machdep.c revision 1.139 1 1.139 thorpej /* $NetBSD: machdep.c,v 1.139 1998/08/04 22:40:17 thorpej Exp $ */
2 1.110 thorpej
3 1.110 thorpej /*-
4 1.110 thorpej * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 1.110 thorpej * All rights reserved.
6 1.110 thorpej *
7 1.110 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.110 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.110 thorpej * NASA Ames Research Center and by Chris G. Demetriou.
10 1.110 thorpej *
11 1.110 thorpej * Redistribution and use in source and binary forms, with or without
12 1.110 thorpej * modification, are permitted provided that the following conditions
13 1.110 thorpej * are met:
14 1.110 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.110 thorpej * notice, this list of conditions and the following disclaimer.
16 1.110 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.110 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.110 thorpej * documentation and/or other materials provided with the distribution.
19 1.110 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.110 thorpej * must display the following acknowledgement:
21 1.110 thorpej * This product includes software developed by the NetBSD
22 1.110 thorpej * Foundation, Inc. and its contributors.
23 1.110 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.110 thorpej * contributors may be used to endorse or promote products derived
25 1.110 thorpej * from this software without specific prior written permission.
26 1.110 thorpej *
27 1.110 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.110 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.110 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.110 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.110 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.110 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.110 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.110 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.110 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.110 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.110 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.110 thorpej */
39 1.1 cgd
40 1.1 cgd /*
41 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 1.1 cgd * All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Author: Chris G. Demetriou
45 1.1 cgd *
46 1.1 cgd * Permission to use, copy, modify and distribute this software and
47 1.1 cgd * its documentation is hereby granted, provided that both the copyright
48 1.1 cgd * notice and this permission notice appear in all copies of the
49 1.1 cgd * software, derivative works or modified versions, and any portions
50 1.1 cgd * thereof, and that both notices appear in supporting documentation.
51 1.1 cgd *
52 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 1.1 cgd *
56 1.1 cgd * Carnegie Mellon requests users of this software to return to
57 1.1 cgd *
58 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 1.1 cgd * School of Computer Science
60 1.1 cgd * Carnegie Mellon University
61 1.1 cgd * Pittsburgh PA 15213-3890
62 1.1 cgd *
63 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
64 1.1 cgd * rights to redistribute these changes.
65 1.1 cgd */
66 1.74 cgd
67 1.129 jonathan #include "opt_ddb.h"
68 1.112 thorpej #include "opt_uvm.h"
69 1.113 thorpej #include "opt_pmap_new.h"
70 1.123 thorpej #include "opt_dec_3000_300.h"
71 1.123 thorpej #include "opt_dec_3000_500.h"
72 1.127 thorpej #include "opt_compat_osf1.h"
73 1.129 jonathan #include "opt_inet.h"
74 1.129 jonathan #include "opt_atalk.h"
75 1.131 jonathan #include "opt_ccitt.h"
76 1.131 jonathan #include "opt_iso.h"
77 1.132 jonathan #include "opt_ns.h"
78 1.133 jonathan #include "opt_natm.h"
79 1.112 thorpej
80 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
81 1.75 cgd
82 1.139 thorpej __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.139 1998/08/04 22:40:17 thorpej Exp $");
83 1.1 cgd
84 1.1 cgd #include <sys/param.h>
85 1.1 cgd #include <sys/systm.h>
86 1.1 cgd #include <sys/signalvar.h>
87 1.1 cgd #include <sys/kernel.h>
88 1.1 cgd #include <sys/map.h>
89 1.1 cgd #include <sys/proc.h>
90 1.1 cgd #include <sys/buf.h>
91 1.1 cgd #include <sys/reboot.h>
92 1.28 cgd #include <sys/device.h>
93 1.1 cgd #include <sys/file.h>
94 1.1 cgd #ifdef REAL_CLISTS
95 1.1 cgd #include <sys/clist.h>
96 1.1 cgd #endif
97 1.1 cgd #include <sys/callout.h>
98 1.1 cgd #include <sys/malloc.h>
99 1.1 cgd #include <sys/mbuf.h>
100 1.110 thorpej #include <sys/mman.h>
101 1.1 cgd #include <sys/msgbuf.h>
102 1.1 cgd #include <sys/ioctl.h>
103 1.1 cgd #include <sys/tty.h>
104 1.1 cgd #include <sys/user.h>
105 1.1 cgd #include <sys/exec.h>
106 1.1 cgd #include <sys/exec_ecoff.h>
107 1.91 mjacob #include <vm/vm.h>
108 1.1 cgd #include <sys/sysctl.h>
109 1.43 cgd #include <sys/core.h>
110 1.43 cgd #include <sys/kcore.h>
111 1.43 cgd #include <machine/kcore.h>
112 1.1 cgd #ifdef SYSVMSG
113 1.1 cgd #include <sys/msg.h>
114 1.1 cgd #endif
115 1.1 cgd #ifdef SYSVSEM
116 1.1 cgd #include <sys/sem.h>
117 1.1 cgd #endif
118 1.1 cgd #ifdef SYSVSHM
119 1.1 cgd #include <sys/shm.h>
120 1.1 cgd #endif
121 1.1 cgd
122 1.1 cgd #include <sys/mount.h>
123 1.1 cgd #include <sys/syscallargs.h>
124 1.1 cgd
125 1.1 cgd #include <vm/vm_kern.h>
126 1.1 cgd
127 1.112 thorpej #if defined(UVM)
128 1.112 thorpej #include <uvm/uvm_extern.h>
129 1.112 thorpej #endif
130 1.112 thorpej
131 1.1 cgd #include <dev/cons.h>
132 1.1 cgd
133 1.81 thorpej #include <machine/autoconf.h>
134 1.1 cgd #include <machine/cpu.h>
135 1.1 cgd #include <machine/reg.h>
136 1.1 cgd #include <machine/rpb.h>
137 1.1 cgd #include <machine/prom.h>
138 1.73 cgd #include <machine/conf.h>
139 1.8 cgd
140 1.49 cgd #include <net/netisr.h>
141 1.33 cgd #include <net/if.h>
142 1.49 cgd
143 1.49 cgd #ifdef INET
144 1.120 ross #include <net/route.h>
145 1.33 cgd #include <netinet/in.h>
146 1.72 cgd #include <netinet/ip_var.h>
147 1.72 cgd #include "arp.h"
148 1.72 cgd #if NARP > 0
149 1.67 is #include <netinet/if_inarp.h>
150 1.72 cgd #endif
151 1.49 cgd #endif
152 1.49 cgd #ifdef NS
153 1.49 cgd #include <netns/ns_var.h>
154 1.49 cgd #endif
155 1.49 cgd #ifdef ISO
156 1.49 cgd #include <netiso/iso.h>
157 1.49 cgd #include <netiso/clnp.h>
158 1.49 cgd #endif
159 1.55 cgd #ifdef CCITT
160 1.55 cgd #include <netccitt/x25.h>
161 1.55 cgd #include <netccitt/pk.h>
162 1.55 cgd #include <netccitt/pk_extern.h>
163 1.55 cgd #endif
164 1.55 cgd #ifdef NATM
165 1.55 cgd #include <netnatm/natm.h>
166 1.55 cgd #endif
167 1.70 christos #ifdef NETATALK
168 1.70 christos #include <netatalk/at_extern.h>
169 1.70 christos #endif
170 1.49 cgd #include "ppp.h"
171 1.49 cgd #if NPPP > 0
172 1.49 cgd #include <net/ppp_defs.h>
173 1.49 cgd #include <net/if_ppp.h>
174 1.49 cgd #endif
175 1.1 cgd
176 1.81 thorpej #ifdef DDB
177 1.81 thorpej #include <machine/db_machdep.h>
178 1.81 thorpej #include <ddb/db_access.h>
179 1.81 thorpej #include <ddb/db_sym.h>
180 1.81 thorpej #include <ddb/db_extern.h>
181 1.81 thorpej #include <ddb/db_interface.h>
182 1.81 thorpej #endif
183 1.81 thorpej
184 1.112 thorpej #if defined(UVM)
185 1.112 thorpej vm_map_t exec_map = NULL;
186 1.112 thorpej vm_map_t mb_map = NULL;
187 1.112 thorpej vm_map_t phys_map = NULL;
188 1.112 thorpej #else
189 1.1 cgd vm_map_t buffer_map;
190 1.112 thorpej #endif
191 1.1 cgd
192 1.1 cgd /*
193 1.1 cgd * Declare these as initialized data so we can patch them.
194 1.1 cgd */
195 1.1 cgd int nswbuf = 0;
196 1.1 cgd #ifdef NBUF
197 1.1 cgd int nbuf = NBUF;
198 1.1 cgd #else
199 1.1 cgd int nbuf = 0;
200 1.1 cgd #endif
201 1.1 cgd #ifdef BUFPAGES
202 1.1 cgd int bufpages = BUFPAGES;
203 1.1 cgd #else
204 1.1 cgd int bufpages = 0;
205 1.1 cgd #endif
206 1.86 leo caddr_t msgbufaddr;
207 1.86 leo
208 1.1 cgd int maxmem; /* max memory per process */
209 1.7 cgd
210 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
211 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
212 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
213 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
214 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
215 1.1 cgd
216 1.1 cgd int cputype; /* system type, from the RPB */
217 1.1 cgd
218 1.1 cgd /*
219 1.1 cgd * XXX We need an address to which we can assign things so that they
220 1.1 cgd * won't be optimized away because we didn't use the value.
221 1.1 cgd */
222 1.1 cgd u_int32_t no_optimize;
223 1.1 cgd
224 1.1 cgd /* the following is used externally (sysctl_hw) */
225 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
226 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
227 1.29 cgd char cpu_model[128];
228 1.1 cgd
229 1.1 cgd struct user *proc0paddr;
230 1.1 cgd
231 1.1 cgd /* Number of machine cycles per microsecond */
232 1.1 cgd u_int64_t cycles_per_usec;
233 1.1 cgd
234 1.7 cgd /* number of cpus in the box. really! */
235 1.7 cgd int ncpus;
236 1.7 cgd
237 1.138 ross /* machine check info array, valloc()'ed in allocsys() */
238 1.138 ross
239 1.138 ross static struct mchkinfo startup_info,
240 1.138 ross *mchkinfo_all_cpus;
241 1.134 mjacob
242 1.102 cgd struct bootinfo_kernel bootinfo;
243 1.81 thorpej
244 1.123 thorpej /* For built-in TCDS */
245 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
246 1.123 thorpej u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
247 1.123 thorpej #endif
248 1.123 thorpej
249 1.89 mjacob struct platform platform;
250 1.89 mjacob
251 1.100 thorpej u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
252 1.100 thorpej u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
253 1.100 thorpej u_int32_t vm_phys_size = _VM_PHYS_SIZE;
254 1.90 mjacob
255 1.81 thorpej #ifdef DDB
256 1.81 thorpej /* start and end of kernel symbol table */
257 1.81 thorpej void *ksym_start, *ksym_end;
258 1.81 thorpej #endif
259 1.81 thorpej
260 1.30 cgd /* for cpu_sysctl() */
261 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
262 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
263 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
264 1.30 cgd
265 1.110 thorpej /*
266 1.110 thorpej * XXX This should be dynamically sized, but we have the chicken-egg problem!
267 1.110 thorpej * XXX it should also be larger than it is, because not all of the mddt
268 1.110 thorpej * XXX clusters end up being used for VM.
