machdep.c revision 1.14 1 1.14 jtc /* $NetBSD: machdep.c,v 1.14 1996/01/04 22:21:33 jtc Exp $ */
2 1.1 cgd
3 1.1 cgd /*
4 1.1 cgd * Copyright (c) 1994, 1995 Carnegie-Mellon University.
5 1.1 cgd * All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Author: Chris G. Demetriou
8 1.1 cgd *
9 1.1 cgd * Permission to use, copy, modify and distribute this software and
10 1.1 cgd * its documentation is hereby granted, provided that both the copyright
11 1.1 cgd * notice and this permission notice appear in all copies of the
12 1.1 cgd * software, derivative works or modified versions, and any portions
13 1.1 cgd * thereof, and that both notices appear in supporting documentation.
14 1.1 cgd *
15 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 1.1 cgd *
19 1.1 cgd * Carnegie Mellon requests users of this software to return to
20 1.1 cgd *
21 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 1.1 cgd * School of Computer Science
23 1.1 cgd * Carnegie Mellon University
24 1.1 cgd * Pittsburgh PA 15213-3890
25 1.1 cgd *
26 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
27 1.1 cgd * rights to redistribute these changes.
28 1.1 cgd */
29 1.1 cgd
30 1.1 cgd #include <sys/param.h>
31 1.1 cgd #include <sys/systm.h>
32 1.1 cgd #include <sys/signalvar.h>
33 1.1 cgd #include <sys/kernel.h>
34 1.1 cgd #include <sys/map.h>
35 1.1 cgd #include <sys/proc.h>
36 1.1 cgd #include <sys/buf.h>
37 1.1 cgd #include <sys/reboot.h>
38 1.1 cgd #include <sys/conf.h>
39 1.1 cgd #include <sys/file.h>
40 1.1 cgd #ifdef REAL_CLISTS
41 1.1 cgd #include <sys/clist.h>
42 1.1 cgd #endif
43 1.1 cgd #include <sys/callout.h>
44 1.1 cgd #include <sys/malloc.h>
45 1.1 cgd #include <sys/mbuf.h>
46 1.1 cgd #include <sys/msgbuf.h>
47 1.1 cgd #include <sys/ioctl.h>
48 1.1 cgd #include <sys/tty.h>
49 1.1 cgd #include <sys/user.h>
50 1.1 cgd #include <sys/exec.h>
51 1.1 cgd #include <sys/exec_ecoff.h>
52 1.1 cgd #include <sys/sysctl.h>
53 1.1 cgd #ifdef SYSVMSG
54 1.1 cgd #include <sys/msg.h>
55 1.1 cgd #endif
56 1.1 cgd #ifdef SYSVSEM
57 1.1 cgd #include <sys/sem.h>
58 1.1 cgd #endif
59 1.1 cgd #ifdef SYSVSHM
60 1.1 cgd #include <sys/shm.h>
61 1.1 cgd #endif
62 1.1 cgd
63 1.1 cgd #include <sys/mount.h>
64 1.1 cgd #include <sys/syscallargs.h>
65 1.1 cgd
66 1.1 cgd #include <vm/vm_kern.h>
67 1.1 cgd
68 1.1 cgd #include <dev/cons.h>
69 1.1 cgd
70 1.1 cgd #include <machine/cpu.h>
71 1.1 cgd #include <machine/reg.h>
72 1.1 cgd #include <machine/rpb.h>
73 1.1 cgd #include <machine/prom.h>
74 1.1 cgd
75 1.8 cgd #ifdef DEC_3000_500
76 1.8 cgd #include <alpha/alpha/dec_3000_500.h>
77 1.8 cgd #endif
78 1.8 cgd #ifdef DEC_3000_300
79 1.8 cgd #include <alpha/alpha/dec_3000_300.h>
80 1.8 cgd #endif
81 1.8 cgd #ifdef DEC_2100_A50
82 1.8 cgd #include <alpha/alpha/dec_2100_a50.h>
83 1.8 cgd #endif
84 1.12 cgd #ifdef DEC_KN20AA
85 1.12 cgd #include <alpha/alpha/dec_kn20aa.h>
86 1.12 cgd #endif
87 1.12 cgd #ifdef DEC_AXPPCI_33
88 1.12 cgd #include <alpha/alpha/dec_axppci_33.h>
89 1.12 cgd #endif
90 1.12 cgd #ifdef DEC_21000
91 1.12 cgd #include <alpha/alpha/dec_21000.h>
92 1.12 cgd #endif
93 1.8 cgd
94 1.1 cgd #include <net/netisr.h>
95 1.1 cgd #include "ether.h"
96 1.1 cgd
97 1.1 cgd #include "le.h" /* XXX for le_iomem creation */
98 1.1 cgd
99 1.1 cgd vm_map_t buffer_map;
100 1.1 cgd
101 1.7 cgd void dumpsys __P((void));
102 1.7 cgd
103 1.1 cgd /*
104 1.1 cgd * Declare these as initialized data so we can patch them.
105 1.1 cgd */
106 1.1 cgd int nswbuf = 0;
107 1.1 cgd #ifdef NBUF
108 1.1 cgd int nbuf = NBUF;
109 1.1 cgd #else
110 1.1 cgd int nbuf = 0;
111 1.1 cgd #endif
112 1.1 cgd #ifdef BUFPAGES
113 1.1 cgd int bufpages = BUFPAGES;
114 1.1 cgd #else
115 1.1 cgd int bufpages = 0;
116 1.1 cgd #endif
117 1.1 cgd int msgbufmapped = 0; /* set when safe to use msgbuf */
118 1.1 cgd int maxmem; /* max memory per process */
119 1.7 cgd
120 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
121 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
122 1.7 cgd int firstusablepage; /* first usable memory page */
123 1.7 cgd int lastusablepage; /* last usable memory page */
124 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
125 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
126 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
127 1.1 cgd
128 1.1 cgd int cputype; /* system type, from the RPB */
129 1.1 cgd
130 1.1 cgd /*
131 1.1 cgd * XXX We need an address to which we can assign things so that they
132 1.1 cgd * won't be optimized away because we didn't use the value.
133 1.1 cgd */
134 1.1 cgd u_int32_t no_optimize;
135 1.1 cgd
136 1.1 cgd /* the following is used externally (sysctl_hw) */
137 1.1 cgd char machine[] = "alpha";
138 1.2 cgd char *cpu_model;
139 1.1 cgd char *model_names[] = {
140 1.2 cgd "UNKNOWN (0)",
141 1.2 cgd "Alpha Demonstration Unit",
142 1.2 cgd "DEC 4000 (\"Cobra\")",
143 1.2 cgd "DEC 7000 (\"Ruby\")",
144 1.2 cgd "DEC 3000/500 (\"Flamingo\") family",
145 1.2 cgd "UNKNOWN (5)",
146 1.2 cgd "DEC 2000/300 (\"Jensen\")",
147 1.2 cgd "DEC 3000/300 (\"Pelican\")",
148 1.2 cgd "UNKNOWN (8)",
149 1.2 cgd "DEC 2100/A500 (\"Sable\")",
150 1.2 cgd "AXPvme 64",
151 1.2 cgd "AXPpci 33 (\"NoName\")",
152 1.12 cgd "DEC 21000 (\"TurboLaser\")",
153 1.7 cgd "DEC 2100/A50 (\"Avanti\") family",
154 1.2 cgd "Mustang",
155 1.12 cgd "DEC KN20AA",
156 1.12 cgd "UNKNOWN (16)",
157 1.2 cgd "DEC 1000 (\"Mikasa\")",
158 1.1 cgd };
159 1.1 cgd int nmodel_names = sizeof model_names/sizeof model_names[0];
160 1.1 cgd
161 1.1 cgd struct user *proc0paddr;
162 1.1 cgd
163 1.1 cgd /* Number of machine cycles per microsecond */
164 1.1 cgd u_int64_t cycles_per_usec;
165 1.1 cgd
166 1.1 cgd /* some memory areas for device DMA. "ick." */
167 1.1 cgd caddr_t le_iomem; /* XXX iomem for LANCE DMA */
168 1.1 cgd
169 1.1 cgd /* Interrupt vectors (in locore) */
170 1.1 cgd extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
171 1.1 cgd
172 1.7 cgd /* number of cpus in the box. really! */
173 1.7 cgd int ncpus;
174 1.7 cgd
175 1.8 cgd /* various CPU-specific functions. */
176 1.8 cgd char *(*cpu_modelname) __P((void));
177 1.8 cgd void (*cpu_consinit) __P((char *));
178 1.8 cgd dev_t (*cpu_bootdev) __P((char *));
179 1.8 cgd char *cpu_iobus;
180 1.8 cgd
181 1.8 cgd char *boot_file, *boot_flags, *boot_console, *boot_dev;
182 1.8 cgd
183 1.1 cgd int
184 1.1 cgd alpha_init(pfn, ptb, argc, argv, envp)
185 1.1 cgd u_long pfn; /* first free PFN number */
186 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
187 1.1 cgd u_long argc;
188 1.1 cgd char *argv[], *envp[];
189 1.1 cgd {
190 1.2 cgd extern char _end[];
191 1.1 cgd caddr_t start, v;
192 1.1 cgd struct mddt *mddtp;
193 1.7 cgd int i, mddtweird;
194 1.1 cgd char *p;
195 1.1 cgd
196 1.1 cgd /*
197 1.1 cgd * Turn off interrupts and floating point.
