machdep.c revision 1.125 1 1.125 ross /* $NetBSD: machdep.c,v 1.125 1998/06/09 09:31:58 ross Exp $ */
2 1.110 thorpej
3 1.110 thorpej /*-
4 1.110 thorpej * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 1.110 thorpej * All rights reserved.
6 1.110 thorpej *
7 1.110 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.110 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.110 thorpej * NASA Ames Research Center and by Chris G. Demetriou.
10 1.110 thorpej *
11 1.110 thorpej * Redistribution and use in source and binary forms, with or without
12 1.110 thorpej * modification, are permitted provided that the following conditions
13 1.110 thorpej * are met:
14 1.110 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.110 thorpej * notice, this list of conditions and the following disclaimer.
16 1.110 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.110 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.110 thorpej * documentation and/or other materials provided with the distribution.
19 1.110 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.110 thorpej * must display the following acknowledgement:
21 1.110 thorpej * This product includes software developed by the NetBSD
22 1.110 thorpej * Foundation, Inc. and its contributors.
23 1.110 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.110 thorpej * contributors may be used to endorse or promote products derived
25 1.110 thorpej * from this software without specific prior written permission.
26 1.110 thorpej *
27 1.110 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.110 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.110 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.110 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.110 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.110 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.110 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.110 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.110 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.110 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.110 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.110 thorpej */
39 1.1 cgd
40 1.1 cgd /*
41 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 1.1 cgd * All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Author: Chris G. Demetriou
45 1.1 cgd *
46 1.1 cgd * Permission to use, copy, modify and distribute this software and
47 1.1 cgd * its documentation is hereby granted, provided that both the copyright
48 1.1 cgd * notice and this permission notice appear in all copies of the
49 1.1 cgd * software, derivative works or modified versions, and any portions
50 1.1 cgd * thereof, and that both notices appear in supporting documentation.
51 1.1 cgd *
52 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 1.1 cgd *
56 1.1 cgd * Carnegie Mellon requests users of this software to return to
57 1.1 cgd *
58 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 1.1 cgd * School of Computer Science
60 1.1 cgd * Carnegie Mellon University
61 1.1 cgd * Pittsburgh PA 15213-3890
62 1.1 cgd *
63 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
64 1.1 cgd * rights to redistribute these changes.
65 1.1 cgd */
66 1.74 cgd
67 1.112 thorpej #include "opt_uvm.h"
68 1.113 thorpej #include "opt_pmap_new.h"
69 1.123 thorpej #include "opt_dec_3000_300.h"
70 1.123 thorpej #include "opt_dec_3000_500.h"
71 1.112 thorpej
72 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
73 1.75 cgd
74 1.125 ross __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.125 1998/06/09 09:31:58 ross Exp $");
75 1.1 cgd
76 1.1 cgd #include <sys/param.h>
77 1.1 cgd #include <sys/systm.h>
78 1.1 cgd #include <sys/signalvar.h>
79 1.1 cgd #include <sys/kernel.h>
80 1.1 cgd #include <sys/map.h>
81 1.1 cgd #include <sys/proc.h>
82 1.1 cgd #include <sys/buf.h>
83 1.1 cgd #include <sys/reboot.h>
84 1.28 cgd #include <sys/device.h>
85 1.1 cgd #include <sys/file.h>
86 1.1 cgd #ifdef REAL_CLISTS
87 1.1 cgd #include <sys/clist.h>
88 1.1 cgd #endif
89 1.1 cgd #include <sys/callout.h>
90 1.1 cgd #include <sys/malloc.h>
91 1.1 cgd #include <sys/mbuf.h>
92 1.110 thorpej #include <sys/mman.h>
93 1.1 cgd #include <sys/msgbuf.h>
94 1.1 cgd #include <sys/ioctl.h>
95 1.1 cgd #include <sys/tty.h>
96 1.1 cgd #include <sys/user.h>
97 1.1 cgd #include <sys/exec.h>
98 1.1 cgd #include <sys/exec_ecoff.h>
99 1.91 mjacob #include <vm/vm.h>
100 1.1 cgd #include <sys/sysctl.h>
101 1.43 cgd #include <sys/core.h>
102 1.43 cgd #include <sys/kcore.h>
103 1.43 cgd #include <machine/kcore.h>
104 1.1 cgd #ifdef SYSVMSG
105 1.1 cgd #include <sys/msg.h>
106 1.1 cgd #endif
107 1.1 cgd #ifdef SYSVSEM
108 1.1 cgd #include <sys/sem.h>
109 1.1 cgd #endif
110 1.1 cgd #ifdef SYSVSHM
111 1.1 cgd #include <sys/shm.h>
112 1.1 cgd #endif
113 1.1 cgd
114 1.1 cgd #include <sys/mount.h>
115 1.1 cgd #include <sys/syscallargs.h>
116 1.1 cgd
117 1.1 cgd #include <vm/vm_kern.h>
118 1.1 cgd
119 1.112 thorpej #if defined(UVM)
120 1.112 thorpej #include <uvm/uvm_extern.h>
121 1.112 thorpej #endif
122 1.112 thorpej
123 1.1 cgd #include <dev/cons.h>
124 1.1 cgd
125 1.81 thorpej #include <machine/autoconf.h>
126 1.1 cgd #include <machine/cpu.h>
127 1.1 cgd #include <machine/reg.h>
128 1.1 cgd #include <machine/rpb.h>
129 1.1 cgd #include <machine/prom.h>
130 1.73 cgd #include <machine/conf.h>
131 1.8 cgd
132 1.49 cgd #include <net/netisr.h>
133 1.33 cgd #include <net/if.h>
134 1.49 cgd
135 1.49 cgd #ifdef INET
136 1.120 ross #include <net/route.h>
137 1.33 cgd #include <netinet/in.h>
138 1.72 cgd #include <netinet/ip_var.h>
139 1.72 cgd #include "arp.h"
140 1.72 cgd #if NARP > 0
141 1.67 is #include <netinet/if_inarp.h>
142 1.72 cgd #endif
143 1.49 cgd #endif
144 1.49 cgd #ifdef NS
145 1.49 cgd #include <netns/ns_var.h>
146 1.49 cgd #endif
147 1.49 cgd #ifdef ISO
148 1.49 cgd #include <netiso/iso.h>
149 1.49 cgd #include <netiso/clnp.h>
150 1.49 cgd #endif
151 1.55 cgd #ifdef CCITT
152 1.55 cgd #include <netccitt/x25.h>
153 1.55 cgd #include <netccitt/pk.h>
154 1.55 cgd #include <netccitt/pk_extern.h>
155 1.55 cgd #endif
156 1.55 cgd #ifdef NATM
157 1.55 cgd #include <netnatm/natm.h>
158 1.55 cgd #endif
159 1.70 christos #ifdef NETATALK
160 1.70 christos #include <netatalk/at_extern.h>
161 1.70 christos #endif
162 1.49 cgd #include "ppp.h"
163 1.49 cgd #if NPPP > 0
164 1.49 cgd #include <net/ppp_defs.h>
165 1.49 cgd #include <net/if_ppp.h>
166 1.49 cgd #endif
167 1.1 cgd
168 1.81 thorpej #ifdef DDB
169 1.81 thorpej #include <machine/db_machdep.h>
170 1.81 thorpej #include <ddb/db_access.h>
171 1.81 thorpej #include <ddb/db_sym.h>
172 1.81 thorpej #include <ddb/db_extern.h>
173 1.81 thorpej #include <ddb/db_interface.h>
174 1.81 thorpej #endif
175 1.81 thorpej
176 1.112 thorpej #if defined(UVM)
177 1.112 thorpej vm_map_t exec_map = NULL;
178 1.112 thorpej vm_map_t mb_map = NULL;
179 1.112 thorpej vm_map_t phys_map = NULL;
180 1.112 thorpej #else
181 1.1 cgd vm_map_t buffer_map;
182 1.112 thorpej #endif
183 1.1 cgd
184 1.1 cgd /*
185 1.1 cgd * Declare these as initialized data so we can patch them.
186 1.1 cgd */
187 1.1 cgd int nswbuf = 0;
188 1.1 cgd #ifdef NBUF
189 1.1 cgd int nbuf = NBUF;
190 1.1 cgd #else
191 1.1 cgd int nbuf = 0;
192 1.1 cgd #endif
193 1.1 cgd #ifdef BUFPAGES
194 1.1 cgd int bufpages = BUFPAGES;
195 1.1 cgd #else
196 1.1 cgd int bufpages = 0;
197 1.1 cgd #endif
198 1.86 leo caddr_t msgbufaddr;
199 1.86 leo
200 1.1 cgd int maxmem; /* max memory per process */
201 1.7 cgd
202 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
203 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
204 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
205 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
206 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
207 1.1 cgd
208 1.1 cgd int cputype; /* system type, from the RPB */
209 1.1 cgd
210 1.1 cgd /*
211 1.1 cgd * XXX We need an address to which we can assign things so that they
212 1.1 cgd * won't be optimized away because we didn't use the value.
213 1.1 cgd */
214 1.1 cgd u_int32_t no_optimize;
215 1.1 cgd
216 1.1 cgd /* the following is used externally (sysctl_hw) */
217 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
218 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
219 1.29 cgd char cpu_model[128];
220 1.1 cgd
221 1.1 cgd struct user *proc0paddr;
222 1.1 cgd
223 1.1 cgd /* Number of machine cycles per microsecond */
224 1.1 cgd u_int64_t cycles_per_usec;
225 1.1 cgd
226 1.7 cgd /* number of cpus in the box. really! */
227 1.7 cgd int ncpus;
228 1.7 cgd
229 1.102 cgd struct bootinfo_kernel bootinfo;
230 1.81 thorpej
231 1.123 thorpej /* For built-in TCDS */
232 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
233 1.123 thorpej u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
234 1.123 thorpej #endif
235 1.123 thorpej
236 1.89 mjacob struct platform platform;
237 1.89 mjacob
238 1.100 thorpej u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
239 1.100 thorpej u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
240 1.100 thorpej u_int32_t vm_phys_size = _VM_PHYS_SIZE;
241 1.90 mjacob
242 1.81 thorpej #ifdef DDB
243 1.81 thorpej /* start and end of kernel symbol table */
244 1.81 thorpej void *ksym_start, *ksym_end;
245 1.81 thorpej #endif
246 1.81 thorpej
247 1.30 cgd /* for cpu_sysctl() */
248 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
249 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
250 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
251 1.30 cgd
252 1.110 thorpej /*
253 1.110 thorpej * XXX This should be dynamically sized, but we have the chicken-egg problem!
254 1.110 thorpej * XXX it should also be larger than it is, because not all of the mddt
255 1.110 thorpej * XXX clusters end up being used for VM.
256 1.110 thorpej */
257 1.110 thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
258 1.110 thorpej int mem_cluster_cnt;
259 1.110 thorpej
260 1.95 thorpej caddr_t allocsys __P((caddr_t));
261 1.55 cgd int cpu_dump __P((void));
262 1.55 cgd int cpu_dumpsize __P((void));
263 1.110 thorpej u_long cpu_dump_mempagecnt __P((void));
264 1.55 cgd void dumpsys __P((void));
265 1.55 cgd void identifycpu __P((void));
266 1.55 cgd void netintr __P((void));
267 1.55 cgd void printregs __P((struct reg *));
268 1.33 cgd
269 1.55 cgd void
270 1.102 cgd alpha_init(pfn, ptb, bim, bip, biv)
271 1.1 cgd u_long pfn; /* first free PFN number */
272 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
273 1.81 thorpej u_long bim; /* bootinfo magic */
274 1.81 thorpej u_long bip; /* bootinfo pointer */
275 1.102 cgd u_long biv; /* bootinfo version */
276 1.1 cgd {
277 1.95 thorpej extern char kernel_text[], _end[];
278 1.1 cgd struct mddt *mddtp;
279 1.110 thorpej struct mddt_cluster *memc;
280 1.7 cgd int i, mddtweird;
281 1.110 thorpej struct vm_physseg *vps;
282 1.95 thorpej vm_offset_t kernstart, kernend;
283 1.110 thorpej vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
284 1.95 thorpej vm_size_t size;
285 1.1 cgd char *p;
286 1.95 thorpej caddr_t v;
287 1.106 cgd char *bootinfo_msg;
288 1.106 cgd
289 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
290 1.1 cgd
291 1.1 cgd /*
292 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
293 1.1 cgd * Make sure the instruction and data streams are consistent.
