1.65 cgd case 'S':
809 1.65 cgd boothowto |= RB_SINGLE;
810 1.65 cgd break;
811 1.65 cgd
812 1.65 cgd default:
813 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
814 1.36 cgd break;
815 1.1 cgd }
816 1.1 cgd }
817 1.1 cgd
818 1.7 cgd /*
819 1.106 cgd * Initialize debuggers, and break into them if appropriate.
820 1.106 cgd */
821 1.106 cgd #ifdef DDB
822 1.106 cgd db_machine_init();
823 1.106 cgd ddb_init(ksym_start, ksym_end);
824 1.106 cgd if (boothowto & RB_KDB)
825 1.106 cgd Debugger();
826 1.106 cgd #endif
827 1.106 cgd #ifdef KGDB
828 1.106 cgd if (boothowto & RB_KDB)
829 1.106 cgd kgdb_connect(0);
830 1.106 cgd #endif
831 1.106 cgd
832 1.106 cgd /*
833 1.7 cgd * Figure out the number of cpus in the box, from RPB fields.
834 1.7 cgd * Really. We mean it.
835 1.7 cgd */
836 1.7 cgd for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
837 1.7 cgd struct pcs *pcsp;
838 1.7 cgd
839 1.7 cgd pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
840 1.7 cgd (i * hwrpb->rpb_pcs_size));
841 1.7 cgd if ((pcsp->pcs_flags & PCS_PP) != 0)
842 1.7 cgd ncpus++;
843 1.7 cgd }
844 1.106 cgd
845 1.106 cgd /*
846 1.106 cgd * Figure out our clock frequency, from RPB fields.
847 1.106 cgd */
848 1.106 cgd hz = hwrpb->rpb_intr_freq >> 12;
849 1.106 cgd if (!(60 <= hz && hz <= 10240)) {
850 1.106 cgd hz = 1024;
851 1.106 cgd #ifdef DIAGNOSTIC
852 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
853 1.106 cgd hwrpb->rpb_intr_freq, hz);
854 1.106 cgd #endif
855 1.106 cgd }
856 1.106 cgd
857 1.95 thorpej }
858 1.95 thorpej
859 1.95 thorpej /*
860 1.95 thorpej * Allocate space for system data structures. We are given
861 1.95 thorpej * a starting virtual address and we return a final virtual
862 1.95 thorpej * address; along the way we set each data structure pointer.
863 1.95 thorpej *
864 1.95 thorpej * We call allocsys() with 0 to find out how much space we want,
865 1.95 thorpej * allocate that much and fill it with zeroes, and the call
866 1.95 thorpej * allocsys() again with the correct base virtual address.
867 1.95 thorpej */
868 1.95 thorpej caddr_t
869 1.95 thorpej allocsys(v)
870 1.95 thorpej caddr_t v;
871 1.95 thorpej {
872 1.95 thorpej
873 1.95 thorpej #define valloc(name, type, num) \
874 1.95 thorpej (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
875 1.95 thorpej #ifdef REAL_CLISTS
876 1.95 thorpej valloc(cfree, struct cblock, nclist);
877 1.95 thorpej #endif
878 1.95 thorpej valloc(callout, struct callout, ncallout);
879 1.95 thorpej #ifdef SYSVSHM
880 1.95 thorpej valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
881 1.95 thorpej #endif
882 1.95 thorpej #ifdef SYSVSEM
883 1.95 thorpej valloc(sema, struct semid_ds, seminfo.semmni);
884 1.95 thorpej valloc(sem, struct sem, seminfo.semmns);
885 1.95 thorpej /* This is pretty disgusting! */
886 1.95 thorpej valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
887 1.95 thorpej #endif
888 1.95 thorpej #ifdef SYSVMSG
889 1.95 thorpej valloc(msgpool, char, msginfo.msgmax);
890 1.95 thorpej valloc(msgmaps, struct msgmap, msginfo.msgseg);
891 1.95 thorpej valloc(msghdrs, struct msg, msginfo.msgtql);
892 1.95 thorpej valloc(msqids, struct msqid_ds, msginfo.msgmni);
893 1.95 thorpej #endif
894 1.95 thorpej
895 1.95 thorpej /*
896 1.95 thorpej * Determine how many buffers to allocate.
897 1.95 thorpej * We allocate 10% of memory for buffer space. Insure a
898 1.95 thorpej * minimum of 16 buffers. We allocate 1/2 as many swap buffer
899 1.95 thorpej * headers as file i/o buffers.
900 1.95 thorpej */
901 1.95 thorpej if (bufpages == 0)
902 1.95 thorpej bufpages = (physmem * 10) / (CLSIZE * 100);
903 1.95 thorpej if (nbuf == 0) {
904 1.95 thorpej nbuf = bufpages;
905 1.95 thorpej if (nbuf < 16)
906 1.95 thorpej nbuf = 16;
907 1.95 thorpej }
908 1.95 thorpej if (nswbuf == 0) {
909 1.95 thorpej nswbuf = (nbuf / 2) &~ 1; /* force even */
910 1.95 thorpej if (nswbuf > 256)
911 1.95 thorpej nswbuf = 256; /* sanity */
912 1.95 thorpej }
913 1.95 thorpej valloc(swbuf, struct buf, nswbuf);
914 1.95 thorpej valloc(buf, struct buf, nbuf);
915 1.95 thorpej return (v);
916 1.98 cgd #undef valloc
917 1.1 cgd }
918 1.1 cgd
919 1.18 cgd void
920 1.1 cgd consinit()
921 1.1 cgd {
922 1.81 thorpej
923 1.106 cgd /*
924 1.106 cgd * Everything related to console initialization is done
925 1.106 cgd * in alpha_init().
926 1.106 cgd */
927 1.106 cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
928 1.106 cgd printf("consinit: %susing prom console\n",
929 1.106 cgd pmap_uses_prom_console() ? "" : "not ");
930 1.81 thorpej #endif
931 1.1 cgd }
932 1.1 cgd
933 1.18 cgd void
934 1.1 cgd cpu_startup()
935 1.1 cgd {
936 1.1 cgd register unsigned i;
937 1.1 cgd int base, residual;
938 1.1 cgd vm_offset_t minaddr, maxaddr;
939 1.1 cgd vm_size_t size;
940 1.40 cgd #if defined(DEBUG)
941 1.1 cgd extern int pmapdebug;
942 1.1 cgd int opmapdebug = pmapdebug;
943 1.1 cgd
944 1.1 cgd pmapdebug = 0;
945 1.1 cgd #endif
946 1.1 cgd
947 1.1 cgd /*
948 1.1 cgd * Good {morning,afternoon,evening,night}.