198 1.1 cgd * Make sure the instruction and data streams are consistent.
199 1.1 cgd */
200 1.1 cgd (void)splhigh();
201 1.1 cgd pal_wrfen(0);
202 1.1 cgd TBIA();
203 1.1 cgd IMB();
204 1.1 cgd
205 1.1 cgd /*
206 1.1 cgd * get address of the restart block, while we the bootstrap
207 1.1 cgd * mapping is still around.
208 1.1 cgd */
209 1.1 cgd hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
210 1.1 cgd
211 1.1 cgd /*
212 1.1 cgd * Remember how many cycles there are per microsecond,
213 1.7 cgd * so that we can use delay(). Round up, for safety.
214 1.1 cgd */
215 1.7 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
216 1.1 cgd
217 1.1 cgd /*
218 1.1 cgd * Init the PROM interface, so we can use printf
219 1.1 cgd * until PROM mappings go away in consinit.
220 1.1 cgd */
221 1.1 cgd init_prom_interface();
222 1.1 cgd
223 1.1 cgd /*
224 1.1 cgd * Point interrupt/exception vectors to our own.
225 1.1 cgd */
226 1.1 cgd pal_wrent(XentInt, 0);
227 1.1 cgd pal_wrent(XentArith, 1);
228 1.1 cgd pal_wrent(XentMM, 2);
229 1.1 cgd pal_wrent(XentIF, 3);
230 1.1 cgd pal_wrent(XentUna, 4);
231 1.1 cgd pal_wrent(XentSys, 5);
232 1.1 cgd
233 1.1 cgd /*
234 1.1 cgd * Find out how much memory is available, by looking at
235 1.7 cgd * the memory cluster descriptors. This also tries to do
236 1.7 cgd * its best to detect things things that have never been seen
237 1.7 cgd * before...
238 1.7 cgd *
239 1.1 cgd * XXX Assumes that the first "system" cluster is the
240 1.7 cgd * only one we can use. Is the second (etc.) system cluster
241 1.7 cgd * (if one happens to exist) guaranteed to be contiguous? or...?
242 1.1 cgd */
243 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
244 1.7 cgd
245 1.7 cgd /*
246 1.7 cgd * BEGIN MDDT WEIRDNESS CHECKING
247 1.7 cgd */
248 1.7 cgd mddtweird = 0;
249 1.7 cgd
250 1.7 cgd #define cnt mddtp->mddt_cluster_cnt
251 1.7 cgd #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
252 1.7 cgd if (cnt != 2 && cnt != 3) {
253 1.7 cgd printf("WARNING: weird number (%d) of mem clusters\n", cnt);
254 1.7 cgd mddtweird = 1;
255 1.7 cgd } else if (usage(0) != MDDT_PALCODE ||
256 1.7 cgd usage(1) != MDDT_SYSTEM ||
257 1.7 cgd (cnt == 3 && usage(2) != MDDT_PALCODE)) {
258 1.7 cgd mddtweird = 1;
259 1.7 cgd printf("WARNING: %d mem clusters, but weird config\n", cnt);
260 1.7 cgd }
261 1.7 cgd
262 1.7 cgd for (i = 0; i < cnt; i++) {
263 1.7 cgd if ((usage(i) & MDDT_mbz) != 0) {
264 1.7 cgd printf("WARNING: mem cluster %d has weird usage %lx\n",
265 1.7 cgd i, usage(i));
266 1.7 cgd mddtweird = 1;
267 1.7 cgd }
268 1.7 cgd if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
269 1.7 cgd printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
270 1.7 cgd mddtweird = 1;
271 1.7 cgd }
272 1.7 cgd /* XXX other things to check? */
273 1.7 cgd }
274 1.7 cgd #undef cnt
275 1.7 cgd #undef usage
276 1.7 cgd
277 1.7 cgd if (mddtweird) {
278 1.7 cgd printf("\n");
279 1.7 cgd printf("complete memory cluster information:\n");
280 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
281 1.2 cgd printf("mddt %d:\n", i);
282 1.2 cgd printf("\tpfn %lx\n",
283 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
284 1.2 cgd printf("\tcnt %lx\n",
285 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
286 1.2 cgd printf("\ttest %lx\n",
287 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
288 1.2 cgd printf("\tbva %lx\n",
289 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
290 1.2 cgd printf("\tbpa %lx\n",
291 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
292 1.2 cgd printf("\tbcksum %lx\n",
293 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
294 1.2 cgd printf("\tusage %lx\n",
295 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
296 1.2 cgd }
297 1.7 cgd printf("\n");
298 1.2 cgd }
299 1.7 cgd /*
300 1.7 cgd * END MDDT WEIRDNESS CHECKING
301 1.7 cgd */
302 1.2 cgd
303 1.1 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
304 1.7 cgd totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
305 1.7 cgd #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
306 1.7 cgd #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
307 1.7 cgd if ((usage(i) & MDDT_mbz) != 0)
308 1.7 cgd unknownmem += pgcnt(i);
309 1.7 cgd else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
310 1.7 cgd resvmem += pgcnt(i);
311 1.7 cgd else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
312 1.7 cgd /*
313 1.7 cgd * assumes that the system cluster listed is
314 1.7 cgd * one we're in...
315 1.7 cgd */
316 1.7 cgd if (physmem != resvmem) {
317 1.7 cgd physmem += pgcnt(i);
318 1.7 cgd firstusablepage =
319 1.7 cgd mddtp->mddt_clusters[i].mddt_pfn;
320 1.7 cgd lastusablepage = firstusablepage + pgcnt(i) - 1;
321 1.7 cgd } else
322 1.7 cgd unusedmem += pgcnt(i);
323 1.7 cgd }
324 1.7 cgd #undef usage
325 1.7 cgd #undef pgcnt
326 1.1 cgd }
327 1.7 cgd if (totalphysmem == 0)
328 1.1 cgd panic("can't happen: system seems to have no memory!");
329 1.1 cgd maxmem = physmem;
330 1.1 cgd
331 1.7 cgd #if 0
332 1.7 cgd printf("totalphysmem = %d\n", totalphysmem);
333 1.7 cgd printf("physmem = %d\n", physmem);
334 1.7 cgd printf("firstusablepage = %d\n", firstusablepage);
335 1.7 cgd printf("lastusablepage = %d\n", lastusablepage);
336 1.7 cgd printf("resvmem = %d\n", resvmem);
337 1.7 cgd printf("unusedmem = %d\n", unusedmem);
338 1.7 cgd printf("unknownmem = %d\n", unknownmem);
339 1.7 cgd #endif
340 1.7 cgd
341 1.1 cgd /*
342 1.1 cgd * find out this CPU's page size
343 1.1 cgd */
344 1.1 cgd PAGE_SIZE = hwrpb->rpb_page_size;
345 1.12 cgd if (PAGE_SIZE != 8192)
346 1.12 cgd panic("page size %d != 8192?!", PAGE_SIZE);
347 1.1 cgd
348 1.2 cgd v = (caddr_t)alpha_round_page(_end);
349 1.1 cgd /*
350 1.1 cgd * Init mapping for u page(s) for proc 0
351 1.1 cgd */
352 1.1 cgd start = v;
353 1.1 cgd curproc->p_addr = proc0paddr = (struct user *)v;
354 1.1 cgd v += UPAGES * NBPG;
355 1.1 cgd
356 1.1 cgd /*
357 1.1 cgd * Find out what hardware we're on, and remember its type name.