294 1.1 cgd */
295 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
296 1.32 cgd alpha_pal_wrfen(0);
297 1.37 cgd ALPHA_TBIA();
298 1.32 cgd alpha_pal_imb();
299 1.1 cgd
300 1.1 cgd /*
301 1.106 cgd * Get critical system information (if possible, from the
302 1.106 cgd * information provided by the boot program).
303 1.81 thorpej */
304 1.106 cgd bootinfo_msg = NULL;
305 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
306 1.102 cgd if (biv == 0) { /* backward compat */
307 1.102 cgd biv = *(u_long *)bip;
308 1.102 cgd bip += 8;
309 1.102 cgd }
310 1.102 cgd switch (biv) {
311 1.102 cgd case 1: {
312 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
313 1.102 cgd
314 1.102 cgd bootinfo.ssym = v1p->ssym;
315 1.102 cgd bootinfo.esym = v1p->esym;
316 1.106 cgd /* hwrpb may not be provided by boot block in v1 */
317 1.106 cgd if (v1p->hwrpb != NULL) {
318 1.106 cgd bootinfo.hwrpb_phys =
319 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys;
320 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize;
321 1.106 cgd } else {
322 1.106 cgd bootinfo.hwrpb_phys =
323 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys;
324 1.106 cgd bootinfo.hwrpb_size =
325 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size;
326 1.106 cgd }
327 1.102 cgd bcopy(v1p->boot_flags, bootinfo.boot_flags,
328 1.102 cgd min(sizeof v1p->boot_flags,
329 1.102 cgd sizeof bootinfo.boot_flags));
330 1.102 cgd bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
331 1.102 cgd min(sizeof v1p->booted_kernel,
332 1.102 cgd sizeof bootinfo.booted_kernel));
333 1.106 cgd /* booted dev not provided in bootinfo */
334 1.106 cgd init_prom_interface((struct rpb *)
335 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
336 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
337 1.102 cgd sizeof bootinfo.booted_dev);
338 1.81 thorpej break;
339 1.102 cgd }
340 1.81 thorpej default:
341 1.106 cgd bootinfo_msg = "unknown bootinfo version";
342 1.102 cgd goto nobootinfo;
343 1.81 thorpej }
344 1.102 cgd } else {
345 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo";
346 1.102 cgd nobootinfo:
347 1.102 cgd bootinfo.ssym = (u_long)_end;
348 1.102 cgd bootinfo.esym = (u_long)_end;
349 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
350 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
351 1.106 cgd init_prom_interface((struct rpb *)HWRPB_ADDR);
352 1.102 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
353 1.102 cgd sizeof bootinfo.boot_flags);
354 1.102 cgd prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
355 1.102 cgd sizeof bootinfo.booted_kernel);
356 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
357 1.102 cgd sizeof bootinfo.booted_dev);
358 1.102 cgd }
359 1.102 cgd
360 1.81 thorpej /*
361 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for
362 1.106 cgd * lots of things.
363 1.106 cgd */
364 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
365 1.123 thorpej
366 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
367 1.123 thorpej if (hwrpb->rpb_type == ST_DEC_3000_300 ||
368 1.123 thorpej hwrpb->rpb_type == ST_DEC_3000_500) {
369 1.123 thorpej prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
370 1.123 thorpej sizeof(dec_3000_scsiid));
371 1.123 thorpej prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
372 1.123 thorpej sizeof(dec_3000_scsifast));
373 1.123 thorpej }
374 1.123 thorpej #endif
375 1.106 cgd
376 1.106 cgd /*
377 1.106 cgd * Remember how many cycles there are per microsecond,
378 1.106 cgd * so that we can use delay(). Round up, for safety.
379 1.106 cgd */
380 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
381 1.106 cgd
382 1.106 cgd /*
383 1.106 cgd * Initalize the (temporary) bootstrap console interface, so
384 1.106 cgd * we can use printf until the VM system starts being setup.
385 1.106 cgd * The real console is initialized before then.
386 1.106 cgd */
387 1.106 cgd init_bootstrap_console();
388 1.106 cgd
389 1.106 cgd /* OUTPUT NOW ALLOWED */
390 1.106 cgd
391 1.106 cgd /* delayed from above */
392 1.106 cgd if (bootinfo_msg)
393 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
394 1.106 cgd bootinfo_msg, bim, bip, biv);
395 1.106 cgd
396 1.106 cgd /*
397 1.1 cgd * Point interrupt/exception vectors to our own.
398 1.1 cgd */
399 1.36 cgd alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
400 1.36 cgd alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
401 1.36 cgd alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
402 1.36 cgd alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
403 1.36 cgd alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
404 1.36 cgd alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
405 1.36 cgd
406 1.36 cgd /*
407 1.76 cgd * Clear pending machine checks and error reports, and enable
408 1.76 cgd * system- and processor-correctable error reporting.
409 1.36 cgd */
410 1.76 cgd alpha_pal_wrmces(alpha_pal_rdmces() &
411 1.76 cgd ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
412 1.1 cgd
413 1.1 cgd /*
414 1.106 cgd * Find out what hardware we're on, and do basic initialization.
415 1.106 cgd */
416 1.106 cgd cputype = hwrpb->rpb_type;
417 1.106 cgd if (cputype >= ncpuinit) {
418 1.106 cgd platform_not_supported();
419 1.106 cgd /* NOTREACHED */
420 1.106 cgd }
421 1.106 cgd (*cpuinit[cputype].init)();
422 1.106 cgd strcpy(cpu_model, platform.model);
423 1.106 cgd
424 1.106 cgd /*
425 1.106 cgd * Initalize the real console, so the the bootstrap console is
426 1.106 cgd * no longer necessary.
427 1.106 cgd */
428 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
429 1.106 cgd if (!pmap_uses_prom_console())
430 1.106 cgd #endif
431 1.106 cgd (*platform.cons_init)();
432 1.106 cgd
433 1.106 cgd #ifdef DIAGNOSTIC
434 1.106 cgd /* Paranoid sanity checking */
435 1.106 cgd
436 1.106 cgd /* We should always be running on the the primary. */
437 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
438 1.106 cgd
439 1.116 mjacob /*
440 1.116 mjacob * On single-CPU systypes, the primary should always be CPU 0,
441 1.116 mjacob * except on Alpha 8200 systems where the CPU id is related
442 1.116 mjacob * to the VID, which is related to the Turbo Laser node id.
443 1.116 mjacob */
444 1.106 cgd if (cputype != ST_DEC_21000)
445 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0);
446 1.106 cgd #endif
447 1.106 cgd
448 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */
449 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
450 1.106 cgd /*
451 1.106 cgd * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
452 1.106 cgd * XXX pmap_uses_prom_console() evaluates to non-zero.)
453 1.106 cgd */
454 1.106 cgd #endif
455 1.106 cgd
456 1.106 cgd /*
457 1.106 cgd * find out this system's page size
458 1.95 thorpej */
459 1.95 thorpej PAGE_SIZE = hwrpb->rpb_page_size;
460 1.95 thorpej if (PAGE_SIZE != 8192)
461 1.95 thorpej panic("page size %d != 8192?!", PAGE_SIZE);
462 1.95 thorpej
463 1.95 thorpej /*
464 1.95 thorpej * Initialize PAGE_SIZE-dependent variables.
465 1.95 thorpej */
466 1.112 thorpej #if defined(UVM)
467 1.112 thorpej uvm_setpagesize();
468 1.112 thorpej #else
469 1.95 thorpej vm_set_page_size();
470 1.112 thorpej #endif
471 1.95 thorpej
472 1.95 thorpej /*
473 1.101 cgd * Find the beginning and end of the kernel (and leave a
474 1.101 cgd * bit of space before the beginning for the bootstrap
475 1.101 cgd * stack).
476 1.95 thorpej */
477 1.101 cgd kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
478 1.95 thorpej #ifdef DDB
479 1.102 cgd ksym_start = (void *)bootinfo.ssym;
480 1.102 cgd ksym_end = (void *)bootinfo.esym;
481 1.102 cgd kernend = (vm_offset_t)round_page(ksym_end);
482 1.102 cgd #else
483 1.102 cgd kernend = (vm_offset_t)round_page(_end);
484 1.95 thorpej #endif
485 1.95 thorpej
486 1.110 thorpej kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
487 1.110 thorpej kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
488 1.110 thorpej
489 1.95 thorpej /*
490 1.1 cgd * Find out how much memory is available, by looking at
491 1.7 cgd * the memory cluster descriptors. This also tries to do
492 1.7 cgd * its best to detect things things that have never been seen
493 1.7 cgd * before...
494 1.1 cgd */
495 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
496 1.7 cgd
497 1.110 thorpej /* MDDT SANITY CHECKING */
498 1.7 cgd mddtweird = 0;
499 1.110 thorpej if (mddtp->mddt_cluster_cnt < 2) {
500 1.7 cgd mddtweird = 1;
501 1.110 thorpej printf("WARNING: weird number of mem clusters: %d\n",
502 1.110 thorpej mddtp->mddt_cluster_cnt);
503 1.7 cgd }
504 1.7 cgd
505 1.110 thorpej #if 0
506 1.110 thorpej printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
507 1.110 thorpej #endif
508 1.110 thorpej
509 1.110 thorpej for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
510 1.110 thorpej memc = &mddtp->mddt_clusters[i];
511 1.110 thorpej #if 0
512 1.110 thorpej printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
513 1.110 thorpej memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
514 1.110 thorpej #endif
515 1.110 thorpej totalphysmem += memc->mddt_pg_cnt;
516 1.110 thorpej if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
517 1.110 thorpej mem_clusters[mem_cluster_cnt].start =
518 1.110 thorpej ptoa(memc->mddt_pfn);
519 1.110 thorpej mem_clusters[mem_cluster_cnt].size =
520 1.110 thorpej ptoa(memc->mddt_pg_cnt);
521 1.110 thorpej if (memc->mddt_usage & MDDT_mbz ||
522 1.110 thorpej memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
523 1.110 thorpej memc->mddt_usage & MDDT_PALCODE)
524 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
525 1.110 thorpej PROT_READ;
526 1.110 thorpej else
527 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
528 1.110 thorpej PROT_READ | PROT_WRITE | PROT_EXEC;
529 1.110 thorpej mem_cluster_cnt++;
530 1.110 thorpej }
531 1.110 thorpej
532 1.110 thorpej if (memc->mddt_usage & MDDT_mbz) {
533 1.7 cgd mddtweird = 1;
534 1.110 thorpej printf("WARNING: mem cluster %d has weird "
535 1.110 thorpej "usage 0x%lx\n", i, memc->mddt_usage);
536 1.110 thorpej unknownmem += memc->mddt_pg_cnt;
537 1.110 thorpej continue;
538 1.7 cgd }
539 1.110 thorpej if (memc->mddt_usage & MDDT_NONVOLATILE) {
540 1.110 thorpej /* XXX should handle these... */
541 1.110 thorpej printf("WARNING: skipping non-volatile mem "
542 1.110 thorpej "cluster %d\n", i);
543 1.110 thorpej unusedmem += memc->mddt_pg_cnt;
544 1.110 thorpej continue;
545 1.110 thorpej }
546 1.110 thorpej if (memc->mddt_usage & MDDT_PALCODE) {
547 1.110 thorpej resvmem += memc->mddt_pg_cnt;
548 1.110 thorpej continue;
549 1.110 thorpej }
550 1.110 thorpej
551 1.110 thorpej /*
552 1.110 thorpej * We have a memory cluster available for system
553 1.110 thorpej * software use. We must determine if this cluster
554 1.110 thorpej * holds the kernel.
