Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.13
      1  1.13       cgd /*	$NetBSD: machdep.c,v 1.13 1995/12/20 00:19:49 cgd Exp $	*/
      2   1.1       cgd 
      3   1.1       cgd /*
      4   1.1       cgd  * Copyright (c) 1994, 1995 Carnegie-Mellon University.
      5   1.1       cgd  * All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * Author: Chris G. Demetriou
      8   1.1       cgd  *
      9   1.1       cgd  * Permission to use, copy, modify and distribute this software and
     10   1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     11   1.1       cgd  * notice and this permission notice appear in all copies of the
     12   1.1       cgd  * software, derivative works or modified versions, and any portions
     13   1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     14   1.1       cgd  *
     15   1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16   1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17   1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18   1.1       cgd  *
     19   1.1       cgd  * Carnegie Mellon requests users of this software to return to
     20   1.1       cgd  *
     21   1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22   1.1       cgd  *  School of Computer Science
     23   1.1       cgd  *  Carnegie Mellon University
     24   1.1       cgd  *  Pittsburgh PA 15213-3890
     25   1.1       cgd  *
     26   1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     27   1.1       cgd  * rights to redistribute these changes.
     28   1.1       cgd  */
     29   1.1       cgd 
     30   1.1       cgd #include <sys/param.h>
     31   1.1       cgd #include <sys/systm.h>
     32   1.1       cgd #include <sys/signalvar.h>
     33   1.1       cgd #include <sys/kernel.h>
     34   1.1       cgd #include <sys/map.h>
     35   1.1       cgd #include <sys/proc.h>
     36   1.1       cgd #include <sys/buf.h>
     37   1.1       cgd #include <sys/reboot.h>
     38   1.1       cgd #include <sys/conf.h>
     39   1.1       cgd #include <sys/file.h>
     40   1.1       cgd #ifdef REAL_CLISTS
     41   1.1       cgd #include <sys/clist.h>
     42   1.1       cgd #endif
     43   1.1       cgd #include <sys/callout.h>
     44   1.1       cgd #include <sys/malloc.h>
     45   1.1       cgd #include <sys/mbuf.h>
     46   1.1       cgd #include <sys/msgbuf.h>
     47   1.1       cgd #include <sys/ioctl.h>
     48   1.1       cgd #include <sys/tty.h>
     49   1.1       cgd #include <sys/user.h>
     50   1.1       cgd #include <sys/exec.h>
     51   1.1       cgd #include <sys/exec_ecoff.h>
     52   1.1       cgd #include <sys/sysctl.h>
     53   1.1       cgd #ifdef SYSVMSG
     54   1.1       cgd #include <sys/msg.h>
     55   1.1       cgd #endif
     56   1.1       cgd #ifdef SYSVSEM
     57   1.1       cgd #include <sys/sem.h>
     58   1.1       cgd #endif
     59   1.1       cgd #ifdef SYSVSHM
     60   1.1       cgd #include <sys/shm.h>
     61   1.1       cgd #endif
     62   1.1       cgd 
     63   1.1       cgd #include <sys/mount.h>
     64   1.1       cgd #include <sys/syscallargs.h>
     65   1.1       cgd 
     66   1.1       cgd #include <vm/vm_kern.h>
     67   1.1       cgd 
     68   1.1       cgd #include <dev/cons.h>
     69   1.1       cgd 
     70   1.1       cgd #include <machine/cpu.h>
     71   1.1       cgd #include <machine/reg.h>
     72   1.1       cgd #include <machine/rpb.h>
     73   1.1       cgd #include <machine/prom.h>
     74   1.1       cgd 
     75   1.8       cgd #ifdef DEC_3000_500
     76   1.8       cgd #include <alpha/alpha/dec_3000_500.h>
     77   1.8       cgd #endif
     78   1.8       cgd #ifdef DEC_3000_300
     79   1.8       cgd #include <alpha/alpha/dec_3000_300.h>
     80   1.8       cgd #endif
     81   1.8       cgd #ifdef DEC_2100_A50
     82   1.8       cgd #include <alpha/alpha/dec_2100_a50.h>
     83   1.8       cgd #endif
     84  1.12       cgd #ifdef DEC_KN20AA
     85  1.12       cgd #include <alpha/alpha/dec_kn20aa.h>
     86  1.12       cgd #endif
     87  1.12       cgd #ifdef DEC_AXPPCI_33
     88  1.12       cgd #include <alpha/alpha/dec_axppci_33.h>
     89  1.12       cgd #endif
     90  1.12       cgd #ifdef DEC_21000
     91  1.12       cgd #include <alpha/alpha/dec_21000.h>
     92  1.12       cgd #endif
     93   1.8       cgd 
     94   1.1       cgd #include <net/netisr.h>
     95   1.1       cgd #include "ether.h"
     96   1.1       cgd 
     97   1.1       cgd #include "le.h"			/* XXX for le_iomem creation */
     98   1.1       cgd 
     99   1.1       cgd vm_map_t buffer_map;
    100   1.1       cgd 
    101   1.7       cgd void dumpsys __P((void));
    102   1.7       cgd 
    103   1.1       cgd /*
    104   1.1       cgd  * Declare these as initialized data so we can patch them.
    105   1.1       cgd  */
    106   1.1       cgd int	nswbuf = 0;
    107   1.1       cgd #ifdef	NBUF
    108   1.1       cgd int	nbuf = NBUF;
    109   1.1       cgd #else
    110   1.1       cgd int	nbuf = 0;
    111   1.1       cgd #endif
    112   1.1       cgd #ifdef	BUFPAGES
    113   1.1       cgd int	bufpages = BUFPAGES;
    114   1.1       cgd #else
    115   1.1       cgd int	bufpages = 0;
    116   1.1       cgd #endif
    117   1.1       cgd int	msgbufmapped = 0;	/* set when safe to use msgbuf */
    118   1.1       cgd int	maxmem;			/* max memory per process */
    119   1.7       cgd 
    120   1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    121   1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    122   1.7       cgd int	firstusablepage;	/* first usable memory page */
    123   1.7       cgd int	lastusablepage;		/* last usable memory page */
    124   1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    125   1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    126   1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    127   1.1       cgd 
    128   1.1       cgd int	cputype;		/* system type, from the RPB */
    129   1.1       cgd 
    130   1.1       cgd /*
    131   1.1       cgd  * XXX We need an address to which we can assign things so that they
    132   1.1       cgd  * won't be optimized away because we didn't use the value.
    133   1.1       cgd  */
    134   1.1       cgd u_int32_t no_optimize;
    135   1.1       cgd 
    136   1.1       cgd /* the following is used externally (sysctl_hw) */
    137   1.1       cgd char	machine[] = "alpha";
    138   1.2       cgd char	*cpu_model;
    139   1.1       cgd char	*model_names[] = {
    140   1.2       cgd 	"UNKNOWN (0)",
    141   1.2       cgd 	"Alpha Demonstration Unit",
    142   1.2       cgd 	"DEC 4000 (\"Cobra\")",
    143   1.2       cgd 	"DEC 7000 (\"Ruby\")",
    144   1.2       cgd 	"DEC 3000/500 (\"Flamingo\") family",
    145   1.2       cgd 	"UNKNOWN (5)",
    146   1.2       cgd 	"DEC 2000/300 (\"Jensen\")",
    147   1.2       cgd 	"DEC 3000/300 (\"Pelican\")",
    148   1.2       cgd 	"UNKNOWN (8)",
    149   1.2       cgd 	"DEC 2100/A500 (\"Sable\")",
    150   1.2       cgd 	"AXPvme 64",
    151   1.2       cgd 	"AXPpci 33 (\"NoName\")",
    152  1.12       cgd 	"DEC 21000 (\"TurboLaser\")",
    153   1.7       cgd 	"DEC 2100/A50 (\"Avanti\") family",
    154   1.2       cgd 	"Mustang",
    155  1.12       cgd 	"DEC KN20AA",
    156  1.12       cgd 	"UNKNOWN (16)",
    157   1.2       cgd 	"DEC 1000 (\"Mikasa\")",
    158   1.1       cgd };
    159   1.1       cgd int	nmodel_names = sizeof model_names/sizeof model_names[0];
    160   1.1       cgd 
    161   1.1       cgd struct	user *proc0paddr;
    162   1.1       cgd 
    163   1.1       cgd /* Number of machine cycles per microsecond */
    164   1.1       cgd u_int64_t	cycles_per_usec;
    165   1.1       cgd 
    166   1.1       cgd /* some memory areas for device DMA.  "ick." */
    167   1.1       cgd caddr_t		le_iomem;		/* XXX iomem for LANCE DMA */
    168   1.1       cgd 
    169   1.1       cgd /* Interrupt vectors (in locore) */
    170   1.1       cgd extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
    171   1.1       cgd 
    172   1.7       cgd /* number of cpus in the box.  really! */
    173   1.7       cgd int		ncpus;
    174   1.7       cgd 
    175   1.8       cgd /* various CPU-specific functions. */
    176   1.8       cgd char		*(*cpu_modelname) __P((void));
    177   1.8       cgd void		(*cpu_consinit) __P((char *));
    178   1.8       cgd dev_t		(*cpu_bootdev) __P((char *));
    179   1.8       cgd char		*cpu_iobus;
    180   1.8       cgd 
    181   1.8       cgd char *boot_file, *boot_flags, *boot_console, *boot_dev;
    182   1.8       cgd 
    183   1.1       cgd int
    184   1.1       cgd alpha_init(pfn, ptb, argc, argv, envp)
    185   1.1       cgd 	u_long pfn;		/* first free PFN number */
    186   1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    187   1.1       cgd 	u_long argc;
    188   1.1       cgd 	char *argv[], *envp[];
    189   1.1       cgd {
    190   1.2       cgd 	extern char _end[];
    191   1.1       cgd 	caddr_t start, v;
    192   1.1       cgd 	struct mddt *mddtp;
    193   1.7       cgd 	int i, mddtweird;
    194   1.1       cgd 	char *p;
    195   1.1       cgd 
    196   1.1       cgd 	/*
    197   1.1       cgd 	 * Turn off interrupts and floating point.