949 1.1 cgd */
950 1.46 christos printf(version);
951 1.1 cgd identifycpu();
952 1.110 thorpej printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
953 1.110 thorpej ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
954 1.7 cgd if (unusedmem)
955 1.46 christos printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
956 1.7 cgd if (unknownmem)
957 1.46 christos printf("WARNING: %d bytes of memory with unknown purpose\n",
958 1.7 cgd ctob(unknownmem));
959 1.1 cgd
960 1.1 cgd /*
961 1.1 cgd * Allocate virtual address space for file I/O buffers.
962 1.1 cgd * Note they are different than the array of headers, 'buf',
963 1.1 cgd * and usually occupy more virtual memory than physical.
964 1.1 cgd */
965 1.1 cgd size = MAXBSIZE * nbuf;
966 1.1 cgd buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
967 1.1 cgd &maxaddr, size, TRUE);
968 1.1 cgd minaddr = (vm_offset_t)buffers;
969 1.1 cgd if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
970 1.1 cgd &minaddr, size, FALSE) != KERN_SUCCESS)
971 1.1 cgd panic("startup: cannot allocate buffers");
972 1.1 cgd base = bufpages / nbuf;
973 1.1 cgd residual = bufpages % nbuf;
974 1.1 cgd for (i = 0; i < nbuf; i++) {
975 1.1 cgd vm_size_t curbufsize;
976 1.1 cgd vm_offset_t curbuf;
977 1.1 cgd
978 1.1 cgd /*
979 1.1 cgd * First <residual> buffers get (base+1) physical pages
980 1.1 cgd * allocated for them. The rest get (base) physical pages.
981 1.1 cgd *
982 1.1 cgd * The rest of each buffer occupies virtual space,
983 1.1 cgd * but has no physical memory allocated for it.
984 1.1 cgd */
985 1.1 cgd curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
986 1.1 cgd curbufsize = CLBYTES * (i < residual ? base+1 : base);
987 1.1 cgd vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
988 1.1 cgd vm_map_simplify(buffer_map, curbuf);
989 1.1 cgd }
990 1.1 cgd /*
991 1.1 cgd * Allocate a submap for exec arguments. This map effectively
992 1.1 cgd * limits the number of processes exec'ing at any time.
993 1.1 cgd */
994 1.1 cgd exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
995 1.1 cgd 16 * NCARGS, TRUE);
996 1.1 cgd
997 1.1 cgd /*
998 1.1 cgd * Allocate a submap for physio
999 1.1 cgd */
1000 1.1 cgd phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1001 1.1 cgd VM_PHYS_SIZE, TRUE);
1002 1.1 cgd
1003 1.1 cgd /*
1004 1.69 thorpej * Finally, allocate mbuf cluster submap.
1005 1.1 cgd */
1006 1.1 cgd mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1007 1.1 cgd VM_MBUF_SIZE, FALSE);
1008 1.1 cgd /*
1009 1.1 cgd * Initialize callouts
1010 1.1 cgd */
1011 1.1 cgd callfree = callout;
1012 1.1 cgd for (i = 1; i < ncallout; i++)
1013 1.1 cgd callout[i-1].c_next = &callout[i];
1014 1.1 cgd callout[i-1].c_next = NULL;
1015 1.1 cgd
1016 1.40 cgd #if defined(DEBUG)
1017 1.1 cgd pmapdebug = opmapdebug;
1018 1.1 cgd #endif
1019 1.46 christos printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1020 1.46 christos printf("using %ld buffers containing %ld bytes of memory\n",
1021 1.1 cgd (long)nbuf, (long)(bufpages * CLBYTES));
1022 1.1 cgd
1023 1.1 cgd /*
1024 1.1 cgd * Set up buffers, so they can be used to read disk labels.
1025 1.1 cgd */
1026 1.1 cgd bufinit();
1027 1.1 cgd
1028 1.1 cgd /*
1029 1.1 cgd * Configure the system.
1030 1.1 cgd */
1031 1.1 cgd configure();
1032 1.48 cgd
1033 1.48 cgd /*
1034 1.48 cgd * Note that bootstrapping is finished, and set the HWRPB up
1035 1.48 cgd * to do restarts.
1036 1.48 cgd */
1037 1.55 cgd hwrpb_restart_setup();
1038 1.104 thorpej }
1039 1.104 thorpej
1040 1.104 thorpej /*
1041 1.104 thorpej * Retrieve the platform name from the DSR.
1042 1.104 thorpej */
1043 1.104 thorpej const char *
1044 1.104 thorpej alpha_dsr_sysname()
1045 1.104 thorpej {
1046 1.104 thorpej struct dsrdb *dsr;
1047 1.104 thorpej const char *sysname;
1048 1.104 thorpej
1049 1.104 thorpej /*
1050 1.104 thorpej * DSR does not exist on early HWRPB versions.
1051 1.104 thorpej */
1052 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1053 1.104 thorpej return (NULL);
1054 1.104 thorpej
1055 1.104 thorpej dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1056 1.104 thorpej sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1057 1.104 thorpej sizeof(u_int64_t)));
1058 1.104 thorpej return (sysname);
1059 1.104 thorpej }
1060 1.104 thorpej
1061 1.104 thorpej /*
1062 1.104 thorpej * Lookup the system specified system variation in the provided table,
1063 1.104 thorpej * returning the model string on match.
1064 1.104 thorpej */
1065 1.104 thorpej const char *
1066 1.104 thorpej alpha_variation_name(variation, avtp)
1067 1.104 thorpej u_int64_t variation;
1068 1.104 thorpej const struct alpha_variation_table *avtp;
1069 1.104 thorpej {
1070 1.104 thorpej int i;
1071 1.104 thorpej
1072 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++)
1073 1.104 thorpej if (avtp[i].avt_variation == variation)
1074 1.104 thorpej return (avtp[i].avt_model);
1075 1.104 thorpej return (NULL);
1076 1.104 thorpej }
1077 1.104 thorpej
1078 1.104 thorpej /*
1079 1.104 thorpej * Generate a default platform name based for unknown system variations.
1080 1.104 thorpej */
1081 1.104 thorpej const char *
1082 1.104 thorpej alpha_unknown_sysname()
1083 1.104 thorpej {
1084 1.105 thorpej static char s[128]; /* safe size */
1085 1.104 thorpej
1086 1.105 thorpej sprintf(s, "%s family, unknown model variation 0x%lx",
1087 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1088 1.104 thorpej return ((const char *)s);
1089 1.1 cgd }
1090 1.1 cgd
1091 1.33 cgd void
1092 1.1 cgd identifycpu()
1093 1.1 cgd {
1094 1.1 cgd
1095 1.7 cgd /*
1096 1.7 cgd * print out CPU identification information.