555 1.110 thorpej */
556 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
557 1.110 thorpej /*
558 1.110 thorpej * XXX If the kernel uses the PROM console, we only use the
559 1.110 thorpej * XXX memory after the kernel in the first system segment,
560 1.110 thorpej * XXX to avoid clobbering prom mapping, data, etc.
561 1.110 thorpej */
562 1.110 thorpej if (!pmap_uses_prom_console() || physmem == 0) {
563 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
564 1.110 thorpej physmem += memc->mddt_pg_cnt;
565 1.110 thorpej pfn0 = memc->mddt_pfn;
566 1.110 thorpej pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
567 1.110 thorpej if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
568 1.110 thorpej /*
569 1.110 thorpej * Must compute the location of the kernel
570 1.110 thorpej * within the segment.
571 1.110 thorpej */
572 1.110 thorpej #if 0
573 1.110 thorpej printf("Cluster %d contains kernel\n", i);
574 1.110 thorpej #endif
575 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
576 1.110 thorpej if (!pmap_uses_prom_console()) {
577 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
578 1.110 thorpej if (pfn0 < kernstartpfn) {
579 1.110 thorpej /*
580 1.110 thorpej * There is a chunk before the kernel.
581 1.110 thorpej */
582 1.110 thorpej #if 0
583 1.110 thorpej printf("Loading chunk before kernel: "
584 1.110 thorpej "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
585 1.110 thorpej #endif
586 1.112 thorpej #if defined(UVM)
587 1.112 thorpej uvm_page_physload(pfn0, kernstartpfn,
588 1.112 thorpej pfn0, kernstartpfn);
589 1.112 thorpej #else
590 1.110 thorpej vm_page_physload(pfn0, kernstartpfn,
591 1.110 thorpej pfn0, kernstartpfn);
592 1.112 thorpej #endif
593 1.110 thorpej }
594 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
595 1.110 thorpej }
596 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
597 1.110 thorpej if (kernendpfn < pfn1) {
598 1.110 thorpej /*
599 1.110 thorpej * There is a chunk after the kernel.
600 1.110 thorpej */
601 1.110 thorpej #if 0
602 1.110 thorpej printf("Loading chunk after kernel: "
603 1.110 thorpej "0x%lx / 0x%lx\n", kernendpfn, pfn1);
604 1.110 thorpej #endif
605 1.112 thorpej #if defined(UVM)
606 1.112 thorpej uvm_page_physload(kernendpfn, pfn1,
607 1.112 thorpej kernendpfn, pfn1);
608 1.112 thorpej #else
609 1.110 thorpej vm_page_physload(kernendpfn, pfn1,
610 1.110 thorpej kernendpfn, pfn1);
611 1.112 thorpej #endif
612 1.110 thorpej }
613 1.110 thorpej } else {
614 1.110 thorpej /*
615 1.110 thorpej * Just load this cluster as one chunk.
616 1.110 thorpej */
617 1.110 thorpej #if 0
618 1.110 thorpej printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
619 1.110 thorpej pfn0, pfn1);
620 1.110 thorpej #endif
621 1.112 thorpej #if defined(UVM)
622 1.112 thorpej uvm_page_physload(pfn0, pfn1, pfn0, pfn1);
623 1.112 thorpej #else
624 1.110 thorpej vm_page_physload(pfn0, pfn1, pfn0, pfn1);
625 1.112 thorpej #endif
626 1.7 cgd }
627 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
628 1.110 thorpej }
629 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
630 1.7 cgd }
631 1.7 cgd
632 1.110 thorpej /*
633 1.110 thorpej * Dump out the MDDT if it looks odd...
634 1.110 thorpej */
635 1.7 cgd if (mddtweird) {
636 1.46 christos printf("\n");
637 1.46 christos printf("complete memory cluster information:\n");
638 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
639 1.46 christos printf("mddt %d:\n", i);
640 1.46 christos printf("\tpfn %lx\n",
641 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
642 1.46 christos printf("\tcnt %lx\n",
643 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
644 1.46 christos printf("\ttest %lx\n",
645 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
646 1.46 christos printf("\tbva %lx\n",
647 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
648 1.46 christos printf("\tbpa %lx\n",
649 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
650 1.46 christos printf("\tbcksum %lx\n",
651 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
652 1.46 christos printf("\tusage %lx\n",
653 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
654 1.2 cgd }
655 1.46 christos printf("\n");
656 1.2 cgd }
657 1.2 cgd
658 1.7 cgd if (totalphysmem == 0)
659 1.1 cgd panic("can't happen: system seems to have no memory!");
660 1.110 thorpej
661 1.110 thorpej #ifdef LIMITMEM
662 1.110 thorpej /*
663 1.110 thorpej * XXX Kludge so we can run on machines with memory larger
664 1.110 thorpej * XXX than 1G until all device drivers are converted to
665 1.110 thorpej * XXX use bus_dma. (Relies on the fact that vm_physmem
666 1.110 thorpej * XXX sorted in order of increasing addresses.)
667 1.110 thorpej */
668 1.110 thorpej if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
669 1.110 thorpej
670 1.110 thorpej printf("******** LIMITING MEMORY TO %dMB **********\n",
671 1.110 thorpej LIMITMEM);
672 1.110 thorpej
673 1.110 thorpej do {
674 1.110 thorpej u_long ovf;
675 1.110 thorpej
676 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
677 1.110 thorpej
678 1.110 thorpej if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
679 1.110 thorpej /*
680 1.110 thorpej * If the start is too high, just drop
681 1.110 thorpej * the whole segment.
682 1.110 thorpej *
683 1.110 thorpej * XXX can start != avail_start in this
684 1.110 thorpej * XXX case? wouldn't that mean that
685 1.110 thorpej * XXX some memory was stolen above the
686 1.110 thorpej * XXX limit? What to do?
687 1.110 thorpej */
688 1.110 thorpej ovf = vps->end - vps->start;
689 1.110 thorpej vm_nphysseg--;
690 1.110 thorpej } else {
691 1.110 thorpej /*
692 1.110 thorpej * If the start is OK, calculate how much
693 1.110 thorpej * to drop and drop it.
694 1.110 thorpej */
695 1.110 thorpej ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
696 1.110 thorpej vps->end -= ovf;
697 1.110 thorpej vps->avail_end -= ovf;
698 1.110 thorpej }
699 1.110 thorpej physmem -= ovf;
700 1.110 thorpej unusedmem += ovf;
701 1.110 thorpej } while (vps->end > atop(LIMITMEM * 1024 * 1024));
702 1.88 mjacob }
703 1.110 thorpej #endif /* LIMITMEM */
704 1.110 thorpej
705 1.1 cgd maxmem = physmem;
706 1.1 cgd
707 1.7 cgd #if 0
708 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
709 1.46 christos printf("physmem = %d\n", physmem);
710 1.46 christos printf("resvmem = %d\n", resvmem);
711 1.46 christos printf("unusedmem = %d\n", unusedmem);
712 1.46 christos printf("unknownmem = %d\n", unknownmem);
713 1.7 cgd #endif
714 1.90 mjacob
715 1.90 mjacob /*
716 1.90 mjacob * Adjust some parameters if the amount of physmem
717 1.90 mjacob * available would cause us to croak. This is completely
718 1.90 mjacob * eyeballed and isn't meant to be the final answer.
719 1.90 mjacob * vm_phys_size is probably the only one to really worry
720 1.90 mjacob * about.
721 1.90 mjacob *
722 1.90 mjacob * It's for booting a GENERIC kernel on a large memory platform.
723 1.90 mjacob */
724 1.110 thorpej if (physmem >= atop(128 * 1024 * 1024)) {
725 1.90 mjacob vm_mbuf_size <<= 1;
726 1.93 mjacob vm_kmem_size <<= 3;
727 1.93 mjacob vm_phys_size <<= 2;
728 1.90 mjacob }
729 1.7 cgd
730 1.1 cgd /*
731 1.1 cgd * Initialize error message buffer (at end of core).
732 1.1 cgd */
733 1.110 thorpej {
734 1.110 thorpej size_t sz = round_page(MSGBUFSIZE);
735 1.110 thorpej
736 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
737 1.110 thorpej
738 1.110 thorpej /* shrink so that it'll fit in the last segment */
739 1.110 thorpej if ((vps->avail_end - vps->avail_start) < atop(sz))
740 1.110 thorpej sz = ptoa(vps->avail_end - vps->avail_start);
741 1.110 thorpej
742 1.110 thorpej vps->end -= atop(sz);
743 1.110 thorpej vps->avail_end -= atop(sz);
744 1.110 thorpej msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
745 1.110 thorpej initmsgbuf(msgbufaddr, sz);
746 1.110 thorpej
747 1.110 thorpej /* Remove the last segment if it now has no pages. */
748 1.110 thorpej if (vps->start == vps->end)
749 1.110 thorpej vm_nphysseg--;
750 1.110 thorpej
751 1.110 thorpej /* warn if the message buffer had to be shrunk */
752 1.110 thorpej if (sz != round_page(MSGBUFSIZE))
753 1.110 thorpej printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
754 1.110 thorpej round_page(MSGBUFSIZE), sz);
755 1.110 thorpej
756 1.110 thorpej }
757 1.1 cgd
758 1.1 cgd /*
759 1.95 thorpej * Init mapping for u page(s) for proc 0
760 1.1 cgd */
761 1.110 thorpej proc0.p_addr = proc0paddr =
762 1.110 thorpej (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
763 1.1 cgd
764 1.1 cgd /*
765 1.95 thorpej * Allocate space for system data structures. These data structures
766 1.95 thorpej * are allocated here instead of cpu_startup() because physical
767 1.95 thorpej * memory is directly addressable. We don't have to map these into
768 1.95 thorpej * virtual address space.
769 1.95 thorpej */
770 1.95 thorpej size = (vm_size_t)allocsys(0);
771 1.110 thorpej v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
772 1.110 thorpej if ((allocsys(v) - v) != size)
773 1.95 thorpej panic("alpha_init: table size inconsistency");
774 1.1 cgd
775 1.1 cgd /*
776 1.1 cgd * Initialize the virtual memory system, and set the
777 1.1 cgd * page table base register in proc 0's PCB.
778 1.1 cgd */
779 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
780 1.40 cgd hwrpb->rpb_max_asn);
781 1.1 cgd
782 1.1 cgd /*
783 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
784 1.3 cgd * address.
785 1.3 cgd */
786 1.3 cgd proc0.p_md.md_pcbpaddr =
787 1.32 cgd (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
788 1.3 cgd
789 1.3 cgd /*
790 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
791 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
792 1.3 cgd */
793 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
794 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
795 1.81 thorpej proc0.p_md.md_tf =
796 1.81 thorpej (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
797 1.1 cgd
798 1.1 cgd /*
799 1.25 cgd * Look at arguments passed to us and compute boothowto.
800 1.8 cgd */
801 1.1 cgd
802 1.8 cgd boothowto = RB_SINGLE;
803 1.1 cgd #ifdef KADB
804 1.1 cgd boothowto |= RB_KDB;
805 1.1 cgd #endif
806 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
807 1.26 cgd /*
808 1.26 cgd * Note that we'd really like to differentiate case here,
809 1.26 cgd * but the Alpha AXP Architecture Reference Manual
810 1.26 cgd * says that we shouldn't.