    198   1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    199   1.1       cgd 	 */
    200   1.1       cgd 	(void)splhigh();
    201   1.1       cgd 	pal_wrfen(0);
    202   1.1       cgd 	TBIA();
    203   1.1       cgd 	IMB();
    204   1.1       cgd 
    205   1.1       cgd 	/*
    206   1.1       cgd 	 * get address of the restart block, while we the bootstrap
    207   1.1       cgd 	 * mapping is still around.
    208   1.1       cgd 	 */
    209   1.1       cgd 	hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
    210   1.1       cgd 
    211   1.1       cgd 	/*
    212   1.1       cgd 	 * Remember how many cycles there are per microsecond,
    213   1.7       cgd 	 * so that we can use delay().  Round up, for safety.
    214   1.1       cgd 	 */
    215   1.7       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    216   1.1       cgd 
    217   1.1       cgd 	/*
    218   1.1       cgd 	 * Init the PROM interface, so we can use printf
    219   1.1       cgd 	 * until PROM mappings go away in consinit.
    220   1.1       cgd 	 */
    221   1.1       cgd 	init_prom_interface();
    222   1.1       cgd 
    223   1.1       cgd 	/*
    224   1.1       cgd 	 * Point interrupt/exception vectors to our own.
    225   1.1       cgd 	 */
    226   1.1       cgd 	pal_wrent(XentInt, 0);
    227   1.1       cgd 	pal_wrent(XentArith, 1);
    228   1.1       cgd 	pal_wrent(XentMM, 2);
    229   1.1       cgd 	pal_wrent(XentIF, 3);
    230   1.1       cgd 	pal_wrent(XentUna, 4);
    231   1.1       cgd 	pal_wrent(XentSys, 5);
    232   1.1       cgd 
    233   1.1       cgd 	/*
    234   1.1       cgd 	 * Find out how much memory is available, by looking at
    235   1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    236   1.7       cgd 	 * its best to detect things things that have never been seen
    237   1.7       cgd 	 * before...
    238   1.7       cgd 	 *
    239   1.1       cgd 	 * XXX Assumes that the first "system" cluster is the
    240   1.7       cgd 	 * only one we can use. Is the second (etc.) system cluster
    241   1.7       cgd 	 * (if one happens to exist) guaranteed to be contiguous?  or...?
    242   1.1       cgd 	 */
    243   1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    244   1.7       cgd 
    245   1.7       cgd 	/*
    246   1.7       cgd 	 * BEGIN MDDT WEIRDNESS CHECKING
    247   1.7       cgd 	 */
    248   1.7       cgd 	mddtweird = 0;
    249   1.7       cgd 
    250   1.7       cgd #define cnt	 mddtp->mddt_cluster_cnt
    251   1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    252   1.7       cgd 	if (cnt != 2 && cnt != 3) {
    253   1.7       cgd 		printf("WARNING: weird number (%d) of mem clusters\n", cnt);
    254   1.7       cgd 		mddtweird = 1;
    255   1.7       cgd 	} else if (usage(0) != MDDT_PALCODE ||
    256   1.7       cgd 		   usage(1) != MDDT_SYSTEM ||
    257   1.7       cgd 	           (cnt == 3 && usage(2) != MDDT_PALCODE)) {
    258   1.7       cgd 		mddtweird = 1;
    259   1.7       cgd 		printf("WARNING: %d mem clusters, but weird config\n", cnt);
    260   1.7       cgd 	}
    261   1.7       cgd 
    262   1.7       cgd 	for (i = 0; i < cnt; i++) {
    263   1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0) {
    264   1.7       cgd 			printf("WARNING: mem cluster %d has weird usage %lx\n",
    265   1.7       cgd 			    i, usage(i));
    266   1.7       cgd 			mddtweird = 1;
    267   1.7       cgd 		}
    268   1.7       cgd 		if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
    269   1.7       cgd 			printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
    270   1.7       cgd 			mddtweird = 1;
    271   1.7       cgd 		}
    272   1.7       cgd 		/* XXX other things to check? */
    273   1.7       cgd 	}
    274   1.7       cgd #undef cnt
    275   1.7       cgd #undef usage
    276   1.7       cgd 
    277   1.7       cgd 	if (mddtweird) {
    278   1.7       cgd 		printf("\n");
    279   1.7       cgd 		printf("complete memory cluster information:\n");
    280   1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    281   1.2       cgd 			printf("mddt %d:\n", i);
    282   1.2       cgd 			printf("\tpfn %lx\n",
    283   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    284   1.2       cgd 			printf("\tcnt %lx\n",
    285   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    286   1.2       cgd 			printf("\ttest %lx\n",
    287   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    288   1.2       cgd 			printf("\tbva %lx\n",
    289   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    290   1.2       cgd 			printf("\tbpa %lx\n",
    291   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    292   1.2       cgd 			printf("\tbcksum %lx\n",
    293   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    294   1.2       cgd 			printf("\tusage %lx\n",
    295   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    296   1.2       cgd 		}
    297   1.7       cgd 		printf("\n");
    298   1.2       cgd 	}
    299   1.7       cgd 	/*
    300   1.7       cgd 	 * END MDDT WEIRDNESS CHECKING
    301   1.7       cgd 	 */
    302   1.2       cgd 
    303   1.1       cgd 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    304   1.7       cgd 		totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    305   1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    306   1.7       cgd #define	pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
    307   1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0)
    308   1.7       cgd 			unknownmem += pgcnt(i);
    309   1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
    310   1.7       cgd 			resvmem += pgcnt(i);
    311   1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
    312   1.7       cgd 			/*
    313   1.7       cgd 			 * assumes that the system cluster listed is
    314   1.7       cgd 			 * one we're in...
    315   1.7       cgd 			 */
    316   1.7       cgd 			if (physmem != resvmem) {
    317   1.7       cgd 				physmem += pgcnt(i);
    318   1.7       cgd 				firstusablepage =
    319   1.7       cgd 				    mddtp->mddt_clusters[i].mddt_pfn;
    320   1.7       cgd 				lastusablepage = firstusablepage + pgcnt(i) - 1;
    321   1.7       cgd 			} else
    322   1.7       cgd 				unusedmem += pgcnt(i);
    323   1.7       cgd 		}
    324   1.7       cgd #undef usage
    325   1.7       cgd #undef pgcnt
    326   1.1       cgd 	}
    327   1.7       cgd 	if (totalphysmem == 0)
    328   1.1       cgd 		panic("can't happen: system seems to have no memory!");
    329   1.1       cgd 	maxmem = physmem;
    330   1.1       cgd 
    331   1.7       cgd #if 0
    332   1.7       cgd 	printf("totalphysmem = %d\n", totalphysmem);
    333   1.7       cgd 	printf("physmem = %d\n", physmem);
    334   1.7       cgd 	printf("firstusablepage = %d\n", firstusablepage);
    335   1.7       cgd 	printf("lastusablepage = %d\n", lastusablepage);
    336   1.7       cgd 	printf("resvmem = %d\n", resvmem);
    337   1.7       cgd 	printf("unusedmem = %d\n", unusedmem);
    338   1.7       cgd 	printf("unknownmem = %d\n", unknownmem);
    339   1.7       cgd #endif
    340   1.7       cgd 
    341   1.1       cgd 	/*
    342   1.1       cgd 	 * find out this CPU's page size
    343   1.1       cgd 	 */
    344   1.1       cgd 	PAGE_SIZE = hwrpb->rpb_page_size;
    345  1.12       cgd 	if (PAGE_SIZE != 8192)
    346  1.12       cgd 		panic("page size %d != 8192?!", PAGE_SIZE);
    347   1.1       cgd 
    348   1.2       cgd 	v = (caddr_t)alpha_round_page(_end);
    349   1.1       cgd 	/*
    350   1.1       cgd 	 * Init mapping for u page(s) for proc 0
    351   1.1       cgd 	 */
    352   1.1       cgd 	start = v;
    353   1.1       cgd 	curproc->p_addr = proc0paddr = (struct user *)v;
    354   1.1       cgd 	v += UPAGES * NBPG;
    355   1.1       cgd 
    356   1.1       cgd 	/*
    357   1.1       cgd 	 * Find out what hardware we're on, and remember its type name.