1097 1.7 cgd */
1098 1.46 christos printf("%s, %ldMHz\n", cpu_model,
1099 1.7 cgd hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1100 1.46 christos printf("%ld byte page size, %d processor%s.\n",
1101 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1102 1.7 cgd #if 0
1103 1.7 cgd /* this isn't defined for any systems that we run on? */
1104 1.46 christos printf("serial number 0x%lx 0x%lx\n",
1105 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1106 1.7 cgd
1107 1.7 cgd /* and these aren't particularly useful! */
1108 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
1109 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1110 1.7 cgd #endif
1111 1.1 cgd }
1112 1.1 cgd
1113 1.1 cgd int waittime = -1;
1114 1.7 cgd struct pcb dumppcb;
1115 1.1 cgd
1116 1.18 cgd void
1117 1.68 gwr cpu_reboot(howto, bootstr)
1118 1.1 cgd int howto;
1119 1.39 mrg char *bootstr;
1120 1.1 cgd {
1121 1.1 cgd extern int cold;
1122 1.1 cgd
1123 1.1 cgd /* If system is cold, just halt. */
1124 1.1 cgd if (cold) {
1125 1.1 cgd howto |= RB_HALT;
1126 1.1 cgd goto haltsys;
1127 1.1 cgd }
1128 1.1 cgd
1129 1.36 cgd /* If "always halt" was specified as a boot flag, obey. */
1130 1.36 cgd if ((boothowto & RB_HALT) != 0)
1131 1.36 cgd howto |= RB_HALT;
1132 1.36 cgd
1133 1.7 cgd boothowto = howto;
1134 1.7 cgd if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1135 1.1 cgd waittime = 0;
1136 1.7 cgd vfs_shutdown();
1137 1.1 cgd /*
1138 1.1 cgd * If we've been adjusting the clock, the todr
1139 1.1 cgd * will be out of synch; adjust it now.
1140 1.1 cgd */
1141 1.1 cgd resettodr();
1142 1.1 cgd }
1143 1.1 cgd
1144 1.1 cgd /* Disable interrupts. */
1145 1.1 cgd splhigh();
1146 1.1 cgd
1147 1.7 cgd /* If rebooting and a dump is requested do it. */
1148 1.42 cgd #if 0
1149 1.42 cgd if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1150 1.42 cgd #else
1151 1.42 cgd if (howto & RB_DUMP)
1152 1.42 cgd #endif
1153 1.1 cgd dumpsys();
1154 1.6 cgd
1155 1.12 cgd haltsys:
1156 1.12 cgd
1157 1.6 cgd /* run any shutdown hooks */
1158 1.6 cgd doshutdownhooks();
1159 1.1 cgd
1160 1.7 cgd #ifdef BOOTKEY
1161 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1162 1.7 cgd cngetc();
1163 1.46 christos printf("\n");
1164 1.7 cgd #endif
1165 1.7 cgd
1166 1.1 cgd /* Finally, halt/reboot the system. */
1167 1.46 christos printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1168 1.1 cgd prom_halt(howto & RB_HALT);
1169 1.1 cgd /*NOTREACHED*/
1170 1.1 cgd }
1171 1.1 cgd
1172 1.7 cgd /*
1173 1.7 cgd * These variables are needed by /sbin/savecore
1174 1.7 cgd */
1175 1.7 cgd u_long dumpmag = 0x8fca0101; /* magic number */
1176 1.7 cgd int dumpsize = 0; /* pages */
1177 1.7 cgd long dumplo = 0; /* blocks */
1178 1.7 cgd
1179 1.7 cgd /*
1180 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1181 1.43 cgd */
1182 1.43 cgd int
1183 1.43 cgd cpu_dumpsize()
1184 1.43 cgd {
1185 1.43 cgd int size;
1186 1.43 cgd
1187 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1188 1.110 thorpej ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1189 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
1190 1.43 cgd return -1;
1191 1.43 cgd
1192 1.43 cgd return (1);
1193 1.43 cgd }
1194 1.43 cgd
1195 1.43 cgd /*
1196 1.110 thorpej * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1197 1.110 thorpej */
1198 1.110 thorpej u_long
1199 1.110 thorpej cpu_dump_mempagecnt()
1200 1.110 thorpej {
1201 1.110 thorpej u_long i, n;
1202 1.110 thorpej
1203 1.110 thorpej n = 0;
1204 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++)
1205 1.110 thorpej n += atop(mem_clusters[i].size);
1206 1.110 thorpej return (n);
1207 1.110 thorpej }
1208 1.110 thorpej
1209 1.110 thorpej /*
1210 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
1211 1.43 cgd */
1212 1.43 cgd int
1213 1.43 cgd cpu_dump()
1214 1.43 cgd {
1215 1.43 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1216 1.107 cgd char buf[dbtob(1)];
1217 1.107 cgd kcore_seg_t *segp;
1218 1.107 cgd cpu_kcore_hdr_t *cpuhdrp;
1219 1.107 cgd phys_ram_seg_t *memsegp;
1220 1.110 thorpej int i;
1221 1.43 cgd
1222 1.107 cgd dump = bdevsw[major(dumpdev)].d_dump;
1223 1.43 cgd
1224 1.107 cgd bzero(buf, sizeof buf);
1225 1.43 cgd segp = (kcore_seg_t *)buf;
1226 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1227 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1228 1.107 cgd ALIGN(sizeof(*cpuhdrp))];
1229 1.43 cgd
1230 1.43 cgd /*
1231 1.43 cgd * Generate a segment header.
1232 1.43 cgd */
1233 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1234 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1235 1.43 cgd
1236 1.43 cgd /*
1237 1.107 cgd * Add the machine-dependent header info.
1238 1.43 cgd */
1239 1.44 cgd cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)Lev1map);
1240 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
1241 1.110 thorpej cpuhdrp->nmemsegs = mem_cluster_cnt;
1242 1.107 cgd
1243 1.107 cgd /*
1244 1.107 cgd * Fill in the memory segment descriptors.
1245 1.107 cgd */
1246 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1247 1.110 thorpej memsegp[i].start = mem_clusters[i].start;
1248 1.110 thorpej memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1249 1.110 thorpej }
1250 1.43 cgd
1251 1.43 cgd return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1252 1.43 cgd }
1253 1.43 cgd
1254 1.43 cgd /*
1255 1.68 gwr * This is called by main to set dumplo and dumpsize.
1256 1.7 cgd * Dumps always skip the first CLBYTES of disk space
1257 1.7 cgd * in case there might be a disk label stored there.
1258 1.7 cgd * If there is extra space, put dump at the end to
1259 1.7 cgd * reduce the chance that swapping trashes it.