811 1.26 cgd */
812 1.8 cgd switch (*p) {
813 1.26 cgd case 'a': /* autoboot */
814 1.26 cgd case 'A':
815 1.26 cgd boothowto &= ~RB_SINGLE;
816 1.21 cgd break;
817 1.21 cgd
818 1.43 cgd #ifdef DEBUG
819 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
820 1.43 cgd case 'C':
821 1.43 cgd boothowto |= RB_DUMP;
822 1.43 cgd break;
823 1.43 cgd #endif
824 1.43 cgd
825 1.81 thorpej #if defined(KGDB) || defined(DDB)
826 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
827 1.81 thorpej case 'D':
828 1.81 thorpej boothowto |= RB_KDB;
829 1.81 thorpej break;
830 1.81 thorpej #endif
831 1.81 thorpej
832 1.36 cgd case 'h': /* always halt, never reboot */
833 1.36 cgd case 'H':
834 1.36 cgd boothowto |= RB_HALT;
835 1.8 cgd break;
836 1.8 cgd
837 1.21 cgd #if 0
838 1.8 cgd case 'm': /* mini root present in memory */
839 1.26 cgd case 'M':
840 1.8 cgd boothowto |= RB_MINIROOT;
841 1.8 cgd break;
842 1.21 cgd #endif
843 1.36 cgd
844 1.36 cgd case 'n': /* askname */
845 1.36 cgd case 'N':
846 1.36 cgd boothowto |= RB_ASKNAME;
847 1.65 cgd break;
848 1.65 cgd
849 1.65 cgd case 's': /* single-user (default, supported for sanity) */
850 1.65 cgd case 'S':
851 1.65 cgd boothowto |= RB_SINGLE;
852 1.119 thorpej break;
853 1.119 thorpej
854 1.119 thorpej case '-':
855 1.119 thorpej /*
856 1.119 thorpej * Just ignore this. It's not required, but it's
857 1.119 thorpej * common for it to be passed regardless.
858 1.119 thorpej */
859 1.65 cgd break;
860 1.65 cgd
861 1.65 cgd default:
862 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
863 1.36 cgd break;
864 1.1 cgd }
865 1.1 cgd }
866 1.1 cgd
867 1.7 cgd /*
868 1.106 cgd * Initialize debuggers, and break into them if appropriate.
869 1.106 cgd */
870 1.106 cgd #ifdef DDB
871 1.106 cgd db_machine_init();
872 1.106 cgd ddb_init(ksym_start, ksym_end);
873 1.106 cgd if (boothowto & RB_KDB)
874 1.106 cgd Debugger();
875 1.106 cgd #endif
876 1.106 cgd #ifdef KGDB
877 1.106 cgd if (boothowto & RB_KDB)
878 1.106 cgd kgdb_connect(0);
879 1.106 cgd #endif
880 1.106 cgd
881 1.106 cgd /*
882 1.7 cgd * Figure out the number of cpus in the box, from RPB fields.
883 1.7 cgd * Really. We mean it.
884 1.7 cgd */
885 1.7 cgd for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
886 1.7 cgd struct pcs *pcsp;
887 1.7 cgd
888 1.7 cgd pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
889 1.7 cgd (i * hwrpb->rpb_pcs_size));
890 1.7 cgd if ((pcsp->pcs_flags & PCS_PP) != 0)
891 1.7 cgd ncpus++;
892 1.7 cgd }
893 1.106 cgd
894 1.106 cgd /*
895 1.106 cgd * Figure out our clock frequency, from RPB fields.
896 1.106 cgd */
897 1.106 cgd hz = hwrpb->rpb_intr_freq >> 12;
898 1.106 cgd if (!(60 <= hz && hz <= 10240)) {
899 1.106 cgd hz = 1024;
900 1.106 cgd #ifdef DIAGNOSTIC
901 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
902 1.106 cgd hwrpb->rpb_intr_freq, hz);
903 1.106 cgd #endif
904 1.106 cgd }
905 1.106 cgd
906 1.95 thorpej }
907 1.95 thorpej
908 1.95 thorpej /*
909 1.95 thorpej * Allocate space for system data structures. We are given
910 1.95 thorpej * a starting virtual address and we return a final virtual
911 1.95 thorpej * address; along the way we set each data structure pointer.
912 1.95 thorpej *
913 1.95 thorpej * We call allocsys() with 0 to find out how much space we want,
914 1.95 thorpej * allocate that much and fill it with zeroes, and the call
915 1.95 thorpej * allocsys() again with the correct base virtual address.
916 1.95 thorpej */
917 1.95 thorpej caddr_t
918 1.95 thorpej allocsys(v)
919 1.95 thorpej caddr_t v;
920 1.95 thorpej {
921 1.95 thorpej
922 1.95 thorpej #define valloc(name, type, num) \
923 1.95 thorpej (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
924 1.95 thorpej #ifdef REAL_CLISTS
925 1.95 thorpej valloc(cfree, struct cblock, nclist);
926 1.95 thorpej #endif
927 1.95 thorpej valloc(callout, struct callout, ncallout);
928 1.95 thorpej #ifdef SYSVSHM
929 1.95 thorpej valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
930 1.95 thorpej #endif
931 1.95 thorpej #ifdef SYSVSEM
932 1.95 thorpej valloc(sema, struct semid_ds, seminfo.semmni);
933 1.95 thorpej valloc(sem, struct sem, seminfo.semmns);
934 1.95 thorpej /* This is pretty disgusting! */
935 1.95 thorpej valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
936 1.95 thorpej #endif
937 1.95 thorpej #ifdef SYSVMSG
938 1.95 thorpej valloc(msgpool, char, msginfo.msgmax);
939 1.95 thorpej valloc(msgmaps, struct msgmap, msginfo.msgseg);
940 1.95 thorpej valloc(msghdrs, struct msg, msginfo.msgtql);
941 1.95 thorpej valloc(msqids, struct msqid_ds, msginfo.msgmni);
942 1.95 thorpej #endif
943 1.95 thorpej
944 1.95 thorpej /*
945 1.95 thorpej * Determine how many buffers to allocate.
946 1.95 thorpej * We allocate 10% of memory for buffer space. Insure a
947 1.95 thorpej * minimum of 16 buffers. We allocate 1/2 as many swap buffer
948 1.95 thorpej * headers as file i/o buffers.
949 1.95 thorpej */
950 1.95 thorpej if (bufpages == 0)
951 1.95 thorpej bufpages = (physmem * 10) / (CLSIZE * 100);
952 1.95 thorpej if (nbuf == 0) {
953 1.95 thorpej nbuf = bufpages;
954 1.95 thorpej if (nbuf < 16)
955 1.95 thorpej nbuf = 16;
956 1.95 thorpej }
957 1.95 thorpej if (nswbuf == 0) {
958 1.95 thorpej nswbuf = (nbuf / 2) &~ 1; /* force even */
959 1.95 thorpej if (nswbuf > 256)
960 1.95 thorpej nswbuf = 256; /* sanity */
961 1.95 thorpej }
962 1.112 thorpej #if !defined(UVM)
963 1.95 thorpej valloc(swbuf, struct buf, nswbuf);
964 1.112 thorpej #endif
965 1.95 thorpej valloc(buf, struct buf, nbuf);
966 1.95 thorpej return (v);
967 1.98 cgd #undef valloc
968 1.1 cgd }
969 1.1 cgd
970 1.18 cgd void
971 1.1 cgd consinit()
972 1.1 cgd {
973 1.81 thorpej
974 1.106 cgd /*
975 1.106 cgd * Everything related to console initialization is done
976 1.106 cgd * in alpha_init().
977 1.106 cgd */
978 1.106 cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
979 1.106 cgd printf("consinit: %susing prom console\n",
980 1.106 cgd pmap_uses_prom_console() ? "" : "not ");
981 1.81 thorpej #endif
982 1.1 cgd }
983 1.118 thorpej
984 1.118 thorpej #include "pckbc.h"
985 1.118 thorpej #include "pckbd.h"
986 1.118 thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
987 1.118 thorpej
988 1.118 thorpej #include <machine/bus.h>
989 1.118 thorpej #include <dev/isa/pckbcvar.h>
990 1.118 thorpej
991 1.118 thorpej /*
992 1.118 thorpej * This is called by the pbkbc driver if no pckbd is configured.
993 1.118 thorpej * On the i386, it is used to glue in the old, deprecated console
994 1.118 thorpej * code. On the Alpha, it does nothing.
995 1.118 thorpej */
996 1.118 thorpej int
997 1.118 thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
998 1.118 thorpej pckbc_tag_t kbctag;
999 1.118 thorpej pckbc_slot_t kbcslot;
1000 1.118 thorpej {
1001 1.118 thorpej
1002 1.118 thorpej return (ENXIO);
1003 1.118 thorpej }
1004 1.118 thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
1005 1.1 cgd
1006 1.18 cgd void
1007 1.1 cgd cpu_startup()
1008 1.1 cgd {
1009 1.1 cgd register unsigned i;
1010 1.1 cgd int base, residual;
1011 1.1 cgd vm_offset_t minaddr, maxaddr;
1012 1.1 cgd vm_size_t size;
1013 1.40 cgd #if defined(DEBUG)
1014 1.1 cgd extern int pmapdebug;
1015 1.1 cgd int opmapdebug = pmapdebug;
1016 1.1 cgd
1017 1.1 cgd pmapdebug = 0;
1018 1.1 cgd #endif
1019 1.1 cgd
1020 1.1 cgd /*
1021 1.1 cgd * Good {morning,afternoon,evening,night}.
1022 1.1 cgd */
1023 1.46 christos printf(version);
1024 1.1 cgd identifycpu();
1025 1.110 thorpej printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1026 1.110 thorpej ptoa(totalphysmem), ptoa(resvmem), ptoa(physmem));
1027 1.7 cgd if (unusedmem)
1028 1.46 christos printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1029 1.7 cgd if (unknownmem)
1030 1.46 christos printf("WARNING: %d bytes of memory with unknown purpose\n",
1031 1.7 cgd ctob(unknownmem));
1032 1.1 cgd
1033 1.1 cgd /*
1034 1.1 cgd * Allocate virtual address space for file I/O buffers.
1035 1.1 cgd * Note they are different than the array of headers, 'buf',
1036 1.1 cgd * and usually occupy more virtual memory than physical.
1037 1.1 cgd */
1038 1.1 cgd size = MAXBSIZE * nbuf;
1039 1.112 thorpej #if defined(UVM)
1040 1.112 thorpej if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
1041 1.112 thorpej NULL, UVM_UNKNOWN_OFFSET,
1042 1.112 thorpej UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1043 1.112 thorpej UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1044 1.112 thorpej panic("startup: cannot allocate VM for buffers");
1045 1.112 thorpej #else
1046 1.1 cgd buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
1047 1.1 cgd &maxaddr, size, TRUE);
1048 1.1 cgd minaddr = (vm_offset_t)buffers;
1049 1.1 cgd if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
1050 1.1 cgd &minaddr, size, FALSE) != KERN_SUCCESS)
1051 1.1 cgd panic("startup: cannot allocate buffers");
1052 1.112 thorpej #endif /* UVM */
1053 1.1 cgd base = bufpages / nbuf;
1054 1.1 cgd residual = bufpages % nbuf;
1055 1.1 cgd for (i = 0; i < nbuf; i++) {
1056 1.112 thorpej #if defined(UVM)
1057 1.112 thorpej vm_size_t curbufsize;
1058 1.112 thorpej vm_offset_t curbuf;
1059 1.112 thorpej struct vm_page *pg;
1060 1.112 thorpej
1061 1.112 thorpej /*
1062 1.112 thorpej * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1063 1.112 thorpej * that MAXBSIZE space, we allocate and map (base+1) pages
1064 1.112 thorpej * for the first "residual" buffers, and then we allocate
1065 1.112 thorpej * "base" pages for the rest.
1066 1.112 thorpej */
1067 1.112 thorpej curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
1068 1.112 thorpej curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1069 1.112 thorpej
1070 1.112 thorpej while (curbufsize) {
1071 1.112 thorpej pg = uvm_pagealloc(NULL, 0, NULL);
1072 1.112 thorpej if (pg == NULL)
1073 1.112 thorpej panic("cpu_startup: not enough memory for "
1074 1.112 thorpej "buffer cache");
1075 1.112 thorpej #if defined(PMAP_NEW)
1076 1.112 thorpej pmap_kenter_pgs(curbuf, &pg, 1);
1077 1.112 thorpej #else
1078 1.112 thorpej pmap_enter(kernel_map->pmap, curbuf,
1079 1.112 thorpej VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1080 1.112 thorpej #endif
1081 1.112 thorpej curbuf += PAGE_SIZE;
1082 1.112 thorpej curbufsize -= PAGE_SIZE;
1083 1.112 thorpej }
1084 1.112 thorpej #else /* ! UVM */
1085 1.1 cgd vm_size_t curbufsize;
1086 1.1 cgd vm_offset_t curbuf;
1087 1.1 cgd
1088 1.1 cgd /*
1089 1.1 cgd * First <residual> buffers get (base+1) physical pages
1090 1.1 cgd * allocated for them. The rest get (base) physical pages.