    358   1.1       cgd 	 */
    359   1.1       cgd 	cputype = hwrpb->rpb_type;
    360   1.1       cgd 	switch (cputype) {
    361   1.2       cgd #ifdef DEC_3000_500				/* and 400, [6-9]00 */
    362   1.1       cgd 	case ST_DEC_3000_500:
    363   1.8       cgd 		cpu_modelname = dec_3000_500_modelname;
    364   1.8       cgd 		cpu_consinit = dec_3000_500_consinit;
    365   1.8       cgd 		cpu_bootdev = dec_3000_500_bootdev;
    366  1.13       cgd 		cpu_iobus = "tcasic";
    367   1.2       cgd 		break;
    368   1.2       cgd #endif
    369   1.2       cgd 
    370   1.2       cgd #ifdef DEC_3000_300
    371   1.2       cgd 	case ST_DEC_3000_300:
    372   1.8       cgd 		cpu_modelname = dec_3000_300_modelname;
    373   1.8       cgd 		cpu_consinit = dec_3000_300_consinit;
    374   1.8       cgd 		cpu_bootdev = dec_3000_300_bootdev;
    375  1.13       cgd 		cpu_iobus = "tcasic";
    376   1.2       cgd 		break;
    377   1.2       cgd #endif
    378   1.2       cgd 
    379   1.2       cgd #ifdef DEC_2100_A50
    380   1.2       cgd 	case ST_DEC_2100_A50:
    381   1.8       cgd 		cpu_modelname = dec_2100_a50_modelname;
    382   1.8       cgd 		cpu_consinit = dec_2100_a50_consinit;
    383   1.8       cgd 		cpu_bootdev = dec_2100_a50_bootdev;
    384   1.8       cgd 		cpu_iobus = "apecs";
    385   1.2       cgd 		break;
    386   1.2       cgd #endif
    387   1.2       cgd 
    388  1.12       cgd #ifdef DEC_KN20AA
    389  1.12       cgd 	case ST_DEC_KN20AA:
    390  1.12       cgd 		cpu_modelname = dec_kn20aa_modelname;
    391  1.12       cgd 		cpu_consinit = dec_kn20aa_consinit;
    392  1.12       cgd 		cpu_bootdev = dec_kn20aa_bootdev;
    393  1.12       cgd 		cpu_iobus = "cia";
    394  1.12       cgd 		break;
    395  1.12       cgd #endif
    396  1.12       cgd 
    397  1.12       cgd #ifdef DEC_AXPPCI_33
    398  1.12       cgd 	case ST_DEC_AXPPCI_33:
    399  1.12       cgd 		cpu_modelname = dec_axppci_33_modelname;
    400  1.12       cgd 		cpu_consinit = dec_axppci_33_consinit;
    401  1.12       cgd 		cpu_bootdev = dec_axppci_33_bootdev;
    402  1.12       cgd 		cpu_iobus = "lca";
    403  1.12       cgd 		break;
    404  1.12       cgd #endif
    405  1.12       cgd 
    406   1.8       cgd #ifdef DEC_2000_300
    407   1.8       cgd 	case ST_DEC_2000_300:
    408   1.8       cgd 		cpu_modelname = dec_2000_300_modelname;
    409   1.8       cgd 		cpu_consinit = dec_2000_300_consinit;
    410   1.8       cgd 		cpu_bootdev = dec_2000_300_bootdev;
    411   1.8       cgd 		cpu_iobus = "ibus";
    412   1.8       cgd 	XXX DEC 2000/300 NOT SUPPORTED
    413  1.12       cgd 		break;
    414   1.2       cgd #endif
    415   1.2       cgd 
    416  1.12       cgd #ifdef DEC_21000
    417  1.12       cgd 	case ST_DEC_21000:
    418  1.12       cgd 		cpu_modelname = dec_21000_modelname;
    419  1.12       cgd 		cpu_consinit = dec_21000_consinit;
    420  1.12       cgd 		cpu_bootdev = dec_21000_bootdev;
    421  1.12       cgd 		cpu_iobus = "tlsb";
    422  1.12       cgd 		break;
    423   1.2       cgd #endif
    424   1.2       cgd 
    425   1.1       cgd 	default:
    426   1.1       cgd 		if (cputype > nmodel_names)
    427   1.1       cgd 			panic("Unknown system type %d", cputype);
    428   1.1       cgd 		else
    429   1.1       cgd 			panic("Support for %s system type not in kernel.",
    430   1.1       cgd 			    model_names[cputype]);
    431   1.1       cgd 	}
    432   1.8       cgd 
    433   1.8       cgd 	cpu_model = (*cpu_modelname)();
    434   1.2       cgd 	if (cpu_model == NULL)
    435   1.2       cgd 		cpu_model = model_names[cputype];
    436   1.1       cgd 
    437   1.1       cgd #if NLE > 0
    438   1.1       cgd 	/*
    439   1.1       cgd 	 * Grab 128K at the top of physical memory for the lance chip
    440   1.1       cgd 	 * on machines where it does dma through the I/O ASIC.
    441   1.1       cgd 	 * It must be physically contiguous and aligned on a 128K boundary.
    442   1.1       cgd 	 */
    443   1.1       cgd 	if (cputype == ST_DEC_3000_500 ||
    444   1.1       cgd 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    445   1.7       cgd 		lastusablepage -= btoc(128 * 1024);
    446   1.7       cgd 		le_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
    447   1.1       cgd 	}
    448   1.1       cgd #endif /* NLE */
    449   1.1       cgd 
    450   1.1       cgd 	/*
    451   1.1       cgd 	 * Initialize error message buffer (at end of core).
    452   1.1       cgd 	 */
    453   1.7       cgd 	lastusablepage -= btoc(sizeof (struct msgbuf));
    454   1.7       cgd 	msgbufp = (struct msgbuf *)phystok0seg(ctob(lastusablepage + 1));
    455   1.1       cgd 	msgbufmapped = 1;
    456   1.1       cgd 
    457   1.1       cgd 	/*
    458   1.1       cgd 	 * Allocate space for system data structures.
    459   1.1       cgd 	 * The first available kernel virtual address is in "v".
    460   1.1       cgd 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
    461   1.1       cgd 	 *
    462   1.1       cgd 	 * These data structures are allocated here instead of cpu_startup()
    463   1.1       cgd 	 * because physical memory is directly addressable. We don't have
    464   1.1       cgd 	 * to map these into virtual address space.
    465   1.1       cgd 	 */
    466   1.1       cgd #define valloc(name, type, num) \
    467  1.12       cgd 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    468   1.1       cgd #define valloclim(name, type, num, lim) \
    469  1.12       cgd 	    (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
    470   1.1       cgd #ifdef REAL_CLISTS
    471   1.1       cgd 	valloc(cfree, struct cblock, nclist);
    472   1.1       cgd #endif
    473   1.1       cgd 	valloc(callout, struct callout, ncallout);
    474   1.1       cgd 	valloc(swapmap, struct map, nswapmap = maxproc * 2);
    475   1.1       cgd #ifdef SYSVSHM
    476   1.1       cgd 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    477   1.1       cgd #endif
    478   1.1       cgd #ifdef SYSVSEM
    479   1.1       cgd 	valloc(sema, struct semid_ds, seminfo.semmni);
    480   1.1       cgd 	valloc(sem, struct sem, seminfo.semmns);
    481   1.1       cgd 	/* This is pretty disgusting! */
    482   1.1       cgd 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    483   1.1       cgd #endif
    484   1.1       cgd #ifdef SYSVMSG
    485   1.1       cgd 	valloc(msgpool, char, msginfo.msgmax);
    486   1.1       cgd 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    487   1.1       cgd 	valloc(msghdrs, struct msg, msginfo.msgtql);
    488   1.1       cgd 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    489   1.1       cgd #endif
    490   1.1       cgd 
    491   1.1       cgd 	/*
    492   1.1       cgd 	 * Determine how many buffers to allocate.
    493   1.1       cgd 	 * We allocate the BSD standard of 10% of memory for the first
    494   1.1       cgd 	 * 2 Meg, and 5% of remaining memory for buffer space.  Insure a
    495   1.1       cgd 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    496   1.1       cgd 	 * headers as file i/o buffers.
    497   1.1       cgd 	 */
    498   1.1       cgd 	if (bufpages == 0)
    499   1.7       cgd 		bufpages = (btoc(2 * 1024 * 1024) + physmem) /
    500   1.1       cgd 		    (20 * CLSIZE);
    501   1.1       cgd 	if (nbuf == 0) {
    502   1.1       cgd 		nbuf = bufpages;
    503   1.1       cgd 		if (nbuf < 16)
    504   1.1       cgd 			nbuf = 16;
    505   1.1       cgd 	}
    506   1.1       cgd 	if (nswbuf == 0) {
    507   1.1       cgd 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    508   1.1       cgd 		if (nswbuf > 256)
    509   1.1       cgd 			nswbuf = 256;		/* sanity */
    510   1.1       cgd 	}
    511   1.1       cgd 	valloc(swbuf, struct buf, nswbuf);
    512   1.1       cgd 	valloc(buf, struct buf, nbuf);
    513   1.1       cgd 
    514   1.1       cgd 	/*
    515   1.1       cgd 	 * Clear allocated memory.