1260 1.7 cgd */
1261 1.7 cgd void
1262 1.68 gwr cpu_dumpconf()
1263 1.7 cgd {
1264 1.43 cgd int nblks, dumpblks; /* size of dump area */
1265 1.7 cgd int maj;
1266 1.7 cgd
1267 1.7 cgd if (dumpdev == NODEV)
1268 1.43 cgd goto bad;
1269 1.7 cgd maj = major(dumpdev);
1270 1.7 cgd if (maj < 0 || maj >= nblkdev)
1271 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1272 1.7 cgd if (bdevsw[maj].d_psize == NULL)
1273 1.43 cgd goto bad;
1274 1.7 cgd nblks = (*bdevsw[maj].d_psize)(dumpdev);
1275 1.7 cgd if (nblks <= ctod(1))
1276 1.43 cgd goto bad;
1277 1.43 cgd
1278 1.43 cgd dumpblks = cpu_dumpsize();
1279 1.43 cgd if (dumpblks < 0)
1280 1.43 cgd goto bad;
1281 1.110 thorpej dumpblks += ctod(cpu_dump_mempagecnt());
1282 1.43 cgd
1283 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
1284 1.43 cgd if (dumpblks > (nblks - ctod(1)))
1285 1.43 cgd goto bad;
1286 1.43 cgd
1287 1.43 cgd /* Put dump at end of partition */
1288 1.43 cgd dumplo = nblks - dumpblks;
1289 1.7 cgd
1290 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1291 1.110 thorpej dumpsize = cpu_dump_mempagecnt();
1292 1.43 cgd return;
1293 1.7 cgd
1294 1.43 cgd bad:
1295 1.43 cgd dumpsize = 0;
1296 1.43 cgd return;
1297 1.7 cgd }
1298 1.7 cgd
1299 1.7 cgd /*
1300 1.42 cgd * Dump the kernel's image to the swap partition.
1301 1.7 cgd */
1302 1.42 cgd #define BYTES_PER_DUMP NBPG
1303 1.42 cgd
1304 1.7 cgd void
1305 1.7 cgd dumpsys()
1306 1.7 cgd {
1307 1.110 thorpej u_long totalbytesleft, bytes, i, n, memcl;
1308 1.110 thorpej u_long maddr;
1309 1.110 thorpej int psize;
1310 1.42 cgd daddr_t blkno;
1311 1.42 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1312 1.42 cgd int error;
1313 1.42 cgd
1314 1.42 cgd /* Save registers. */
1315 1.42 cgd savectx(&dumppcb);
1316 1.7 cgd
1317 1.111 thorpej msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1318 1.7 cgd if (dumpdev == NODEV)
1319 1.7 cgd return;
1320 1.42 cgd
1321 1.42 cgd /*
1322 1.42 cgd * For dumps during autoconfiguration,
1323 1.42 cgd * if dump device has already configured...
1324 1.42 cgd */
1325 1.42 cgd if (dumpsize == 0)
1326 1.68 gwr cpu_dumpconf();
1327 1.47 cgd if (dumplo <= 0) {
1328 1.97 mycroft printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1329 1.97 mycroft minor(dumpdev));
1330 1.42 cgd return;
1331 1.43 cgd }
1332 1.97 mycroft printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1333 1.97 mycroft minor(dumpdev), dumplo);
1334 1.7 cgd
1335 1.42 cgd psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1336 1.46 christos printf("dump ");
1337 1.42 cgd if (psize == -1) {
1338 1.46 christos printf("area unavailable\n");
1339 1.42 cgd return;
1340 1.42 cgd }
1341 1.42 cgd
1342 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1343 1.42 cgd
1344 1.43 cgd if ((error = cpu_dump()) != 0)
1345 1.43 cgd goto err;
1346 1.43 cgd
1347 1.110 thorpej totalbytesleft = ptoa(cpu_dump_mempagecnt());
1348 1.43 cgd blkno = dumplo + cpu_dumpsize();
1349 1.42 cgd dump = bdevsw[major(dumpdev)].d_dump;
1350 1.42 cgd error = 0;
1351 1.42 cgd
1352 1.110 thorpej for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1353 1.110 thorpej maddr = mem_clusters[memcl].start;
1354 1.110 thorpej bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1355 1.110 thorpej
1356 1.110 thorpej for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1357 1.110 thorpej
1358 1.110 thorpej /* Print out how many MBs we to go. */
1359 1.110 thorpej if ((totalbytesleft % (1024*1024)) == 0)
1360 1.110 thorpej printf("%d ", totalbytesleft / (1024 * 1024));
1361 1.110 thorpej
1362 1.110 thorpej /* Limit size for next transfer. */
1363 1.110 thorpej n = bytes - i;
1364 1.110 thorpej if (n > BYTES_PER_DUMP)
1365 1.110 thorpej n = BYTES_PER_DUMP;
1366 1.110 thorpej
1367 1.110 thorpej error = (*dump)(dumpdev, blkno,
1368 1.110 thorpej (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1369 1.110 thorpej if (error)
1370 1.110 thorpej goto err;
1371 1.110 thorpej maddr += n;
1372 1.110 thorpej blkno += btodb(n); /* XXX? */
1373 1.42 cgd
1374 1.110 thorpej /* XXX should look for keystrokes, to cancel. */
1375 1.110 thorpej }
1376 1.42 cgd }
1377 1.42 cgd
1378 1.43 cgd err:
1379 1.42 cgd switch (error) {
1380 1.7 cgd
1381 1.7 cgd case ENXIO:
1382 1.46 christos printf("device bad\n");
1383 1.7 cgd break;
1384 1.7 cgd
1385 1.7 cgd case EFAULT:
1386 1.46 christos printf("device not ready\n");
1387 1.7 cgd break;
1388 1.7 cgd
1389 1.7 cgd case EINVAL:
1390 1.46 christos printf("area improper\n");
1391 1.7 cgd break;
1392 1.7 cgd
1393 1.7 cgd case EIO:
1394 1.46 christos printf("i/o error\n");
1395 1.7 cgd break;
1396 1.7 cgd
1397 1.7 cgd case EINTR:
1398 1.46 christos printf("aborted from console\n");
1399 1.7 cgd break;
1400 1.7 cgd
1401 1.42 cgd case 0:
1402 1.46 christos printf("succeeded\n");
1403 1.42 cgd break;
1404 1.42 cgd
1405 1.7 cgd default:
1406 1.46 christos printf("error %d\n", error);
1407 1.7 cgd break;
1408 1.7 cgd }
1409 1.46 christos printf("\n\n");
1410 1.7 cgd delay(1000);
1411 1.7 cgd }
1412 1.7 cgd
1413 1.1 cgd void
1414 1.1 cgd frametoreg(framep, regp)
1415 1.1 cgd struct trapframe *framep;
1416 1.1 cgd struct reg *regp;
1417 1.1 cgd {
1418 1.1 cgd
1419 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1420 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1421 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1422 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1423 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1424 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1425 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1426 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1427 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1428 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1429 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1430 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1431 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1432 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1433 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1434 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1435 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1436 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1437 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1438 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1439 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1440 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1441 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1442 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1443 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1444 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1445 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1446 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1447 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1448 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1449 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1450 1.1 cgd regp->r_regs[R_ZERO] = 0;