358 1.1 cgd */
359 1.1 cgd cputype = hwrpb->rpb_type;
360 1.1 cgd switch (cputype) {
361 1.2 cgd #ifdef DEC_3000_500 /* and 400, [6-9]00 */
362 1.1 cgd case ST_DEC_3000_500:
363 1.8 cgd cpu_modelname = dec_3000_500_modelname;
364 1.8 cgd cpu_consinit = dec_3000_500_consinit;
365 1.8 cgd cpu_bootdev = dec_3000_500_bootdev;
366 1.13 cgd cpu_iobus = "tcasic";
367 1.2 cgd break;
368 1.2 cgd #endif
369 1.2 cgd
370 1.2 cgd #ifdef DEC_3000_300
371 1.2 cgd case ST_DEC_3000_300:
372 1.8 cgd cpu_modelname = dec_3000_300_modelname;
373 1.8 cgd cpu_consinit = dec_3000_300_consinit;
374 1.8 cgd cpu_bootdev = dec_3000_300_bootdev;
375 1.13 cgd cpu_iobus = "tcasic";
376 1.2 cgd break;
377 1.2 cgd #endif
378 1.2 cgd
379 1.2 cgd #ifdef DEC_2100_A50
380 1.2 cgd case ST_DEC_2100_A50:
381 1.8 cgd cpu_modelname = dec_2100_a50_modelname;
382 1.8 cgd cpu_consinit = dec_2100_a50_consinit;
383 1.8 cgd cpu_bootdev = dec_2100_a50_bootdev;
384 1.8 cgd cpu_iobus = "apecs";
385 1.2 cgd break;
386 1.2 cgd #endif
387 1.2 cgd
388 1.12 cgd #ifdef DEC_KN20AA
389 1.12 cgd case ST_DEC_KN20AA:
390 1.12 cgd cpu_modelname = dec_kn20aa_modelname;
391 1.12 cgd cpu_consinit = dec_kn20aa_consinit;
392 1.12 cgd cpu_bootdev = dec_kn20aa_bootdev;
393 1.12 cgd cpu_iobus = "cia";
394 1.12 cgd break;
395 1.12 cgd #endif
396 1.12 cgd
397 1.12 cgd #ifdef DEC_AXPPCI_33
398 1.12 cgd case ST_DEC_AXPPCI_33:
399 1.12 cgd cpu_modelname = dec_axppci_33_modelname;
400 1.12 cgd cpu_consinit = dec_axppci_33_consinit;
401 1.12 cgd cpu_bootdev = dec_axppci_33_bootdev;
402 1.12 cgd cpu_iobus = "lca";
403 1.12 cgd break;
404 1.12 cgd #endif
405 1.12 cgd
406 1.8 cgd #ifdef DEC_2000_300
407 1.8 cgd case ST_DEC_2000_300:
408 1.8 cgd cpu_modelname = dec_2000_300_modelname;
409 1.8 cgd cpu_consinit = dec_2000_300_consinit;
410 1.8 cgd cpu_bootdev = dec_2000_300_bootdev;
411 1.8 cgd cpu_iobus = "ibus";
412 1.8 cgd XXX DEC 2000/300 NOT SUPPORTED
413 1.12 cgd break;
414 1.2 cgd #endif
415 1.2 cgd
416 1.12 cgd #ifdef DEC_21000
417 1.12 cgd case ST_DEC_21000:
418 1.12 cgd cpu_modelname = dec_21000_modelname;
419 1.12 cgd cpu_consinit = dec_21000_consinit;
420 1.12 cgd cpu_bootdev = dec_21000_bootdev;
421 1.12 cgd cpu_iobus = "tlsb";
422 1.12 cgd break;
423 1.2 cgd #endif
424 1.2 cgd
425 1.1 cgd default:
426 1.1 cgd if (cputype > nmodel_names)
427 1.1 cgd panic("Unknown system type %d", cputype);
428 1.1 cgd else
429 1.1 cgd panic("Support for %s system type not in kernel.",
430 1.1 cgd model_names[cputype]);
431 1.1 cgd }
432 1.8 cgd
433 1.8 cgd cpu_model = (*cpu_modelname)();
434 1.2 cgd if (cpu_model == NULL)
435 1.2 cgd cpu_model = model_names[cputype];
436 1.1 cgd
437 1.1 cgd #if NLE > 0
438 1.1 cgd /*
439 1.1 cgd * Grab 128K at the top of physical memory for the lance chip
440 1.1 cgd * on machines where it does dma through the I/O ASIC.
441 1.1 cgd * It must be physically contiguous and aligned on a 128K boundary.
442 1.1 cgd */
443 1.1 cgd if (cputype == ST_DEC_3000_500 ||
444 1.1 cgd cputype == ST_DEC_3000_300) { /* XXX possibly others? */
445 1.7 cgd lastusablepage -= btoc(128 * 1024);
446 1.7 cgd le_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
447 1.1 cgd }
448 1.1 cgd #endif /* NLE */
449 1.1 cgd
450 1.1 cgd /*
451 1.1 cgd * Initialize error message buffer (at end of core).
452 1.1 cgd */
453 1.7 cgd lastusablepage -= btoc(sizeof (struct msgbuf));
454 1.7 cgd msgbufp = (struct msgbuf *)phystok0seg(ctob(lastusablepage + 1));
455 1.1 cgd msgbufmapped = 1;
456 1.1 cgd
457 1.1 cgd /*
458 1.1 cgd * Allocate space for system data structures.
459 1.1 cgd * The first available kernel virtual address is in "v".
460 1.1 cgd * As pages of kernel virtual memory are allocated, "v" is incremented.
461 1.1 cgd *
462 1.1 cgd * These data structures are allocated here instead of cpu_startup()
463 1.1 cgd * because physical memory is directly addressable. We don't have
464 1.1 cgd * to map these into virtual address space.
465 1.1 cgd */
466 1.1 cgd #define valloc(name, type, num) \
467 1.12 cgd (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
468 1.1 cgd #define valloclim(name, type, num, lim) \
469 1.12 cgd (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
470 1.1 cgd #ifdef REAL_CLISTS
471 1.1 cgd valloc(cfree, struct cblock, nclist);
472 1.1 cgd #endif
473 1.1 cgd valloc(callout, struct callout, ncallout);
474 1.1 cgd valloc(swapmap, struct map, nswapmap = maxproc * 2);
475 1.1 cgd #ifdef SYSVSHM
476 1.1 cgd valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
477 1.1 cgd #endif
478 1.1 cgd #ifdef SYSVSEM
479 1.1 cgd valloc(sema, struct semid_ds, seminfo.semmni);
480 1.1 cgd valloc(sem, struct sem, seminfo.semmns);
481 1.1 cgd /* This is pretty disgusting! */
482 1.1 cgd valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
483 1.1 cgd #endif
484 1.1 cgd #ifdef SYSVMSG
485 1.1 cgd valloc(msgpool, char, msginfo.msgmax);
486 1.1 cgd valloc(msgmaps, struct msgmap, msginfo.msgseg);
487 1.1 cgd valloc(msghdrs, struct msg, msginfo.msgtql);
488 1.1 cgd valloc(msqids, struct msqid_ds, msginfo.msgmni);
489 1.1 cgd #endif
490 1.1 cgd
491 1.1 cgd /*
492 1.1 cgd * Determine how many buffers to allocate.
493 1.1 cgd * We allocate the BSD standard of 10% of memory for the first
494 1.1 cgd * 2 Meg, and 5% of remaining memory for buffer space. Insure a
495 1.1 cgd * minimum of 16 buffers. We allocate 1/2 as many swap buffer
496 1.1 cgd * headers as file i/o buffers.
497 1.1 cgd */
498 1.1 cgd if (bufpages == 0)
499 1.7 cgd bufpages = (btoc(2 * 1024 * 1024) + physmem) /
500 1.1 cgd (20 * CLSIZE);
501 1.1 cgd if (nbuf == 0) {
502 1.1 cgd nbuf = bufpages;
503 1.1 cgd if (nbuf < 16)
504 1.1 cgd nbuf = 16;
505 1.1 cgd }
506 1.1 cgd if (nswbuf == 0) {
507 1.1 cgd nswbuf = (nbuf / 2) &~ 1; /* force even */
508 1.1 cgd if (nswbuf > 256)
509 1.1 cgd nswbuf = 256; /* sanity */
510 1.1 cgd }
511 1.1 cgd valloc(swbuf, struct buf, nswbuf);
512 1.1 cgd valloc(buf, struct buf, nbuf);
513 1.1 cgd
514 1.1 cgd /*
515 1.1 cgd * Clear allocated memory.