    516   1.1       cgd 	 */
    517   1.1       cgd 	bzero(start, v - start);
    518   1.1       cgd 
    519   1.1       cgd 	/*
    520   1.1       cgd 	 * Initialize the virtual memory system, and set the
    521   1.1       cgd 	 * page table base register in proc 0's PCB.
    522   1.1       cgd 	 */
    523   1.1       cgd 	pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
    524   1.1       cgd 
    525   1.1       cgd 	/*
    526   1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    527   1.3       cgd 	 * address.
    528   1.3       cgd 	 */
    529   1.3       cgd 	proc0.p_md.md_pcbpaddr =
    530   1.3       cgd 	    (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
    531   1.3       cgd 
    532   1.3       cgd 	/*
    533   1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    534   1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    535   1.3       cgd 	 */
    536   1.3       cgd 	proc0paddr->u_pcb.pcb_ksp =
    537   1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    538   1.3       cgd 	proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
    539   1.1       cgd 
    540   1.1       cgd 	/*
    541   1.8       cgd 	 * figure out what arguments we have
    542   1.8       cgd 	 */
    543   1.8       cgd 	switch (argc) {
    544   1.8       cgd 	default:
    545   1.8       cgd 		printf("weird number of arguments from boot: %d\n", argc);
    546   1.8       cgd 		if (argc < 1)
    547   1.8       cgd 			break;
    548   1.8       cgd 		/* FALLTHRU */
    549   1.8       cgd 	case 4:
    550   1.8       cgd 		boot_dev = argv[3];
    551   1.8       cgd 		/* FALLTHRU */
    552   1.8       cgd 	case 3:
    553   1.8       cgd 		boot_console = argv[2];
    554   1.8       cgd 		/* FALLTHRU */
    555   1.8       cgd 	case 2:
    556   1.8       cgd 		boot_flags = argv[1];
    557   1.8       cgd 		/* FALLTHRU */
    558   1.8       cgd 	case 1:
    559   1.8       cgd 		boot_file = argv[0];
    560   1.8       cgd 		/* FALLTHRU */
    561   1.8       cgd 	}
    562   1.8       cgd 
    563   1.8       cgd 	/*
    564   1.1       cgd 	 * Look at arguments and compute bootdev.
    565   1.8       cgd 	 * XXX NOT HERE.
    566   1.1       cgd 	 */
    567   1.8       cgd #if 0
    568   1.8       cgd 	{							/* XXX */
    569   1.8       cgd 		extern dev_t bootdev;				/* XXX */
    570   1.8       cgd 		bootdev = (*cpu_bootdev)(boot_dev);
    571   1.8       cgd 	}							/* XXX */
    572   1.8       cgd #endif
    573   1.1       cgd 
    574   1.1       cgd 	/*
    575   1.1       cgd 	 * Look at arguments passed to us and compute boothowto.
    576   1.1       cgd 	 */
    577   1.8       cgd 	boothowto = RB_SINGLE;
    578   1.1       cgd #ifdef GENERIC
    579   1.8       cgd 	boothowto |= RB_ASKNAME;
    580   1.1       cgd #endif
    581   1.1       cgd #ifdef KADB
    582   1.1       cgd 	boothowto |= RB_KDB;
    583   1.1       cgd #endif
    584   1.8       cgd 	for (p = boot_flags; p && *p != '\0'; p++) {
    585   1.8       cgd 		switch (*p) {
    586   1.8       cgd 		case 'a': /* autoboot */
    587   1.8       cgd 		case 'A': /* DEC's notion of autoboot */
    588   1.8       cgd 			boothowto &= ~RB_SINGLE;
    589   1.8       cgd 			break;
    590   1.8       cgd 
    591   1.8       cgd 		case 'd': /* use compiled in default root */
    592   1.8       cgd 			boothowto |= RB_DFLTROOT;
    593   1.8       cgd 			break;
    594   1.8       cgd 
    595   1.8       cgd 		case 'm': /* mini root present in memory */
    596   1.8       cgd 			boothowto |= RB_MINIROOT;
    597   1.8       cgd 			break;
    598   1.8       cgd 
    599   1.8       cgd 		case 'n': /* ask for names */
    600   1.8       cgd 			boothowto |= RB_ASKNAME;
    601   1.8       cgd 			break;
    602   1.1       cgd 
    603   1.8       cgd 		case 'N': /* don't ask for names */
    604   1.8       cgd 			boothowto &= ~RB_ASKNAME;
    605   1.1       cgd 		}
    606   1.1       cgd 	}
    607   1.1       cgd 
    608   1.7       cgd 	/*
    609   1.7       cgd 	 * Figure out the number of cpus in the box, from RPB fields.
    610   1.7       cgd 	 * Really.  We mean it.
    611   1.7       cgd 	 */
    612   1.7       cgd 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    613   1.7       cgd 		struct pcs *pcsp;
    614   1.7       cgd 
    615   1.7       cgd 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    616   1.7       cgd 		    (i * hwrpb->rpb_pcs_size));
    617   1.7       cgd 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    618   1.7       cgd 			ncpus++;
    619   1.7       cgd 	}
    620   1.7       cgd 
    621   1.1       cgd 	return (0);
    622   1.1       cgd }
    623   1.1       cgd 
    624   1.1       cgd consinit()
    625   1.1       cgd {
    626   1.1       cgd 
    627  1.12       cgd 	(*cpu_consinit)(boot_console);
    628   1.1       cgd 	pmap_unmap_prom();
    629   1.1       cgd }
    630   1.1       cgd 
    631   1.1       cgd cpu_startup()
    632   1.1       cgd {
    633   1.1       cgd 	register unsigned i;
    634   1.1       cgd 	register caddr_t v;
    635   1.1       cgd 	int base, residual;
    636   1.1       cgd 	vm_offset_t minaddr, maxaddr;
    637   1.1       cgd 	vm_size_t size;
    638   1.1       cgd #ifdef DEBUG
    639   1.1       cgd 	extern int pmapdebug;
    640   1.1       cgd 	int opmapdebug = pmapdebug;
    641   1.1       cgd 
    642   1.1       cgd 	pmapdebug = 0;
    643   1.1       cgd #endif
    644   1.1       cgd 
    645   1.1       cgd 	/*
    646   1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    647   1.1       cgd 	 */
    648   1.1       cgd 	printf(version);
    649   1.1       cgd 	identifycpu();
    650   1.7       cgd 	printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
    651   1.7       cgd 	    ctob(totalphysmem), ctob(resvmem), ctob(physmem));
    652   1.7       cgd 	if (unusedmem)
    653   1.7       cgd 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    654   1.7       cgd 	if (unknownmem)
    655   1.7       cgd 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    656   1.7       cgd 		    ctob(unknownmem));
    657   1.1       cgd 
    658   1.1       cgd 	/*
    659   1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    660   1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    661   1.1       cgd 	 * and usually occupy more virtual memory than physical.
    662   1.1       cgd 	 */
    663   1.1       cgd 	size = MAXBSIZE * nbuf;
    664   1.1       cgd 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    665   1.1       cgd 	    &maxaddr, size, TRUE);
    666   1.1       cgd 	minaddr = (vm_offset_t)buffers;
    667   1.1       cgd 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    668   1.1       cgd 			&minaddr, size, FALSE) != KERN_SUCCESS)
    669   1.1       cgd 		panic("startup: cannot allocate buffers");
    670   1.1       cgd 	base = bufpages / nbuf;
    671   1.1       cgd 	residual = bufpages % nbuf;
    672   1.1       cgd 	for (i = 0; i < nbuf; i++) {
    673   1.1       cgd 		vm_size_t curbufsize;
    674   1.1       cgd 		vm_offset_t curbuf;
    675   1.1       cgd 
    676   1.1       cgd 		/*
    677   1.1       cgd 		 * First <residual> buffers get (base+1) physical pages
    678   1.1       cgd 		 * allocated for them.  The rest get (base) physical pages.
    679   1.1       cgd 		 *
    680   1.1       cgd 		 * The rest of each buffer occupies virtual space,
    681   1.1       cgd 		 * but has no physical memory allocated for it.
    682   1.1       cgd 		 */
    683   1.1       cgd 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    684   1.1       cgd 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    685   1.1       cgd 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    686   1.1       cgd 		vm_map_simplify(buffer_map, curbuf);
    687   1.1       cgd 	}
    688   1.1       cgd 	/*
    689   1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    690   1.1       cgd 	 * limits the number of processes exec'ing at any time.
    691   1.1       cgd 	 */
    692   1.1       cgd 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    693   1.1       cgd 				 16 * NCARGS, TRUE);
    694   1.1       cgd 
    695   1.1       cgd 	/*
    696   1.1       cgd 	 * Allocate a submap for physio
    697   1.1       cgd 	 */
    698   1.1       cgd 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    699   1.1       cgd 				 VM_PHYS_SIZE, TRUE);
    700   1.1       cgd 
    701   1.1       cgd 	/*
    702   1.1       cgd 	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
    703   1.1       cgd 	 * we use the more space efficient malloc in place of kmem_alloc.