1451 1.1 cgd }
1452 1.1 cgd
1453 1.1 cgd void
1454 1.1 cgd regtoframe(regp, framep)
1455 1.1 cgd struct reg *regp;
1456 1.1 cgd struct trapframe *framep;
1457 1.1 cgd {
1458 1.1 cgd
1459 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1460 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1461 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1462 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1463 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1464 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1465 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1466 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1467 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1468 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1469 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1470 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1471 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1472 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1473 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1474 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1475 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1476 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1477 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1478 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1479 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1480 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1481 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1482 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1483 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1484 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1485 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1486 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1487 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1488 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1489 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1490 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1491 1.1 cgd }
1492 1.1 cgd
1493 1.1 cgd void
1494 1.1 cgd printregs(regp)
1495 1.1 cgd struct reg *regp;
1496 1.1 cgd {
1497 1.1 cgd int i;
1498 1.1 cgd
1499 1.1 cgd for (i = 0; i < 32; i++)
1500 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1501 1.1 cgd i & 1 ? "\n" : "\t");
1502 1.1 cgd }
1503 1.1 cgd
1504 1.1 cgd void
1505 1.1 cgd regdump(framep)
1506 1.1 cgd struct trapframe *framep;
1507 1.1 cgd {
1508 1.1 cgd struct reg reg;
1509 1.1 cgd
1510 1.1 cgd frametoreg(framep, ®);
1511 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1512 1.35 cgd
1513 1.46 christos printf("REGISTERS:\n");
1514 1.1 cgd printregs(®);
1515 1.1 cgd }
1516 1.1 cgd
1517 1.1 cgd #ifdef DEBUG
1518 1.1 cgd int sigdebug = 0;
1519 1.1 cgd int sigpid = 0;
1520 1.1 cgd #define SDB_FOLLOW 0x01
1521 1.1 cgd #define SDB_KSTACK 0x02
1522 1.1 cgd #endif
1523 1.1 cgd
1524 1.1 cgd /*
1525 1.1 cgd * Send an interrupt to process.
1526 1.1 cgd */
1527 1.1 cgd void
1528 1.1 cgd sendsig(catcher, sig, mask, code)
1529 1.1 cgd sig_t catcher;
1530 1.1 cgd int sig, mask;
1531 1.1 cgd u_long code;
1532 1.1 cgd {
1533 1.1 cgd struct proc *p = curproc;
1534 1.1 cgd struct sigcontext *scp, ksc;
1535 1.1 cgd struct trapframe *frame;
1536 1.1 cgd struct sigacts *psp = p->p_sigacts;
1537 1.1 cgd int oonstack, fsize, rndfsize;
1538 1.1 cgd extern char sigcode[], esigcode[];
1539 1.1 cgd extern struct proc *fpcurproc;
1540 1.1 cgd
1541 1.1 cgd frame = p->p_md.md_tf;
1542 1.9 mycroft oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1543 1.1 cgd fsize = sizeof ksc;
1544 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1545 1.1 cgd /*
1546 1.1 cgd * Allocate and validate space for the signal handler
1547 1.1 cgd * context. Note that if the stack is in P0 space, the
1548 1.1 cgd * call to grow() is a nop, and the useracc() check
1549 1.1 cgd * will fail if the process has not already allocated
1550 1.1 cgd * the space with a `brk'.
1551 1.1 cgd */
1552 1.1 cgd if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1553 1.1 cgd (psp->ps_sigonstack & sigmask(sig))) {
1554 1.14 jtc scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1555 1.1 cgd psp->ps_sigstk.ss_size - rndfsize);
1556 1.9 mycroft psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1557 1.1 cgd } else
1558 1.35 cgd scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1559 1.1 cgd if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1560 1.1 cgd (void)grow(p, (u_long)scp);
1561 1.1 cgd #ifdef DEBUG
1562 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1563 1.46 christos printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1564 1.1 cgd sig, &oonstack, scp);
1565 1.1 cgd #endif
1566 1.1 cgd if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1567 1.1 cgd #ifdef DEBUG
1568 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1569 1.46 christos printf("sendsig(%d): useracc failed on sig %d\n",
1570 1.1 cgd p->p_pid, sig);
1571 1.1 cgd #endif
1572 1.1 cgd /*
1573 1.1 cgd * Process has trashed its stack; give it an illegal
1574 1.1 cgd * instruction to halt it in its tracks.
1575 1.1 cgd */
1576 1.1 cgd SIGACTION(p, SIGILL) = SIG_DFL;
1577 1.1 cgd sig = sigmask(SIGILL);
1578 1.1 cgd p->p_sigignore &= ~sig;
1579 1.1 cgd p->p_sigcatch &= ~sig;
1580 1.1 cgd p->p_sigmask &= ~sig;
1581 1.1 cgd psignal(p, SIGILL);
1582 1.1 cgd return;
1583 1.1 cgd }
1584 1.1 cgd
1585 1.1 cgd /*
1586 1.1 cgd * Build the signal context to be used by sigreturn.
1587 1.1 cgd */
1588 1.1 cgd ksc.sc_onstack = oonstack;
1589 1.1 cgd ksc.sc_mask = mask;
1590 1.34 cgd ksc.sc_pc = frame->tf_regs[FRAME_PC];
1591 1.34 cgd ksc.sc_ps = frame->tf_regs[FRAME_PS];
1592 1.1 cgd
1593 1.1 cgd /* copy the registers. */
1594 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1595 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1596 1.35 cgd ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1597 1.1 cgd
1598 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1599 1.1 cgd if (p == fpcurproc) {
1600 1.32 cgd alpha_pal_wrfen(1);
1601 1.1 cgd savefpstate(&p->p_addr->u_pcb.pcb_fp);
1602 1.32 cgd alpha_pal_wrfen(0);
1603 1.1 cgd fpcurproc = NULL;
1604 1.1 cgd }
1605 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1606 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1607 1.1 cgd sizeof(struct fpreg));
1608 1.1 cgd ksc.sc_fp_control = 0; /* XXX ? */
1609 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1610 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1611 1.1 cgd
1612 1.1 cgd
1613 1.1 cgd #ifdef COMPAT_OSF1
1614 1.1 cgd /*
1615 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1616 1.1 cgd */
1617 1.1 cgd #endif
1618 1.1 cgd
1619 1.1 cgd /*
1620 1.1 cgd * copy the frame out to userland.