269 1.110 thorpej */
270 1.110 thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
271 1.110 thorpej int mem_cluster_cnt;
272 1.110 thorpej
273 1.95 thorpej caddr_t allocsys __P((caddr_t));
274 1.55 cgd int cpu_dump __P((void));
275 1.55 cgd int cpu_dumpsize __P((void));
276 1.110 thorpej u_long cpu_dump_mempagecnt __P((void));
277 1.55 cgd void dumpsys __P((void));
278 1.55 cgd void identifycpu __P((void));
279 1.55 cgd void netintr __P((void));
280 1.55 cgd void printregs __P((struct reg *));
281 1.33 cgd
282 1.55 cgd void
283 1.102 cgd alpha_init(pfn, ptb, bim, bip, biv)
284 1.1 cgd u_long pfn; /* first free PFN number */
285 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
286 1.81 thorpej u_long bim; /* bootinfo magic */
287 1.81 thorpej u_long bip; /* bootinfo pointer */
288 1.102 cgd u_long biv; /* bootinfo version */
289 1.1 cgd {
290 1.95 thorpej extern char kernel_text[], _end[];
291 1.1 cgd struct mddt *mddtp;
292 1.110 thorpej struct mddt_cluster *memc;
293 1.7 cgd int i, mddtweird;
294 1.110 thorpej struct vm_physseg *vps;
295 1.95 thorpej vm_offset_t kernstart, kernend;
296 1.110 thorpej vm_offset_t kernstartpfn, kernendpfn, pfn0, pfn1;
297 1.95 thorpej vm_size_t size;
298 1.1 cgd char *p;
299 1.95 thorpej caddr_t v;
300 1.106 cgd char *bootinfo_msg;
301 1.106 cgd
302 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
303 1.1 cgd
304 1.1 cgd /*
305 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
306 1.1 cgd * Make sure the instruction and data streams are consistent.
307 1.1 cgd */
308 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
309 1.32 cgd alpha_pal_wrfen(0);
310 1.37 cgd ALPHA_TBIA();
311 1.32 cgd alpha_pal_imb();
312 1.1 cgd
313 1.1 cgd /*
314 1.106 cgd * Get critical system information (if possible, from the
315 1.106 cgd * information provided by the boot program).
316 1.81 thorpej */
317 1.106 cgd bootinfo_msg = NULL;
318 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
319 1.102 cgd if (biv == 0) { /* backward compat */
320 1.102 cgd biv = *(u_long *)bip;
321 1.102 cgd bip += 8;
322 1.102 cgd }
323 1.102 cgd switch (biv) {
324 1.102 cgd case 1: {
325 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
326 1.102 cgd
327 1.102 cgd bootinfo.ssym = v1p->ssym;
328 1.102 cgd bootinfo.esym = v1p->esym;
329 1.106 cgd /* hwrpb may not be provided by boot block in v1 */
330 1.106 cgd if (v1p->hwrpb != NULL) {
331 1.106 cgd bootinfo.hwrpb_phys =
332 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys;
333 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize;
334 1.106 cgd } else {
335 1.106 cgd bootinfo.hwrpb_phys =
336 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys;
337 1.106 cgd bootinfo.hwrpb_size =
338 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size;
339 1.106 cgd }
340 1.102 cgd bcopy(v1p->boot_flags, bootinfo.boot_flags,
341 1.102 cgd min(sizeof v1p->boot_flags,
342 1.102 cgd sizeof bootinfo.boot_flags));
343 1.102 cgd bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
344 1.102 cgd min(sizeof v1p->booted_kernel,
345 1.102 cgd sizeof bootinfo.booted_kernel));
346 1.106 cgd /* booted dev not provided in bootinfo */
347 1.106 cgd init_prom_interface((struct rpb *)
348 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
349 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
350 1.102 cgd sizeof bootinfo.booted_dev);
351 1.81 thorpej break;
352 1.102 cgd }
353 1.81 thorpej default:
354 1.106 cgd bootinfo_msg = "unknown bootinfo version";
355 1.102 cgd goto nobootinfo;
356 1.81 thorpej }
357 1.102 cgd } else {
358 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo";
359 1.102 cgd nobootinfo:
360 1.102 cgd bootinfo.ssym = (u_long)_end;
361 1.102 cgd bootinfo.esym = (u_long)_end;
362 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
363 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
364 1.106 cgd init_prom_interface((struct rpb *)HWRPB_ADDR);
365 1.102 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
366 1.102 cgd sizeof bootinfo.boot_flags);
367 1.102 cgd prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
368 1.102 cgd sizeof bootinfo.booted_kernel);
369 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
370 1.102 cgd sizeof bootinfo.booted_dev);
371 1.102 cgd }
372 1.102 cgd
373 1.81 thorpej /*
374 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for
375 1.106 cgd * lots of things.
376 1.106 cgd */
377 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
378 1.123 thorpej
379 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
380 1.123 thorpej if (hwrpb->rpb_type == ST_DEC_3000_300 ||
381 1.123 thorpej hwrpb->rpb_type == ST_DEC_3000_500) {
382 1.123 thorpej prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
383 1.123 thorpej sizeof(dec_3000_scsiid));
384 1.123 thorpej prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
385 1.123 thorpej sizeof(dec_3000_scsifast));
386 1.123 thorpej }
387 1.123 thorpej #endif
388 1.106 cgd
389 1.106 cgd /*
390 1.106 cgd * Remember how many cycles there are per microsecond,
391 1.106 cgd * so that we can use delay(). Round up, for safety.
392 1.106 cgd */
393 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
394 1.106 cgd
395 1.106 cgd /*
396 1.106 cgd * Initalize the (temporary) bootstrap console interface, so
397 1.106 cgd * we can use printf until the VM system starts being setup.
398 1.106 cgd * The real console is initialized before then.
399 1.106 cgd */
400 1.106 cgd init_bootstrap_console();
401 1.106 cgd
402 1.106 cgd /* OUTPUT NOW ALLOWED */
403 1.106 cgd
404 1.106 cgd /* delayed from above */
405 1.106 cgd if (bootinfo_msg)
406 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
407 1.106 cgd bootinfo_msg, bim, bip, biv);
408 1.106 cgd
409 1.106 cgd /*
410 1.1 cgd * Point interrupt/exception vectors to our own.
411 1.1 cgd */
412 1.36 cgd alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
413 1.36 cgd alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
414 1.36 cgd alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
415 1.36 cgd alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
416 1.36 cgd alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
417 1.36 cgd alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
418 1.36 cgd
419 1.36 cgd /*
420 1.76 cgd * Clear pending machine checks and error reports, and enable
421 1.76 cgd * system- and processor-correctable error reporting.
422 1.36 cgd */
423 1.76 cgd alpha_pal_wrmces(alpha_pal_rdmces() &
424 1.76 cgd ~(ALPHA_MCES_DSC|ALPHA_MCES_DPC));
425 1.1 cgd
426 1.1 cgd /*
427 1.106 cgd * Find out what hardware we're on, and do basic initialization.
428 1.106 cgd */
429 1.106 cgd cputype = hwrpb->rpb_type;
430 1.106 cgd if (cputype >= ncpuinit) {
431 1.106 cgd platform_not_supported();
432 1.106 cgd /* NOTREACHED */
433 1.106 cgd }
434 1.106 cgd (*cpuinit[cputype].init)();
435 1.106 cgd strcpy(cpu_model, platform.model);
436 1.106 cgd
437 1.106 cgd /*
438 1.106 cgd * Initalize the real console, so the the bootstrap console is
439 1.106 cgd * no longer necessary.
440 1.106 cgd */
441 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
442 1.106 cgd if (!pmap_uses_prom_console())
443 1.106 cgd #endif
444 1.106 cgd (*platform.cons_init)();
445 1.106 cgd
446 1.106 cgd #ifdef DIAGNOSTIC
447 1.106 cgd /* Paranoid sanity checking */
448 1.106 cgd
449 1.106 cgd /* We should always be running on the the primary. */
450 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
451 1.106 cgd
452 1.116 mjacob /*
453 1.116 mjacob * On single-CPU systypes, the primary should always be CPU 0,
454 1.116 mjacob * except on Alpha 8200 systems where the CPU id is related
455 1.116 mjacob * to the VID, which is related to the Turbo Laser node id.
456 1.116 mjacob */
457 1.106 cgd if (cputype != ST_DEC_21000)
458 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0);
459 1.106 cgd #endif
460 1.106 cgd
461 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */
462 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
463 1.106 cgd /*
464 1.106 cgd * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
465 1.106 cgd * XXX pmap_uses_prom_console() evaluates to non-zero.)
466 1.106 cgd */
467 1.106 cgd #endif
468 1.106 cgd
469 1.106 cgd /*
470 1.106 cgd * find out this system's page size
471 1.95 thorpej */
472 1.95 thorpej PAGE_SIZE = hwrpb->rpb_page_size;
473 1.95 thorpej if (PAGE_SIZE != 8192)
474 1.95 thorpej panic("page size %d != 8192?!", PAGE_SIZE);
475 1.95 thorpej
476 1.95 thorpej /*
477 1.95 thorpej * Initialize PAGE_SIZE-dependent variables.
478 1.95 thorpej */
479 1.112 thorpej #if defined(UVM)
480 1.112 thorpej uvm_setpagesize();
481 1.112 thorpej #else
482 1.95 thorpej vm_set_page_size();
483 1.112 thorpej #endif
484 1.95 thorpej
485 1.95 thorpej /*
486 1.101 cgd * Find the beginning and end of the kernel (and leave a
487 1.101 cgd * bit of space before the beginning for the bootstrap
488 1.101 cgd * stack).
489 1.95 thorpej */
490 1.101 cgd kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
491 1.95 thorpej #ifdef DDB
492 1.102 cgd ksym_start = (void *)bootinfo.ssym;
493 1.102 cgd ksym_end = (void *)bootinfo.esym;
494 1.102 cgd kernend = (vm_offset_t)round_page(ksym_end);
495 1.102 cgd #else
496 1.102 cgd kernend = (vm_offset_t)round_page(_end);
497 1.95 thorpej #endif
498 1.95 thorpej
499 1.110 thorpej kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
500 1.110 thorpej kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
501 1.110 thorpej
502 1.95 thorpej /*
503 1.1 cgd * Find out how much memory is available, by looking at
504 1.7 cgd * the memory cluster descriptors. This also tries to do
505 1.7 cgd * its best to detect things things that have never been seen
506 1.7 cgd * before...
507 1.1 cgd */
508 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
509 1.7 cgd
510 1.110 thorpej /* MDDT SANITY CHECKING */
511 1.7 cgd mddtweird = 0;
512 1.110 thorpej if (mddtp->mddt_cluster_cnt < 2) {
513 1.7 cgd mddtweird = 1;
514 1.110 thorpej printf("WARNING: weird number of mem clusters: %d\n",
515 1.110 thorpej mddtp->mddt_cluster_cnt);
516 1.7 cgd }
517 1.7 cgd
518 1.110 thorpej #if 0
519 1.110 thorpej printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
520 1.110 thorpej #endif
521 1.110 thorpej
522 1.110 thorpej for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
523 1.110 thorpej memc = &mddtp->mddt_clusters[i];
524 1.110 thorpej #if 0
525 1.110 thorpej printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
526 1.110 thorpej memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
527 1.110 thorpej #endif
528 1.110 thorpej totalphysmem += memc->mddt_pg_cnt;
529 1.110 thorpej if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
530 1.110 thorpej mem_clusters[mem_cluster_cnt].start =
531 1.110 thorpej ptoa(memc->mddt_pfn);
532 1.110 thorpej mem_clusters[mem_cluster_cnt].size =
533 1.110 thorpej ptoa(memc->mddt_pg_cnt);
534 1.110 thorpej if (memc->mddt_usage & MDDT_mbz ||
535 1.110 thorpej memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
536 1.110 thorpej memc->mddt_usage & MDDT_PALCODE)
537 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
538 1.110 thorpej PROT_READ;
539 1.110 thorpej else
540 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
541 1.110 thorpej PROT_READ | PROT_WRITE | PROT_EXEC;
542 1.110 thorpej mem_cluster_cnt++;
543 1.110 thorpej }
544 1.110 thorpej
545 1.110 thorpej if (memc->mddt_usage & MDDT_mbz) {
546 1.7 cgd mddtweird = 1;
547 1.110 thorpej printf("WARNING: mem cluster %d has weird "
548 1.110 thorpej "usage 0x%lx\n", i, memc->mddt_usage);
549 1.110 thorpej unknownmem += memc->mddt_pg_cnt;
550 1.110 thorpej continue;
551 1.7 cgd }
552 1.110 thorpej if (memc->mddt_usage & MDDT_NONVOLATILE) {
553 1.110 thorpej /* XXX should handle these... */
554 1.110 thorpej printf("WARNING: skipping non-volatile mem "
555 1.110 thorpej "cluster %d\n", i);
556 1.110 thorpej unusedmem += memc->mddt_pg_cnt;
557 1.110 thorpej continue;
558 1.110 thorpej }
559 1.110 thorpej if (memc->mddt_usage & MDDT_PALCODE) {
560 1.110 thorpej resvmem += memc->mddt_pg_cnt;
561 1.110 thorpej continue;
562 1.110 thorpej }
563 1.110 thorpej
564 1.110 thorpej /*
565 1.110 thorpej * We have a memory cluster available for system
566 1.110 thorpej * software use. We must determine if this cluster
567 1.110 thorpej * holds the kernel.