    704   1.1       cgd 	 */
    705   1.1       cgd 	mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
    706   1.1       cgd 	    M_MBUF, M_NOWAIT);
    707   1.1       cgd 	bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
    708   1.1       cgd 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    709   1.1       cgd 	    VM_MBUF_SIZE, FALSE);
    710   1.1       cgd 	/*
    711   1.1       cgd 	 * Initialize callouts
    712   1.1       cgd 	 */
    713   1.1       cgd 	callfree = callout;
    714   1.1       cgd 	for (i = 1; i < ncallout; i++)
    715   1.1       cgd 		callout[i-1].c_next = &callout[i];
    716   1.1       cgd 	callout[i-1].c_next = NULL;
    717   1.1       cgd 
    718   1.1       cgd #ifdef DEBUG
    719   1.1       cgd 	pmapdebug = opmapdebug;
    720   1.1       cgd #endif
    721   1.1       cgd 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
    722   1.1       cgd 	printf("using %ld buffers containing %ld bytes of memory\n",
    723   1.1       cgd 		(long)nbuf, (long)(bufpages * CLBYTES));
    724   1.1       cgd 
    725   1.1       cgd 	/*
    726   1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
    727   1.1       cgd 	 */
    728   1.1       cgd 	bufinit();
    729   1.1       cgd 
    730   1.1       cgd 	/*
    731   1.1       cgd 	 * Configure the system.
    732   1.1       cgd 	 */
    733   1.1       cgd 	configure();
    734   1.1       cgd }
    735   1.1       cgd 
    736   1.1       cgd identifycpu()
    737   1.1       cgd {
    738   1.1       cgd 
    739   1.7       cgd 	/*
    740   1.7       cgd 	 * print out CPU identification information.
    741   1.7       cgd 	 */
    742   1.7       cgd 	printf("%s, %dMHz\n", cpu_model,
    743   1.7       cgd 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
    744   1.7       cgd 	printf("%d byte page size, %d processor%s.\n",
    745   1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    746   1.7       cgd #if 0
    747   1.7       cgd 	/* this isn't defined for any systems that we run on? */
    748   1.7       cgd 	printf("serial number 0x%lx 0x%lx\n",
    749   1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    750   1.7       cgd 
    751   1.7       cgd 	/* and these aren't particularly useful! */
    752   1.1       cgd 	printf("variation: 0x%lx, revision 0x%lx\n",
    753   1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    754   1.7       cgd #endif
    755   1.1       cgd }
    756   1.1       cgd 
    757   1.1       cgd int	waittime = -1;
    758   1.7       cgd struct pcb dumppcb;
    759   1.1       cgd 
    760   1.1       cgd boot(howto)
    761   1.1       cgd 	int howto;
    762   1.1       cgd {
    763   1.1       cgd 	extern int cold;
    764   1.1       cgd 
    765   1.1       cgd 	/* If system is cold, just halt. */
    766   1.1       cgd 	if (cold) {
    767   1.1       cgd 		howto |= RB_HALT;
    768   1.1       cgd 		goto haltsys;
    769   1.1       cgd 	}
    770   1.1       cgd 
    771   1.7       cgd 	boothowto = howto;
    772   1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
    773   1.1       cgd 		waittime = 0;
    774   1.7       cgd 		vfs_shutdown();
    775   1.1       cgd 		/*
    776   1.1       cgd 		 * If we've been adjusting the clock, the todr
    777   1.1       cgd 		 * will be out of synch; adjust it now.
    778   1.1       cgd 		 */
    779   1.1       cgd 		resettodr();
    780   1.1       cgd 	}
    781   1.1       cgd 
    782   1.1       cgd 	/* Disable interrupts. */
    783   1.1       cgd 	splhigh();
    784   1.1       cgd 
    785   1.7       cgd 	/* If rebooting and a dump is requested do it. */
    786   1.7       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
    787   1.7       cgd 		savectx(&dumppcb, 0);
    788   1.1       cgd 		dumpsys();
    789   1.7       cgd 	}
    790   1.6       cgd 
    791  1.12       cgd haltsys:
    792  1.12       cgd 
    793   1.6       cgd 	/* run any shutdown hooks */
    794   1.6       cgd 	doshutdownhooks();
    795   1.1       cgd 
    796   1.7       cgd #ifdef BOOTKEY
    797   1.7       cgd 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
    798   1.7       cgd 	cngetc();
    799   1.7       cgd 	printf("\n");
    800   1.7       cgd #endif
    801   1.7       cgd 
    802   1.1       cgd 	/* Finally, halt/reboot the system. */
    803   1.1       cgd 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
    804   1.1       cgd 	prom_halt(howto & RB_HALT);
    805   1.1       cgd 	/*NOTREACHED*/
    806   1.1       cgd }
    807   1.1       cgd 
    808   1.7       cgd /*
    809   1.7       cgd  * These variables are needed by /sbin/savecore
    810   1.7       cgd  */
    811   1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
    812   1.7       cgd int 	dumpsize = 0;		/* pages */
    813   1.7       cgd long	dumplo = 0; 		/* blocks */
    814   1.7       cgd 
    815   1.7       cgd /*
    816   1.7       cgd  * This is called by configure to set dumplo and dumpsize.
    817   1.7       cgd  * Dumps always skip the first CLBYTES of disk space
    818   1.7       cgd  * in case there might be a disk label stored there.
    819   1.7       cgd  * If there is extra space, put dump at the end to
    820   1.7       cgd  * reduce the chance that swapping trashes it.
    821   1.7       cgd  */
    822   1.7       cgd void
    823   1.7       cgd dumpconf()
    824   1.7       cgd {
    825   1.7       cgd 	int nblks;	/* size of dump area */
    826   1.7       cgd 	int maj;
    827   1.7       cgd 
    828   1.7       cgd 	if (dumpdev == NODEV)
    829   1.7       cgd 		return;
    830   1.7       cgd 	maj = major(dumpdev);
    831   1.7       cgd 	if (maj < 0 || maj >= nblkdev)
    832   1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
    833   1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
    834   1.7       cgd 		return;
    835   1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
    836   1.7       cgd 	if (nblks <= ctod(1))
    837   1.7       cgd 		return;
    838   1.7       cgd 
    839   1.7       cgd 	/* XXX XXX XXX STARTING MEMORY LOCATION */
    840   1.7       cgd 	dumpsize = physmem;
    841   1.7       cgd 
    842   1.7       cgd 	/* Always skip the first CLBYTES, in case there is a label there. */
    843   1.7       cgd 	if (dumplo < ctod(1))
    844   1.7       cgd 		dumplo = ctod(1);
    845   1.7       cgd 
    846   1.7       cgd 	/* Put dump at end of partition, and make it fit. */
    847   1.7       cgd 	if (dumpsize > dtoc(nblks - dumplo))
    848   1.7       cgd 		dumpsize = dtoc(nblks - dumplo);
    849   1.7       cgd 	if (dumplo < nblks - ctod(dumpsize))
    850   1.7       cgd 		dumplo = nblks - ctod(dumpsize);
    851   1.7       cgd }
    852   1.7       cgd 
    853   1.7       cgd /*
    854   1.7       cgd  * Doadump comes here after turning off memory management and
    855   1.7       cgd  * getting on the dump stack, either when called above, or by
    856   1.7       cgd  * the auto-restart code.