1621 1.1 cgd */
1622 1.1 cgd (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1623 1.1 cgd #ifdef DEBUG
1624 1.1 cgd if (sigdebug & SDB_FOLLOW)
1625 1.46 christos printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1626 1.1 cgd scp, code);
1627 1.1 cgd #endif
1628 1.1 cgd
1629 1.1 cgd /*
1630 1.1 cgd * Set up the registers to return to sigcode.
1631 1.1 cgd */
1632 1.34 cgd frame->tf_regs[FRAME_PC] =
1633 1.34 cgd (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1634 1.34 cgd frame->tf_regs[FRAME_A0] = sig;
1635 1.34 cgd frame->tf_regs[FRAME_A1] = code;
1636 1.34 cgd frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1637 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1638 1.35 cgd alpha_pal_wrusp((unsigned long)scp);
1639 1.1 cgd
1640 1.1 cgd #ifdef DEBUG
1641 1.1 cgd if (sigdebug & SDB_FOLLOW)
1642 1.46 christos printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1643 1.34 cgd frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1644 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1645 1.46 christos printf("sendsig(%d): sig %d returns\n",
1646 1.1 cgd p->p_pid, sig);
1647 1.1 cgd #endif
1648 1.1 cgd }
1649 1.1 cgd
1650 1.1 cgd /*
1651 1.1 cgd * System call to cleanup state after a signal
1652 1.1 cgd * has been taken. Reset signal mask and
1653 1.1 cgd * stack state from context left by sendsig (above).
1654 1.1 cgd * Return to previous pc and psl as specified by
1655 1.1 cgd * context left by sendsig. Check carefully to
1656 1.1 cgd * make sure that the user has not modified the
1657 1.1 cgd * psl to gain improper priviledges or to cause
1658 1.1 cgd * a machine fault.
1659 1.1 cgd */
1660 1.1 cgd /* ARGSUSED */
1661 1.11 mycroft int
1662 1.11 mycroft sys_sigreturn(p, v, retval)
1663 1.1 cgd struct proc *p;
1664 1.10 thorpej void *v;
1665 1.10 thorpej register_t *retval;
1666 1.10 thorpej {
1667 1.11 mycroft struct sys_sigreturn_args /* {
1668 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1669 1.10 thorpej } */ *uap = v;
1670 1.1 cgd struct sigcontext *scp, ksc;
1671 1.1 cgd extern struct proc *fpcurproc;
1672 1.1 cgd
1673 1.1 cgd scp = SCARG(uap, sigcntxp);
1674 1.1 cgd #ifdef DEBUG
1675 1.1 cgd if (sigdebug & SDB_FOLLOW)
1676 1.46 christos printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1677 1.1 cgd #endif
1678 1.1 cgd
1679 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1680 1.1 cgd return (EINVAL);
1681 1.1 cgd
1682 1.1 cgd /*
1683 1.1 cgd * Test and fetch the context structure.
1684 1.1 cgd * We grab it all at once for speed.
1685 1.1 cgd */
1686 1.1 cgd if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1687 1.1 cgd copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1688 1.1 cgd return (EINVAL);
1689 1.1 cgd
1690 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1691 1.1 cgd return (EINVAL);
1692 1.1 cgd /*
1693 1.1 cgd * Restore the user-supplied information
1694 1.1 cgd */
1695 1.1 cgd if (ksc.sc_onstack)
1696 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1697 1.1 cgd else
1698 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1699 1.1 cgd p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1700 1.1 cgd
1701 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1702 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PS] =
1703 1.32 cgd (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1704 1.1 cgd
1705 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1706 1.35 cgd alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1707 1.1 cgd
1708 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1709 1.1 cgd if (p == fpcurproc)
1710 1.1 cgd fpcurproc = NULL;
1711 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1712 1.1 cgd sizeof(struct fpreg));
1713 1.1 cgd /* XXX ksc.sc_fp_control ? */
1714 1.1 cgd
1715 1.1 cgd #ifdef DEBUG
1716 1.1 cgd if (sigdebug & SDB_FOLLOW)
1717 1.46 christos printf("sigreturn(%d): returns\n", p->p_pid);
1718 1.1 cgd #endif
1719 1.1 cgd return (EJUSTRETURN);
1720 1.1 cgd }
1721 1.1 cgd
1722 1.1 cgd /*
1723 1.1 cgd * machine dependent system variables.
1724 1.1 cgd */
1725 1.33 cgd int
1726 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1727 1.1 cgd int *name;
1728 1.1 cgd u_int namelen;
1729 1.1 cgd void *oldp;
1730 1.1 cgd size_t *oldlenp;
1731 1.1 cgd void *newp;
1732 1.1 cgd size_t newlen;
1733 1.1 cgd struct proc *p;
1734 1.1 cgd {
1735 1.1 cgd dev_t consdev;
1736 1.1 cgd
1737 1.1 cgd /* all sysctl names at this level are terminal */
1738 1.1 cgd if (namelen != 1)
1739 1.1 cgd return (ENOTDIR); /* overloaded */
1740 1.1 cgd
1741 1.1 cgd switch (name[0]) {
1742 1.1 cgd case CPU_CONSDEV:
1743 1.1 cgd if (cn_tab != NULL)
1744 1.1 cgd consdev = cn_tab->cn_dev;
1745 1.1 cgd else
1746 1.1 cgd consdev = NODEV;
1747 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1748 1.1 cgd sizeof consdev));
1749 1.30 cgd
1750 1.30 cgd case CPU_ROOT_DEVICE:
1751 1.64 thorpej return (sysctl_rdstring(oldp, oldlenp, newp,
1752 1.64 thorpej root_device->dv_xname));
1753 1.36 cgd
1754 1.36 cgd case CPU_UNALIGNED_PRINT:
1755 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1756 1.36 cgd &alpha_unaligned_print));
1757 1.36 cgd
1758 1.36 cgd case CPU_UNALIGNED_FIX:
1759 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1760 1.36 cgd &alpha_unaligned_fix));
1761 1.36 cgd
1762 1.36 cgd case CPU_UNALIGNED_SIGBUS:
1763 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1764 1.36 cgd &alpha_unaligned_sigbus));
1765 1.61 cgd
1766 1.61 cgd case CPU_BOOTED_KERNEL:
1767 1.102 cgd return (sysctl_rdstring(oldp, oldlenp, newp,
1768 1.102 cgd bootinfo.booted_kernel));
1769 1.30 cgd
1770 1.1 cgd default:
1771 1.1 cgd return (EOPNOTSUPP);
1772 1.1 cgd }
1773 1.1 cgd /* NOTREACHED */
1774 1.1 cgd }
1775 1.1 cgd
1776 1.1 cgd /*
1777 1.1 cgd * Set registers on exec.
