Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.148
      1  1.148   thorpej /* $NetBSD: machdep.c,v 1.148 1998/09/29 07:07:09 thorpej Exp $ */
      2  1.110   thorpej 
      3  1.110   thorpej /*-
      4  1.110   thorpej  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  1.110   thorpej  * All rights reserved.
      6  1.110   thorpej  *
      7  1.110   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.110   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.110   thorpej  * NASA Ames Research Center and by Chris G. Demetriou.
     10  1.110   thorpej  *
     11  1.110   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.110   thorpej  * modification, are permitted provided that the following conditions
     13  1.110   thorpej  * are met:
     14  1.110   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.110   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.110   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.110   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.110   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.110   thorpej  * 3. All advertising materials mentioning features or use of this software
     20  1.110   thorpej  *    must display the following acknowledgement:
     21  1.110   thorpej  *	This product includes software developed by the NetBSD
     22  1.110   thorpej  *	Foundation, Inc. and its contributors.
     23  1.110   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.110   thorpej  *    contributors may be used to endorse or promote products derived
     25  1.110   thorpej  *    from this software without specific prior written permission.
     26  1.110   thorpej  *
     27  1.110   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.110   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.110   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.110   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.110   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.110   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.110   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.110   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.110   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.110   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.110   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38  1.110   thorpej  */
     39    1.1       cgd 
     40    1.1       cgd /*
     41   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42    1.1       cgd  * All rights reserved.
     43    1.1       cgd  *
     44    1.1       cgd  * Author: Chris G. Demetriou
     45    1.1       cgd  *
     46    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     47    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     48    1.1       cgd  * notice and this permission notice appear in all copies of the
     49    1.1       cgd  * software, derivative works or modified versions, and any portions
     50    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     51    1.1       cgd  *
     52    1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53    1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55    1.1       cgd  *
     56    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     57    1.1       cgd  *
     58    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59    1.1       cgd  *  School of Computer Science
     60    1.1       cgd  *  Carnegie Mellon University
     61    1.1       cgd  *  Pittsburgh PA 15213-3890
     62    1.1       cgd  *
     63    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     64    1.1       cgd  * rights to redistribute these changes.
     65    1.1       cgd  */
     66   1.74       cgd 
     67  1.129  jonathan #include "opt_ddb.h"
     68  1.147   thorpej #include "opt_multiprocessor.h"
     69  1.112   thorpej #include "opt_uvm.h"
     70  1.113   thorpej #include "opt_pmap_new.h"
     71  1.123   thorpej #include "opt_dec_3000_300.h"
     72  1.123   thorpej #include "opt_dec_3000_500.h"
     73  1.127   thorpej #include "opt_compat_osf1.h"
     74  1.141   thorpej #include "opt_compat_netbsd.h"
     75  1.129  jonathan #include "opt_inet.h"
     76  1.129  jonathan #include "opt_atalk.h"
     77  1.131  jonathan #include "opt_ccitt.h"
     78  1.131  jonathan #include "opt_iso.h"
     79  1.132  jonathan #include "opt_ns.h"
     80  1.133  jonathan #include "opt_natm.h"
     81  1.112   thorpej 
     82   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     83   1.75       cgd 
     84  1.148   thorpej __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.148 1998/09/29 07:07:09 thorpej Exp $");
     85    1.1       cgd 
     86    1.1       cgd #include <sys/param.h>
     87    1.1       cgd #include <sys/systm.h>
     88    1.1       cgd #include <sys/signalvar.h>
     89    1.1       cgd #include <sys/kernel.h>