568 1.110 thorpej */
569 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
570 1.110 thorpej /*
571 1.110 thorpej * XXX If the kernel uses the PROM console, we only use the
572 1.110 thorpej * XXX memory after the kernel in the first system segment,
573 1.110 thorpej * XXX to avoid clobbering prom mapping, data, etc.
574 1.110 thorpej */
575 1.110 thorpej if (!pmap_uses_prom_console() || physmem == 0) {
576 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
577 1.110 thorpej physmem += memc->mddt_pg_cnt;
578 1.110 thorpej pfn0 = memc->mddt_pfn;
579 1.110 thorpej pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
580 1.110 thorpej if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
581 1.110 thorpej /*
582 1.110 thorpej * Must compute the location of the kernel
583 1.110 thorpej * within the segment.
584 1.110 thorpej */
585 1.110 thorpej #if 0
586 1.110 thorpej printf("Cluster %d contains kernel\n", i);
587 1.110 thorpej #endif
588 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
589 1.110 thorpej if (!pmap_uses_prom_console()) {
590 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
591 1.110 thorpej if (pfn0 < kernstartpfn) {
592 1.110 thorpej /*
593 1.110 thorpej * There is a chunk before the kernel.
594 1.110 thorpej */
595 1.110 thorpej #if 0
596 1.110 thorpej printf("Loading chunk before kernel: "
597 1.110 thorpej "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
598 1.110 thorpej #endif
599 1.112 thorpej #if defined(UVM)
600 1.112 thorpej uvm_page_physload(pfn0, kernstartpfn,
601 1.135 thorpej pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
602 1.112 thorpej #else
603 1.110 thorpej vm_page_physload(pfn0, kernstartpfn,
604 1.110 thorpej pfn0, kernstartpfn);
605 1.112 thorpej #endif
606 1.110 thorpej }
607 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
608 1.110 thorpej }
609 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
610 1.110 thorpej if (kernendpfn < pfn1) {
611 1.110 thorpej /*
612 1.110 thorpej * There is a chunk after the kernel.
613 1.110 thorpej */
614 1.110 thorpej #if 0
615 1.110 thorpej printf("Loading chunk after kernel: "
616 1.110 thorpej "0x%lx / 0x%lx\n", kernendpfn, pfn1);
617 1.110 thorpej #endif
618 1.112 thorpej #if defined(UVM)
619 1.112 thorpej uvm_page_physload(kernendpfn, pfn1,
620 1.135 thorpej kernendpfn, pfn1, VM_FREELIST_DEFAULT);
621 1.112 thorpej #else
622 1.110 thorpej vm_page_physload(kernendpfn, pfn1,
623 1.110 thorpej kernendpfn, pfn1);
624 1.112 thorpej #endif
625 1.110 thorpej }
626 1.110 thorpej } else {
627 1.110 thorpej /*
628 1.110 thorpej * Just load this cluster as one chunk.
629 1.110 thorpej */
630 1.110 thorpej #if 0
631 1.110 thorpej printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
632 1.110 thorpej pfn0, pfn1);
633 1.110 thorpej #endif
634 1.112 thorpej #if defined(UVM)
635 1.135 thorpej uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
636 1.135 thorpej VM_FREELIST_DEFAULT);
637 1.112 thorpej #else
638 1.110 thorpej vm_page_physload(pfn0, pfn1, pfn0, pfn1);
639 1.112 thorpej #endif
640 1.7 cgd }
641 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
642 1.110 thorpej }
643 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
644 1.7 cgd }
645 1.7 cgd
646 1.110 thorpej /*
647 1.110 thorpej * Dump out the MDDT if it looks odd...
648 1.110 thorpej */
649 1.7 cgd if (mddtweird) {
650 1.46 christos printf("\n");
651 1.46 christos printf("complete memory cluster information:\n");
652 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
653 1.46 christos printf("mddt %d:\n", i);
654 1.46 christos printf("\tpfn %lx\n",
655 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
656 1.46 christos printf("\tcnt %lx\n",
657 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
658 1.46 christos printf("\ttest %lx\n",
659 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
660 1.46 christos printf("\tbva %lx\n",
661 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
662 1.46 christos printf("\tbpa %lx\n",
663 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
664 1.46 christos printf("\tbcksum %lx\n",
665 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
666 1.46 christos printf("\tusage %lx\n",
667 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
668 1.2 cgd }
669 1.46 christos printf("\n");
670 1.2 cgd }
671 1.2 cgd
672 1.7 cgd if (totalphysmem == 0)
673 1.1 cgd panic("can't happen: system seems to have no memory!");
674 1.110 thorpej
675 1.110 thorpej #ifdef LIMITMEM
676 1.110 thorpej /*
677 1.110 thorpej * XXX Kludge so we can run on machines with memory larger
678 1.110 thorpej * XXX than 1G until all device drivers are converted to
679 1.110 thorpej * XXX use bus_dma. (Relies on the fact that vm_physmem
680 1.110 thorpej * XXX sorted in order of increasing addresses.)
681 1.110 thorpej */
682 1.110 thorpej if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
683 1.110 thorpej
684 1.110 thorpej printf("******** LIMITING MEMORY TO %dMB **********\n",
685 1.110 thorpej LIMITMEM);
686 1.110 thorpej
687 1.110 thorpej do {
688 1.110 thorpej u_long ovf;
689 1.110 thorpej
690 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
691 1.110 thorpej
692 1.110 thorpej if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
693 1.110 thorpej /*
694 1.110 thorpej * If the start is too high, just drop
695 1.110 thorpej * the whole segment.
696 1.110 thorpej *
697 1.110 thorpej * XXX can start != avail_start in this
698 1.110 thorpej * XXX case? wouldn't that mean that
699 1.110 thorpej * XXX some memory was stolen above the
700 1.110 thorpej * XXX limit? What to do?
701 1.110 thorpej */
702 1.110 thorpej ovf = vps->end - vps->start;
703 1.110 thorpej vm_nphysseg--;
704 1.110 thorpej } else {
705 1.110 thorpej /*
706 1.110 thorpej * If the start is OK, calculate how much
707 1.110 thorpej * to drop and drop it.
708 1.110 thorpej */
709 1.110 thorpej ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
710 1.110 thorpej vps->end -= ovf;
711 1.110 thorpej vps->avail_end -= ovf;
712 1.110 thorpej }
713 1.110 thorpej physmem -= ovf;
714 1.110 thorpej unusedmem += ovf;
715 1.110 thorpej } while (vps->end > atop(LIMITMEM * 1024 * 1024));
716 1.88 mjacob }
717 1.110 thorpej #endif /* LIMITMEM */
718 1.110 thorpej
719 1.1 cgd maxmem = physmem;
720 1.1 cgd
721 1.7 cgd #if 0
722 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
723 1.46 christos printf("physmem = %d\n", physmem);
724 1.46 christos printf("resvmem = %d\n", resvmem);
725 1.46 christos printf("unusedmem = %d\n", unusedmem);
726 1.46 christos printf("unknownmem = %d\n", unknownmem);
727 1.7 cgd #endif
728 1.90 mjacob
729 1.90 mjacob /*
730 1.90 mjacob * Adjust some parameters if the amount of physmem
731 1.90 mjacob * available would cause us to croak. This is completely
732 1.90 mjacob * eyeballed and isn't meant to be the final answer.
733 1.90 mjacob * vm_phys_size is probably the only one to really worry
734 1.90 mjacob * about.
735 1.90 mjacob *
736 1.90 mjacob * It's for booting a GENERIC kernel on a large memory platform.
737 1.90 mjacob */
738 1.110 thorpej if (physmem >= atop(128 * 1024 * 1024)) {
739 1.90 mjacob vm_mbuf_size <<= 1;
740 1.93 mjacob vm_kmem_size <<= 3;
741 1.93 mjacob vm_phys_size <<= 2;
742 1.90 mjacob }
743 1.7 cgd
744 1.1 cgd /*
745 1.1 cgd * Initialize error message buffer (at end of core).
746 1.1 cgd */
747 1.110 thorpej {
748 1.110 thorpej size_t sz = round_page(MSGBUFSIZE);
749 1.110 thorpej
750 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
751 1.110 thorpej
752 1.110 thorpej /* shrink so that it'll fit in the last segment */
753 1.110 thorpej if ((vps->avail_end - vps->avail_start) < atop(sz))
754 1.110 thorpej sz = ptoa(vps->avail_end - vps->avail_start);
755 1.110 thorpej
756 1.110 thorpej vps->end -= atop(sz);
757 1.110 thorpej vps->avail_end -= atop(sz);
758 1.110 thorpej msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
759 1.110 thorpej initmsgbuf(msgbufaddr, sz);
760 1.110 thorpej
761 1.110 thorpej /* Remove the last segment if it now has no pages. */
762 1.110 thorpej if (vps->start == vps->end)
763 1.110 thorpej vm_nphysseg--;
764 1.110 thorpej
765 1.110 thorpej /* warn if the message buffer had to be shrunk */
766 1.110 thorpej if (sz != round_page(MSGBUFSIZE))
767 1.110 thorpej printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
768 1.110 thorpej round_page(MSGBUFSIZE), sz);
769 1.110 thorpej
770 1.110 thorpej }
771 1.1 cgd
772 1.1 cgd /*
773 1.95 thorpej * Init mapping for u page(s) for proc 0
774 1.1 cgd */
775 1.110 thorpej proc0.p_addr = proc0paddr =
776 1.110 thorpej (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
777 1.1 cgd
778 1.1 cgd /*
779 1.95 thorpej * Allocate space for system data structures. These data structures
780 1.95 thorpej * are allocated here instead of cpu_startup() because physical
781 1.95 thorpej * memory is directly addressable. We don't have to map these into
782 1.95 thorpej * virtual address space.
783 1.95 thorpej */
784 1.95 thorpej size = (vm_size_t)allocsys(0);
785 1.110 thorpej v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
786 1.110 thorpej if ((allocsys(v) - v) != size)
787 1.95 thorpej panic("alpha_init: table size inconsistency");
788 1.1 cgd
789 1.1 cgd /*
790 1.1 cgd * Initialize the virtual memory system, and set the
791 1.1 cgd * page table base register in proc 0's PCB.
792 1.1 cgd */
793 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
794 1.40 cgd hwrpb->rpb_max_asn);
795 1.1 cgd
796 1.1 cgd /*
797 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
798 1.3 cgd * address.
799 1.3 cgd */
800 1.3 cgd proc0.p_md.md_pcbpaddr =
801 1.32 cgd (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
802 1.3 cgd
803 1.3 cgd /*
804 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
805 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
806 1.3 cgd */
807 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
808 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
809 1.81 thorpej proc0.p_md.md_tf =
810 1.81 thorpej (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
811 1.1 cgd
812 1.1 cgd /*
813 1.25 cgd * Look at arguments passed to us and compute boothowto.
814 1.8 cgd */
815 1.1 cgd
816 1.8 cgd boothowto = RB_SINGLE;
817 1.1 cgd #ifdef KADB
818 1.1 cgd boothowto |= RB_KDB;
819 1.1 cgd #endif
820 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
821 1.26 cgd /*
822 1.26 cgd * Note that we'd really like to differentiate case here,
823 1.26 cgd * but the Alpha AXP Architecture Reference Manual
824 1.26 cgd * says that we shouldn't.