1778 1.1 cgd */
1779 1.1 cgd void
1780 1.85 mycroft setregs(p, pack, stack)
1781 1.1 cgd register struct proc *p;
1782 1.5 christos struct exec_package *pack;
1783 1.1 cgd u_long stack;
1784 1.1 cgd {
1785 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1786 1.56 cgd extern struct proc *fpcurproc;
1787 1.56 cgd #ifdef DEBUG
1788 1.1 cgd int i;
1789 1.56 cgd #endif
1790 1.43 cgd
1791 1.43 cgd #ifdef DEBUG
1792 1.43 cgd /*
1793 1.43 cgd * Crash and dump, if the user requested it.
1794 1.43 cgd */
1795 1.43 cgd if (boothowto & RB_DUMP)
1796 1.43 cgd panic("crash requested by boot flags");
1797 1.43 cgd #endif
1798 1.1 cgd
1799 1.1 cgd #ifdef DEBUG
1800 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1801 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1802 1.1 cgd #else
1803 1.34 cgd bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1804 1.1 cgd #endif
1805 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1806 1.7 cgd #define FP_RN 2 /* XXX */
1807 1.7 cgd p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1808 1.35 cgd alpha_pal_wrusp(stack);
1809 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1810 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1811 1.41 cgd
1812 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1813 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1814 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1815 1.63 cgd tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1816 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1817 1.1 cgd
1818 1.33 cgd p->p_md.md_flags &= ~MDP_FPUSED;
1819 1.1 cgd if (fpcurproc == p)
1820 1.1 cgd fpcurproc = NULL;
1821 1.1 cgd }
1822 1.1 cgd
1823 1.1 cgd void
1824 1.1 cgd netintr()
1825 1.1 cgd {
1826 1.49 cgd int n, s;
1827 1.49 cgd
1828 1.49 cgd s = splhigh();
1829 1.49 cgd n = netisr;
1830 1.49 cgd netisr = 0;
1831 1.49 cgd splx(s);
1832 1.49 cgd
1833 1.49 cgd #define DONETISR(bit, fn) \
1834 1.49 cgd do { \
1835 1.49 cgd if (n & (1 << (bit))) \
1836 1.49 cgd fn; \
1837 1.49 cgd } while (0)
1838 1.49 cgd
1839 1.1 cgd #ifdef INET
1840 1.72 cgd #if NARP > 0
1841 1.49 cgd DONETISR(NETISR_ARP, arpintr());
1842 1.72 cgd #endif
1843 1.49 cgd DONETISR(NETISR_IP, ipintr());
1844 1.70 christos #endif
1845 1.70 christos #ifdef NETATALK
1846 1.70 christos DONETISR(NETISR_ATALK, atintr());
1847 1.1 cgd #endif
1848 1.1 cgd #ifdef NS
1849 1.49 cgd DONETISR(NETISR_NS, nsintr());
1850 1.1 cgd #endif
1851 1.1 cgd #ifdef ISO
1852 1.49 cgd DONETISR(NETISR_ISO, clnlintr());
1853 1.1 cgd #endif
1854 1.1 cgd #ifdef CCITT
1855 1.49 cgd DONETISR(NETISR_CCITT, ccittintr());
1856 1.49 cgd #endif
1857 1.49 cgd #ifdef NATM
1858 1.49 cgd DONETISR(NETISR_NATM, natmintr());
1859 1.1 cgd #endif
1860 1.49 cgd #if NPPP > 1
1861 1.49 cgd DONETISR(NETISR_PPP, pppintr());
1862 1.8 cgd #endif
1863 1.49 cgd
1864 1.49 cgd #undef DONETISR
1865 1.1 cgd }
1866 1.1 cgd
1867 1.1 cgd void
1868 1.1 cgd do_sir()
1869 1.1 cgd {
1870 1.58 cgd u_int64_t n;
1871 1.1 cgd
1872 1.59 cgd do {
1873 1.60 cgd (void)splhigh();
1874 1.58 cgd n = ssir;
1875 1.58 cgd ssir = 0;
1876 1.60 cgd splsoft(); /* don't recurse through spl0() */
1877 1.59 cgd
1878 1.59 cgd #define DO_SIR(bit, fn) \
1879 1.59 cgd do { \
1880 1.60 cgd if (n & (bit)) { \
1881 1.59 cgd cnt.v_soft++; \
1882 1.59 cgd fn; \
1883 1.59 cgd } \
1884 1.59 cgd } while (0)
1885 1.59 cgd
1886 1.60 cgd DO_SIR(SIR_NET, netintr());
1887 1.60 cgd DO_SIR(SIR_CLOCK, softclock());
1888 1.60 cgd
1889 1.60 cgd #undef DO_SIR
1890 1.59 cgd } while (ssir != 0);
1891 1.1 cgd }
1892 1.1 cgd
1893 1.1 cgd int
1894 1.1 cgd spl0()
1895 1.1 cgd {
1896 1.1 cgd
1897 1.59 cgd if (ssir)
1898 1.59 cgd do_sir(); /* it lowers the IPL itself */
1899 1.1 cgd
1900 1.32 cgd return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1901 1.1 cgd }
1902 1.1 cgd
1903 1.1 cgd /*
1904 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
1905 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1906 1.52 cgd * into queues, Remrunqueue removes them from queues. The running process is
1907 1.52 cgd * on no queue, other processes are on a queue related to p->p_priority,
1908 1.52 cgd * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1909 1.52 cgd * available queues.
1910 1.1 cgd */
1911 1.1 cgd /*
1912 1.1 cgd * setrunqueue(p)
1913 1.1 cgd * proc *p;
1914 1.1 cgd *
1915 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
1916 1.1 cgd */
1917 1.1 cgd
1918 1.1 cgd void
1919 1.1 cgd setrunqueue(p)
1920 1.1 cgd struct proc *p;
1921 1.1 cgd {
1922 1.1 cgd int bit;
1923 1.1 cgd
1924 1.1 cgd /* firewall: p->p_back must be NULL */
1925 1.1 cgd if (p->p_back != NULL)
1926 1.1 cgd panic("setrunqueue");
1927 1.1 cgd
1928 1.1 cgd bit = p->p_priority >> 2;
1929 1.1 cgd whichqs |= (1 << bit);
1930 1.1 cgd p->p_forw = (struct proc *)&qs[bit];
1931 1.1 cgd p->p_back = qs[bit].ph_rlink;
1932 1.1 cgd p->p_back->p_forw = p;
1933 1.1 cgd qs[bit].ph_rlink = p;
1934 1.1 cgd }
1935 1.1 cgd
1936 1.1 cgd /*
1937 1.52 cgd * remrunqueue(p)
1938 1.1 cgd *
1939 1.1 cgd * Call should be made at splclock().