     90    1.1       cgd #include <sys/map.h>
     91    1.1       cgd #include <sys/proc.h>
     92    1.1       cgd #include <sys/buf.h>
     93    1.1       cgd #include <sys/reboot.h>
     94   1.28       cgd #include <sys/device.h>
     95    1.1       cgd #include <sys/file.h>
     96    1.1       cgd #ifdef REAL_CLISTS
     97    1.1       cgd #include <sys/clist.h>
     98    1.1       cgd #endif
     99    1.1       cgd #include <sys/callout.h>
    100    1.1       cgd #include <sys/malloc.h>
    101    1.1       cgd #include <sys/mbuf.h>
    102  1.110   thorpej #include <sys/mman.h>
    103    1.1       cgd #include <sys/msgbuf.h>
    104    1.1       cgd #include <sys/ioctl.h>
    105    1.1       cgd #include <sys/tty.h>
    106    1.1       cgd #include <sys/user.h>
    107    1.1       cgd #include <sys/exec.h>
    108    1.1       cgd #include <sys/exec_ecoff.h>
    109   1.91    mjacob #include <vm/vm.h>
    110    1.1       cgd #include <sys/sysctl.h>
    111   1.43       cgd #include <sys/core.h>
    112   1.43       cgd #include <sys/kcore.h>
    113   1.43       cgd #include <machine/kcore.h>
    114    1.1       cgd #ifdef SYSVMSG
    115    1.1       cgd #include <sys/msg.h>
    116    1.1       cgd #endif
    117    1.1       cgd #ifdef SYSVSEM
    118    1.1       cgd #include <sys/sem.h>
    119    1.1       cgd #endif
    120    1.1       cgd #ifdef SYSVSHM
    121    1.1       cgd #include <sys/shm.h>
    122    1.1       cgd #endif
    123    1.1       cgd 
    124    1.1       cgd #include <sys/mount.h>
    125    1.1       cgd #include <sys/syscallargs.h>
    126    1.1       cgd 
    127    1.1       cgd #include <vm/vm_kern.h>
    128    1.1       cgd 
    129  1.112   thorpej #if defined(UVM)
    130  1.112   thorpej #include <uvm/uvm_extern.h>
    131  1.112   thorpej #endif
    132  1.112   thorpej 
    133    1.1       cgd #include <dev/cons.h>
    134    1.1       cgd 
    135   1.81   thorpej #include <machine/autoconf.h>
    136    1.1       cgd #include <machine/cpu.h>
    137    1.1       cgd #include <machine/reg.h>
    138    1.1       cgd #include <machine/rpb.h>
    139    1.1       cgd #include <machine/prom.h>
    140   1.73       cgd #include <machine/conf.h>
    141    1.8       cgd 
    142  1.148   thorpej #include <alpha/alpha/cpuvar.h>
    143  1.148   thorpej 
    144   1.49       cgd #include <net/netisr.h>
    145   1.33       cgd #include <net/if.h>
    146   1.49       cgd 
    147   1.49       cgd #ifdef INET
    148  1.120      ross #include <net/route.h>
    149   1.33       cgd #include <netinet/in.h>
    150   1.72       cgd #include <netinet/ip_var.h>
    151   1.72       cgd #include "arp.h"
    152   1.72       cgd #if NARP > 0
    153   1.67        is #include <netinet/if_inarp.h>
    154   1.72       cgd #endif
    155   1.49       cgd #endif
    156   1.49       cgd #ifdef NS
    157   1.49       cgd #include <netns/ns_var.h>
    158   1.49       cgd #endif
    159   1.49       cgd #ifdef ISO
    160   1.49       cgd #include <netiso/iso.h>
    161   1.49       cgd #include <netiso/clnp.h>
    162   1.49       cgd #endif
    163   1.55       cgd #ifdef CCITT
    164   1.55       cgd #include <netccitt/x25.h>
    165   1.55       cgd #include <netccitt/pk.h>
    166   1.55       cgd #include <netccitt/pk_extern.h>
    167   1.55       cgd #endif
    168   1.55       cgd #ifdef NATM
    169   1.55       cgd #include <netnatm/natm.h>
    170   1.55       cgd #endif
    171   1.70  christos #ifdef NETATALK
    172   1.70  christos #include <netatalk/at_extern.h>
    173   1.70  christos #endif
    174   1.49       cgd #include "ppp.h"
    175   1.49       cgd #if NPPP > 0
    176   1.49       cgd #include <net/ppp_defs.h>
    177   1.49       cgd #include <net/if_ppp.h>
    178   1.49       cgd #endif
    179    1.1       cgd 
    180   1.81   thorpej #ifdef DDB
    181   1.81   thorpej #include <machine/db_machdep.h>
    182   1.81   thorpej #include <ddb/db_access.h>
    183   1.81   thorpej #include <ddb/db_sym.h>
    184   1.81   thorpej #include <ddb/db_extern.h>
    185   1.81   thorpej #include <ddb/db_interface.h>
    186   1.81   thorpej #endif
    187   1.81   thorpej 
    188  1.143      matt #include "com.h"
    189  1.143      matt #if NCOM > 0
    190  1.143      matt extern void comsoft __P((void));
    191  1.143      matt #endif
    192  1.143      matt 
    193  1.112   thorpej #if defined(UVM)
    194  1.112   thorpej vm_map_t exec_map = NULL;
    195  1.112   thorpej vm_map_t mb_map = NULL;
    196  1.112   thorpej vm_map_t phys_map = NULL;
    197  1.112   thorpej #else
    198    1.1       cgd vm_map_t buffer_map;
    199  1.112   thorpej #endif
    200    1.1       cgd 
    201    1.1       cgd /*
    202    1.1       cgd  * Declare these as initialized data so we can patch them.