1091 1.1 cgd *
1092 1.1 cgd * The rest of each buffer occupies virtual space,
1093 1.1 cgd * but has no physical memory allocated for it.
1094 1.1 cgd */
1095 1.1 cgd curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
1096 1.1 cgd curbufsize = CLBYTES * (i < residual ? base+1 : base);
1097 1.1 cgd vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1098 1.1 cgd vm_map_simplify(buffer_map, curbuf);
1099 1.112 thorpej #endif /* UVM */
1100 1.1 cgd }
1101 1.1 cgd /*
1102 1.1 cgd * Allocate a submap for exec arguments. This map effectively
1103 1.1 cgd * limits the number of processes exec'ing at any time.
1104 1.1 cgd */
1105 1.112 thorpej #if defined(UVM)
1106 1.112 thorpej exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1107 1.112 thorpej 16 * NCARGS, TRUE, FALSE, NULL);
1108 1.112 thorpej #else
1109 1.1 cgd exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1110 1.1 cgd 16 * NCARGS, TRUE);
1111 1.112 thorpej #endif
1112 1.1 cgd
1113 1.1 cgd /*
1114 1.1 cgd * Allocate a submap for physio
1115 1.1 cgd */
1116 1.112 thorpej #if defined(UVM)
1117 1.112 thorpej phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1118 1.112 thorpej VM_PHYS_SIZE, TRUE, FALSE, NULL);
1119 1.112 thorpej #else
1120 1.1 cgd phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1121 1.1 cgd VM_PHYS_SIZE, TRUE);
1122 1.112 thorpej #endif
1123 1.1 cgd
1124 1.1 cgd /*
1125 1.69 thorpej * Finally, allocate mbuf cluster submap.
1126 1.1 cgd */
1127 1.112 thorpej #if defined(UVM)
1128 1.112 thorpej mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1129 1.112 thorpej VM_MBUF_SIZE, FALSE, FALSE, NULL);
1130 1.112 thorpej #else
1131 1.1 cgd mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1132 1.112 thorpej VM_MBUF_SIZE, FALSE);
1133 1.112 thorpej #endif
1134 1.1 cgd /*
1135 1.1 cgd * Initialize callouts
1136 1.1 cgd */
1137 1.1 cgd callfree = callout;
1138 1.1 cgd for (i = 1; i < ncallout; i++)
1139 1.1 cgd callout[i-1].c_next = &callout[i];
1140 1.1 cgd callout[i-1].c_next = NULL;
1141 1.1 cgd
1142 1.40 cgd #if defined(DEBUG)
1143 1.1 cgd pmapdebug = opmapdebug;
1144 1.1 cgd #endif
1145 1.112 thorpej #if defined(UVM)
1146 1.112 thorpej printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1147 1.112 thorpej #else
1148 1.46 christos printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1149 1.112 thorpej #endif
1150 1.46 christos printf("using %ld buffers containing %ld bytes of memory\n",
1151 1.1 cgd (long)nbuf, (long)(bufpages * CLBYTES));
1152 1.1 cgd
1153 1.1 cgd /*
1154 1.1 cgd * Set up buffers, so they can be used to read disk labels.
1155 1.1 cgd */
1156 1.1 cgd bufinit();
1157 1.1 cgd
1158 1.1 cgd /*
1159 1.1 cgd * Configure the system.
1160 1.1 cgd */
1161 1.1 cgd configure();
1162 1.48 cgd
1163 1.48 cgd /*
1164 1.48 cgd * Note that bootstrapping is finished, and set the HWRPB up
1165 1.48 cgd * to do restarts.
1166 1.48 cgd */
1167 1.55 cgd hwrpb_restart_setup();
1168 1.104 thorpej }
1169 1.104 thorpej
1170 1.104 thorpej /*
1171 1.104 thorpej * Retrieve the platform name from the DSR.
1172 1.104 thorpej */
1173 1.104 thorpej const char *
1174 1.104 thorpej alpha_dsr_sysname()
1175 1.104 thorpej {
1176 1.104 thorpej struct dsrdb *dsr;
1177 1.104 thorpej const char *sysname;
1178 1.104 thorpej
1179 1.104 thorpej /*
1180 1.104 thorpej * DSR does not exist on early HWRPB versions.
1181 1.104 thorpej */
1182 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1183 1.104 thorpej return (NULL);
1184 1.104 thorpej
1185 1.104 thorpej dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1186 1.104 thorpej sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1187 1.104 thorpej sizeof(u_int64_t)));
1188 1.104 thorpej return (sysname);
1189 1.104 thorpej }
1190 1.104 thorpej
1191 1.104 thorpej /*
1192 1.104 thorpej * Lookup the system specified system variation in the provided table,
1193 1.104 thorpej * returning the model string on match.
1194 1.104 thorpej */
1195 1.104 thorpej const char *
1196 1.104 thorpej alpha_variation_name(variation, avtp)
1197 1.104 thorpej u_int64_t variation;
1198 1.104 thorpej const struct alpha_variation_table *avtp;
1199 1.104 thorpej {
1200 1.104 thorpej int i;
1201 1.104 thorpej
1202 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++)
1203 1.104 thorpej if (avtp[i].avt_variation == variation)
1204 1.104 thorpej return (avtp[i].avt_model);
1205 1.104 thorpej return (NULL);
1206 1.104 thorpej }
1207 1.104 thorpej
1208 1.104 thorpej /*
1209 1.104 thorpej * Generate a default platform name based for unknown system variations.
1210 1.104 thorpej */
1211 1.104 thorpej const char *
1212 1.104 thorpej alpha_unknown_sysname()
1213 1.104 thorpej {
1214 1.105 thorpej static char s[128]; /* safe size */
1215 1.104 thorpej
1216 1.105 thorpej sprintf(s, "%s family, unknown model variation 0x%lx",
1217 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1218 1.104 thorpej return ((const char *)s);
1219 1.1 cgd }
1220 1.1 cgd
1221 1.33 cgd void
1222 1.1 cgd identifycpu()
1223 1.1 cgd {
1224 1.1 cgd
1225 1.7 cgd /*
1226 1.7 cgd * print out CPU identification information.
1227 1.7 cgd */
1228 1.46 christos printf("%s, %ldMHz\n", cpu_model,
1229 1.7 cgd hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1230 1.46 christos printf("%ld byte page size, %d processor%s.\n",
1231 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1232 1.7 cgd #if 0
1233 1.7 cgd /* this isn't defined for any systems that we run on? */
1234 1.46 christos printf("serial number 0x%lx 0x%lx\n",
1235 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1236 1.7 cgd
1237 1.7 cgd /* and these aren't particularly useful! */
1238 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
1239 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1240 1.7 cgd #endif
1241 1.1 cgd }
1242 1.1 cgd
1243 1.1 cgd int waittime = -1;
1244 1.7 cgd struct pcb dumppcb;
1245 1.1 cgd
1246 1.18 cgd void
1247 1.68 gwr cpu_reboot(howto, bootstr)
1248 1.1 cgd int howto;
1249 1.39 mrg char *bootstr;
1250 1.1 cgd {
1251 1.1 cgd extern int cold;
1252 1.1 cgd
1253 1.1 cgd /* If system is cold, just halt. */
1254 1.1 cgd if (cold) {
1255 1.1 cgd howto |= RB_HALT;
1256 1.1 cgd goto haltsys;
1257 1.1 cgd }
1258 1.1 cgd
1259 1.36 cgd /* If "always halt" was specified as a boot flag, obey. */
1260 1.36 cgd if ((boothowto & RB_HALT) != 0)
1261 1.36 cgd howto |= RB_HALT;
1262 1.36 cgd
1263 1.7 cgd boothowto = howto;
1264 1.7 cgd if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1265 1.1 cgd waittime = 0;
1266 1.7 cgd vfs_shutdown();
1267 1.1 cgd /*
1268 1.1 cgd * If we've been adjusting the clock, the todr
1269 1.1 cgd * will be out of synch; adjust it now.
1270 1.1 cgd */
1271 1.1 cgd resettodr();
1272 1.1 cgd }
1273 1.1 cgd
1274 1.1 cgd /* Disable interrupts. */
1275 1.1 cgd splhigh();
1276 1.1 cgd
1277 1.7 cgd /* If rebooting and a dump is requested do it. */
1278 1.42 cgd #if 0
1279 1.42 cgd if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1280 1.42 cgd #else
1281 1.42 cgd if (howto & RB_DUMP)
1282 1.42 cgd #endif
1283 1.1 cgd dumpsys();
1284 1.6 cgd
1285 1.12 cgd haltsys:
1286 1.12 cgd
1287 1.6 cgd /* run any shutdown hooks */
1288 1.6 cgd doshutdownhooks();
1289 1.1 cgd
1290 1.7 cgd #ifdef BOOTKEY
1291 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1292 1.117 drochner cnpollc(1); /* for proper keyboard command handling */
1293 1.7 cgd cngetc();
1294 1.117 drochner cnpollc(0);
1295 1.46 christos printf("\n");
1296 1.7 cgd #endif
1297 1.7 cgd
1298 1.124 thorpej /* Finally, powerdown/halt/reboot the system. */
1299 1.124 thorpej if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1300 1.124 thorpej platform.powerdown != NULL) {
1301 1.124 thorpej (*platform.powerdown)();
1302 1.124 thorpej printf("WARNING: powerdown failed!\n");
1303 1.124 thorpej }
1304 1.46 christos printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1305 1.1 cgd prom_halt(howto & RB_HALT);
1306 1.1 cgd /*NOTREACHED*/
1307 1.1 cgd }
1308 1.1 cgd
1309 1.7 cgd /*
1310 1.7 cgd * These variables are needed by /sbin/savecore
1311 1.7 cgd */
1312 1.7 cgd u_long dumpmag = 0x8fca0101; /* magic number */
1313 1.7 cgd int dumpsize = 0; /* pages */
1314 1.7 cgd long dumplo = 0; /* blocks */
1315 1.7 cgd
1316 1.7 cgd /*
1317 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1318 1.43 cgd */
1319 1.43 cgd int
1320 1.43 cgd cpu_dumpsize()
1321 1.43 cgd {
1322 1.43 cgd int size;
1323 1.43 cgd
1324 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1325 1.110 thorpej ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1326 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
1327 1.43 cgd return -1;
1328 1.43 cgd
1329 1.43 cgd return (1);
1330 1.43 cgd }
1331 1.43 cgd
1332 1.43 cgd /*
1333 1.110 thorpej * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1334 1.110 thorpej */
1335 1.110 thorpej u_long
1336 1.110 thorpej cpu_dump_mempagecnt()
1337 1.110 thorpej {
1338 1.110 thorpej u_long i, n;
1339 1.110 thorpej
1340 1.110 thorpej n = 0;
1341 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++)
1342 1.110 thorpej n += atop(mem_clusters[i].size);
1343 1.110 thorpej return (n);
1344 1.110 thorpej }
1345 1.110 thorpej
1346 1.110 thorpej /*
1347 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
1348 1.43 cgd */
1349 1.43 cgd int
1350 1.43 cgd cpu_dump()
1351 1.43 cgd {
1352 1.43 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1353 1.107 cgd char buf[dbtob(1)];
1354 1.107 cgd kcore_seg_t *segp;
1355 1.107 cgd cpu_kcore_hdr_t *cpuhdrp;
1356 1.107 cgd phys_ram_seg_t *memsegp;
1357 1.110 thorpej int i;
1358 1.43 cgd
1359 1.107 cgd dump = bdevsw[major(dumpdev)].d_dump;
1360 1.43 cgd
1361 1.107 cgd bzero(buf, sizeof buf);
1362 1.43 cgd segp = (kcore_seg_t *)buf;
1363 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1364 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1365 1.107 cgd ALIGN(sizeof(*cpuhdrp))];
1366 1.43 cgd
1367 1.43 cgd /*
1368 1.43 cgd * Generate a segment header.