825 1.26 cgd */
826 1.8 cgd switch (*p) {
827 1.26 cgd case 'a': /* autoboot */
828 1.26 cgd case 'A':
829 1.26 cgd boothowto &= ~RB_SINGLE;
830 1.21 cgd break;
831 1.21 cgd
832 1.43 cgd #ifdef DEBUG
833 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
834 1.43 cgd case 'C':
835 1.43 cgd boothowto |= RB_DUMP;
836 1.43 cgd break;
837 1.43 cgd #endif
838 1.43 cgd
839 1.81 thorpej #if defined(KGDB) || defined(DDB)
840 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
841 1.81 thorpej case 'D':
842 1.81 thorpej boothowto |= RB_KDB;
843 1.81 thorpej break;
844 1.81 thorpej #endif
845 1.81 thorpej
846 1.36 cgd case 'h': /* always halt, never reboot */
847 1.36 cgd case 'H':
848 1.36 cgd boothowto |= RB_HALT;
849 1.8 cgd break;
850 1.8 cgd
851 1.21 cgd #if 0
852 1.8 cgd case 'm': /* mini root present in memory */
853 1.26 cgd case 'M':
854 1.8 cgd boothowto |= RB_MINIROOT;
855 1.8 cgd break;
856 1.21 cgd #endif
857 1.36 cgd
858 1.36 cgd case 'n': /* askname */
859 1.36 cgd case 'N':
860 1.36 cgd boothowto |= RB_ASKNAME;
861 1.65 cgd break;
862 1.65 cgd
863 1.65 cgd case 's': /* single-user (default, supported for sanity) */
864 1.65 cgd case 'S':
865 1.65 cgd boothowto |= RB_SINGLE;
866 1.119 thorpej break;
867 1.119 thorpej
868 1.119 thorpej case '-':
869 1.119 thorpej /*
870 1.119 thorpej * Just ignore this. It's not required, but it's
871 1.119 thorpej * common for it to be passed regardless.
872 1.119 thorpej */
873 1.65 cgd break;
874 1.65 cgd
875 1.65 cgd default:
876 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
877 1.36 cgd break;
878 1.1 cgd }
879 1.1 cgd }
880 1.1 cgd
881 1.136 mjacob
882 1.136 mjacob /*
883 1.136 mjacob * Figure out the number of cpus in the box, from RPB fields.
884 1.136 mjacob * Really. We mean it.
885 1.136 mjacob */
886 1.136 mjacob for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
887 1.136 mjacob struct pcs *pcsp;
888 1.136 mjacob
889 1.136 mjacob pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
890 1.136 mjacob (i * hwrpb->rpb_pcs_size));
891 1.136 mjacob if ((pcsp->pcs_flags & PCS_PP) != 0)
892 1.136 mjacob ncpus++;
893 1.136 mjacob }
894 1.136 mjacob
895 1.7 cgd /*
896 1.106 cgd * Initialize debuggers, and break into them if appropriate.
897 1.106 cgd */
898 1.106 cgd #ifdef DDB
899 1.106 cgd db_machine_init();
900 1.106 cgd ddb_init(ksym_start, ksym_end);
901 1.106 cgd if (boothowto & RB_KDB)
902 1.106 cgd Debugger();
903 1.106 cgd #endif
904 1.106 cgd #ifdef KGDB
905 1.106 cgd if (boothowto & RB_KDB)
906 1.106 cgd kgdb_connect(0);
907 1.106 cgd #endif
908 1.106 cgd /*
909 1.106 cgd * Figure out our clock frequency, from RPB fields.
910 1.106 cgd */
911 1.106 cgd hz = hwrpb->rpb_intr_freq >> 12;
912 1.106 cgd if (!(60 <= hz && hz <= 10240)) {
913 1.106 cgd hz = 1024;
914 1.106 cgd #ifdef DIAGNOSTIC
915 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
916 1.106 cgd hwrpb->rpb_intr_freq, hz);
917 1.106 cgd #endif
918 1.106 cgd }
919 1.95 thorpej }
920 1.95 thorpej
921 1.95 thorpej /*
922 1.95 thorpej * Allocate space for system data structures. We are given
923 1.95 thorpej * a starting virtual address and we return a final virtual
924 1.95 thorpej * address; along the way we set each data structure pointer.
925 1.95 thorpej *
926 1.95 thorpej * We call allocsys() with 0 to find out how much space we want,
927 1.95 thorpej * allocate that much and fill it with zeroes, and the call
928 1.95 thorpej * allocsys() again with the correct base virtual address.
929 1.95 thorpej */
930 1.95 thorpej caddr_t
931 1.95 thorpej allocsys(v)
932 1.95 thorpej caddr_t v;
933 1.95 thorpej {
934 1.95 thorpej
935 1.95 thorpej #define valloc(name, type, num) \
936 1.95 thorpej (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
937 1.134 mjacob
938 1.95 thorpej #ifdef REAL_CLISTS
939 1.95 thorpej valloc(cfree, struct cblock, nclist);
940 1.95 thorpej #endif
941 1.95 thorpej valloc(callout, struct callout, ncallout);
942 1.95 thorpej #ifdef SYSVSHM
943 1.95 thorpej valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
944 1.95 thorpej #endif
945 1.95 thorpej #ifdef SYSVSEM
946 1.95 thorpej valloc(sema, struct semid_ds, seminfo.semmni);
947 1.95 thorpej valloc(sem, struct sem, seminfo.semmns);
948 1.95 thorpej /* This is pretty disgusting! */
949 1.95 thorpej valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
950 1.95 thorpej #endif
951 1.95 thorpej #ifdef SYSVMSG
952 1.95 thorpej valloc(msgpool, char, msginfo.msgmax);
953 1.95 thorpej valloc(msgmaps, struct msgmap, msginfo.msgseg);
954 1.95 thorpej valloc(msghdrs, struct msg, msginfo.msgtql);
955 1.95 thorpej valloc(msqids, struct msqid_ds, msginfo.msgmni);
956 1.95 thorpej #endif
957 1.95 thorpej
958 1.95 thorpej /*
959 1.95 thorpej * Determine how many buffers to allocate.
960 1.95 thorpej * We allocate 10% of memory for buffer space. Insure a
961 1.95 thorpej * minimum of 16 buffers. We allocate 1/2 as many swap buffer
962 1.95 thorpej * headers as file i/o buffers.
963 1.95 thorpej */
964 1.95 thorpej if (bufpages == 0)
965 1.95 thorpej bufpages = (physmem * 10) / (CLSIZE * 100);
966 1.95 thorpej if (nbuf == 0) {
967 1.95 thorpej nbuf = bufpages;
968 1.95 thorpej if (nbuf < 16)
969 1.95 thorpej nbuf = 16;
970 1.95 thorpej }
971 1.95 thorpej if (nswbuf == 0) {
972 1.95 thorpej nswbuf = (nbuf / 2) &~ 1; /* force even */
973 1.95 thorpej if (nswbuf > 256)
974 1.95 thorpej nswbuf = 256; /* sanity */
975 1.95 thorpej }
976 1.112 thorpej #if !defined(UVM)
977 1.95 thorpej valloc(swbuf, struct buf, nswbuf);
978 1.112 thorpej #endif
979 1.95 thorpej valloc(buf, struct buf, nbuf);
980 1.136 mjacob
981 1.136 mjacob /*
982 1.136 mjacob * There appears to be a correlation between the number
983 1.136 mjacob * of processor slots defined in the HWRPB and the whami
984 1.136 mjacob * value that can be returned.
985 1.136 mjacob */
986 1.138 ross valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
987 1.136 mjacob
988 1.95 thorpej return (v);
989 1.98 cgd #undef valloc
990 1.1 cgd }
991 1.1 cgd
992 1.18 cgd void
993 1.1 cgd consinit()
994 1.1 cgd {
995 1.81 thorpej
996 1.106 cgd /*
997 1.106 cgd * Everything related to console initialization is done
998 1.106 cgd * in alpha_init().
999 1.106 cgd */
1000 1.106 cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
1001 1.106 cgd printf("consinit: %susing prom console\n",
1002 1.106 cgd pmap_uses_prom_console() ? "" : "not ");
1003 1.81 thorpej #endif
1004 1.1 cgd }
1005 1.118 thorpej
1006 1.118 thorpej #include "pckbc.h"
1007 1.118 thorpej #include "pckbd.h"
1008 1.118 thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
1009 1.118 thorpej
1010 1.118 thorpej #include <machine/bus.h>
1011 1.118 thorpej #include <dev/isa/pckbcvar.h>
1012 1.118 thorpej
1013 1.118 thorpej /*
1014 1.118 thorpej * This is called by the pbkbc driver if no pckbd is configured.
1015 1.118 thorpej * On the i386, it is used to glue in the old, deprecated console
1016 1.118 thorpej * code. On the Alpha, it does nothing.
1017 1.118 thorpej */
1018 1.118 thorpej int
1019 1.118 thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
1020 1.118 thorpej pckbc_tag_t kbctag;
1021 1.118 thorpej pckbc_slot_t kbcslot;
1022 1.118 thorpej {
1023 1.118 thorpej
1024 1.118 thorpej return (ENXIO);
1025 1.118 thorpej }
1026 1.118 thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
1027 1.1 cgd
1028 1.18 cgd void
1029 1.1 cgd cpu_startup()
1030 1.1 cgd {
1031 1.1 cgd register unsigned i;
1032 1.1 cgd int base, residual;
1033 1.1 cgd vm_offset_t minaddr, maxaddr;
1034 1.1 cgd vm_size_t size;
1035 1.40 cgd #if defined(DEBUG)
1036 1.1 cgd extern int pmapdebug;
1037 1.1 cgd int opmapdebug = pmapdebug;
1038 1.1 cgd
1039 1.1 cgd pmapdebug = 0;
1040 1.1 cgd #endif
1041 1.1 cgd
1042 1.1 cgd /*
1043 1.1 cgd * Good {morning,afternoon,evening,night}.
1044 1.1 cgd */
1045 1.46 christos printf(version);
1046 1.1 cgd identifycpu();
1047 1.110 thorpej printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1048 1.137 mjacob ((vm_offset_t) totalphysmem << (vm_offset_t) PAGE_SHIFT),
1049 1.137 mjacob ptoa(resvmem), ptoa(physmem));
1050 1.7 cgd if (unusedmem)
1051 1.46 christos printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1052 1.7 cgd if (unknownmem)
1053 1.46 christos printf("WARNING: %d bytes of memory with unknown purpose\n",
1054 1.7 cgd ctob(unknownmem));
1055 1.1 cgd
1056 1.1 cgd /*
1057 1.1 cgd * Allocate virtual address space for file I/O buffers.
1058 1.1 cgd * Note they are different than the array of headers, 'buf',
1059 1.1 cgd * and usually occupy more virtual memory than physical.
1060 1.1 cgd */
1061 1.1 cgd size = MAXBSIZE * nbuf;
1062 1.112 thorpej #if defined(UVM)
1063 1.112 thorpej if (uvm_map(kernel_map, (vm_offset_t *) &buffers, round_page(size),
1064 1.112 thorpej NULL, UVM_UNKNOWN_OFFSET,
1065 1.112 thorpej UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1066 1.112 thorpej UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1067 1.112 thorpej panic("startup: cannot allocate VM for buffers");
1068 1.112 thorpej #else
1069 1.1 cgd buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
1070 1.1 cgd &maxaddr, size, TRUE);
1071 1.1 cgd minaddr = (vm_offset_t)buffers;
1072 1.1 cgd if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
1073 1.1 cgd &minaddr, size, FALSE) != KERN_SUCCESS)
1074 1.1 cgd panic("startup: cannot allocate buffers");
1075 1.112 thorpej #endif /* UVM */
1076 1.1 cgd base = bufpages / nbuf;
1077 1.1 cgd residual = bufpages % nbuf;
1078 1.1 cgd for (i = 0; i < nbuf; i++) {
1079 1.112 thorpej #if defined(UVM)
1080 1.112 thorpej vm_size_t curbufsize;
1081 1.112 thorpej vm_offset_t curbuf;
1082 1.112 thorpej struct vm_page *pg;
1083 1.112 thorpej
1084 1.112 thorpej /*
1085 1.112 thorpej * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1086 1.112 thorpej * that MAXBSIZE space, we allocate and map (base+1) pages
1087 1.112 thorpej * for the first "residual" buffers, and then we allocate
1088 1.112 thorpej * "base" pages for the rest.