    203    1.1       cgd  */
    204    1.1       cgd int	nswbuf = 0;
    205    1.1       cgd #ifdef	NBUF
    206    1.1       cgd int	nbuf = NBUF;
    207    1.1       cgd #else
    208    1.1       cgd int	nbuf = 0;
    209    1.1       cgd #endif
    210    1.1       cgd #ifdef	BUFPAGES
    211    1.1       cgd int	bufpages = BUFPAGES;
    212    1.1       cgd #else
    213    1.1       cgd int	bufpages = 0;
    214    1.1       cgd #endif
    215   1.86       leo caddr_t msgbufaddr;
    216   1.86       leo 
    217    1.1       cgd int	maxmem;			/* max memory per process */
    218    1.7       cgd 
    219    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    220    1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    221    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    222    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    223    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    224    1.1       cgd 
    225    1.1       cgd int	cputype;		/* system type, from the RPB */
    226    1.1       cgd 
    227    1.1       cgd /*
    228    1.1       cgd  * XXX We need an address to which we can assign things so that they
    229    1.1       cgd  * won't be optimized away because we didn't use the value.
    230    1.1       cgd  */
    231    1.1       cgd u_int32_t no_optimize;
    232    1.1       cgd 
    233    1.1       cgd /* the following is used externally (sysctl_hw) */
    234   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    235   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    236   1.29       cgd char	cpu_model[128];
    237    1.1       cgd 
    238    1.1       cgd struct	user *proc0paddr;
    239    1.1       cgd 
    240    1.1       cgd /* Number of machine cycles per microsecond */
    241    1.1       cgd u_int64_t	cycles_per_usec;
    242    1.1       cgd 
    243    1.7       cgd /* number of cpus in the box.  really! */
    244    1.7       cgd int		ncpus;
    245    1.7       cgd 
    246  1.138      ross /* machine check info array, valloc()'ed in allocsys() */
    247  1.138      ross 
    248  1.138      ross static struct mchkinfo startup_info,
    249  1.138      ross 			*mchkinfo_all_cpus;
    250  1.134    mjacob 
    251  1.102       cgd struct bootinfo_kernel bootinfo;
    252   1.81   thorpej 
    253  1.123   thorpej /* For built-in TCDS */
    254  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    255  1.123   thorpej u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    256  1.123   thorpej #endif
    257  1.123   thorpej 
    258   1.89    mjacob struct platform platform;
    259   1.89    mjacob 
    260  1.100   thorpej u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
    261  1.100   thorpej u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
    262  1.100   thorpej u_int32_t vm_phys_size = _VM_PHYS_SIZE;
    263   1.90    mjacob 
    264   1.81   thorpej #ifdef DDB
    265   1.81   thorpej /* start and end of kernel symbol table */
    266   1.81   thorpej void	*ksym_start, *ksym_end;
    267   1.81   thorpej #endif
    268   1.81   thorpej 
    269   1.30       cgd /* for cpu_sysctl() */
    270   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    271   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    272   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    273   1.30       cgd 
    274  1.110   thorpej /*
    275  1.110   thorpej  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    276  1.110   thorpej  * XXX it should also be larger than it is, because not all of the mddt
    277  1.110   thorpej  * XXX clusters end up being used for VM.
    278  1.110   thorpej  */
    279  1.110   thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    280  1.110   thorpej int	mem_cluster_cnt;
    281  1.110   thorpej 
    282   1.95   thorpej caddr_t	allocsys __P((caddr_t));
    283   1.55       cgd int	cpu_dump __P((void));
    284   1.55       cgd int	cpu_dumpsize __P((void));
    285  1.110   thorpej u_long	cpu_dump_mempagecnt __P((void));
    286   1.55       cgd void	dumpsys __P((void));
    287   1.55       cgd void	identifycpu __P((void));
    288   1.55       cgd void	netintr __P((void));
    289   1.55       cgd void	printregs __P((struct reg *));
    290   1.33       cgd 
    291   1.55       cgd void
    292  1.102       cgd alpha_init(pfn, ptb, bim, bip, biv)
    293    1.1       cgd 	u_long pfn;		/* first free PFN number */
    294    1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    295   1.81   thorpej 	u_long bim;		/* bootinfo magic */
    296   1.81   thorpej 	u_long bip;		/* bootinfo pointer */
    297  1.102       cgd 	u_long biv;		/* bootinfo version */
    298    1.1       cgd {
    299   1.95   thorpej 	extern char kernel_text[], _end[];
    300    1.1       cgd 	struct mddt *mddtp;
    301  1.110   thorpej 	struct mddt_cluster *memc;
    302    1.7       cgd 	int i, mddtweird;
    303  1.110   thorpej 	struct vm_physseg *vps;
    304  1.140   thorpej 	vaddr_t kernstart, kernend;
    305  1.140   thorpej 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    306  1.140   thorpej 	vsize_t size;
    307    1.1       cgd 	char *p;
    308   1.95   thorpej 	caddr_t v;
    309  1.106       cgd 	char *bootinfo_msg;
    310  1.106       cgd 
    311  1.106       cgd 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    312    1.1       cgd 
    313    1.1       cgd 	/*
    314   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    315    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    316    1.1       cgd 	 */
    317   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    318   1.32       cgd 	alpha_pal_wrfen(0);
    319   1.37       cgd 	ALPHA_TBIA();
    320   1.32       cgd 	alpha_pal_imb();
    321    1.1       cgd 
    322    1.1       cgd 	/*
    323  1.106       cgd 	 * Get critical system information (if possible, from the
    324  1.106       cgd 	 * information provided by the boot program).