    857   1.7       cgd  */
    858   1.7       cgd void
    859   1.7       cgd dumpsys()
    860   1.7       cgd {
    861   1.7       cgd 
    862   1.7       cgd 	msgbufmapped = 0;
    863   1.7       cgd 	if (dumpdev == NODEV)
    864   1.7       cgd 		return;
    865   1.7       cgd 	if (dumpsize == 0) {
    866   1.7       cgd 		dumpconf();
    867   1.7       cgd 		if (dumpsize == 0)
    868   1.7       cgd 			return;
    869   1.7       cgd 	}
    870   1.7       cgd 	printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
    871   1.7       cgd 
    872   1.7       cgd 	printf("dump ");
    873   1.7       cgd 	switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
    874   1.7       cgd 
    875   1.7       cgd 	case ENXIO:
    876   1.7       cgd 		printf("device bad\n");
    877   1.7       cgd 		break;
    878   1.7       cgd 
    879   1.7       cgd 	case EFAULT:
    880   1.7       cgd 		printf("device not ready\n");
    881   1.7       cgd 		break;
    882   1.7       cgd 
    883   1.7       cgd 	case EINVAL:
    884   1.7       cgd 		printf("area improper\n");
    885   1.7       cgd 		break;
    886   1.7       cgd 
    887   1.7       cgd 	case EIO:
    888   1.7       cgd 		printf("i/o error\n");
    889   1.7       cgd 		break;
    890   1.7       cgd 
    891   1.7       cgd 	case EINTR:
    892   1.7       cgd 		printf("aborted from console\n");
    893   1.7       cgd 		break;
    894   1.7       cgd 
    895   1.7       cgd 	default:
    896   1.7       cgd 		printf("succeeded\n");
    897   1.7       cgd 		break;
    898   1.7       cgd 	}
    899   1.7       cgd 	printf("\n\n");
    900   1.7       cgd 	delay(1000);
    901   1.7       cgd }
    902   1.7       cgd 
    903   1.1       cgd void
    904   1.1       cgd frametoreg(framep, regp)
    905   1.1       cgd 	struct trapframe *framep;
    906   1.1       cgd 	struct reg *regp;
    907   1.1       cgd {
    908   1.1       cgd 
    909   1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
    910   1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
    911   1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
    912   1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
    913   1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
    914   1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
    915   1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
    916   1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
    917   1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
    918   1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
    919   1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
    920   1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
    921   1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
    922   1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
    923   1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
    924   1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
    925   1.1       cgd 	regp->r_regs[R_A0] = framep->tf_a0;
    926   1.1       cgd 	regp->r_regs[R_A1] = framep->tf_a1;
    927   1.1       cgd 	regp->r_regs[R_A2] = framep->tf_a2;
    928   1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
    929   1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
    930   1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
    931   1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
    932   1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
    933   1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
    934   1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
    935   1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
    936   1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
    937   1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
    938   1.1       cgd 	regp->r_regs[R_GP] = framep->tf_gp;
    939   1.1       cgd 	regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
    940   1.1       cgd 	regp->r_regs[R_ZERO] = 0;
    941   1.1       cgd }
    942   1.1       cgd 
    943   1.1       cgd void
    944   1.1       cgd regtoframe(regp, framep)
    945   1.1       cgd 	struct reg *regp;
    946   1.1       cgd 	struct trapframe *framep;
    947   1.1       cgd {
    948   1.1       cgd 
    949   1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
    950   1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
    951   1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
    952   1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
    953   1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
    954   1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
    955   1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
    956   1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
    957   1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
    958   1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
    959   1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
    960   1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
    961   1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
    962   1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
    963   1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
    964   1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
    965   1.1       cgd 	framep->tf_a0 = regp->r_regs[R_A0];
    966   1.1       cgd 	framep->tf_a1 = regp->r_regs[R_A1];
    967   1.1       cgd 	framep->tf_a2 = regp->r_regs[R_A2];
    968   1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
    969   1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
    970   1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
    971   1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
    972   1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
    973   1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
    974   1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
    975   1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
    976   1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
    977   1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
    978   1.1       cgd 	framep->tf_gp = regp->r_regs[R_GP];
    979   1.1       cgd 	framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
    980   1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
    981   1.1       cgd }
    982   1.1       cgd 
    983   1.1       cgd void
    984   1.1       cgd printregs(regp)
    985   1.1       cgd 	struct reg *regp;
    986   1.1       cgd {
    987   1.1       cgd 	int i;
    988   1.1       cgd 
    989   1.1       cgd 	for (i = 0; i < 32; i++)
    990   1.1       cgd 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
    991   1.1       cgd 		   i & 1 ? "\n" : "\t");
    992   1.1       cgd }
    993   1.1       cgd 
    994   1.1       cgd void
    995   1.1       cgd regdump(framep)
    996   1.1       cgd 	struct trapframe *framep;
    997   1.1       cgd {
    998   1.1       cgd 	struct reg reg;
    999   1.1       cgd 
   1000   1.1       cgd 	frametoreg(framep, &reg);
   1001   1.1       cgd 	printf("REGISTERS:\n");
   1002   1.1       cgd 	printregs(&reg);
   1003   1.1       cgd }
   1004   1.1       cgd 
   1005   1.1       cgd #ifdef DEBUG
   1006   1.1       cgd int sigdebug = 0;
   1007   1.1       cgd int sigpid = 0;
   1008   1.1       cgd #define	SDB_FOLLOW	0x01
   1009   1.1       cgd #define	SDB_KSTACK	0x02
   1010   1.1       cgd #endif
   1011   1.1       cgd 
   1012   1.1       cgd /*
   1013   1.1       cgd  * Send an interrupt to process.
   1014   1.1       cgd  */
   1015   1.1       cgd void
   1016   1.1       cgd sendsig(catcher, sig, mask, code)
   1017   1.1       cgd 	sig_t catcher;
   1018   1.1       cgd 	int sig, mask;
   1019   1.1       cgd 	u_long code;
   1020   1.1       cgd {
   1021   1.1       cgd 	struct proc *p = curproc;
   1022   1.1       cgd 	struct sigcontext *scp, ksc;
   1023   1.1       cgd 	struct trapframe *frame;
   1024   1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1025   1.1       cgd 	int oonstack, fsize, rndfsize;
   1026   1.1       cgd 	extern char sigcode[], esigcode[];
   1027   1.1       cgd 	extern struct proc *fpcurproc;
   1028   1.1       cgd 
   1029   1.1       cgd 	frame = p->p_md.md_tf;
   1030   1.9   mycroft 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1031   1.1       cgd 	fsize = sizeof ksc;
   1032   1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1033   1.1       cgd 	/*
   1034   1.1       cgd 	 * Allocate and validate space for the signal handler
   1035   1.1       cgd 	 * context. Note that if the stack is in P0 space, the
   1036   1.1       cgd 	 * call to grow() is a nop, and the useracc() check
   1037   1.1       cgd 	 * will fail if the process has not already allocated
   1038   1.1       cgd 	 * the space with a `brk'.
   1039   1.1       cgd 	 */
   1040   1.1       cgd 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1041   1.1       cgd 	    (psp->ps_sigonstack & sigmask(sig))) {
   1042   1.1       cgd 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_base +
   1043   1.1       cgd 		    psp->ps_sigstk.ss_size - rndfsize);
   1044   1.9   mycroft 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1045   1.1       cgd 	} else
   1046   1.1       cgd 		scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
   1047   1.1       cgd 		    rndfsize);
   1048   1.1       cgd 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1049   1.1       cgd 		(void)grow(p, (u_long)scp);
   1050   1.1       cgd #ifdef DEBUG
   1051   1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1052   1.1       cgd 		printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
   1053   1.1       cgd 		    sig, &oonstack, scp);
   1054   1.1       cgd #endif
   1055   1.1       cgd 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1056   1.1       cgd #ifdef DEBUG
   1057   1.1       cgd 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1058   1.1       cgd 			printf("sendsig(%d): useracc failed on sig %d\n",
   1059   1.1       cgd 			    p->p_pid, sig);
   1060   1.1       cgd #endif
   1061   1.1       cgd 		/*
   1062   1.1       cgd 		 * Process has trashed its stack; give it an illegal
   1063   1.1       cgd 		 * instruction to halt it in its tracks.
   1064   1.1       cgd 		 */
   1065   1.1       cgd 		SIGACTION(p, SIGILL) = SIG_DFL;
   1066   1.1       cgd 		sig = sigmask(SIGILL);
   1067   1.1       cgd 		p->p_sigignore &= ~sig;
   1068   1.1       cgd 		p->p_sigcatch &= ~sig;
   1069   1.1       cgd 		p->p_sigmask &= ~sig;
   1070   1.1       cgd 		psignal(p, SIGILL);
   1071   1.1       cgd 		return;
   1072   1.1       cgd 	}
   1073   1.1       cgd 
   1074   1.1       cgd 	/*
   1075   1.1       cgd 	 * Build the signal context to be used by sigreturn.
   1076   1.1       cgd 	 */
   1077   1.1       cgd 	ksc.sc_onstack = oonstack;
   1078   1.1       cgd 	ksc.sc_mask = mask;
   1079   1.1       cgd 	ksc.sc_pc = frame->tf_pc;
   1080   1.1       cgd 	ksc.sc_ps = frame->tf_ps;
   1081   1.1       cgd 
   1082   1.1       cgd 	/* copy the registers. */
   1083   1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1084   1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1085   1.1       cgd 
   1086   1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1087   1.1       cgd 	if (p == fpcurproc) {
   1088   1.1       cgd 		pal_wrfen(1);
   1089   1.1       cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1090   1.1       cgd 		pal_wrfen(0);
   1091   1.1       cgd 		fpcurproc = NULL;
   1092   1.1       cgd 	}
   1093   1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1094   1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1095   1.1       cgd 	    sizeof(struct fpreg));
   1096   1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1097   1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1098   1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1099   1.1       cgd 
   1100   1.1       cgd 
   1101   1.1       cgd #ifdef COMPAT_OSF1
   1102   1.1       cgd 	/*
   1103   1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1104   1.1       cgd 	 */
   1105   1.1       cgd #endif
   1106   1.1       cgd 
   1107   1.1       cgd 	/*
   1108   1.1       cgd 	 * copy the frame out to userland.
   1109   1.1       cgd 	 */
   1110   1.1       cgd 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1111   1.1       cgd #ifdef DEBUG
   1112   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1113   1.1       cgd 		printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
   1114   1.1       cgd 		    scp, code);
   1115   1.1       cgd #endif
   1116   1.1       cgd 
   1117   1.1       cgd 	/*
   1118   1.1       cgd 	 * Set up the registers to return to sigcode.
   1119   1.1       cgd 	 */
   1120   1.1       cgd 	frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1121   1.1       cgd 	frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
   1122   1.1       cgd 	frame->tf_a0 = sig;
   1123   1.1       cgd 	frame->tf_a1 = code;
   1124   1.1       cgd 	frame->tf_a2 = (u_int64_t)scp;
   1125   1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1126   1.1       cgd 
   1127   1.1       cgd #ifdef DEBUG
   1128   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1129   1.1       cgd 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1130   1.1       cgd 		    frame->tf_pc, frame->tf_regs[FRAME_A3]);
   1131   1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1132   1.1       cgd 		printf("sendsig(%d): sig %d returns\n",
   1133   1.1       cgd 		    p->p_pid, sig);
   1134   1.1       cgd #endif
   1135   1.1       cgd }
   1136   1.1       cgd 
   1137   1.1       cgd /*
   1138   1.1       cgd  * System call to cleanup state after a signal
   1139   1.1       cgd  * has been taken.  Reset signal mask and
   1140   1.1       cgd  * stack state from context left by sendsig (above).