1940 1.1 cgd */
1941 1.1 cgd void
1942 1.52 cgd remrunqueue(p)
1943 1.1 cgd struct proc *p;
1944 1.1 cgd {
1945 1.1 cgd int bit;
1946 1.1 cgd
1947 1.1 cgd bit = p->p_priority >> 2;
1948 1.1 cgd if ((whichqs & (1 << bit)) == 0)
1949 1.52 cgd panic("remrunqueue");
1950 1.1 cgd
1951 1.1 cgd p->p_back->p_forw = p->p_forw;
1952 1.1 cgd p->p_forw->p_back = p->p_back;
1953 1.1 cgd p->p_back = NULL; /* for firewall checking. */
1954 1.1 cgd
1955 1.1 cgd if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1956 1.1 cgd whichqs &= ~(1 << bit);
1957 1.1 cgd }
1958 1.1 cgd
1959 1.1 cgd /*
1960 1.1 cgd * Return the best possible estimate of the time in the timeval
1961 1.1 cgd * to which tvp points. Unfortunately, we can't read the hardware registers.
1962 1.1 cgd * We guarantee that the time will be greater than the value obtained by a
1963 1.1 cgd * previous call.
1964 1.1 cgd */
1965 1.1 cgd void
1966 1.1 cgd microtime(tvp)
1967 1.1 cgd register struct timeval *tvp;
1968 1.1 cgd {
1969 1.1 cgd int s = splclock();
1970 1.1 cgd static struct timeval lasttime;
1971 1.1 cgd
1972 1.1 cgd *tvp = time;
1973 1.1 cgd #ifdef notdef
1974 1.1 cgd tvp->tv_usec += clkread();
1975 1.1 cgd while (tvp->tv_usec > 1000000) {
1976 1.1 cgd tvp->tv_sec++;
1977 1.1 cgd tvp->tv_usec -= 1000000;
1978 1.1 cgd }
1979 1.1 cgd #endif
1980 1.1 cgd if (tvp->tv_sec == lasttime.tv_sec &&
1981 1.1 cgd tvp->tv_usec <= lasttime.tv_usec &&
1982 1.1 cgd (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1983 1.1 cgd tvp->tv_sec++;
1984 1.1 cgd tvp->tv_usec -= 1000000;
1985 1.1 cgd }
1986 1.1 cgd lasttime = *tvp;
1987 1.1 cgd splx(s);
1988 1.15 cgd }
1989 1.15 cgd
1990 1.15 cgd /*
1991 1.15 cgd * Wait "n" microseconds.
1992 1.15 cgd */
1993 1.32 cgd void
1994 1.15 cgd delay(n)
1995 1.32 cgd unsigned long n;
1996 1.15 cgd {
1997 1.15 cgd long N = cycles_per_usec * (n);
1998 1.15 cgd
1999 1.15 cgd while (N > 0) /* XXX */
2000 1.15 cgd N -= 3; /* XXX */
2001 1.1 cgd }
2002 1.1 cgd
2003 1.8 cgd #if defined(COMPAT_OSF1) || 1 /* XXX */
2004 1.55 cgd void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2005 1.85 mycroft u_long));
2006 1.55 cgd
2007 1.1 cgd void
2008 1.85 mycroft cpu_exec_ecoff_setregs(p, epp, stack)
2009 1.1 cgd struct proc *p;
2010 1.19 cgd struct exec_package *epp;
2011 1.5 christos u_long stack;
2012 1.1 cgd {
2013 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2014 1.1 cgd
2015 1.85 mycroft setregs(p, epp, stack);
2016 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2017 1.1 cgd }
2018 1.1 cgd
2019 1.1 cgd /*
2020 1.1 cgd * cpu_exec_ecoff_hook():
2021 1.1 cgd * cpu-dependent ECOFF format hook for execve().
2022 1.1 cgd *
2023 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
2024 1.1 cgd *
2025 1.1 cgd */
2026 1.1 cgd int
2027 1.19 cgd cpu_exec_ecoff_hook(p, epp)
2028 1.1 cgd struct proc *p;
2029 1.1 cgd struct exec_package *epp;
2030 1.1 cgd {
2031 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2032 1.5 christos extern struct emul emul_netbsd;
2033 1.5 christos #ifdef COMPAT_OSF1
2034 1.5 christos extern struct emul emul_osf1;
2035 1.5 christos #endif
2036 1.1 cgd
2037 1.19 cgd switch (execp->f.f_magic) {
2038 1.5 christos #ifdef COMPAT_OSF1
2039 1.1 cgd case ECOFF_MAGIC_ALPHA:
2040 1.5 christos epp->ep_emul = &emul_osf1;
2041 1.1 cgd break;
2042 1.5 christos #endif
2043 1.1 cgd
2044 1.1 cgd case ECOFF_MAGIC_NETBSD_ALPHA:
2045 1.5 christos epp->ep_emul = &emul_netbsd;
2046 1.1 cgd break;
2047 1.1 cgd
2048 1.1 cgd default:
2049 1.12 cgd return ENOEXEC;
2050 1.1 cgd }
2051 1.1 cgd return 0;
2052 1.1 cgd }
2053 1.1 cgd #endif
2054 1.110 thorpej
2055 1.110 thorpej int
2056 1.110 thorpej alpha_pa_access(pa)
2057 1.110 thorpej u_long pa;
2058 1.110 thorpej {
2059 1.110 thorpej int i;
2060 1.110 thorpej
2061 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
2062 1.110 thorpej if (pa < mem_clusters[i].start)
2063 1.110 thorpej continue;
2064 1.110 thorpej if ((pa - mem_clusters[i].start) >=
2065 1.110 thorpej (mem_clusters[i].size & ~PAGE_MASK))
2066 1.110 thorpej continue;
2067 1.110 thorpej return (mem_clusters[i].size & PAGE_MASK); /* prot */
2068 1.110 thorpej }
2069 1.110 thorpej return (PROT_NONE);
2070 1.110 thorpej }
2071 1.50 cgd
2072 1.50 cgd /* XXX XXX BEGIN XXX XXX */
2073 1.50 cgd vm_offset_t alpha_XXX_dmamap_or; /* XXX */
2074 1.50 cgd /* XXX */
2075 1.50 cgd vm_offset_t /* XXX */
2076 1.50 cgd alpha_XXX_dmamap(v) /* XXX */
2077 1.51 cgd vm_offset_t v; /* XXX */
2078 1.50 cgd { /* XXX */
2079 1.50 cgd /* XXX */
2080 1.51 cgd return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2081 1.50 cgd } /* XXX */
2082 1.50 cgd /* XXX XXX END XXX XXX */
2083