516 1.1 cgd */
517 1.1 cgd bzero(start, v - start);
518 1.1 cgd
519 1.1 cgd /*
520 1.1 cgd * Initialize the virtual memory system, and set the
521 1.1 cgd * page table base register in proc 0's PCB.
522 1.1 cgd */
523 1.1 cgd pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
524 1.1 cgd
525 1.1 cgd /*
526 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
527 1.3 cgd * address.
528 1.3 cgd */
529 1.3 cgd proc0.p_md.md_pcbpaddr =
530 1.3 cgd (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
531 1.3 cgd
532 1.3 cgd /*
533 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
534 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
535 1.3 cgd */
536 1.3 cgd proc0paddr->u_pcb.pcb_ksp =
537 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
538 1.3 cgd proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
539 1.1 cgd
540 1.1 cgd /*
541 1.8 cgd * figure out what arguments we have
542 1.8 cgd */
543 1.8 cgd switch (argc) {
544 1.8 cgd default:
545 1.8 cgd printf("weird number of arguments from boot: %d\n", argc);
546 1.8 cgd if (argc < 1)
547 1.8 cgd break;
548 1.8 cgd /* FALLTHRU */
549 1.8 cgd case 4:
550 1.8 cgd boot_dev = argv[3];
551 1.8 cgd /* FALLTHRU */
552 1.8 cgd case 3:
553 1.8 cgd boot_console = argv[2];
554 1.8 cgd /* FALLTHRU */
555 1.8 cgd case 2:
556 1.8 cgd boot_flags = argv[1];
557 1.8 cgd /* FALLTHRU */
558 1.8 cgd case 1:
559 1.8 cgd boot_file = argv[0];
560 1.8 cgd /* FALLTHRU */
561 1.8 cgd }
562 1.8 cgd
563 1.8 cgd /*
564 1.1 cgd * Look at arguments and compute bootdev.
565 1.8 cgd * XXX NOT HERE.
566 1.1 cgd */
567 1.8 cgd #if 0
568 1.8 cgd { /* XXX */
569 1.8 cgd extern dev_t bootdev; /* XXX */
570 1.8 cgd bootdev = (*cpu_bootdev)(boot_dev);
571 1.8 cgd } /* XXX */
572 1.8 cgd #endif
573 1.1 cgd
574 1.1 cgd /*
575 1.1 cgd * Look at arguments passed to us and compute boothowto.
576 1.1 cgd */
577 1.8 cgd boothowto = RB_SINGLE;
578 1.1 cgd #ifdef GENERIC
579 1.8 cgd boothowto |= RB_ASKNAME;
580 1.1 cgd #endif
581 1.1 cgd #ifdef KADB
582 1.1 cgd boothowto |= RB_KDB;
583 1.1 cgd #endif
584 1.8 cgd for (p = boot_flags; p && *p != '\0'; p++) {
585 1.8 cgd switch (*p) {
586 1.8 cgd case 'a': /* autoboot */
587 1.8 cgd case 'A': /* DEC's notion of autoboot */
588 1.8 cgd boothowto &= ~RB_SINGLE;
589 1.8 cgd break;
590 1.8 cgd
591 1.8 cgd case 'd': /* use compiled in default root */
592 1.8 cgd boothowto |= RB_DFLTROOT;
593 1.8 cgd break;
594 1.8 cgd
595 1.8 cgd case 'm': /* mini root present in memory */
596 1.8 cgd boothowto |= RB_MINIROOT;
597 1.8 cgd break;
598 1.8 cgd
599 1.8 cgd case 'n': /* ask for names */
600 1.8 cgd boothowto |= RB_ASKNAME;
601 1.8 cgd break;
602 1.1 cgd
603 1.8 cgd case 'N': /* don't ask for names */
604 1.8 cgd boothowto &= ~RB_ASKNAME;
605 1.1 cgd }
606 1.1 cgd }
607 1.1 cgd
608 1.7 cgd /*
609 1.7 cgd * Figure out the number of cpus in the box, from RPB fields.
610 1.7 cgd * Really. We mean it.
611 1.7 cgd */
612 1.7 cgd for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
613 1.7 cgd struct pcs *pcsp;
614 1.7 cgd
615 1.7 cgd pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
616 1.7 cgd (i * hwrpb->rpb_pcs_size));
617 1.7 cgd if ((pcsp->pcs_flags & PCS_PP) != 0)
618 1.7 cgd ncpus++;
619 1.7 cgd }
620 1.7 cgd
621 1.1 cgd return (0);
622 1.1 cgd }
623 1.1 cgd
624 1.1 cgd consinit()
625 1.1 cgd {
626 1.1 cgd
627 1.12 cgd (*cpu_consinit)(boot_console);
628 1.1 cgd pmap_unmap_prom();
629 1.1 cgd }
630 1.1 cgd
631 1.1 cgd cpu_startup()
632 1.1 cgd {
633 1.1 cgd register unsigned i;
634 1.1 cgd register caddr_t v;
635 1.1 cgd int base, residual;
636 1.1 cgd vm_offset_t minaddr, maxaddr;
637 1.1 cgd vm_size_t size;
638 1.1 cgd #ifdef DEBUG
639 1.1 cgd extern int pmapdebug;
640 1.1 cgd int opmapdebug = pmapdebug;
641 1.1 cgd
642 1.1 cgd pmapdebug = 0;
643 1.1 cgd #endif
644 1.1 cgd
645 1.1 cgd /*
646 1.1 cgd * Good {morning,afternoon,evening,night}.
647 1.1 cgd */
648 1.1 cgd printf(version);
649 1.1 cgd identifycpu();
650 1.7 cgd printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
651 1.7 cgd ctob(totalphysmem), ctob(resvmem), ctob(physmem));
652 1.7 cgd if (unusedmem)
653 1.7 cgd printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
654 1.7 cgd if (unknownmem)
655 1.7 cgd printf("WARNING: %d bytes of memory with unknown purpose\n",
656 1.7 cgd ctob(unknownmem));
657 1.1 cgd
658 1.1 cgd /*
659 1.1 cgd * Allocate virtual address space for file I/O buffers.
660 1.1 cgd * Note they are different than the array of headers, 'buf',
661 1.1 cgd * and usually occupy more virtual memory than physical.
662 1.1 cgd */
663 1.1 cgd size = MAXBSIZE * nbuf;
664 1.1 cgd buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
665 1.1 cgd &maxaddr, size, TRUE);
666 1.1 cgd minaddr = (vm_offset_t)buffers;
667 1.1 cgd if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
668 1.1 cgd &minaddr, size, FALSE) != KERN_SUCCESS)
669 1.1 cgd panic("startup: cannot allocate buffers");
670 1.1 cgd base = bufpages / nbuf;
671 1.1 cgd residual = bufpages % nbuf;
672 1.1 cgd for (i = 0; i < nbuf; i++) {
673 1.1 cgd vm_size_t curbufsize;
674 1.1 cgd vm_offset_t curbuf;
675 1.1 cgd
676 1.1 cgd /*
677 1.1 cgd * First <residual> buffers get (base+1) physical pages
678 1.1 cgd * allocated for them. The rest get (base) physical pages.
679 1.1 cgd *
680 1.1 cgd * The rest of each buffer occupies virtual space,
681 1.1 cgd * but has no physical memory allocated for it.
682 1.1 cgd */
683 1.1 cgd curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
684 1.1 cgd curbufsize = CLBYTES * (i < residual ? base+1 : base);
685 1.1 cgd vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
686 1.1 cgd vm_map_simplify(buffer_map, curbuf);
687 1.1 cgd }
688 1.1 cgd /*
689 1.1 cgd * Allocate a submap for exec arguments. This map effectively
690 1.1 cgd * limits the number of processes exec'ing at any time.
691 1.1 cgd */
692 1.1 cgd exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
693 1.1 cgd 16 * NCARGS, TRUE);
694 1.1 cgd
695 1.1 cgd /*
696 1.1 cgd * Allocate a submap for physio
697 1.1 cgd */
698 1.1 cgd phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
699 1.1 cgd VM_PHYS_SIZE, TRUE);
700 1.1 cgd
701 1.1 cgd /*
702 1.1 cgd * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
703 1.1 cgd * we use the more space efficient malloc in place of kmem_alloc.