   1141   1.1       cgd  * Return to previous pc and psl as specified by
   1142   1.1       cgd  * context left by sendsig. Check carefully to
   1143   1.1       cgd  * make sure that the user has not modified the
   1144   1.1       cgd  * psl to gain improper priviledges or to cause
   1145   1.1       cgd  * a machine fault.
   1146   1.1       cgd  */
   1147   1.1       cgd /* ARGSUSED */
   1148  1.11   mycroft int
   1149  1.11   mycroft sys_sigreturn(p, v, retval)
   1150   1.1       cgd 	struct proc *p;
   1151  1.10   thorpej 	void *v;
   1152  1.10   thorpej 	register_t *retval;
   1153  1.10   thorpej {
   1154  1.11   mycroft 	struct sys_sigreturn_args /* {
   1155   1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1156  1.10   thorpej 	} */ *uap = v;
   1157   1.1       cgd 	struct sigcontext *scp, ksc;
   1158   1.1       cgd 	extern struct proc *fpcurproc;
   1159   1.1       cgd 
   1160   1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1161   1.1       cgd #ifdef DEBUG
   1162   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1163   1.1       cgd 	    printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
   1164   1.1       cgd #endif
   1165   1.1       cgd 
   1166   1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1167   1.1       cgd 		return (EINVAL);
   1168   1.1       cgd 
   1169   1.1       cgd 	/*
   1170   1.1       cgd 	 * Test and fetch the context structure.
   1171   1.1       cgd 	 * We grab it all at once for speed.
   1172   1.1       cgd 	 */
   1173   1.1       cgd 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1174   1.1       cgd 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1175   1.1       cgd 		return (EINVAL);
   1176   1.1       cgd 
   1177   1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1178   1.1       cgd 		return (EINVAL);
   1179   1.1       cgd 	/*
   1180   1.1       cgd 	 * Restore the user-supplied information
   1181   1.1       cgd 	 */
   1182   1.1       cgd 	if (ksc.sc_onstack)
   1183   1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1184   1.1       cgd 	else
   1185   1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1186   1.1       cgd 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1187   1.1       cgd 
   1188   1.1       cgd 	p->p_md.md_tf->tf_pc = ksc.sc_pc;
   1189   1.1       cgd 	p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
   1190   1.1       cgd 
   1191   1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1192   1.1       cgd 
   1193   1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1194   1.1       cgd 	if (p == fpcurproc)
   1195   1.1       cgd 		fpcurproc = NULL;
   1196   1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1197   1.1       cgd 	    sizeof(struct fpreg));
   1198   1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1199   1.1       cgd 
   1200   1.1       cgd #ifdef DEBUG
   1201   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1202   1.1       cgd 		printf("sigreturn(%d): returns\n", p->p_pid);
   1203   1.1       cgd #endif
   1204   1.1       cgd 	return (EJUSTRETURN);
   1205   1.1       cgd }
   1206   1.1       cgd 
   1207   1.1       cgd /*
   1208   1.1       cgd  * machine dependent system variables.
   1209   1.1       cgd  */
   1210   1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1211   1.1       cgd 	int *name;
   1212   1.1       cgd 	u_int namelen;
   1213   1.1       cgd 	void *oldp;
   1214   1.1       cgd 	size_t *oldlenp;
   1215   1.1       cgd 	void *newp;
   1216   1.1       cgd 	size_t newlen;
   1217   1.1       cgd 	struct proc *p;
   1218   1.1       cgd {
   1219   1.1       cgd 	dev_t consdev;
   1220   1.1       cgd 
   1221   1.1       cgd 	/* all sysctl names at this level are terminal */
   1222   1.1       cgd 	if (namelen != 1)
   1223   1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1224   1.1       cgd 
   1225   1.1       cgd 	switch (name[0]) {
   1226   1.1       cgd 	case CPU_CONSDEV:
   1227   1.1       cgd 		if (cn_tab != NULL)
   1228   1.1       cgd 			consdev = cn_tab->cn_dev;
   1229   1.1       cgd 		else
   1230   1.1       cgd 			consdev = NODEV;
   1231   1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1232   1.1       cgd 			sizeof consdev));
   1233   1.1       cgd 	default:
   1234   1.1       cgd 		return (EOPNOTSUPP);
   1235   1.1       cgd 	}
   1236   1.1       cgd 	/* NOTREACHED */
   1237   1.1       cgd }
   1238   1.1       cgd 
   1239   1.1       cgd /*
   1240   1.1       cgd  * Set registers on exec.
   1241   1.1       cgd  */
   1242   1.1       cgd void
   1243   1.5  christos setregs(p, pack, stack, retval)
   1244   1.1       cgd 	register struct proc *p;
   1245   1.5  christos 	struct exec_package *pack;
   1246   1.1       cgd 	u_long stack;
   1247   1.1       cgd 	register_t *retval;
   1248   1.1       cgd {
   1249   1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1250   1.1       cgd 	int i;
   1251   1.1       cgd 	extern struct proc *fpcurproc;
   1252   1.1       cgd 
   1253   1.1       cgd #ifdef DEBUG
   1254   1.1       cgd 	for (i = 0; i < FRAME_NSAVEREGS; i++)
   1255   1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1256   1.1       cgd 	tfp->tf_gp = 0xbabefacedeadbeef;
   1257   1.1       cgd 	tfp->tf_a0 = 0xbabefacedeadbeef;
   1258   1.1       cgd 	tfp->tf_a1 = 0xbabefacedeadbeef;
   1259   1.1       cgd 	tfp->tf_a2 = 0xbabefacedeadbeef;
   1260   1.1       cgd #else
   1261   1.1       cgd 	bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
   1262   1.1       cgd 	tfp->tf_gp = 0;
   1263   1.1       cgd 	tfp->tf_a0 = 0;
   1264   1.1       cgd 	tfp->tf_a1 = 0;
   1265   1.1       cgd 	tfp->tf_a2 = 0;
   1266   1.1       cgd #endif
   1267   1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1268   1.7       cgd #define FP_RN 2 /* XXX */
   1269   1.7       cgd 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1270   1.1       cgd 	tfp->tf_regs[FRAME_SP] = stack;	/* restored to usp in trap return */
   1271   1.1       cgd 	tfp->tf_ps = PSL_USERSET;
   1272   1.5  christos 	tfp->tf_pc = pack->ep_entry & ~3;
   1273   1.1       cgd 
   1274   1.1       cgd 	p->p_md.md_flags & ~MDP_FPUSED;
   1275   1.1       cgd 	if (fpcurproc == p)
   1276   1.1       cgd 		fpcurproc = NULL;
   1277   1.1       cgd 
   1278   1.1       cgd 	retval[0] = retval[1] = 0;
   1279   1.1       cgd }
   1280   1.1       cgd 
   1281   1.1       cgd void
   1282   1.1       cgd netintr()
   1283   1.1       cgd {
   1284   1.1       cgd #ifdef INET
   1285   1.1       cgd #if NETHER > 0
   1286   1.1       cgd 	if (netisr & (1 << NETISR_ARP)) {
   1287   1.1       cgd 		netisr &= ~(1 << NETISR_ARP);
   1288   1.1       cgd 		arpintr();
   1289   1.1       cgd 	}
   1290   1.1       cgd #endif
   1291   1.1       cgd 	if (netisr & (1 << NETISR_IP)) {
   1292   1.1       cgd 		netisr &= ~(1 << NETISR_IP);
   1293   1.1       cgd 		ipintr();
   1294   1.1       cgd 	}
   1295   1.1       cgd #endif
   1296   1.1       cgd #ifdef NS
   1297   1.1       cgd 	if (netisr & (1 << NETISR_NS)) {
   1298   1.1       cgd 		netisr &= ~(1 << NETISR_NS);
   1299   1.1       cgd 		nsintr();
   1300   1.1       cgd 	}
   1301   1.1       cgd #endif
   1302   1.1       cgd #ifdef ISO
   1303   1.1       cgd 	if (netisr & (1 << NETISR_ISO)) {
   1304   1.1       cgd 		netisr &= ~(1 << NETISR_ISO);
   1305   1.1       cgd 		clnlintr();
   1306   1.1       cgd 	}
   1307   1.1       cgd #endif
   1308   1.1       cgd #ifdef CCITT
   1309   1.1       cgd 	if (netisr & (1 << NETISR_CCITT)) {
   1310   1.1       cgd 		netisr &= ~(1 << NETISR_CCITT);
   1311   1.1       cgd 		ccittintr();
   1312   1.1       cgd 	}
   1313   1.1       cgd #endif
   1314   1.8       cgd #ifdef PPP
   1315   1.8       cgd 	if (netisr & (1 << NETISR_PPP)) {
   1316   1.8       cgd 		netisr &= ~(1 << NETISR_CCITT);
   1317   1.8       cgd 		pppintr();
   1318   1.8       cgd 	}
   1319   1.8       cgd #endif
   1320   1.1       cgd }
   1321   1.1       cgd 
   1322   1.1       cgd void
   1323   1.1       cgd do_sir()
   1324   1.1       cgd {
   1325   1.1       cgd 
   1326   1.1       cgd 	if (ssir & SIR_NET) {
   1327   1.1       cgd 		siroff(SIR_NET);
   1328   1.1       cgd 		cnt.v_soft++;
   1329   1.1       cgd 		netintr();
   1330   1.1       cgd 	}
   1331   1.1       cgd 	if (ssir & SIR_CLOCK) {
   1332   1.1       cgd 		siroff(SIR_CLOCK);
   1333   1.1       cgd 		cnt.v_soft++;
   1334   1.1       cgd 		softclock();
   1335   1.1       cgd 	}
   1336   1.1       cgd }
   1337   1.1       cgd 
   1338   1.1       cgd int
   1339   1.1       cgd spl0()
   1340   1.1       cgd {
   1341   1.1       cgd 
   1342   1.1       cgd 	if (ssir) {
   1343   1.1       cgd 		splsoft();
   1344   1.1       cgd 		do_sir();
   1345   1.1       cgd 	}
   1346   1.1       cgd 
   1347   1.1       cgd 	return (pal_swpipl(PSL_IPL_0));
   1348   1.1       cgd }
   1349   1.1       cgd 
   1350   1.1       cgd /*
   1351   1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1352   1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1353   1.1       cgd  * into queues, Remrq removes them from queues.  The running process is on
   1354   1.1       cgd  * no queue, other processes are on a queue related to p->p_priority, divided
   1355   1.1       cgd  * by 4 actually to shrink the 0-127 range of priorities into the 32 available
   1356   1.1       cgd  * queues.