1369 1.43 cgd */
1370 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1371 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1372 1.43 cgd
1373 1.43 cgd /*
1374 1.107 cgd * Add the machine-dependent header info.
1375 1.43 cgd */
1376 1.122 thorpej cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)kernel_lev1map);
1377 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
1378 1.110 thorpej cpuhdrp->nmemsegs = mem_cluster_cnt;
1379 1.107 cgd
1380 1.107 cgd /*
1381 1.107 cgd * Fill in the memory segment descriptors.
1382 1.107 cgd */
1383 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1384 1.110 thorpej memsegp[i].start = mem_clusters[i].start;
1385 1.110 thorpej memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1386 1.110 thorpej }
1387 1.43 cgd
1388 1.43 cgd return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1389 1.43 cgd }
1390 1.43 cgd
1391 1.43 cgd /*
1392 1.68 gwr * This is called by main to set dumplo and dumpsize.
1393 1.7 cgd * Dumps always skip the first CLBYTES of disk space
1394 1.7 cgd * in case there might be a disk label stored there.
1395 1.7 cgd * If there is extra space, put dump at the end to
1396 1.7 cgd * reduce the chance that swapping trashes it.
1397 1.7 cgd */
1398 1.7 cgd void
1399 1.68 gwr cpu_dumpconf()
1400 1.7 cgd {
1401 1.43 cgd int nblks, dumpblks; /* size of dump area */
1402 1.7 cgd int maj;
1403 1.7 cgd
1404 1.7 cgd if (dumpdev == NODEV)
1405 1.43 cgd goto bad;
1406 1.7 cgd maj = major(dumpdev);
1407 1.7 cgd if (maj < 0 || maj >= nblkdev)
1408 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1409 1.7 cgd if (bdevsw[maj].d_psize == NULL)
1410 1.43 cgd goto bad;
1411 1.7 cgd nblks = (*bdevsw[maj].d_psize)(dumpdev);
1412 1.7 cgd if (nblks <= ctod(1))
1413 1.43 cgd goto bad;
1414 1.43 cgd
1415 1.43 cgd dumpblks = cpu_dumpsize();
1416 1.43 cgd if (dumpblks < 0)
1417 1.43 cgd goto bad;
1418 1.110 thorpej dumpblks += ctod(cpu_dump_mempagecnt());
1419 1.43 cgd
1420 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
1421 1.43 cgd if (dumpblks > (nblks - ctod(1)))
1422 1.43 cgd goto bad;
1423 1.43 cgd
1424 1.43 cgd /* Put dump at end of partition */
1425 1.43 cgd dumplo = nblks - dumpblks;
1426 1.7 cgd
1427 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1428 1.110 thorpej dumpsize = cpu_dump_mempagecnt();
1429 1.43 cgd return;
1430 1.7 cgd
1431 1.43 cgd bad:
1432 1.43 cgd dumpsize = 0;
1433 1.43 cgd return;
1434 1.7 cgd }
1435 1.7 cgd
1436 1.7 cgd /*
1437 1.42 cgd * Dump the kernel's image to the swap partition.
1438 1.7 cgd */
1439 1.42 cgd #define BYTES_PER_DUMP NBPG
1440 1.42 cgd
1441 1.7 cgd void
1442 1.7 cgd dumpsys()
1443 1.7 cgd {
1444 1.110 thorpej u_long totalbytesleft, bytes, i, n, memcl;
1445 1.110 thorpej u_long maddr;
1446 1.110 thorpej int psize;
1447 1.42 cgd daddr_t blkno;
1448 1.42 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1449 1.42 cgd int error;
1450 1.42 cgd
1451 1.42 cgd /* Save registers. */
1452 1.42 cgd savectx(&dumppcb);
1453 1.7 cgd
1454 1.111 thorpej msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1455 1.7 cgd if (dumpdev == NODEV)
1456 1.7 cgd return;
1457 1.42 cgd
1458 1.42 cgd /*
1459 1.42 cgd * For dumps during autoconfiguration,
1460 1.42 cgd * if dump device has already configured...
1461 1.42 cgd */
1462 1.42 cgd if (dumpsize == 0)
1463 1.68 gwr cpu_dumpconf();
1464 1.47 cgd if (dumplo <= 0) {
1465 1.97 mycroft printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1466 1.97 mycroft minor(dumpdev));
1467 1.42 cgd return;
1468 1.43 cgd }
1469 1.97 mycroft printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1470 1.97 mycroft minor(dumpdev), dumplo);
1471 1.7 cgd
1472 1.42 cgd psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1473 1.46 christos printf("dump ");
1474 1.42 cgd if (psize == -1) {
1475 1.46 christos printf("area unavailable\n");
1476 1.42 cgd return;
1477 1.42 cgd }
1478 1.42 cgd
1479 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1480 1.42 cgd
1481 1.43 cgd if ((error = cpu_dump()) != 0)
1482 1.43 cgd goto err;
1483 1.43 cgd
1484 1.110 thorpej totalbytesleft = ptoa(cpu_dump_mempagecnt());
1485 1.43 cgd blkno = dumplo + cpu_dumpsize();
1486 1.42 cgd dump = bdevsw[major(dumpdev)].d_dump;
1487 1.42 cgd error = 0;
1488 1.42 cgd
1489 1.110 thorpej for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1490 1.110 thorpej maddr = mem_clusters[memcl].start;
1491 1.110 thorpej bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1492 1.110 thorpej
1493 1.110 thorpej for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1494 1.110 thorpej
1495 1.110 thorpej /* Print out how many MBs we to go. */
1496 1.110 thorpej if ((totalbytesleft % (1024*1024)) == 0)
1497 1.110 thorpej printf("%d ", totalbytesleft / (1024 * 1024));
1498 1.110 thorpej
1499 1.110 thorpej /* Limit size for next transfer. */
1500 1.110 thorpej n = bytes - i;
1501 1.110 thorpej if (n > BYTES_PER_DUMP)
1502 1.110 thorpej n = BYTES_PER_DUMP;
1503 1.110 thorpej
1504 1.110 thorpej error = (*dump)(dumpdev, blkno,
1505 1.110 thorpej (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1506 1.110 thorpej if (error)
1507 1.110 thorpej goto err;
1508 1.110 thorpej maddr += n;
1509 1.110 thorpej blkno += btodb(n); /* XXX? */
1510 1.42 cgd
1511 1.110 thorpej /* XXX should look for keystrokes, to cancel. */
1512 1.110 thorpej }
1513 1.42 cgd }
1514 1.42 cgd
1515 1.43 cgd err:
1516 1.42 cgd switch (error) {
1517 1.7 cgd
1518 1.7 cgd case ENXIO:
1519 1.46 christos printf("device bad\n");
1520 1.7 cgd break;
1521 1.7 cgd
1522 1.7 cgd case EFAULT:
1523 1.46 christos printf("device not ready\n");
1524 1.7 cgd break;
1525 1.7 cgd
1526 1.7 cgd case EINVAL:
1527 1.46 christos printf("area improper\n");
1528 1.7 cgd break;
1529 1.7 cgd
1530 1.7 cgd case EIO:
1531 1.46 christos printf("i/o error\n");
1532 1.7 cgd break;
1533 1.7 cgd
1534 1.7 cgd case EINTR:
1535 1.46 christos printf("aborted from console\n");
1536 1.7 cgd break;
1537 1.7 cgd
1538 1.42 cgd case 0:
1539 1.46 christos printf("succeeded\n");
1540 1.42 cgd break;
1541 1.42 cgd
1542 1.7 cgd default:
1543 1.46 christos printf("error %d\n", error);
1544 1.7 cgd break;
1545 1.7 cgd }
1546 1.46 christos printf("\n\n");
1547 1.7 cgd delay(1000);
1548 1.7 cgd }
1549 1.7 cgd
1550 1.1 cgd void
1551 1.1 cgd frametoreg(framep, regp)
1552 1.1 cgd struct trapframe *framep;
1553 1.1 cgd struct reg *regp;
1554 1.1 cgd {
1555 1.1 cgd
1556 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1557 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1558 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1559 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1560 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1561 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1562 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1563 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1564 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1565 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1566 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1567 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1568 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1569 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1570 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1571 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1572 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1573 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1574 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1575 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1576 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1577 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1578 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1579 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1580 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1581 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1582 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1583 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1584 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1585 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1586 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1587 1.1 cgd regp->r_regs[R_ZERO] = 0;
1588 1.1 cgd }
1589 1.1 cgd
1590 1.1 cgd void
1591 1.1 cgd regtoframe(regp, framep)
1592 1.1 cgd struct reg *regp;
1593 1.1 cgd struct trapframe *framep;
1594 1.1 cgd {
1595 1.1 cgd
1596 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1597 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1598 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1599 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1600 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1601 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1602 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1603 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1604 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1605 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1606 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1607 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1608 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1609 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1610 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1611 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1612 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1613 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1614 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1615 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1616 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1617 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1618 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1619 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1620 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1621 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1622 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1623 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1624 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1625 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1626 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1627 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1628 1.1 cgd }
1629 1.1 cgd
1630 1.1 cgd void
1631 1.1 cgd printregs(regp)
1632 1.1 cgd struct reg *regp;
1633 1.1 cgd {
1634 1.1 cgd int i;
1635 1.1 cgd
1636 1.1 cgd for (i = 0; i < 32; i++)
1637 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1638 1.1 cgd i & 1 ? "\n" : "\t");
1639 1.1 cgd }
1640 1.1 cgd
1641 1.1 cgd void
1642 1.1 cgd regdump(framep)
1643 1.1 cgd struct trapframe *framep;
1644 1.1 cgd {
1645 1.1 cgd struct reg reg;
1646 1.1 cgd
1647 1.1 cgd frametoreg(framep, ®);
1648 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1649 1.35 cgd
1650 1.46 christos printf("REGISTERS:\n");
1651 1.1 cgd printregs(®);
1652 1.1 cgd }
1653 1.1 cgd
1654 1.1 cgd #ifdef DEBUG
1655 1.1 cgd int sigdebug = 0;
1656 1.1 cgd int sigpid = 0;
1657 1.1 cgd #define SDB_FOLLOW 0x01
1658 1.1 cgd #define SDB_KSTACK 0x02
1659 1.1 cgd #endif
1660 1.1 cgd
1661 1.1 cgd /*
1662 1.1 cgd * Send an interrupt to process.
1663 1.1 cgd */
1664 1.1 cgd void
1665 1.1 cgd sendsig(catcher, sig, mask, code)
1666 1.1 cgd sig_t catcher;
1667 1.1 cgd int sig, mask;
1668 1.1 cgd u_long code;
1669 1.1 cgd {
1670 1.1 cgd struct proc *p = curproc;
1671 1.1 cgd struct sigcontext *scp, ksc;
1672 1.1 cgd struct trapframe *frame;
1673 1.1 cgd struct sigacts *psp = p->p_sigacts;
1674 1.1 cgd int oonstack, fsize, rndfsize;
1675 1.1 cgd extern char sigcode[], esigcode[];
1676 1.1 cgd extern struct proc *fpcurproc;
1677 1.1 cgd
1678 1.1 cgd frame = p->p_md.md_tf;
1679 1.9 mycroft oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1680 1.1 cgd fsize = sizeof ksc;
1681 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1682 1.1 cgd /*
1683 1.1 cgd * Allocate and validate space for the signal handler
1684 1.1 cgd * context. Note that if the stack is in P0 space, the
1685 1.1 cgd * call to grow() is a nop, and the useracc() check
1686 1.1 cgd * will fail if the process has not already allocated
1687 1.1 cgd * the space with a `brk'.