1089 1.112 thorpej */
1090 1.112 thorpej curbuf = (vm_offset_t) buffers + (i * MAXBSIZE);
1091 1.112 thorpej curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1092 1.112 thorpej
1093 1.112 thorpej while (curbufsize) {
1094 1.112 thorpej pg = uvm_pagealloc(NULL, 0, NULL);
1095 1.112 thorpej if (pg == NULL)
1096 1.112 thorpej panic("cpu_startup: not enough memory for "
1097 1.112 thorpej "buffer cache");
1098 1.112 thorpej #if defined(PMAP_NEW)
1099 1.112 thorpej pmap_kenter_pgs(curbuf, &pg, 1);
1100 1.112 thorpej #else
1101 1.112 thorpej pmap_enter(kernel_map->pmap, curbuf,
1102 1.112 thorpej VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1103 1.112 thorpej #endif
1104 1.112 thorpej curbuf += PAGE_SIZE;
1105 1.112 thorpej curbufsize -= PAGE_SIZE;
1106 1.112 thorpej }
1107 1.112 thorpej #else /* ! UVM */
1108 1.1 cgd vm_size_t curbufsize;
1109 1.1 cgd vm_offset_t curbuf;
1110 1.1 cgd
1111 1.1 cgd /*
1112 1.1 cgd * First <residual> buffers get (base+1) physical pages
1113 1.1 cgd * allocated for them. The rest get (base) physical pages.
1114 1.1 cgd *
1115 1.1 cgd * The rest of each buffer occupies virtual space,
1116 1.1 cgd * but has no physical memory allocated for it.
1117 1.1 cgd */
1118 1.1 cgd curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
1119 1.1 cgd curbufsize = CLBYTES * (i < residual ? base+1 : base);
1120 1.1 cgd vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1121 1.1 cgd vm_map_simplify(buffer_map, curbuf);
1122 1.112 thorpej #endif /* UVM */
1123 1.1 cgd }
1124 1.1 cgd /*
1125 1.1 cgd * Allocate a submap for exec arguments. This map effectively
1126 1.1 cgd * limits the number of processes exec'ing at any time.
1127 1.1 cgd */
1128 1.112 thorpej #if defined(UVM)
1129 1.112 thorpej exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1130 1.112 thorpej 16 * NCARGS, TRUE, FALSE, NULL);
1131 1.112 thorpej #else
1132 1.1 cgd exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1133 1.1 cgd 16 * NCARGS, TRUE);
1134 1.112 thorpej #endif
1135 1.1 cgd
1136 1.1 cgd /*
1137 1.1 cgd * Allocate a submap for physio
1138 1.1 cgd */
1139 1.112 thorpej #if defined(UVM)
1140 1.112 thorpej phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1141 1.112 thorpej VM_PHYS_SIZE, TRUE, FALSE, NULL);
1142 1.112 thorpej #else
1143 1.1 cgd phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1144 1.1 cgd VM_PHYS_SIZE, TRUE);
1145 1.112 thorpej #endif
1146 1.1 cgd
1147 1.1 cgd /*
1148 1.69 thorpej * Finally, allocate mbuf cluster submap.
1149 1.1 cgd */
1150 1.112 thorpej #if defined(UVM)
1151 1.112 thorpej mb_map = uvm_km_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1152 1.112 thorpej VM_MBUF_SIZE, FALSE, FALSE, NULL);
1153 1.112 thorpej #else
1154 1.1 cgd mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
1155 1.112 thorpej VM_MBUF_SIZE, FALSE);
1156 1.112 thorpej #endif
1157 1.1 cgd /*
1158 1.1 cgd * Initialize callouts
1159 1.1 cgd */
1160 1.1 cgd callfree = callout;
1161 1.1 cgd for (i = 1; i < ncallout; i++)
1162 1.1 cgd callout[i-1].c_next = &callout[i];
1163 1.1 cgd callout[i-1].c_next = NULL;
1164 1.1 cgd
1165 1.40 cgd #if defined(DEBUG)
1166 1.1 cgd pmapdebug = opmapdebug;
1167 1.1 cgd #endif
1168 1.112 thorpej #if defined(UVM)
1169 1.112 thorpej printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1170 1.112 thorpej #else
1171 1.46 christos printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1172 1.139 thorpej #endif
1173 1.139 thorpej #if 0
1174 1.139 thorpej {
1175 1.139 thorpej extern u_long pmap_pages_stolen;
1176 1.139 thorpej printf("stolen memory for VM structures = %ld bytes\n",
1177 1.139 thorpej pmap_pages_stolen * PAGE_SIZE);
1178 1.139 thorpej }
1179 1.112 thorpej #endif
1180 1.46 christos printf("using %ld buffers containing %ld bytes of memory\n",
1181 1.1 cgd (long)nbuf, (long)(bufpages * CLBYTES));
1182 1.1 cgd
1183 1.1 cgd /*
1184 1.1 cgd * Set up buffers, so they can be used to read disk labels.
1185 1.1 cgd */
1186 1.1 cgd bufinit();
1187 1.1 cgd
1188 1.1 cgd /*
1189 1.1 cgd * Configure the system.
1190 1.1 cgd */
1191 1.1 cgd configure();
1192 1.48 cgd
1193 1.48 cgd /*
1194 1.48 cgd * Note that bootstrapping is finished, and set the HWRPB up
1195 1.48 cgd * to do restarts.
1196 1.48 cgd */
1197 1.55 cgd hwrpb_restart_setup();
1198 1.104 thorpej }
1199 1.104 thorpej
1200 1.104 thorpej /*
1201 1.104 thorpej * Retrieve the platform name from the DSR.
1202 1.104 thorpej */
1203 1.104 thorpej const char *
1204 1.104 thorpej alpha_dsr_sysname()
1205 1.104 thorpej {
1206 1.104 thorpej struct dsrdb *dsr;
1207 1.104 thorpej const char *sysname;
1208 1.104 thorpej
1209 1.104 thorpej /*
1210 1.104 thorpej * DSR does not exist on early HWRPB versions.
1211 1.104 thorpej */
1212 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1213 1.104 thorpej return (NULL);
1214 1.104 thorpej
1215 1.104 thorpej dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1216 1.104 thorpej sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1217 1.104 thorpej sizeof(u_int64_t)));
1218 1.104 thorpej return (sysname);
1219 1.104 thorpej }
1220 1.104 thorpej
1221 1.104 thorpej /*
1222 1.104 thorpej * Lookup the system specified system variation in the provided table,
1223 1.104 thorpej * returning the model string on match.
1224 1.104 thorpej */
1225 1.104 thorpej const char *
1226 1.104 thorpej alpha_variation_name(variation, avtp)
1227 1.104 thorpej u_int64_t variation;
1228 1.104 thorpej const struct alpha_variation_table *avtp;
1229 1.104 thorpej {
1230 1.104 thorpej int i;
1231 1.104 thorpej
1232 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++)
1233 1.104 thorpej if (avtp[i].avt_variation == variation)
1234 1.104 thorpej return (avtp[i].avt_model);
1235 1.104 thorpej return (NULL);
1236 1.104 thorpej }
1237 1.104 thorpej
1238 1.104 thorpej /*
1239 1.104 thorpej * Generate a default platform name based for unknown system variations.
1240 1.104 thorpej */
1241 1.104 thorpej const char *
1242 1.104 thorpej alpha_unknown_sysname()
1243 1.104 thorpej {
1244 1.105 thorpej static char s[128]; /* safe size */
1245 1.104 thorpej
1246 1.105 thorpej sprintf(s, "%s family, unknown model variation 0x%lx",
1247 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1248 1.104 thorpej return ((const char *)s);
1249 1.1 cgd }
1250 1.1 cgd
1251 1.33 cgd void
1252 1.1 cgd identifycpu()
1253 1.1 cgd {
1254 1.1 cgd
1255 1.7 cgd /*
1256 1.7 cgd * print out CPU identification information.
1257 1.7 cgd */
1258 1.46 christos printf("%s, %ldMHz\n", cpu_model,
1259 1.7 cgd hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1260 1.46 christos printf("%ld byte page size, %d processor%s.\n",
1261 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1262 1.7 cgd #if 0
1263 1.7 cgd /* this isn't defined for any systems that we run on? */
1264 1.46 christos printf("serial number 0x%lx 0x%lx\n",
1265 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1266 1.7 cgd
1267 1.7 cgd /* and these aren't particularly useful! */
1268 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
1269 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1270 1.7 cgd #endif
1271 1.1 cgd }
1272 1.1 cgd
1273 1.1 cgd int waittime = -1;
1274 1.7 cgd struct pcb dumppcb;
1275 1.1 cgd
1276 1.18 cgd void
1277 1.68 gwr cpu_reboot(howto, bootstr)
1278 1.1 cgd int howto;
1279 1.39 mrg char *bootstr;
1280 1.1 cgd {
1281 1.1 cgd extern int cold;
1282 1.1 cgd
1283 1.1 cgd /* If system is cold, just halt. */
1284 1.1 cgd if (cold) {
1285 1.1 cgd howto |= RB_HALT;
1286 1.1 cgd goto haltsys;
1287 1.1 cgd }
1288 1.1 cgd
1289 1.36 cgd /* If "always halt" was specified as a boot flag, obey. */
1290 1.36 cgd if ((boothowto & RB_HALT) != 0)
1291 1.36 cgd howto |= RB_HALT;
1292 1.36 cgd
1293 1.7 cgd boothowto = howto;
1294 1.7 cgd if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1295 1.1 cgd waittime = 0;
1296 1.7 cgd vfs_shutdown();
1297 1.1 cgd /*
1298 1.1 cgd * If we've been adjusting the clock, the todr
1299 1.1 cgd * will be out of synch; adjust it now.
1300 1.1 cgd */
1301 1.1 cgd resettodr();
1302 1.1 cgd }
1303 1.1 cgd
1304 1.1 cgd /* Disable interrupts. */
1305 1.1 cgd splhigh();
1306 1.1 cgd
1307 1.7 cgd /* If rebooting and a dump is requested do it. */
1308 1.42 cgd #if 0
1309 1.42 cgd if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1310 1.42 cgd #else
1311 1.42 cgd if (howto & RB_DUMP)
1312 1.42 cgd #endif
1313 1.1 cgd dumpsys();
1314 1.6 cgd
1315 1.12 cgd haltsys:
1316 1.12 cgd
1317 1.6 cgd /* run any shutdown hooks */
1318 1.6 cgd doshutdownhooks();
1319 1.1 cgd
1320 1.7 cgd #ifdef BOOTKEY
1321 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1322 1.117 drochner cnpollc(1); /* for proper keyboard command handling */
1323 1.7 cgd cngetc();
1324 1.117 drochner cnpollc(0);
1325 1.46 christos printf("\n");
1326 1.7 cgd #endif
1327 1.7 cgd
1328 1.124 thorpej /* Finally, powerdown/halt/reboot the system. */
1329 1.124 thorpej if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1330 1.124 thorpej platform.powerdown != NULL) {
1331 1.124 thorpej (*platform.powerdown)();
1332 1.124 thorpej printf("WARNING: powerdown failed!\n");
1333 1.124 thorpej }
1334 1.46 christos printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1335 1.1 cgd prom_halt(howto & RB_HALT);
1336 1.1 cgd /*NOTREACHED*/
1337 1.1 cgd }
1338 1.1 cgd
1339 1.7 cgd /*
1340 1.7 cgd * These variables are needed by /sbin/savecore
1341 1.7 cgd */
1342 1.7 cgd u_long dumpmag = 0x8fca0101; /* magic number */
1343 1.7 cgd int dumpsize = 0; /* pages */
1344 1.7 cgd long dumplo = 0; /* blocks */
1345 1.7 cgd
1346 1.7 cgd /*
1347 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1348 1.43 cgd */
1349 1.43 cgd int
1350 1.43 cgd cpu_dumpsize()
1351 1.43 cgd {
1352 1.43 cgd int size;
1353 1.43 cgd
1354 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1355 1.110 thorpej ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1356 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
1357 1.43 cgd return -1;
1358 1.43 cgd
1359 1.43 cgd return (1);
1360 1.43 cgd }
1361 1.43 cgd
1362 1.43 cgd /*
1363 1.110 thorpej * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1364 1.110 thorpej */
1365 1.110 thorpej u_long
1366 1.110 thorpej cpu_dump_mempagecnt()
1367 1.110 thorpej {
1368 1.110 thorpej u_long i, n;
1369 1.110 thorpej
1370 1.110 thorpej n = 0;
1371 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++)
1372 1.110 thorpej n += atop(mem_clusters[i].size);
1373 1.110 thorpej return (n);
1374 1.110 thorpej }
1375 1.110 thorpej
1376 1.110 thorpej /*
1377 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
1378 1.43 cgd */
1379 1.43 cgd int
1380 1.43 cgd cpu_dump()
1381 1.43 cgd {
1382 1.43 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1383 1.107 cgd char buf[dbtob(1)];
1384 1.107 cgd kcore_seg_t *segp;
1385 1.107 cgd cpu_kcore_hdr_t *cpuhdrp;
1386 1.107 cgd phys_ram_seg_t *memsegp;
1387 1.110 thorpej int i;
1388 1.43 cgd
1389 1.107 cgd dump = bdevsw[major(dumpdev)].d_dump;
1390 1.43 cgd
1391 1.107 cgd bzero(buf, sizeof buf);
1392 1.43 cgd segp = (kcore_seg_t *)buf;
1393 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1394 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1395 1.107 cgd ALIGN(sizeof(*cpuhdrp))];
1396 1.43 cgd
1397 1.43 cgd /*
1398 1.43 cgd * Generate a segment header.