   1357   1.1       cgd  */
   1358   1.1       cgd /*
   1359   1.1       cgd  * setrunqueue(p)
   1360   1.1       cgd  *	proc *p;
   1361   1.1       cgd  *
   1362   1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1363   1.1       cgd  */
   1364   1.1       cgd 
   1365   1.1       cgd void
   1366   1.1       cgd setrunqueue(p)
   1367   1.1       cgd 	struct proc *p;
   1368   1.1       cgd {
   1369   1.1       cgd 	int bit;
   1370   1.1       cgd 
   1371   1.1       cgd 	/* firewall: p->p_back must be NULL */
   1372   1.1       cgd 	if (p->p_back != NULL)
   1373   1.1       cgd 		panic("setrunqueue");
   1374   1.1       cgd 
   1375   1.1       cgd 	bit = p->p_priority >> 2;
   1376   1.1       cgd 	whichqs |= (1 << bit);
   1377   1.1       cgd 	p->p_forw = (struct proc *)&qs[bit];
   1378   1.1       cgd 	p->p_back = qs[bit].ph_rlink;
   1379   1.1       cgd 	p->p_back->p_forw = p;
   1380   1.1       cgd 	qs[bit].ph_rlink = p;
   1381   1.1       cgd }
   1382   1.1       cgd 
   1383   1.1       cgd /*
   1384   1.1       cgd  * Remrq(p)
   1385   1.1       cgd  *
   1386   1.1       cgd  * Call should be made at splclock().
   1387   1.1       cgd  */
   1388   1.1       cgd void
   1389   1.1       cgd remrq(p)
   1390   1.1       cgd 	struct proc *p;
   1391   1.1       cgd {
   1392   1.1       cgd 	int bit;
   1393   1.1       cgd 
   1394   1.1       cgd 	bit = p->p_priority >> 2;
   1395   1.1       cgd 	if ((whichqs & (1 << bit)) == 0)
   1396   1.1       cgd 		panic("remrq");
   1397   1.1       cgd 
   1398   1.1       cgd 	p->p_back->p_forw = p->p_forw;
   1399   1.1       cgd 	p->p_forw->p_back = p->p_back;
   1400   1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   1401   1.1       cgd 
   1402   1.1       cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1403   1.1       cgd 		whichqs &= ~(1 << bit);
   1404   1.1       cgd }
   1405   1.1       cgd 
   1406   1.1       cgd /*
   1407   1.1       cgd  * Return the best possible estimate of the time in the timeval
   1408   1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1409   1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   1410   1.1       cgd  * previous call.
   1411   1.1       cgd  */
   1412   1.1       cgd void
   1413   1.1       cgd microtime(tvp)
   1414   1.1       cgd 	register struct timeval *tvp;
   1415   1.1       cgd {
   1416   1.1       cgd 	int s = splclock();
   1417   1.1       cgd 	static struct timeval lasttime;
   1418   1.1       cgd 
   1419   1.1       cgd 	*tvp = time;
   1420   1.1       cgd #ifdef notdef
   1421   1.1       cgd 	tvp->tv_usec += clkread();
   1422   1.1       cgd 	while (tvp->tv_usec > 1000000) {
   1423   1.1       cgd 		tvp->tv_sec++;
   1424   1.1       cgd 		tvp->tv_usec -= 1000000;
   1425   1.1       cgd 	}
   1426   1.1       cgd #endif
   1427   1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1428   1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1429   1.1       cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1430   1.1       cgd 		tvp->tv_sec++;
   1431   1.1       cgd 		tvp->tv_usec -= 1000000;
   1432   1.1       cgd 	}
   1433   1.1       cgd 	lasttime = *tvp;
   1434   1.1       cgd 	splx(s);
   1435   1.1       cgd }
   1436   1.1       cgd 
   1437   1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   1438   1.1       cgd void
   1439   1.5  christos cpu_exec_ecoff_setregs(p, pack, stack, retval)
   1440   1.1       cgd 	struct proc *p;
   1441   1.5  christos 	struct exec_package *pack;
   1442   1.5  christos 	u_long stack;
   1443   1.5  christos 	register_t *retval;
   1444   1.1       cgd {
   1445   1.1       cgd 	struct ecoff_aouthdr *eap;
   1446   1.1       cgd 
   1447   1.5  christos 	setregs(p, pack, stack, retval);
   1448   1.1       cgd 
   1449   1.1       cgd 	eap = (struct ecoff_aouthdr *)
   1450   1.5  christos 	    ((caddr_t)pack->ep_hdr + sizeof(struct ecoff_filehdr));
   1451   1.1       cgd 	p->p_md.md_tf->tf_gp = eap->ea_gp_value;
   1452   1.1       cgd }
   1453   1.1       cgd 
   1454   1.1       cgd /*
   1455   1.1       cgd  * cpu_exec_ecoff_hook():
   1456   1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   1457   1.1       cgd  *
   1458   1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1459   1.1       cgd  *
   1460   1.1       cgd  */
   1461   1.1       cgd int
   1462   1.1       cgd cpu_exec_ecoff_hook(p, epp, eap)
   1463   1.1       cgd 	struct proc *p;
   1464   1.1       cgd 	struct exec_package *epp;
   1465   1.1       cgd 	struct ecoff_aouthdr *eap;
   1466   1.1       cgd {
   1467   1.1       cgd 	struct ecoff_filehdr *efp = epp->ep_hdr;
   1468   1.5  christos 	extern struct emul emul_netbsd;
   1469   1.5  christos #ifdef COMPAT_OSF1
   1470   1.5  christos 	extern struct emul emul_osf1;
   1471   1.5  christos #endif
   1472   1.1       cgd 
   1473   1.1       cgd 	switch (efp->ef_magic) {
   1474   1.5  christos #ifdef COMPAT_OSF1
   1475   1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   1476   1.5  christos 		epp->ep_emul = &emul_osf1;
   1477   1.1       cgd 		break;
   1478   1.5  christos #endif
   1479   1.1       cgd 
   1480   1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1481   1.5  christos 		epp->ep_emul = &emul_netbsd;
   1482   1.1       cgd 		break;
   1483   1.1       cgd 
   1484   1.1       cgd 	default:
   1485  1.12       cgd 		return ENOEXEC;
   1486   1.1       cgd 	}
   1487   1.1       cgd 	return 0;
   1488   1.1       cgd }
   1489   1.1       cgd #endif
   1490   1.7       cgd 
   1491   1.7       cgd vm_offset_t
   1492   1.7       cgd vtophys(vaddr)
   1493   1.7       cgd 	vm_offset_t vaddr;
   1494   1.7       cgd {
   1495   1.7       cgd 	vm_offset_t paddr;
   1496   1.7       cgd 
   1497   1.7       cgd 	if (vaddr < K0SEG_BEGIN) {
   1498   1.7       cgd 		printf("vtophys: invalid vaddr 0x%lx", vaddr);
   1499   1.7       cgd 		paddr = vaddr;
   1500   1.7       cgd 	} else if (vaddr < K0SEG_END)
   1501   1.7       cgd 		paddr = k0segtophys(vaddr);
   1502   1.7       cgd 	else
   1503   1.7       cgd 		paddr = vatopa(vaddr);
   1504   1.7       cgd 
   1505   1.7       cgd #if 0
   1506   1.7       cgd 	printf("vtophys(0x%lx) -> %lx\n", vaddr, paddr);
   1507   1.7       cgd #endif
   1508   1.7       cgd 
   1509   1.7       cgd 	return (paddr);
   1510   1.7       cgd }
   1511