704 1.1 cgd */
705 1.1 cgd mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
706 1.1 cgd M_MBUF, M_NOWAIT);
707 1.1 cgd bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
708 1.1 cgd mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
709 1.1 cgd VM_MBUF_SIZE, FALSE);
710 1.1 cgd /*
711 1.1 cgd * Initialize callouts
712 1.1 cgd */
713 1.1 cgd callfree = callout;
714 1.1 cgd for (i = 1; i < ncallout; i++)
715 1.1 cgd callout[i-1].c_next = &callout[i];
716 1.1 cgd callout[i-1].c_next = NULL;
717 1.1 cgd
718 1.1 cgd #ifdef DEBUG
719 1.1 cgd pmapdebug = opmapdebug;
720 1.1 cgd #endif
721 1.1 cgd printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
722 1.1 cgd printf("using %ld buffers containing %ld bytes of memory\n",
723 1.1 cgd (long)nbuf, (long)(bufpages * CLBYTES));
724 1.1 cgd
725 1.1 cgd /*
726 1.1 cgd * Set up buffers, so they can be used to read disk labels.
727 1.1 cgd */
728 1.1 cgd bufinit();
729 1.1 cgd
730 1.1 cgd /*
731 1.1 cgd * Configure the system.
732 1.1 cgd */
733 1.1 cgd configure();
734 1.1 cgd }
735 1.1 cgd
736 1.1 cgd identifycpu()
737 1.1 cgd {
738 1.1 cgd
739 1.7 cgd /*
740 1.7 cgd * print out CPU identification information.
741 1.7 cgd */
742 1.7 cgd printf("%s, %dMHz\n", cpu_model,
743 1.7 cgd hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
744 1.7 cgd printf("%d byte page size, %d processor%s.\n",
745 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
746 1.7 cgd #if 0
747 1.7 cgd /* this isn't defined for any systems that we run on? */
748 1.7 cgd printf("serial number 0x%lx 0x%lx\n",
749 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
750 1.7 cgd
751 1.7 cgd /* and these aren't particularly useful! */
752 1.1 cgd printf("variation: 0x%lx, revision 0x%lx\n",
753 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
754 1.7 cgd #endif
755 1.1 cgd }
756 1.1 cgd
757 1.1 cgd int waittime = -1;
758 1.7 cgd struct pcb dumppcb;
759 1.1 cgd
760 1.1 cgd boot(howto)
761 1.1 cgd int howto;
762 1.1 cgd {
763 1.1 cgd extern int cold;
764 1.1 cgd
765 1.1 cgd /* If system is cold, just halt. */
766 1.1 cgd if (cold) {
767 1.1 cgd howto |= RB_HALT;
768 1.1 cgd goto haltsys;
769 1.1 cgd }
770 1.1 cgd
771 1.7 cgd boothowto = howto;
772 1.7 cgd if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
773 1.1 cgd waittime = 0;
774 1.7 cgd vfs_shutdown();
775 1.1 cgd /*
776 1.1 cgd * If we've been adjusting the clock, the todr
777 1.1 cgd * will be out of synch; adjust it now.
778 1.1 cgd */
779 1.1 cgd resettodr();
780 1.1 cgd }
781 1.1 cgd
782 1.1 cgd /* Disable interrupts. */
783 1.1 cgd splhigh();
784 1.1 cgd
785 1.7 cgd /* If rebooting and a dump is requested do it. */
786 1.7 cgd if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
787 1.7 cgd savectx(&dumppcb, 0);
788 1.1 cgd dumpsys();
789 1.7 cgd }
790 1.6 cgd
791 1.12 cgd haltsys:
792 1.12 cgd
793 1.6 cgd /* run any shutdown hooks */
794 1.6 cgd doshutdownhooks();
795 1.1 cgd
796 1.7 cgd #ifdef BOOTKEY
797 1.7 cgd printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
798 1.7 cgd cngetc();
799 1.7 cgd printf("\n");
800 1.7 cgd #endif
801 1.7 cgd
802 1.1 cgd /* Finally, halt/reboot the system. */
803 1.1 cgd printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
804 1.1 cgd prom_halt(howto & RB_HALT);
805 1.1 cgd /*NOTREACHED*/
806 1.1 cgd }
807 1.1 cgd
808 1.7 cgd /*
809 1.7 cgd * These variables are needed by /sbin/savecore
810 1.7 cgd */
811 1.7 cgd u_long dumpmag = 0x8fca0101; /* magic number */
812 1.7 cgd int dumpsize = 0; /* pages */
813 1.7 cgd long dumplo = 0; /* blocks */
814 1.7 cgd
815 1.7 cgd /*
816 1.7 cgd * This is called by configure to set dumplo and dumpsize.
817 1.7 cgd * Dumps always skip the first CLBYTES of disk space
818 1.7 cgd * in case there might be a disk label stored there.
819 1.7 cgd * If there is extra space, put dump at the end to
820 1.7 cgd * reduce the chance that swapping trashes it.
821 1.7 cgd */
822 1.7 cgd void
823 1.7 cgd dumpconf()
824 1.7 cgd {
825 1.7 cgd int nblks; /* size of dump area */
826 1.7 cgd int maj;
827 1.7 cgd
828 1.7 cgd if (dumpdev == NODEV)
829 1.7 cgd return;
830 1.7 cgd maj = major(dumpdev);
831 1.7 cgd if (maj < 0 || maj >= nblkdev)
832 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
833 1.7 cgd if (bdevsw[maj].d_psize == NULL)
834 1.7 cgd return;
835 1.7 cgd nblks = (*bdevsw[maj].d_psize)(dumpdev);
836 1.7 cgd if (nblks <= ctod(1))
837 1.7 cgd return;
838 1.7 cgd
839 1.7 cgd /* XXX XXX XXX STARTING MEMORY LOCATION */
840 1.7 cgd dumpsize = physmem;
841 1.7 cgd
842 1.7 cgd /* Always skip the first CLBYTES, in case there is a label there. */
843 1.7 cgd if (dumplo < ctod(1))
844 1.7 cgd dumplo = ctod(1);
845 1.7 cgd
846 1.7 cgd /* Put dump at end of partition, and make it fit. */
847 1.7 cgd if (dumpsize > dtoc(nblks - dumplo))
848 1.7 cgd dumpsize = dtoc(nblks - dumplo);
849 1.7 cgd if (dumplo < nblks - ctod(dumpsize))
850 1.7 cgd dumplo = nblks - ctod(dumpsize);
851 1.7 cgd }
852 1.7 cgd
853 1.7 cgd /*
854 1.7 cgd * Doadump comes here after turning off memory management and
855 1.7 cgd * getting on the dump stack, either when called above, or by
856 1.7 cgd * the auto-restart code.