1399 1.43 cgd */
1400 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1401 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1402 1.43 cgd
1403 1.43 cgd /*
1404 1.107 cgd * Add the machine-dependent header info.
1405 1.43 cgd */
1406 1.122 thorpej cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vm_offset_t)kernel_lev1map);
1407 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
1408 1.110 thorpej cpuhdrp->nmemsegs = mem_cluster_cnt;
1409 1.107 cgd
1410 1.107 cgd /*
1411 1.107 cgd * Fill in the memory segment descriptors.
1412 1.107 cgd */
1413 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1414 1.110 thorpej memsegp[i].start = mem_clusters[i].start;
1415 1.110 thorpej memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1416 1.110 thorpej }
1417 1.43 cgd
1418 1.43 cgd return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1419 1.43 cgd }
1420 1.43 cgd
1421 1.43 cgd /*
1422 1.68 gwr * This is called by main to set dumplo and dumpsize.
1423 1.7 cgd * Dumps always skip the first CLBYTES of disk space
1424 1.7 cgd * in case there might be a disk label stored there.
1425 1.7 cgd * If there is extra space, put dump at the end to
1426 1.7 cgd * reduce the chance that swapping trashes it.
1427 1.7 cgd */
1428 1.7 cgd void
1429 1.68 gwr cpu_dumpconf()
1430 1.7 cgd {
1431 1.43 cgd int nblks, dumpblks; /* size of dump area */
1432 1.7 cgd int maj;
1433 1.7 cgd
1434 1.7 cgd if (dumpdev == NODEV)
1435 1.43 cgd goto bad;
1436 1.7 cgd maj = major(dumpdev);
1437 1.7 cgd if (maj < 0 || maj >= nblkdev)
1438 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1439 1.7 cgd if (bdevsw[maj].d_psize == NULL)
1440 1.43 cgd goto bad;
1441 1.7 cgd nblks = (*bdevsw[maj].d_psize)(dumpdev);
1442 1.7 cgd if (nblks <= ctod(1))
1443 1.43 cgd goto bad;
1444 1.43 cgd
1445 1.43 cgd dumpblks = cpu_dumpsize();
1446 1.43 cgd if (dumpblks < 0)
1447 1.43 cgd goto bad;
1448 1.110 thorpej dumpblks += ctod(cpu_dump_mempagecnt());
1449 1.43 cgd
1450 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
1451 1.43 cgd if (dumpblks > (nblks - ctod(1)))
1452 1.43 cgd goto bad;
1453 1.43 cgd
1454 1.43 cgd /* Put dump at end of partition */
1455 1.43 cgd dumplo = nblks - dumpblks;
1456 1.7 cgd
1457 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1458 1.110 thorpej dumpsize = cpu_dump_mempagecnt();
1459 1.43 cgd return;
1460 1.7 cgd
1461 1.43 cgd bad:
1462 1.43 cgd dumpsize = 0;
1463 1.43 cgd return;
1464 1.7 cgd }
1465 1.7 cgd
1466 1.7 cgd /*
1467 1.42 cgd * Dump the kernel's image to the swap partition.
1468 1.7 cgd */
1469 1.42 cgd #define BYTES_PER_DUMP NBPG
1470 1.42 cgd
1471 1.7 cgd void
1472 1.7 cgd dumpsys()
1473 1.7 cgd {
1474 1.110 thorpej u_long totalbytesleft, bytes, i, n, memcl;
1475 1.110 thorpej u_long maddr;
1476 1.110 thorpej int psize;
1477 1.42 cgd daddr_t blkno;
1478 1.42 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1479 1.42 cgd int error;
1480 1.42 cgd
1481 1.42 cgd /* Save registers. */
1482 1.42 cgd savectx(&dumppcb);
1483 1.7 cgd
1484 1.111 thorpej msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1485 1.7 cgd if (dumpdev == NODEV)
1486 1.7 cgd return;
1487 1.42 cgd
1488 1.42 cgd /*
1489 1.42 cgd * For dumps during autoconfiguration,
1490 1.42 cgd * if dump device has already configured...
1491 1.42 cgd */
1492 1.42 cgd if (dumpsize == 0)
1493 1.68 gwr cpu_dumpconf();
1494 1.47 cgd if (dumplo <= 0) {
1495 1.97 mycroft printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1496 1.97 mycroft minor(dumpdev));
1497 1.42 cgd return;
1498 1.43 cgd }
1499 1.97 mycroft printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1500 1.97 mycroft minor(dumpdev), dumplo);
1501 1.7 cgd
1502 1.42 cgd psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1503 1.46 christos printf("dump ");
1504 1.42 cgd if (psize == -1) {
1505 1.46 christos printf("area unavailable\n");
1506 1.42 cgd return;
1507 1.42 cgd }
1508 1.42 cgd
1509 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1510 1.42 cgd
1511 1.43 cgd if ((error = cpu_dump()) != 0)
1512 1.43 cgd goto err;
1513 1.43 cgd
1514 1.110 thorpej totalbytesleft = ptoa(cpu_dump_mempagecnt());
1515 1.43 cgd blkno = dumplo + cpu_dumpsize();
1516 1.42 cgd dump = bdevsw[major(dumpdev)].d_dump;
1517 1.42 cgd error = 0;
1518 1.42 cgd
1519 1.110 thorpej for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1520 1.110 thorpej maddr = mem_clusters[memcl].start;
1521 1.110 thorpej bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1522 1.110 thorpej
1523 1.110 thorpej for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1524 1.110 thorpej
1525 1.110 thorpej /* Print out how many MBs we to go. */
1526 1.110 thorpej if ((totalbytesleft % (1024*1024)) == 0)
1527 1.110 thorpej printf("%d ", totalbytesleft / (1024 * 1024));
1528 1.110 thorpej
1529 1.110 thorpej /* Limit size for next transfer. */
1530 1.110 thorpej n = bytes - i;
1531 1.110 thorpej if (n > BYTES_PER_DUMP)
1532 1.110 thorpej n = BYTES_PER_DUMP;
1533 1.110 thorpej
1534 1.110 thorpej error = (*dump)(dumpdev, blkno,
1535 1.110 thorpej (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1536 1.110 thorpej if (error)
1537 1.110 thorpej goto err;
1538 1.110 thorpej maddr += n;
1539 1.110 thorpej blkno += btodb(n); /* XXX? */
1540 1.42 cgd
1541 1.110 thorpej /* XXX should look for keystrokes, to cancel. */
1542 1.110 thorpej }
1543 1.42 cgd }
1544 1.42 cgd
1545 1.43 cgd err:
1546 1.42 cgd switch (error) {
1547 1.7 cgd
1548 1.7 cgd case ENXIO:
1549 1.46 christos printf("device bad\n");
1550 1.7 cgd break;
1551 1.7 cgd
1552 1.7 cgd case EFAULT:
1553 1.46 christos printf("device not ready\n");
1554 1.7 cgd break;
1555 1.7 cgd
1556 1.7 cgd case EINVAL:
1557 1.46 christos printf("area improper\n");
1558 1.7 cgd break;
1559 1.7 cgd
1560 1.7 cgd case EIO:
1561 1.46 christos printf("i/o error\n");
1562 1.7 cgd break;
1563 1.7 cgd
1564 1.7 cgd case EINTR:
1565 1.46 christos printf("aborted from console\n");
1566 1.7 cgd break;
1567 1.7 cgd
1568 1.42 cgd case 0:
1569 1.46 christos printf("succeeded\n");
1570 1.42 cgd break;
1571 1.42 cgd
1572 1.7 cgd default:
1573 1.46 christos printf("error %d\n", error);
1574 1.7 cgd break;
1575 1.7 cgd }
1576 1.46 christos printf("\n\n");
1577 1.7 cgd delay(1000);
1578 1.7 cgd }
1579 1.7 cgd
1580 1.1 cgd void
1581 1.1 cgd frametoreg(framep, regp)
1582 1.1 cgd struct trapframe *framep;
1583 1.1 cgd struct reg *regp;
1584 1.1 cgd {
1585 1.1 cgd
1586 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1587 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1588 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1589 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1590 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1591 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1592 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1593 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1594 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1595 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1596 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1597 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1598 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1599 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1600 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1601 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1602 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1603 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1604 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1605 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1606 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1607 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1608 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1609 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1610 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1611 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1612 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1613 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1614 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1615 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1616 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1617 1.1 cgd regp->r_regs[R_ZERO] = 0;
1618 1.1 cgd }
1619 1.1 cgd
1620 1.1 cgd void
1621 1.1 cgd regtoframe(regp, framep)
1622 1.1 cgd struct reg *regp;
1623 1.1 cgd struct trapframe *framep;
1624 1.1 cgd {
1625 1.1 cgd
1626 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1627 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1628 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1629 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1630 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1631 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1632 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1633 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1634 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1635 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1636 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1637 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1638 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1639 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1640 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1641 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1642 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1643 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1644 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1645 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1646 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1647 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1648 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1649 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1650 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1651 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1652 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1653 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1654 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1655 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1656 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1657 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1658 1.1 cgd }
1659 1.1 cgd
1660 1.1 cgd void
1661 1.1 cgd printregs(regp)
1662 1.1 cgd struct reg *regp;
1663 1.1 cgd {
1664 1.1 cgd int i;
1665 1.1 cgd
1666 1.1 cgd for (i = 0; i < 32; i++)
1667 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1668 1.1 cgd i & 1 ? "\n" : "\t");
1669 1.1 cgd }
1670 1.1 cgd
1671 1.1 cgd void
1672 1.1 cgd regdump(framep)
1673 1.1 cgd struct trapframe *framep;
1674 1.1 cgd {
1675 1.1 cgd struct reg reg;
1676 1.1 cgd
1677 1.1 cgd frametoreg(framep, ®);
1678 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1679 1.35 cgd
1680 1.46 christos printf("REGISTERS:\n");
1681 1.1 cgd printregs(®);
1682 1.1 cgd }
1683 1.1 cgd
1684 1.1 cgd #ifdef DEBUG
1685 1.1 cgd int sigdebug = 0;
1686 1.1 cgd int sigpid = 0;
1687 1.1 cgd #define SDB_FOLLOW 0x01
1688 1.1 cgd #define SDB_KSTACK 0x02
1689 1.1 cgd #endif
1690 1.1 cgd
1691 1.1 cgd /*
1692 1.1 cgd * Send an interrupt to process.
1693 1.1 cgd */
1694 1.1 cgd void
1695 1.1 cgd sendsig(catcher, sig, mask, code)
1696 1.1 cgd sig_t catcher;
1697 1.1 cgd int sig, mask;
1698 1.1 cgd u_long code;
1699 1.1 cgd {
1700 1.1 cgd struct proc *p = curproc;
1701 1.1 cgd struct sigcontext *scp, ksc;
1702 1.1 cgd struct trapframe *frame;
1703 1.1 cgd struct sigacts *psp = p->p_sigacts;
1704 1.1 cgd int oonstack, fsize, rndfsize;
1705 1.1 cgd extern char sigcode[], esigcode[];
1706 1.1 cgd extern struct proc *fpcurproc;
1707 1.1 cgd
1708 1.1 cgd frame = p->p_md.md_tf;
1709 1.9 mycroft oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1710 1.1 cgd fsize = sizeof ksc;
1711 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1712 1.1 cgd /*
1713 1.1 cgd * Allocate and validate space for the signal handler
1714 1.1 cgd * context. Note that if the stack is in P0 space, the
1715 1.1 cgd * call to grow() is a nop, and the useracc() check
1716 1.1 cgd * will fail if the process has not already allocated
1717 1.1 cgd * the space with a `brk'.