1688 1.1 cgd */
1689 1.1 cgd if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1690 1.1 cgd (psp->ps_sigonstack & sigmask(sig))) {
1691 1.121 kleink scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1692 1.1 cgd psp->ps_sigstk.ss_size - rndfsize);
1693 1.9 mycroft psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1694 1.1 cgd } else
1695 1.35 cgd scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1696 1.1 cgd if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1697 1.112 thorpej #if defined(UVM)
1698 1.112 thorpej (void)uvm_grow(p, (u_long)scp);
1699 1.112 thorpej #else
1700 1.1 cgd (void)grow(p, (u_long)scp);
1701 1.112 thorpej #endif
1702 1.1 cgd #ifdef DEBUG
1703 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1704 1.46 christos printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1705 1.1 cgd sig, &oonstack, scp);
1706 1.1 cgd #endif
1707 1.112 thorpej #if defined(UVM)
1708 1.112 thorpej if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1709 1.112 thorpej #else
1710 1.1 cgd if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1711 1.112 thorpej #endif
1712 1.1 cgd #ifdef DEBUG
1713 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1714 1.46 christos printf("sendsig(%d): useracc failed on sig %d\n",
1715 1.1 cgd p->p_pid, sig);
1716 1.1 cgd #endif
1717 1.1 cgd /*
1718 1.1 cgd * Process has trashed its stack; give it an illegal
1719 1.1 cgd * instruction to halt it in its tracks.
1720 1.1 cgd */
1721 1.1 cgd SIGACTION(p, SIGILL) = SIG_DFL;
1722 1.1 cgd sig = sigmask(SIGILL);
1723 1.1 cgd p->p_sigignore &= ~sig;
1724 1.1 cgd p->p_sigcatch &= ~sig;
1725 1.1 cgd p->p_sigmask &= ~sig;
1726 1.1 cgd psignal(p, SIGILL);
1727 1.1 cgd return;
1728 1.125 ross #if !defined(UVM) /* this construct will balance braces for ctags(1) */
1729 1.1 cgd }
1730 1.125 ross #else
1731 1.125 ross }
1732 1.125 ross #endif
1733 1.1 cgd
1734 1.1 cgd /*
1735 1.1 cgd * Build the signal context to be used by sigreturn.
1736 1.1 cgd */
1737 1.1 cgd ksc.sc_onstack = oonstack;
1738 1.1 cgd ksc.sc_mask = mask;
1739 1.34 cgd ksc.sc_pc = frame->tf_regs[FRAME_PC];
1740 1.34 cgd ksc.sc_ps = frame->tf_regs[FRAME_PS];
1741 1.1 cgd
1742 1.1 cgd /* copy the registers. */
1743 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1744 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1745 1.35 cgd ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1746 1.1 cgd
1747 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1748 1.1 cgd if (p == fpcurproc) {
1749 1.32 cgd alpha_pal_wrfen(1);
1750 1.1 cgd savefpstate(&p->p_addr->u_pcb.pcb_fp);
1751 1.32 cgd alpha_pal_wrfen(0);
1752 1.1 cgd fpcurproc = NULL;
1753 1.1 cgd }
1754 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1755 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1756 1.1 cgd sizeof(struct fpreg));
1757 1.1 cgd ksc.sc_fp_control = 0; /* XXX ? */
1758 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1759 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1760 1.1 cgd
1761 1.1 cgd
1762 1.1 cgd #ifdef COMPAT_OSF1
1763 1.1 cgd /*
1764 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1765 1.1 cgd */
1766 1.1 cgd #endif
1767 1.1 cgd
1768 1.1 cgd /*
1769 1.1 cgd * copy the frame out to userland.
1770 1.1 cgd */
1771 1.1 cgd (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1772 1.1 cgd #ifdef DEBUG
1773 1.1 cgd if (sigdebug & SDB_FOLLOW)
1774 1.46 christos printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1775 1.1 cgd scp, code);
1776 1.1 cgd #endif
1777 1.1 cgd
1778 1.1 cgd /*
1779 1.1 cgd * Set up the registers to return to sigcode.
1780 1.1 cgd */
1781 1.34 cgd frame->tf_regs[FRAME_PC] =
1782 1.34 cgd (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1783 1.34 cgd frame->tf_regs[FRAME_A0] = sig;
1784 1.34 cgd frame->tf_regs[FRAME_A1] = code;
1785 1.34 cgd frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1786 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1787 1.35 cgd alpha_pal_wrusp((unsigned long)scp);
1788 1.1 cgd
1789 1.1 cgd #ifdef DEBUG
1790 1.1 cgd if (sigdebug & SDB_FOLLOW)
1791 1.46 christos printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1792 1.34 cgd frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1793 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1794 1.46 christos printf("sendsig(%d): sig %d returns\n",
1795 1.1 cgd p->p_pid, sig);
1796 1.1 cgd #endif
1797 1.1 cgd }
1798 1.1 cgd
1799 1.1 cgd /*
1800 1.1 cgd * System call to cleanup state after a signal
1801 1.1 cgd * has been taken. Reset signal mask and
1802 1.1 cgd * stack state from context left by sendsig (above).
1803 1.1 cgd * Return to previous pc and psl as specified by
1804 1.1 cgd * context left by sendsig. Check carefully to
1805 1.1 cgd * make sure that the user has not modified the
1806 1.1 cgd * psl to gain improper priviledges or to cause
1807 1.1 cgd * a machine fault.
1808 1.1 cgd */
1809 1.1 cgd /* ARGSUSED */
1810 1.11 mycroft int
1811 1.11 mycroft sys_sigreturn(p, v, retval)
1812 1.1 cgd struct proc *p;
1813 1.10 thorpej void *v;
1814 1.10 thorpej register_t *retval;
1815 1.10 thorpej {
1816 1.11 mycroft struct sys_sigreturn_args /* {
1817 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1818 1.10 thorpej } */ *uap = v;
1819 1.1 cgd struct sigcontext *scp, ksc;
1820 1.1 cgd extern struct proc *fpcurproc;
1821 1.1 cgd
1822 1.1 cgd scp = SCARG(uap, sigcntxp);
1823 1.1 cgd #ifdef DEBUG
1824 1.1 cgd if (sigdebug & SDB_FOLLOW)
1825 1.46 christos printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1826 1.1 cgd #endif
1827 1.1 cgd
1828 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1829 1.1 cgd return (EINVAL);
1830 1.1 cgd
1831 1.1 cgd /*
1832 1.1 cgd * Test and fetch the context structure.
1833 1.1 cgd * We grab it all at once for speed.
1834 1.1 cgd */
1835 1.112 thorpej #if defined(UVM)
1836 1.112 thorpej if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1837 1.112 thorpej copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1838 1.112 thorpej return (EINVAL);
1839 1.112 thorpej #else
1840 1.1 cgd if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1841 1.1 cgd copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1842 1.1 cgd return (EINVAL);
1843 1.112 thorpej #endif
1844 1.1 cgd
1845 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1846 1.1 cgd return (EINVAL);
1847 1.1 cgd /*
1848 1.1 cgd * Restore the user-supplied information
1849 1.1 cgd */
1850 1.1 cgd if (ksc.sc_onstack)
1851 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1852 1.1 cgd else
1853 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1854 1.1 cgd p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1855 1.1 cgd
1856 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1857 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PS] =
1858 1.32 cgd (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1859 1.1 cgd
1860 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1861 1.35 cgd alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1862 1.1 cgd
1863 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1864 1.1 cgd if (p == fpcurproc)
1865 1.1 cgd fpcurproc = NULL;
1866 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1867 1.1 cgd sizeof(struct fpreg));
1868 1.1 cgd /* XXX ksc.sc_fp_control ? */
1869 1.1 cgd
1870 1.1 cgd #ifdef DEBUG
1871 1.1 cgd if (sigdebug & SDB_FOLLOW)
1872 1.46 christos printf("sigreturn(%d): returns\n", p->p_pid);
1873 1.1 cgd #endif
1874 1.1 cgd return (EJUSTRETURN);
1875 1.1 cgd }
1876 1.1 cgd
1877 1.1 cgd /*
1878 1.1 cgd * machine dependent system variables.
1879 1.1 cgd */
1880 1.33 cgd int
1881 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1882 1.1 cgd int *name;
1883 1.1 cgd u_int namelen;
1884 1.1 cgd void *oldp;
1885 1.1 cgd size_t *oldlenp;
1886 1.1 cgd void *newp;
1887 1.1 cgd size_t newlen;
1888 1.1 cgd struct proc *p;
1889 1.1 cgd {
1890 1.1 cgd dev_t consdev;
1891 1.1 cgd
1892 1.1 cgd /* all sysctl names at this level are terminal */
1893 1.1 cgd if (namelen != 1)
1894 1.1 cgd return (ENOTDIR); /* overloaded */
1895 1.1 cgd
1896 1.1 cgd switch (name[0]) {
1897 1.1 cgd case CPU_CONSDEV:
1898 1.1 cgd if (cn_tab != NULL)
1899 1.1 cgd consdev = cn_tab->cn_dev;
1900 1.1 cgd else
1901 1.1 cgd consdev = NODEV;
1902 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1903 1.1 cgd sizeof consdev));
1904 1.30 cgd
1905 1.30 cgd case CPU_ROOT_DEVICE:
1906 1.64 thorpej return (sysctl_rdstring(oldp, oldlenp, newp,
1907 1.64 thorpej root_device->dv_xname));
1908 1.36 cgd
1909 1.36 cgd case CPU_UNALIGNED_PRINT:
1910 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1911 1.36 cgd &alpha_unaligned_print));
1912 1.36 cgd
1913 1.36 cgd case CPU_UNALIGNED_FIX:
1914 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1915 1.36 cgd &alpha_unaligned_fix));
1916 1.36 cgd
1917 1.36 cgd case CPU_UNALIGNED_SIGBUS:
1918 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1919 1.36 cgd &alpha_unaligned_sigbus));
1920 1.61 cgd
1921 1.61 cgd case CPU_BOOTED_KERNEL:
1922 1.102 cgd return (sysctl_rdstring(oldp, oldlenp, newp,
1923 1.102 cgd bootinfo.booted_kernel));
1924 1.30 cgd
1925 1.1 cgd default:
1926 1.1 cgd return (EOPNOTSUPP);
1927 1.1 cgd }
1928 1.1 cgd /* NOTREACHED */
1929 1.1 cgd }
1930 1.1 cgd
1931 1.1 cgd /*
1932 1.1 cgd * Set registers on exec.
1933 1.1 cgd */
1934 1.1 cgd void
1935 1.85 mycroft setregs(p, pack, stack)
1936 1.1 cgd register struct proc *p;
1937 1.5 christos struct exec_package *pack;
1938 1.1 cgd u_long stack;
1939 1.1 cgd {
1940 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1941 1.56 cgd extern struct proc *fpcurproc;
1942 1.56 cgd #ifdef DEBUG
1943 1.1 cgd int i;
1944 1.56 cgd #endif
1945 1.43 cgd
1946 1.43 cgd #ifdef DEBUG
1947 1.43 cgd /*
1948 1.43 cgd * Crash and dump, if the user requested it.