857 1.7 cgd */
858 1.7 cgd void
859 1.7 cgd dumpsys()
860 1.7 cgd {
861 1.7 cgd
862 1.7 cgd msgbufmapped = 0;
863 1.7 cgd if (dumpdev == NODEV)
864 1.7 cgd return;
865 1.7 cgd if (dumpsize == 0) {
866 1.7 cgd dumpconf();
867 1.7 cgd if (dumpsize == 0)
868 1.7 cgd return;
869 1.7 cgd }
870 1.7 cgd printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
871 1.7 cgd
872 1.7 cgd printf("dump ");
873 1.7 cgd switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
874 1.7 cgd
875 1.7 cgd case ENXIO:
876 1.7 cgd printf("device bad\n");
877 1.7 cgd break;
878 1.7 cgd
879 1.7 cgd case EFAULT:
880 1.7 cgd printf("device not ready\n");
881 1.7 cgd break;
882 1.7 cgd
883 1.7 cgd case EINVAL:
884 1.7 cgd printf("area improper\n");
885 1.7 cgd break;
886 1.7 cgd
887 1.7 cgd case EIO:
888 1.7 cgd printf("i/o error\n");
889 1.7 cgd break;
890 1.7 cgd
891 1.7 cgd case EINTR:
892 1.7 cgd printf("aborted from console\n");
893 1.7 cgd break;
894 1.7 cgd
895 1.7 cgd default:
896 1.7 cgd printf("succeeded\n");
897 1.7 cgd break;
898 1.7 cgd }
899 1.7 cgd printf("\n\n");
900 1.7 cgd delay(1000);
901 1.7 cgd }
902 1.7 cgd
903 1.1 cgd void
904 1.1 cgd frametoreg(framep, regp)
905 1.1 cgd struct trapframe *framep;
906 1.1 cgd struct reg *regp;
907 1.1 cgd {
908 1.1 cgd
909 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
910 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
911 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
912 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
913 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
914 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
915 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
916 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
917 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
918 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
919 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
920 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
921 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
922 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
923 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
924 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
925 1.1 cgd regp->r_regs[R_A0] = framep->tf_a0;
926 1.1 cgd regp->r_regs[R_A1] = framep->tf_a1;
927 1.1 cgd regp->r_regs[R_A2] = framep->tf_a2;
928 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
929 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
930 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
931 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
932 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
933 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
934 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
935 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
936 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
937 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
938 1.1 cgd regp->r_regs[R_GP] = framep->tf_gp;
939 1.1 cgd regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
940 1.1 cgd regp->r_regs[R_ZERO] = 0;
941 1.1 cgd }
942 1.1 cgd
943 1.1 cgd void
944 1.1 cgd regtoframe(regp, framep)
945 1.1 cgd struct reg *regp;
946 1.1 cgd struct trapframe *framep;
947 1.1 cgd {
948 1.1 cgd
949 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
950 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
951 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
952 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
953 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
954 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
955 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
956 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
957 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
958 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
959 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
960 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
961 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
962 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
963 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
964 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
965 1.1 cgd framep->tf_a0 = regp->r_regs[R_A0];
966 1.1 cgd framep->tf_a1 = regp->r_regs[R_A1];
967 1.1 cgd framep->tf_a2 = regp->r_regs[R_A2];
968 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
969 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
970 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
971 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
972 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
973 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
974 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
975 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
976 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
977 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
978 1.1 cgd framep->tf_gp = regp->r_regs[R_GP];
979 1.1 cgd framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
980 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
981 1.1 cgd }
982 1.1 cgd
983 1.1 cgd void
984 1.1 cgd printregs(regp)
985 1.1 cgd struct reg *regp;
986 1.1 cgd {
987 1.1 cgd int i;
988 1.1 cgd
989 1.1 cgd for (i = 0; i < 32; i++)
990 1.1 cgd printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
991 1.1 cgd i & 1 ? "\n" : "\t");
992 1.1 cgd }
993 1.1 cgd
994 1.1 cgd void
995 1.1 cgd regdump(framep)
996 1.1 cgd struct trapframe *framep;
997 1.1 cgd {
998 1.1 cgd struct reg reg;
999 1.1 cgd
1000 1.1 cgd frametoreg(framep, ®);
1001 1.1 cgd printf("REGISTERS:\n");
1002 1.1 cgd printregs(®);
1003 1.1 cgd }
1004 1.1 cgd
1005 1.1 cgd #ifdef DEBUG
1006 1.1 cgd int sigdebug = 0;
1007 1.1 cgd int sigpid = 0;
1008 1.1 cgd #define SDB_FOLLOW 0x01
1009 1.1 cgd #define SDB_KSTACK 0x02
1010 1.1 cgd #endif
1011 1.1 cgd
1012 1.1 cgd /*
1013 1.1 cgd * Send an interrupt to process.
1014 1.1 cgd */
1015 1.1 cgd void
1016 1.1 cgd sendsig(catcher, sig, mask, code)
1017 1.1 cgd sig_t catcher;
1018 1.1 cgd int sig, mask;
1019 1.1 cgd u_long code;
1020 1.1 cgd {
1021 1.1 cgd struct proc *p = curproc;
1022 1.1 cgd struct sigcontext *scp, ksc;
1023 1.1 cgd struct trapframe *frame;
1024 1.1 cgd struct sigacts *psp = p->p_sigacts;
1025 1.1 cgd int oonstack, fsize, rndfsize;
1026 1.1 cgd extern char sigcode[], esigcode[];
1027 1.1 cgd extern struct proc *fpcurproc;
1028 1.1 cgd
1029 1.1 cgd frame = p->p_md.md_tf;
1030 1.9 mycroft oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1031 1.1 cgd fsize = sizeof ksc;
1032 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1033 1.1 cgd /*
1034 1.1 cgd * Allocate and validate space for the signal handler
1035 1.1 cgd * context. Note that if the stack is in P0 space, the
1036 1.1 cgd * call to grow() is a nop, and the useracc() check
1037 1.1 cgd * will fail if the process has not already allocated
1038 1.1 cgd * the space with a `brk'.
1039 1.1 cgd */
1040 1.1 cgd if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1041 1.1 cgd (psp->ps_sigonstack & sigmask(sig))) {
1042 1.14 jtc scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1043 1.1 cgd psp->ps_sigstk.ss_size - rndfsize);
1044 1.9 mycroft psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1045 1.1 cgd } else
1046 1.1 cgd scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
1047 1.1 cgd rndfsize);
1048 1.1 cgd if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1049 1.1 cgd (void)grow(p, (u_long)scp);
1050 1.1 cgd #ifdef DEBUG
1051 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1052 1.1 cgd printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
1053 1.1 cgd sig, &oonstack, scp);
1054 1.1 cgd #endif
1055 1.1 cgd if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1056 1.1 cgd #ifdef DEBUG
1057 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1058 1.1 cgd printf("sendsig(%d): useracc failed on sig %d\n",
1059 1.1 cgd p->p_pid, sig);
1060 1.1 cgd #endif
1061 1.1 cgd /*
1062 1.1 cgd * Process has trashed its stack; give it an illegal
1063 1.1 cgd * instruction to halt it in its tracks.
1064 1.1 cgd */
1065 1.1 cgd SIGACTION(p, SIGILL) = SIG_DFL;
1066 1.1 cgd sig = sigmask(SIGILL);
1067 1.1 cgd p->p_sigignore &= ~sig;
1068 1.1 cgd p->p_sigcatch &= ~sig;
1069 1.1 cgd p->p_sigmask &= ~sig;
1070 1.1 cgd psignal(p, SIGILL);
1071 1.1 cgd return;
1072 1.1 cgd }
1073 1.1 cgd
1074 1.1 cgd /*
1075 1.1 cgd * Build the signal context to be used by sigreturn.
1076 1.1 cgd */
1077 1.1 cgd ksc.sc_onstack = oonstack;
1078 1.1 cgd ksc.sc_mask = mask;
1079 1.1 cgd ksc.sc_pc = frame->tf_pc;
1080 1.1 cgd ksc.sc_ps = frame->tf_ps;
1081 1.1 cgd
1082 1.1 cgd /* copy the registers. */
1083 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1084 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1085 1.1 cgd
1086 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1087 1.1 cgd if (p == fpcurproc) {
1088 1.1 cgd pal_wrfen(1);
1089 1.1 cgd savefpstate(&p->p_addr->u_pcb.pcb_fp);
1090 1.1 cgd pal_wrfen(0);
1091 1.1 cgd fpcurproc = NULL;
1092 1.1 cgd }
1093 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1094 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1095 1.1 cgd sizeof(struct fpreg));
1096 1.1 cgd ksc.sc_fp_control = 0; /* XXX ? */
1097 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1098 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1099 1.1 cgd
1100 1.1 cgd
1101 1.1 cgd #ifdef COMPAT_OSF1
1102 1.1 cgd /*
1103 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1104 1.1 cgd */
1105 1.1 cgd #endif
1106 1.1 cgd
1107 1.1 cgd /*
1108 1.1 cgd * copy the frame out to userland.
1109 1.1 cgd */
1110 1.1 cgd (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1111 1.1 cgd #ifdef DEBUG
1112 1.1 cgd if (sigdebug & SDB_FOLLOW)
1113 1.1 cgd printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
1114 1.1 cgd scp, code);
1115 1.1 cgd #endif
1116 1.1 cgd
1117 1.1 cgd /*
1118 1.1 cgd * Set up the registers to return to sigcode.
1119 1.1 cgd */
1120 1.1 cgd frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1121 1.1 cgd frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
1122 1.1 cgd frame->tf_a0 = sig;
1123 1.1 cgd frame->tf_a1 = code;
1124 1.1 cgd frame->tf_a2 = (u_int64_t)scp;
1125 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1126 1.1 cgd
1127 1.1 cgd #ifdef DEBUG
1128 1.1 cgd if (sigdebug & SDB_FOLLOW)
1129 1.1 cgd printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1130 1.1 cgd frame->tf_pc, frame->tf_regs[FRAME_A3]);
1131 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1132 1.1 cgd printf("sendsig(%d): sig %d returns\n",
1133 1.1 cgd p->p_pid, sig);
1134 1.1 cgd #endif
1135 1.1 cgd }
1136 1.1 cgd
1137 1.1 cgd /*
1138 1.1 cgd * System call to cleanup state after a signal
1139 1.1 cgd * has been taken. Reset signal mask and
1140 1.1 cgd * stack state from context left by sendsig (above).