1718 1.1 cgd */
1719 1.1 cgd if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1720 1.1 cgd (psp->ps_sigonstack & sigmask(sig))) {
1721 1.121 kleink scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1722 1.1 cgd psp->ps_sigstk.ss_size - rndfsize);
1723 1.9 mycroft psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1724 1.1 cgd } else
1725 1.35 cgd scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1726 1.1 cgd if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1727 1.112 thorpej #if defined(UVM)
1728 1.112 thorpej (void)uvm_grow(p, (u_long)scp);
1729 1.112 thorpej #else
1730 1.1 cgd (void)grow(p, (u_long)scp);
1731 1.112 thorpej #endif
1732 1.1 cgd #ifdef DEBUG
1733 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1734 1.46 christos printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1735 1.1 cgd sig, &oonstack, scp);
1736 1.1 cgd #endif
1737 1.112 thorpej #if defined(UVM)
1738 1.112 thorpej if (uvm_useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1739 1.112 thorpej #else
1740 1.1 cgd if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1741 1.112 thorpej #endif
1742 1.1 cgd #ifdef DEBUG
1743 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1744 1.46 christos printf("sendsig(%d): useracc failed on sig %d\n",
1745 1.1 cgd p->p_pid, sig);
1746 1.1 cgd #endif
1747 1.1 cgd /*
1748 1.1 cgd * Process has trashed its stack; give it an illegal
1749 1.1 cgd * instruction to halt it in its tracks.
1750 1.1 cgd */
1751 1.1 cgd SIGACTION(p, SIGILL) = SIG_DFL;
1752 1.1 cgd sig = sigmask(SIGILL);
1753 1.1 cgd p->p_sigignore &= ~sig;
1754 1.1 cgd p->p_sigcatch &= ~sig;
1755 1.1 cgd p->p_sigmask &= ~sig;
1756 1.1 cgd psignal(p, SIGILL);
1757 1.1 cgd return;
1758 1.125 ross #if !defined(UVM) /* this construct will balance braces for ctags(1) */
1759 1.1 cgd }
1760 1.125 ross #else
1761 1.125 ross }
1762 1.125 ross #endif
1763 1.1 cgd
1764 1.1 cgd /*
1765 1.1 cgd * Build the signal context to be used by sigreturn.
1766 1.1 cgd */
1767 1.1 cgd ksc.sc_onstack = oonstack;
1768 1.1 cgd ksc.sc_mask = mask;
1769 1.34 cgd ksc.sc_pc = frame->tf_regs[FRAME_PC];
1770 1.34 cgd ksc.sc_ps = frame->tf_regs[FRAME_PS];
1771 1.1 cgd
1772 1.1 cgd /* copy the registers. */
1773 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1774 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1775 1.35 cgd ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1776 1.1 cgd
1777 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1778 1.1 cgd if (p == fpcurproc) {
1779 1.32 cgd alpha_pal_wrfen(1);
1780 1.1 cgd savefpstate(&p->p_addr->u_pcb.pcb_fp);
1781 1.32 cgd alpha_pal_wrfen(0);
1782 1.1 cgd fpcurproc = NULL;
1783 1.1 cgd }
1784 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1785 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1786 1.1 cgd sizeof(struct fpreg));
1787 1.1 cgd ksc.sc_fp_control = 0; /* XXX ? */
1788 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1789 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1790 1.1 cgd
1791 1.1 cgd
1792 1.1 cgd #ifdef COMPAT_OSF1
1793 1.1 cgd /*
1794 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1795 1.1 cgd */
1796 1.1 cgd #endif
1797 1.1 cgd
1798 1.1 cgd /*
1799 1.1 cgd * copy the frame out to userland.
1800 1.1 cgd */
1801 1.1 cgd (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1802 1.1 cgd #ifdef DEBUG
1803 1.1 cgd if (sigdebug & SDB_FOLLOW)
1804 1.46 christos printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1805 1.1 cgd scp, code);
1806 1.1 cgd #endif
1807 1.1 cgd
1808 1.1 cgd /*
1809 1.1 cgd * Set up the registers to return to sigcode.
1810 1.1 cgd */
1811 1.34 cgd frame->tf_regs[FRAME_PC] =
1812 1.34 cgd (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1813 1.34 cgd frame->tf_regs[FRAME_A0] = sig;
1814 1.34 cgd frame->tf_regs[FRAME_A1] = code;
1815 1.34 cgd frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1816 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1817 1.35 cgd alpha_pal_wrusp((unsigned long)scp);
1818 1.1 cgd
1819 1.1 cgd #ifdef DEBUG
1820 1.1 cgd if (sigdebug & SDB_FOLLOW)
1821 1.46 christos printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1822 1.34 cgd frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1823 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1824 1.46 christos printf("sendsig(%d): sig %d returns\n",
1825 1.1 cgd p->p_pid, sig);
1826 1.1 cgd #endif
1827 1.1 cgd }
1828 1.1 cgd
1829 1.1 cgd /*
1830 1.1 cgd * System call to cleanup state after a signal
1831 1.1 cgd * has been taken. Reset signal mask and
1832 1.1 cgd * stack state from context left by sendsig (above).
1833 1.1 cgd * Return to previous pc and psl as specified by
1834 1.1 cgd * context left by sendsig. Check carefully to
1835 1.1 cgd * make sure that the user has not modified the
1836 1.1 cgd * psl to gain improper priviledges or to cause
1837 1.1 cgd * a machine fault.
1838 1.1 cgd */
1839 1.1 cgd /* ARGSUSED */
1840 1.11 mycroft int
1841 1.11 mycroft sys_sigreturn(p, v, retval)
1842 1.1 cgd struct proc *p;
1843 1.10 thorpej void *v;
1844 1.10 thorpej register_t *retval;
1845 1.10 thorpej {
1846 1.11 mycroft struct sys_sigreturn_args /* {
1847 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1848 1.10 thorpej } */ *uap = v;
1849 1.1 cgd struct sigcontext *scp, ksc;
1850 1.1 cgd extern struct proc *fpcurproc;
1851 1.1 cgd
1852 1.1 cgd scp = SCARG(uap, sigcntxp);
1853 1.1 cgd #ifdef DEBUG
1854 1.1 cgd if (sigdebug & SDB_FOLLOW)
1855 1.46 christos printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1856 1.1 cgd #endif
1857 1.1 cgd
1858 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1859 1.1 cgd return (EINVAL);
1860 1.1 cgd
1861 1.1 cgd /*
1862 1.1 cgd * Test and fetch the context structure.
1863 1.1 cgd * We grab it all at once for speed.
1864 1.1 cgd */
1865 1.112 thorpej #if defined(UVM)
1866 1.112 thorpej if (uvm_useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1867 1.112 thorpej copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1868 1.112 thorpej return (EINVAL);
1869 1.112 thorpej #else
1870 1.1 cgd if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1871 1.1 cgd copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1872 1.1 cgd return (EINVAL);
1873 1.112 thorpej #endif
1874 1.1 cgd
1875 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1876 1.1 cgd return (EINVAL);
1877 1.1 cgd /*
1878 1.1 cgd * Restore the user-supplied information
1879 1.1 cgd */
1880 1.1 cgd if (ksc.sc_onstack)
1881 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1882 1.1 cgd else
1883 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1884 1.1 cgd p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1885 1.1 cgd
1886 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1887 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PS] =
1888 1.32 cgd (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1889 1.1 cgd
1890 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1891 1.35 cgd alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1892 1.1 cgd
1893 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1894 1.1 cgd if (p == fpcurproc)
1895 1.1 cgd fpcurproc = NULL;
1896 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1897 1.1 cgd sizeof(struct fpreg));
1898 1.1 cgd /* XXX ksc.sc_fp_control ? */
1899 1.1 cgd
1900 1.1 cgd #ifdef DEBUG
1901 1.1 cgd if (sigdebug & SDB_FOLLOW)
1902 1.46 christos printf("sigreturn(%d): returns\n", p->p_pid);
1903 1.1 cgd #endif
1904 1.1 cgd return (EJUSTRETURN);
1905 1.1 cgd }
1906 1.1 cgd
1907 1.1 cgd /*
1908 1.1 cgd * machine dependent system variables.
1909 1.1 cgd */
1910 1.33 cgd int
1911 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1912 1.1 cgd int *name;
1913 1.1 cgd u_int namelen;
1914 1.1 cgd void *oldp;
1915 1.1 cgd size_t *oldlenp;
1916 1.1 cgd void *newp;
1917 1.1 cgd size_t newlen;
1918 1.1 cgd struct proc *p;
1919 1.1 cgd {
1920 1.1 cgd dev_t consdev;
1921 1.1 cgd
1922 1.1 cgd /* all sysctl names at this level are terminal */
1923 1.1 cgd if (namelen != 1)
1924 1.1 cgd return (ENOTDIR); /* overloaded */
1925 1.1 cgd
1926 1.1 cgd switch (name[0]) {
1927 1.1 cgd case CPU_CONSDEV:
1928 1.1 cgd if (cn_tab != NULL)
1929 1.1 cgd consdev = cn_tab->cn_dev;
1930 1.1 cgd else
1931 1.1 cgd consdev = NODEV;
1932 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1933 1.1 cgd sizeof consdev));
1934 1.30 cgd
1935 1.30 cgd case CPU_ROOT_DEVICE:
1936 1.64 thorpej return (sysctl_rdstring(oldp, oldlenp, newp,
1937 1.64 thorpej root_device->dv_xname));
1938 1.36 cgd
1939 1.36 cgd case CPU_UNALIGNED_PRINT:
1940 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1941 1.36 cgd &alpha_unaligned_print));
1942 1.36 cgd
1943 1.36 cgd case CPU_UNALIGNED_FIX:
1944 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1945 1.36 cgd &alpha_unaligned_fix));
1946 1.36 cgd
1947 1.36 cgd case CPU_UNALIGNED_SIGBUS:
1948 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1949 1.36 cgd &alpha_unaligned_sigbus));
1950 1.61 cgd
1951 1.61 cgd case CPU_BOOTED_KERNEL:
1952 1.102 cgd return (sysctl_rdstring(oldp, oldlenp, newp,
1953 1.102 cgd bootinfo.booted_kernel));
1954 1.30 cgd
1955 1.1 cgd default:
1956 1.1 cgd return (EOPNOTSUPP);
1957 1.1 cgd }
1958 1.1 cgd /* NOTREACHED */
1959 1.1 cgd }
1960 1.1 cgd
1961 1.1 cgd /*
1962 1.1 cgd * Set registers on exec.
1963 1.1 cgd */
1964 1.1 cgd void
1965 1.85 mycroft setregs(p, pack, stack)
1966 1.1 cgd register struct proc *p;
1967 1.5 christos struct exec_package *pack;
1968 1.1 cgd u_long stack;
1969 1.1 cgd {
1970 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1971 1.56 cgd extern struct proc *fpcurproc;
1972 1.56 cgd #ifdef DEBUG
1973 1.1 cgd int i;
1974 1.56 cgd #endif
1975 1.43 cgd
1976 1.43 cgd #ifdef DEBUG
1977 1.43 cgd /*
1978 1.43 cgd * Crash and dump, if the user requested it.