1949 1.43 cgd */
1950 1.43 cgd if (boothowto & RB_DUMP)
1951 1.43 cgd panic("crash requested by boot flags");
1952 1.43 cgd #endif
1953 1.1 cgd
1954 1.1 cgd #ifdef DEBUG
1955 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1956 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1957 1.1 cgd #else
1958 1.34 cgd bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1959 1.1 cgd #endif
1960 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1961 1.7 cgd #define FP_RN 2 /* XXX */
1962 1.7 cgd p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1963 1.35 cgd alpha_pal_wrusp(stack);
1964 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1965 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1966 1.41 cgd
1967 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1968 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1969 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1970 1.63 cgd tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1971 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1972 1.1 cgd
1973 1.33 cgd p->p_md.md_flags &= ~MDP_FPUSED;
1974 1.1 cgd if (fpcurproc == p)
1975 1.1 cgd fpcurproc = NULL;
1976 1.1 cgd }
1977 1.1 cgd
1978 1.1 cgd void
1979 1.1 cgd netintr()
1980 1.1 cgd {
1981 1.49 cgd int n, s;
1982 1.49 cgd
1983 1.49 cgd s = splhigh();
1984 1.49 cgd n = netisr;
1985 1.49 cgd netisr = 0;
1986 1.49 cgd splx(s);
1987 1.49 cgd
1988 1.49 cgd #define DONETISR(bit, fn) \
1989 1.49 cgd do { \
1990 1.49 cgd if (n & (1 << (bit))) \
1991 1.49 cgd fn; \
1992 1.49 cgd } while (0)
1993 1.49 cgd
1994 1.1 cgd #ifdef INET
1995 1.72 cgd #if NARP > 0
1996 1.49 cgd DONETISR(NETISR_ARP, arpintr());
1997 1.72 cgd #endif
1998 1.49 cgd DONETISR(NETISR_IP, ipintr());
1999 1.70 christos #endif
2000 1.70 christos #ifdef NETATALK
2001 1.70 christos DONETISR(NETISR_ATALK, atintr());
2002 1.1 cgd #endif
2003 1.1 cgd #ifdef NS
2004 1.49 cgd DONETISR(NETISR_NS, nsintr());
2005 1.1 cgd #endif
2006 1.1 cgd #ifdef ISO
2007 1.49 cgd DONETISR(NETISR_ISO, clnlintr());
2008 1.1 cgd #endif
2009 1.1 cgd #ifdef CCITT
2010 1.49 cgd DONETISR(NETISR_CCITT, ccittintr());
2011 1.49 cgd #endif
2012 1.49 cgd #ifdef NATM
2013 1.49 cgd DONETISR(NETISR_NATM, natmintr());
2014 1.1 cgd #endif
2015 1.49 cgd #if NPPP > 1
2016 1.49 cgd DONETISR(NETISR_PPP, pppintr());
2017 1.8 cgd #endif
2018 1.49 cgd
2019 1.49 cgd #undef DONETISR
2020 1.1 cgd }
2021 1.1 cgd
2022 1.1 cgd void
2023 1.1 cgd do_sir()
2024 1.1 cgd {
2025 1.58 cgd u_int64_t n;
2026 1.1 cgd
2027 1.59 cgd do {
2028 1.60 cgd (void)splhigh();
2029 1.58 cgd n = ssir;
2030 1.58 cgd ssir = 0;
2031 1.60 cgd splsoft(); /* don't recurse through spl0() */
2032 1.112 thorpej
2033 1.112 thorpej #if defined(UVM)
2034 1.112 thorpej #define COUNT_SOFT uvmexp.softs++
2035 1.112 thorpej #else
2036 1.112 thorpej #define COUNT_SOFT cnt.v_soft++
2037 1.112 thorpej #endif
2038 1.112 thorpej
2039 1.59 cgd #define DO_SIR(bit, fn) \
2040 1.59 cgd do { \
2041 1.60 cgd if (n & (bit)) { \
2042 1.112 thorpej COUNT_SOFT; \
2043 1.59 cgd fn; \
2044 1.59 cgd } \
2045 1.59 cgd } while (0)
2046 1.59 cgd
2047 1.60 cgd DO_SIR(SIR_NET, netintr());
2048 1.60 cgd DO_SIR(SIR_CLOCK, softclock());
2049 1.60 cgd
2050 1.112 thorpej #undef COUNT_SOFT
2051 1.60 cgd #undef DO_SIR
2052 1.59 cgd } while (ssir != 0);
2053 1.1 cgd }
2054 1.1 cgd
2055 1.1 cgd int
2056 1.1 cgd spl0()
2057 1.1 cgd {
2058 1.1 cgd
2059 1.59 cgd if (ssir)
2060 1.59 cgd do_sir(); /* it lowers the IPL itself */
2061 1.1 cgd
2062 1.32 cgd return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2063 1.1 cgd }
2064 1.1 cgd
2065 1.1 cgd /*
2066 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
2067 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2068 1.52 cgd * into queues, Remrunqueue removes them from queues. The running process is
2069 1.52 cgd * on no queue, other processes are on a queue related to p->p_priority,
2070 1.52 cgd * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2071 1.52 cgd * available queues.
2072 1.1 cgd */
2073 1.1 cgd /*
2074 1.1 cgd * setrunqueue(p)
2075 1.1 cgd * proc *p;
2076 1.1 cgd *
2077 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
2078 1.1 cgd */
2079 1.1 cgd
2080 1.1 cgd void
2081 1.1 cgd setrunqueue(p)
2082 1.1 cgd struct proc *p;
2083 1.1 cgd {
2084 1.1 cgd int bit;
2085 1.1 cgd
2086 1.1 cgd /* firewall: p->p_back must be NULL */
2087 1.1 cgd if (p->p_back != NULL)
2088 1.1 cgd panic("setrunqueue");
2089 1.1 cgd
2090 1.1 cgd bit = p->p_priority >> 2;
2091 1.1 cgd whichqs |= (1 << bit);
2092 1.1 cgd p->p_forw = (struct proc *)&qs[bit];
2093 1.1 cgd p->p_back = qs[bit].ph_rlink;
2094 1.1 cgd p->p_back->p_forw = p;
2095 1.1 cgd qs[bit].ph_rlink = p;
2096 1.1 cgd }
2097 1.1 cgd
2098 1.1 cgd /*
2099 1.52 cgd * remrunqueue(p)
2100 1.1 cgd *
2101 1.1 cgd * Call should be made at splclock().
2102 1.1 cgd */
2103 1.1 cgd void
2104 1.52 cgd remrunqueue(p)
2105 1.1 cgd struct proc *p;
2106 1.1 cgd {
2107 1.1 cgd int bit;
2108 1.1 cgd
2109 1.1 cgd bit = p->p_priority >> 2;
2110 1.1 cgd if ((whichqs & (1 << bit)) == 0)
2111 1.52 cgd panic("remrunqueue");
2112 1.1 cgd
2113 1.1 cgd p->p_back->p_forw = p->p_forw;
2114 1.1 cgd p->p_forw->p_back = p->p_back;
2115 1.1 cgd p->p_back = NULL; /* for firewall checking. */
2116 1.1 cgd
2117 1.1 cgd if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2118 1.1 cgd whichqs &= ~(1 << bit);
2119 1.1 cgd }
2120 1.1 cgd
2121 1.1 cgd /*
2122 1.1 cgd * Return the best possible estimate of the time in the timeval
2123 1.1 cgd * to which tvp points. Unfortunately, we can't read the hardware registers.
2124 1.1 cgd * We guarantee that the time will be greater than the value obtained by a
2125 1.1 cgd * previous call.
2126 1.1 cgd */
2127 1.1 cgd void
2128 1.1 cgd microtime(tvp)
2129 1.1 cgd register struct timeval *tvp;
2130 1.1 cgd {
2131 1.1 cgd int s = splclock();
2132 1.1 cgd static struct timeval lasttime;
2133 1.1 cgd
2134 1.1 cgd *tvp = time;
2135 1.1 cgd #ifdef notdef
2136 1.1 cgd tvp->tv_usec += clkread();
2137 1.1 cgd while (tvp->tv_usec > 1000000) {
2138 1.1 cgd tvp->tv_sec++;
2139 1.1 cgd tvp->tv_usec -= 1000000;
2140 1.1 cgd }
2141 1.1 cgd #endif
2142 1.1 cgd if (tvp->tv_sec == lasttime.tv_sec &&
2143 1.1 cgd tvp->tv_usec <= lasttime.tv_usec &&
2144 1.1 cgd (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2145 1.1 cgd tvp->tv_sec++;
2146 1.1 cgd tvp->tv_usec -= 1000000;
2147 1.1 cgd }
2148 1.1 cgd lasttime = *tvp;
2149 1.1 cgd splx(s);
2150 1.15 cgd }
2151 1.15 cgd
2152 1.15 cgd /*
2153 1.15 cgd * Wait "n" microseconds.
2154 1.15 cgd */
2155 1.32 cgd void
2156 1.15 cgd delay(n)
2157 1.32 cgd unsigned long n;
2158 1.15 cgd {
2159 1.15 cgd long N = cycles_per_usec * (n);
2160 1.15 cgd
2161 1.15 cgd while (N > 0) /* XXX */
2162 1.15 cgd N -= 3; /* XXX */
2163 1.1 cgd }
2164 1.1 cgd
2165 1.8 cgd #if defined(COMPAT_OSF1) || 1 /* XXX */
2166 1.55 cgd void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2167 1.85 mycroft u_long));
2168 1.55 cgd
2169 1.1 cgd void
2170 1.85 mycroft cpu_exec_ecoff_setregs(p, epp, stack)
2171 1.1 cgd struct proc *p;
2172 1.19 cgd struct exec_package *epp;
2173 1.5 christos u_long stack;
2174 1.1 cgd {
2175 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2176 1.1 cgd
2177 1.85 mycroft setregs(p, epp, stack);
2178 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2179 1.1 cgd }
2180 1.1 cgd
2181 1.1 cgd /*
2182 1.1 cgd * cpu_exec_ecoff_hook():
2183 1.1 cgd * cpu-dependent ECOFF format hook for execve().
2184 1.1 cgd *
2185 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
2186 1.1 cgd *
2187 1.1 cgd */
2188 1.1 cgd int
2189 1.19 cgd cpu_exec_ecoff_hook(p, epp)
2190 1.1 cgd struct proc *p;
2191 1.1 cgd struct exec_package *epp;
2192 1.1 cgd {
2193 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2194 1.5 christos extern struct emul emul_netbsd;
2195 1.5 christos #ifdef COMPAT_OSF1
2196 1.5 christos extern struct emul emul_osf1;
2197 1.5 christos #endif
2198 1.1 cgd
2199 1.19 cgd switch (execp->f.f_magic) {
2200 1.5 christos #ifdef COMPAT_OSF1
2201 1.1 cgd case ECOFF_MAGIC_ALPHA:
2202 1.5 christos epp->ep_emul = &emul_osf1;
2203 1.1 cgd break;
2204 1.5 christos #endif
2205 1.1 cgd
2206 1.1 cgd case ECOFF_MAGIC_NETBSD_ALPHA:
2207 1.5 christos epp->ep_emul = &emul_netbsd;
2208 1.1 cgd break;
2209 1.1 cgd
2210 1.1 cgd default:
2211 1.12 cgd return ENOEXEC;
2212 1.1 cgd }
2213 1.1 cgd return 0;
2214 1.1 cgd }
2215 1.1 cgd #endif
2216 1.110 thorpej
2217 1.110 thorpej int
2218 1.110 thorpej alpha_pa_access(pa)
2219 1.110 thorpej u_long pa;
2220 1.110 thorpej {
2221 1.110 thorpej int i;
2222 1.110 thorpej
2223 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
2224 1.110 thorpej if (pa < mem_clusters[i].start)
2225 1.110 thorpej continue;
2226 1.110 thorpej if ((pa - mem_clusters[i].start) >=
2227 1.110 thorpej (mem_clusters[i].size & ~PAGE_MASK))
2228 1.110 thorpej continue;
2229 1.110 thorpej return (mem_clusters[i].size & PAGE_MASK); /* prot */
2230 1.110 thorpej }
2231 1.110 thorpej return (PROT_NONE);
2232 1.110 thorpej }
2233 1.50 cgd
2234 1.50 cgd /* XXX XXX BEGIN XXX XXX */
2235 1.50 cgd vm_offset_t alpha_XXX_dmamap_or; /* XXX */
2236 1.50 cgd /* XXX */
2237 1.50 cgd vm_offset_t /* XXX */
2238 1.50 cgd alpha_XXX_dmamap(v) /* XXX */
2239 1.51 cgd vm_offset_t v; /* XXX */
2240 1.50 cgd { /* XXX */
2241 1.50 cgd /* XXX */
2242 1.51 cgd return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2243 1.50 cgd } /* XXX */
2244 1.50 cgd /* XXX XXX END XXX XXX */
2245