1141 1.1 cgd * Return to previous pc and psl as specified by
1142 1.1 cgd * context left by sendsig. Check carefully to
1143 1.1 cgd * make sure that the user has not modified the
1144 1.1 cgd * psl to gain improper priviledges or to cause
1145 1.1 cgd * a machine fault.
1146 1.1 cgd */
1147 1.1 cgd /* ARGSUSED */
1148 1.11 mycroft int
1149 1.11 mycroft sys_sigreturn(p, v, retval)
1150 1.1 cgd struct proc *p;
1151 1.10 thorpej void *v;
1152 1.10 thorpej register_t *retval;
1153 1.10 thorpej {
1154 1.11 mycroft struct sys_sigreturn_args /* {
1155 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1156 1.10 thorpej } */ *uap = v;
1157 1.1 cgd struct sigcontext *scp, ksc;
1158 1.1 cgd extern struct proc *fpcurproc;
1159 1.1 cgd
1160 1.1 cgd scp = SCARG(uap, sigcntxp);
1161 1.1 cgd #ifdef DEBUG
1162 1.1 cgd if (sigdebug & SDB_FOLLOW)
1163 1.1 cgd printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
1164 1.1 cgd #endif
1165 1.1 cgd
1166 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1167 1.1 cgd return (EINVAL);
1168 1.1 cgd
1169 1.1 cgd /*
1170 1.1 cgd * Test and fetch the context structure.
1171 1.1 cgd * We grab it all at once for speed.
1172 1.1 cgd */
1173 1.1 cgd if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1174 1.1 cgd copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1175 1.1 cgd return (EINVAL);
1176 1.1 cgd
1177 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1178 1.1 cgd return (EINVAL);
1179 1.1 cgd /*
1180 1.1 cgd * Restore the user-supplied information
1181 1.1 cgd */
1182 1.1 cgd if (ksc.sc_onstack)
1183 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1184 1.1 cgd else
1185 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1186 1.1 cgd p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1187 1.1 cgd
1188 1.1 cgd p->p_md.md_tf->tf_pc = ksc.sc_pc;
1189 1.1 cgd p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
1190 1.1 cgd
1191 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1192 1.1 cgd
1193 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1194 1.1 cgd if (p == fpcurproc)
1195 1.1 cgd fpcurproc = NULL;
1196 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1197 1.1 cgd sizeof(struct fpreg));
1198 1.1 cgd /* XXX ksc.sc_fp_control ? */
1199 1.1 cgd
1200 1.1 cgd #ifdef DEBUG
1201 1.1 cgd if (sigdebug & SDB_FOLLOW)
1202 1.1 cgd printf("sigreturn(%d): returns\n", p->p_pid);
1203 1.1 cgd #endif
1204 1.1 cgd return (EJUSTRETURN);
1205 1.1 cgd }
1206 1.1 cgd
1207 1.1 cgd /*
1208 1.1 cgd * machine dependent system variables.
1209 1.1 cgd */
1210 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1211 1.1 cgd int *name;
1212 1.1 cgd u_int namelen;
1213 1.1 cgd void *oldp;
1214 1.1 cgd size_t *oldlenp;
1215 1.1 cgd void *newp;
1216 1.1 cgd size_t newlen;
1217 1.1 cgd struct proc *p;
1218 1.1 cgd {
1219 1.1 cgd dev_t consdev;
1220 1.1 cgd
1221 1.1 cgd /* all sysctl names at this level are terminal */
1222 1.1 cgd if (namelen != 1)
1223 1.1 cgd return (ENOTDIR); /* overloaded */
1224 1.1 cgd
1225 1.1 cgd switch (name[0]) {
1226 1.1 cgd case CPU_CONSDEV:
1227 1.1 cgd if (cn_tab != NULL)
1228 1.1 cgd consdev = cn_tab->cn_dev;
1229 1.1 cgd else
1230 1.1 cgd consdev = NODEV;
1231 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1232 1.1 cgd sizeof consdev));
1233 1.1 cgd default:
1234 1.1 cgd return (EOPNOTSUPP);
1235 1.1 cgd }
1236 1.1 cgd /* NOTREACHED */
1237 1.1 cgd }
1238 1.1 cgd
1239 1.1 cgd /*
1240 1.1 cgd * Set registers on exec.
1241 1.1 cgd */
1242 1.1 cgd void
1243 1.5 christos setregs(p, pack, stack, retval)
1244 1.1 cgd register struct proc *p;
1245 1.5 christos struct exec_package *pack;
1246 1.1 cgd u_long stack;
1247 1.1 cgd register_t *retval;
1248 1.1 cgd {
1249 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1250 1.1 cgd int i;
1251 1.1 cgd extern struct proc *fpcurproc;
1252 1.1 cgd
1253 1.1 cgd #ifdef DEBUG
1254 1.1 cgd for (i = 0; i < FRAME_NSAVEREGS; i++)
1255 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1256 1.1 cgd tfp->tf_gp = 0xbabefacedeadbeef;
1257 1.1 cgd tfp->tf_a0 = 0xbabefacedeadbeef;
1258 1.1 cgd tfp->tf_a1 = 0xbabefacedeadbeef;
1259 1.1 cgd tfp->tf_a2 = 0xbabefacedeadbeef;
1260 1.1 cgd #else
1261 1.1 cgd bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
1262 1.1 cgd tfp->tf_gp = 0;
1263 1.1 cgd tfp->tf_a0 = 0;
1264 1.1 cgd tfp->tf_a1 = 0;
1265 1.1 cgd tfp->tf_a2 = 0;
1266 1.1 cgd #endif
1267 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1268 1.7 cgd #define FP_RN 2 /* XXX */
1269 1.7 cgd p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1270 1.1 cgd tfp->tf_regs[FRAME_SP] = stack; /* restored to usp in trap return */
1271 1.1 cgd tfp->tf_ps = PSL_USERSET;
1272 1.5 christos tfp->tf_pc = pack->ep_entry & ~3;
1273 1.1 cgd
1274 1.1 cgd p->p_md.md_flags & ~MDP_FPUSED;
1275 1.1 cgd if (fpcurproc == p)
1276 1.1 cgd fpcurproc = NULL;
1277 1.1 cgd
1278 1.1 cgd retval[0] = retval[1] = 0;
1279 1.1 cgd }
1280 1.1 cgd
1281 1.1 cgd void
1282 1.1 cgd netintr()
1283 1.1 cgd {
1284 1.1 cgd #ifdef INET
1285 1.1 cgd #if NETHER > 0
1286 1.1 cgd if (netisr & (1 << NETISR_ARP)) {
1287 1.1 cgd netisr &= ~(1 << NETISR_ARP);
1288 1.1 cgd arpintr();
1289 1.1 cgd }
1290 1.1 cgd #endif
1291 1.1 cgd if (netisr & (1 << NETISR_IP)) {
1292 1.1 cgd netisr &= ~(1 << NETISR_IP);
1293 1.1 cgd ipintr();
1294 1.1 cgd }
1295 1.1 cgd #endif
1296 1.1 cgd #ifdef NS
1297 1.1 cgd if (netisr & (1 << NETISR_NS)) {
1298 1.1 cgd netisr &= ~(1 << NETISR_NS);
1299 1.1 cgd nsintr();
1300 1.1 cgd }
1301 1.1 cgd #endif
1302 1.1 cgd #ifdef ISO
1303 1.1 cgd if (netisr & (1 << NETISR_ISO)) {
1304 1.1 cgd netisr &= ~(1 << NETISR_ISO);
1305 1.1 cgd clnlintr();
1306 1.1 cgd }
1307 1.1 cgd #endif
1308 1.1 cgd #ifdef CCITT
1309 1.1 cgd if (netisr & (1 << NETISR_CCITT)) {
1310 1.1 cgd netisr &= ~(1 << NETISR_CCITT);
1311 1.1 cgd ccittintr();
1312 1.1 cgd }
1313 1.1 cgd #endif
1314 1.8 cgd #ifdef PPP
1315 1.8 cgd if (netisr & (1 << NETISR_PPP)) {
1316 1.8 cgd netisr &= ~(1 << NETISR_CCITT);
1317 1.8 cgd pppintr();
1318 1.8 cgd }
1319 1.8 cgd #endif
1320 1.1 cgd }
1321 1.1 cgd
1322 1.1 cgd void
1323 1.1 cgd do_sir()
1324 1.1 cgd {
1325 1.1 cgd
1326 1.1 cgd if (ssir & SIR_NET) {
1327 1.1 cgd siroff(SIR_NET);
1328 1.1 cgd cnt.v_soft++;
1329 1.1 cgd netintr();
1330 1.1 cgd }
1331 1.1 cgd if (ssir & SIR_CLOCK) {
1332 1.1 cgd siroff(SIR_CLOCK);
1333 1.1 cgd cnt.v_soft++;
1334 1.1 cgd softclock();
1335 1.1 cgd }
1336 1.1 cgd }
1337 1.1 cgd
1338 1.1 cgd int
1339 1.1 cgd spl0()
1340 1.1 cgd {
1341 1.1 cgd
1342 1.1 cgd if (ssir) {
1343 1.1 cgd splsoft();
1344 1.1 cgd do_sir();
1345 1.1 cgd }
1346 1.1 cgd
1347 1.1 cgd return (pal_swpipl(PSL_IPL_0));
1348 1.1 cgd }
1349 1.1 cgd
1350 1.1 cgd /*
1351 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
1352 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1353 1.1 cgd * into queues, Remrq removes them from queues. The running process is on
1354 1.1 cgd * no queue, other processes are on a queue related to p->p_priority, divided
1355 1.1 cgd * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1356 1.1 cgd * queues.