1979 1.43 cgd */
1980 1.43 cgd if (boothowto & RB_DUMP)
1981 1.43 cgd panic("crash requested by boot flags");
1982 1.43 cgd #endif
1983 1.1 cgd
1984 1.1 cgd #ifdef DEBUG
1985 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1986 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1987 1.1 cgd #else
1988 1.34 cgd bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1989 1.1 cgd #endif
1990 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1991 1.7 cgd #define FP_RN 2 /* XXX */
1992 1.7 cgd p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1993 1.35 cgd alpha_pal_wrusp(stack);
1994 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1995 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1996 1.41 cgd
1997 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1998 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1999 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
2000 1.63 cgd tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
2001 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
2002 1.1 cgd
2003 1.33 cgd p->p_md.md_flags &= ~MDP_FPUSED;
2004 1.1 cgd if (fpcurproc == p)
2005 1.1 cgd fpcurproc = NULL;
2006 1.1 cgd }
2007 1.1 cgd
2008 1.1 cgd void
2009 1.1 cgd netintr()
2010 1.1 cgd {
2011 1.49 cgd int n, s;
2012 1.49 cgd
2013 1.49 cgd s = splhigh();
2014 1.49 cgd n = netisr;
2015 1.49 cgd netisr = 0;
2016 1.49 cgd splx(s);
2017 1.49 cgd
2018 1.49 cgd #define DONETISR(bit, fn) \
2019 1.49 cgd do { \
2020 1.49 cgd if (n & (1 << (bit))) \
2021 1.49 cgd fn; \
2022 1.49 cgd } while (0)
2023 1.49 cgd
2024 1.1 cgd #ifdef INET
2025 1.72 cgd #if NARP > 0
2026 1.49 cgd DONETISR(NETISR_ARP, arpintr());
2027 1.72 cgd #endif
2028 1.49 cgd DONETISR(NETISR_IP, ipintr());
2029 1.70 christos #endif
2030 1.70 christos #ifdef NETATALK
2031 1.70 christos DONETISR(NETISR_ATALK, atintr());
2032 1.1 cgd #endif
2033 1.1 cgd #ifdef NS
2034 1.49 cgd DONETISR(NETISR_NS, nsintr());
2035 1.1 cgd #endif
2036 1.1 cgd #ifdef ISO
2037 1.49 cgd DONETISR(NETISR_ISO, clnlintr());
2038 1.1 cgd #endif
2039 1.1 cgd #ifdef CCITT
2040 1.49 cgd DONETISR(NETISR_CCITT, ccittintr());
2041 1.49 cgd #endif
2042 1.49 cgd #ifdef NATM
2043 1.49 cgd DONETISR(NETISR_NATM, natmintr());
2044 1.1 cgd #endif
2045 1.49 cgd #if NPPP > 1
2046 1.49 cgd DONETISR(NETISR_PPP, pppintr());
2047 1.8 cgd #endif
2048 1.49 cgd
2049 1.49 cgd #undef DONETISR
2050 1.1 cgd }
2051 1.1 cgd
2052 1.1 cgd void
2053 1.1 cgd do_sir()
2054 1.1 cgd {
2055 1.58 cgd u_int64_t n;
2056 1.1 cgd
2057 1.59 cgd do {
2058 1.60 cgd (void)splhigh();
2059 1.58 cgd n = ssir;
2060 1.58 cgd ssir = 0;
2061 1.60 cgd splsoft(); /* don't recurse through spl0() */
2062 1.112 thorpej
2063 1.112 thorpej #if defined(UVM)
2064 1.112 thorpej #define COUNT_SOFT uvmexp.softs++
2065 1.112 thorpej #else
2066 1.112 thorpej #define COUNT_SOFT cnt.v_soft++
2067 1.112 thorpej #endif
2068 1.112 thorpej
2069 1.59 cgd #define DO_SIR(bit, fn) \
2070 1.59 cgd do { \
2071 1.60 cgd if (n & (bit)) { \
2072 1.112 thorpej COUNT_SOFT; \
2073 1.59 cgd fn; \
2074 1.59 cgd } \
2075 1.59 cgd } while (0)
2076 1.59 cgd
2077 1.60 cgd DO_SIR(SIR_NET, netintr());
2078 1.60 cgd DO_SIR(SIR_CLOCK, softclock());
2079 1.60 cgd
2080 1.112 thorpej #undef COUNT_SOFT
2081 1.60 cgd #undef DO_SIR
2082 1.59 cgd } while (ssir != 0);
2083 1.1 cgd }
2084 1.1 cgd
2085 1.1 cgd int
2086 1.1 cgd spl0()
2087 1.1 cgd {
2088 1.1 cgd
2089 1.59 cgd if (ssir)
2090 1.59 cgd do_sir(); /* it lowers the IPL itself */
2091 1.1 cgd
2092 1.32 cgd return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2093 1.1 cgd }
2094 1.1 cgd
2095 1.1 cgd /*
2096 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
2097 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2098 1.52 cgd * into queues, Remrunqueue removes them from queues. The running process is
2099 1.52 cgd * on no queue, other processes are on a queue related to p->p_priority,
2100 1.52 cgd * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2101 1.52 cgd * available queues.
2102 1.1 cgd */
2103 1.1 cgd /*
2104 1.1 cgd * setrunqueue(p)
2105 1.1 cgd * proc *p;
2106 1.1 cgd *
2107 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
2108 1.1 cgd */
2109 1.1 cgd
2110 1.1 cgd void
2111 1.1 cgd setrunqueue(p)
2112 1.1 cgd struct proc *p;
2113 1.1 cgd {
2114 1.1 cgd int bit;
2115 1.1 cgd
2116 1.1 cgd /* firewall: p->p_back must be NULL */
2117 1.1 cgd if (p->p_back != NULL)
2118 1.1 cgd panic("setrunqueue");
2119 1.1 cgd
2120 1.1 cgd bit = p->p_priority >> 2;
2121 1.1 cgd whichqs |= (1 << bit);
2122 1.1 cgd p->p_forw = (struct proc *)&qs[bit];
2123 1.1 cgd p->p_back = qs[bit].ph_rlink;
2124 1.1 cgd p->p_back->p_forw = p;
2125 1.1 cgd qs[bit].ph_rlink = p;
2126 1.1 cgd }
2127 1.1 cgd
2128 1.1 cgd /*
2129 1.52 cgd * remrunqueue(p)
2130 1.1 cgd *
2131 1.1 cgd * Call should be made at splclock().
2132 1.1 cgd */
2133 1.1 cgd void
2134 1.52 cgd remrunqueue(p)
2135 1.1 cgd struct proc *p;
2136 1.1 cgd {
2137 1.1 cgd int bit;
2138 1.1 cgd
2139 1.1 cgd bit = p->p_priority >> 2;
2140 1.1 cgd if ((whichqs & (1 << bit)) == 0)
2141 1.52 cgd panic("remrunqueue");
2142 1.1 cgd
2143 1.1 cgd p->p_back->p_forw = p->p_forw;
2144 1.1 cgd p->p_forw->p_back = p->p_back;
2145 1.1 cgd p->p_back = NULL; /* for firewall checking. */
2146 1.1 cgd
2147 1.1 cgd if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2148 1.1 cgd whichqs &= ~(1 << bit);
2149 1.1 cgd }
2150 1.1 cgd
2151 1.1 cgd /*
2152 1.1 cgd * Return the best possible estimate of the time in the timeval
2153 1.1 cgd * to which tvp points. Unfortunately, we can't read the hardware registers.
2154 1.1 cgd * We guarantee that the time will be greater than the value obtained by a
2155 1.1 cgd * previous call.
2156 1.1 cgd */
2157 1.1 cgd void
2158 1.1 cgd microtime(tvp)
2159 1.1 cgd register struct timeval *tvp;
2160 1.1 cgd {
2161 1.1 cgd int s = splclock();
2162 1.1 cgd static struct timeval lasttime;
2163 1.1 cgd
2164 1.1 cgd *tvp = time;
2165 1.1 cgd #ifdef notdef
2166 1.1 cgd tvp->tv_usec += clkread();
2167 1.1 cgd while (tvp->tv_usec > 1000000) {
2168 1.1 cgd tvp->tv_sec++;
2169 1.1 cgd tvp->tv_usec -= 1000000;
2170 1.1 cgd }
2171 1.1 cgd #endif
2172 1.1 cgd if (tvp->tv_sec == lasttime.tv_sec &&
2173 1.1 cgd tvp->tv_usec <= lasttime.tv_usec &&
2174 1.1 cgd (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2175 1.1 cgd tvp->tv_sec++;
2176 1.1 cgd tvp->tv_usec -= 1000000;
2177 1.1 cgd }
2178 1.1 cgd lasttime = *tvp;
2179 1.1 cgd splx(s);
2180 1.15 cgd }
2181 1.15 cgd
2182 1.15 cgd /*
2183 1.15 cgd * Wait "n" microseconds.
2184 1.15 cgd */
2185 1.32 cgd void
2186 1.15 cgd delay(n)
2187 1.32 cgd unsigned long n;
2188 1.15 cgd {
2189 1.15 cgd long N = cycles_per_usec * (n);
2190 1.15 cgd
2191 1.15 cgd while (N > 0) /* XXX */
2192 1.15 cgd N -= 3; /* XXX */
2193 1.1 cgd }
2194 1.1 cgd
2195 1.8 cgd #if defined(COMPAT_OSF1) || 1 /* XXX */
2196 1.55 cgd void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2197 1.85 mycroft u_long));
2198 1.55 cgd
2199 1.1 cgd void
2200 1.85 mycroft cpu_exec_ecoff_setregs(p, epp, stack)
2201 1.1 cgd struct proc *p;
2202 1.19 cgd struct exec_package *epp;
2203 1.5 christos u_long stack;
2204 1.1 cgd {
2205 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2206 1.1 cgd
2207 1.85 mycroft setregs(p, epp, stack);
2208 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2209 1.1 cgd }
2210 1.1 cgd
2211 1.1 cgd /*
2212 1.1 cgd * cpu_exec_ecoff_hook():
2213 1.1 cgd * cpu-dependent ECOFF format hook for execve().
2214 1.1 cgd *
2215 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
2216 1.1 cgd *
2217 1.1 cgd */
2218 1.1 cgd int
2219 1.19 cgd cpu_exec_ecoff_hook(p, epp)
2220 1.1 cgd struct proc *p;
2221 1.1 cgd struct exec_package *epp;
2222 1.1 cgd {
2223 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2224 1.5 christos extern struct emul emul_netbsd;
2225 1.5 christos #ifdef COMPAT_OSF1
2226 1.5 christos extern struct emul emul_osf1;
2227 1.5 christos #endif
2228 1.1 cgd
2229 1.19 cgd switch (execp->f.f_magic) {
2230 1.5 christos #ifdef COMPAT_OSF1
2231 1.1 cgd case ECOFF_MAGIC_ALPHA:
2232 1.5 christos epp->ep_emul = &emul_osf1;
2233 1.1 cgd break;
2234 1.5 christos #endif
2235 1.1 cgd
2236 1.1 cgd case ECOFF_MAGIC_NETBSD_ALPHA:
2237 1.5 christos epp->ep_emul = &emul_netbsd;
2238 1.1 cgd break;
2239 1.1 cgd
2240 1.1 cgd default:
2241 1.12 cgd return ENOEXEC;
2242 1.1 cgd }
2243 1.1 cgd return 0;
2244 1.1 cgd }
2245 1.1 cgd #endif
2246 1.110 thorpej
2247 1.110 thorpej int
2248 1.110 thorpej alpha_pa_access(pa)
2249 1.110 thorpej u_long pa;
2250 1.110 thorpej {
2251 1.110 thorpej int i;
2252 1.110 thorpej
2253 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
2254 1.110 thorpej if (pa < mem_clusters[i].start)
2255 1.110 thorpej continue;
2256 1.110 thorpej if ((pa - mem_clusters[i].start) >=
2257 1.110 thorpej (mem_clusters[i].size & ~PAGE_MASK))
2258 1.110 thorpej continue;
2259 1.110 thorpej return (mem_clusters[i].size & PAGE_MASK); /* prot */
2260 1.110 thorpej }
2261 1.110 thorpej return (PROT_NONE);
2262 1.110 thorpej }
2263 1.50 cgd
2264 1.50 cgd /* XXX XXX BEGIN XXX XXX */
2265 1.50 cgd vm_offset_t alpha_XXX_dmamap_or; /* XXX */
2266 1.50 cgd /* XXX */
2267 1.50 cgd vm_offset_t /* XXX */
2268 1.50 cgd alpha_XXX_dmamap(v) /* XXX */
2269 1.51 cgd vm_offset_t v; /* XXX */
2270 1.50 cgd { /* XXX */
2271 1.50 cgd /* XXX */
2272 1.51 cgd return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2273 1.50 cgd } /* XXX */
2274 1.50 cgd /* XXX XXX END XXX XXX */
2275 1.138 ross
2276 1.138 ross struct mchkinfo *
2277 1.138 ross cpu_mchkinfo()
2278 1.138 ross {
2279 1.138 ross if (mchkinfo_all_cpus == NULL)
2280 1.138 ross return &startup_info;
2281 1.138 ross return mchkinfo_all_cpus + alpha_pal_whami();
2282 1.138 ross }
2283