1357 1.1 cgd */
1358 1.1 cgd /*
1359 1.1 cgd * setrunqueue(p)
1360 1.1 cgd * proc *p;
1361 1.1 cgd *
1362 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
1363 1.1 cgd */
1364 1.1 cgd
1365 1.1 cgd void
1366 1.1 cgd setrunqueue(p)
1367 1.1 cgd struct proc *p;
1368 1.1 cgd {
1369 1.1 cgd int bit;
1370 1.1 cgd
1371 1.1 cgd /* firewall: p->p_back must be NULL */
1372 1.1 cgd if (p->p_back != NULL)
1373 1.1 cgd panic("setrunqueue");
1374 1.1 cgd
1375 1.1 cgd bit = p->p_priority >> 2;
1376 1.1 cgd whichqs |= (1 << bit);
1377 1.1 cgd p->p_forw = (struct proc *)&qs[bit];
1378 1.1 cgd p->p_back = qs[bit].ph_rlink;
1379 1.1 cgd p->p_back->p_forw = p;
1380 1.1 cgd qs[bit].ph_rlink = p;
1381 1.1 cgd }
1382 1.1 cgd
1383 1.1 cgd /*
1384 1.1 cgd * Remrq(p)
1385 1.1 cgd *
1386 1.1 cgd * Call should be made at splclock().
1387 1.1 cgd */
1388 1.1 cgd void
1389 1.1 cgd remrq(p)
1390 1.1 cgd struct proc *p;
1391 1.1 cgd {
1392 1.1 cgd int bit;
1393 1.1 cgd
1394 1.1 cgd bit = p->p_priority >> 2;
1395 1.1 cgd if ((whichqs & (1 << bit)) == 0)
1396 1.1 cgd panic("remrq");
1397 1.1 cgd
1398 1.1 cgd p->p_back->p_forw = p->p_forw;
1399 1.1 cgd p->p_forw->p_back = p->p_back;
1400 1.1 cgd p->p_back = NULL; /* for firewall checking. */
1401 1.1 cgd
1402 1.1 cgd if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1403 1.1 cgd whichqs &= ~(1 << bit);
1404 1.1 cgd }
1405 1.1 cgd
1406 1.1 cgd /*
1407 1.1 cgd * Return the best possible estimate of the time in the timeval
1408 1.1 cgd * to which tvp points. Unfortunately, we can't read the hardware registers.
1409 1.1 cgd * We guarantee that the time will be greater than the value obtained by a
1410 1.1 cgd * previous call.
1411 1.1 cgd */
1412 1.1 cgd void
1413 1.1 cgd microtime(tvp)
1414 1.1 cgd register struct timeval *tvp;
1415 1.1 cgd {
1416 1.1 cgd int s = splclock();
1417 1.1 cgd static struct timeval lasttime;
1418 1.1 cgd
1419 1.1 cgd *tvp = time;
1420 1.1 cgd #ifdef notdef
1421 1.1 cgd tvp->tv_usec += clkread();
1422 1.1 cgd while (tvp->tv_usec > 1000000) {
1423 1.1 cgd tvp->tv_sec++;
1424 1.1 cgd tvp->tv_usec -= 1000000;
1425 1.1 cgd }
1426 1.1 cgd #endif
1427 1.1 cgd if (tvp->tv_sec == lasttime.tv_sec &&
1428 1.1 cgd tvp->tv_usec <= lasttime.tv_usec &&
1429 1.1 cgd (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1430 1.1 cgd tvp->tv_sec++;
1431 1.1 cgd tvp->tv_usec -= 1000000;
1432 1.1 cgd }
1433 1.1 cgd lasttime = *tvp;
1434 1.1 cgd splx(s);
1435 1.1 cgd }
1436 1.1 cgd
1437 1.8 cgd #if defined(COMPAT_OSF1) || 1 /* XXX */
1438 1.1 cgd void
1439 1.5 christos cpu_exec_ecoff_setregs(p, pack, stack, retval)
1440 1.1 cgd struct proc *p;
1441 1.5 christos struct exec_package *pack;
1442 1.5 christos u_long stack;
1443 1.5 christos register_t *retval;
1444 1.1 cgd {
1445 1.1 cgd struct ecoff_aouthdr *eap;
1446 1.1 cgd
1447 1.5 christos setregs(p, pack, stack, retval);
1448 1.1 cgd
1449 1.1 cgd eap = (struct ecoff_aouthdr *)
1450 1.5 christos ((caddr_t)pack->ep_hdr + sizeof(struct ecoff_filehdr));
1451 1.1 cgd p->p_md.md_tf->tf_gp = eap->ea_gp_value;
1452 1.1 cgd }
1453 1.1 cgd
1454 1.1 cgd /*
1455 1.1 cgd * cpu_exec_ecoff_hook():
1456 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1457 1.1 cgd *
1458 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1459 1.1 cgd *
1460 1.1 cgd */
1461 1.1 cgd int
1462 1.1 cgd cpu_exec_ecoff_hook(p, epp, eap)
1463 1.1 cgd struct proc *p;
1464 1.1 cgd struct exec_package *epp;
1465 1.1 cgd struct ecoff_aouthdr *eap;
1466 1.1 cgd {
1467 1.1 cgd struct ecoff_filehdr *efp = epp->ep_hdr;
1468 1.5 christos extern struct emul emul_netbsd;
1469 1.5 christos #ifdef COMPAT_OSF1
1470 1.5 christos extern struct emul emul_osf1;
1471 1.5 christos #endif
1472 1.1 cgd
1473 1.1 cgd switch (efp->ef_magic) {
1474 1.5 christos #ifdef COMPAT_OSF1
1475 1.1 cgd case ECOFF_MAGIC_ALPHA:
1476 1.5 christos epp->ep_emul = &emul_osf1;
1477 1.1 cgd break;
1478 1.5 christos #endif
1479 1.1 cgd
1480 1.1 cgd case ECOFF_MAGIC_NETBSD_ALPHA:
1481 1.5 christos epp->ep_emul = &emul_netbsd;
1482 1.1 cgd break;
1483 1.1 cgd
1484 1.1 cgd default:
1485 1.12 cgd return ENOEXEC;
1486 1.1 cgd }
1487 1.1 cgd return 0;
1488 1.1 cgd }
1489 1.1 cgd #endif
1490 1.7 cgd
1491 1.7 cgd vm_offset_t
1492 1.7 cgd vtophys(vaddr)
1493 1.7 cgd vm_offset_t vaddr;
1494 1.7 cgd {
1495 1.7 cgd vm_offset_t paddr;
1496 1.7 cgd
1497 1.7 cgd if (vaddr < K0SEG_BEGIN) {
1498 1.7 cgd printf("vtophys: invalid vaddr 0x%lx", vaddr);
1499 1.7 cgd paddr = vaddr;
1500 1.7 cgd } else if (vaddr < K0SEG_END)
1501 1.7 cgd paddr = k0segtophys(vaddr);
1502 1.7 cgd else
1503 1.7 cgd paddr = vatopa(vaddr);
1504 1.7 cgd
1505 1.7 cgd #if 0
1506 1.7 cgd printf("vtophys(0x%lx) -> %lx\n", vaddr, paddr);
1507 1.7 cgd #endif
1508 1.7 cgd
1509 1.7 cgd return (paddr);
1510 1.7 cgd }
1511