    325   1.81   thorpej 	 */
    326  1.106       cgd 	bootinfo_msg = NULL;
    327   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    328  1.102       cgd 		if (biv == 0) {		/* backward compat */
    329  1.102       cgd 			biv = *(u_long *)bip;
    330  1.102       cgd 			bip += 8;
    331  1.102       cgd 		}
    332  1.102       cgd 		switch (biv) {
    333  1.102       cgd 		case 1: {
    334  1.102       cgd 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    335  1.102       cgd 
    336  1.102       cgd 			bootinfo.ssym = v1p->ssym;
    337  1.102       cgd 			bootinfo.esym = v1p->esym;
    338  1.106       cgd 			/* hwrpb may not be provided by boot block in v1 */
    339  1.106       cgd 			if (v1p->hwrpb != NULL) {
    340  1.106       cgd 				bootinfo.hwrpb_phys =
    341  1.106       cgd 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    342  1.106       cgd 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    343  1.106       cgd 			} else {
    344  1.106       cgd 				bootinfo.hwrpb_phys =
    345  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    346  1.106       cgd 				bootinfo.hwrpb_size =
    347  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    348  1.106       cgd 			}
    349  1.102       cgd 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    350  1.102       cgd 			    min(sizeof v1p->boot_flags,
    351  1.102       cgd 			      sizeof bootinfo.boot_flags));
    352  1.102       cgd 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    353  1.102       cgd 			    min(sizeof v1p->booted_kernel,
    354  1.102       cgd 			      sizeof bootinfo.booted_kernel));
    355  1.106       cgd 			/* booted dev not provided in bootinfo */
    356  1.106       cgd 			init_prom_interface((struct rpb *)
    357  1.106       cgd 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    358  1.102       cgd                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    359  1.102       cgd 			    sizeof bootinfo.booted_dev);
    360   1.81   thorpej 			break;
    361  1.102       cgd 		}
    362   1.81   thorpej 		default:
    363  1.106       cgd 			bootinfo_msg = "unknown bootinfo version";
    364  1.102       cgd 			goto nobootinfo;
    365   1.81   thorpej 		}
    366  1.102       cgd 	} else {
    367  1.106       cgd 		bootinfo_msg = "boot program did not pass bootinfo";
    368  1.102       cgd nobootinfo:
    369  1.102       cgd 		bootinfo.ssym = (u_long)_end;
    370  1.102       cgd 		bootinfo.esym = (u_long)_end;
    371  1.106       cgd 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    372  1.106       cgd 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    373  1.106       cgd 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    374  1.102       cgd 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    375  1.102       cgd 		    sizeof bootinfo.boot_flags);
    376  1.102       cgd 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    377  1.102       cgd 		    sizeof bootinfo.booted_kernel);
    378  1.102       cgd 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    379  1.102       cgd 		    sizeof bootinfo.booted_dev);
    380  1.102       cgd 	}
    381  1.102       cgd 
    382   1.81   thorpej 	/*
    383  1.106       cgd 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    384  1.106       cgd 	 * lots of things.
    385  1.106       cgd 	 */
    386  1.106       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    387  1.123   thorpej 
    388  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    389  1.123   thorpej 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    390  1.123   thorpej 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    391  1.123   thorpej 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    392  1.123   thorpej 		    sizeof(dec_3000_scsiid));
    393  1.123   thorpej 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    394  1.123   thorpej 		    sizeof(dec_3000_scsifast));
    395  1.123   thorpej 	}
    396  1.123   thorpej #endif
    397  1.106       cgd 
    398  1.106       cgd 	/*
    399  1.106       cgd 	 * Remember how many cycles there are per microsecond,
    400  1.106       cgd 	 * so that we can use delay().  Round up, for safety.
    401  1.106       cgd 	 */
    402  1.106       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    403  1.106       cgd 
    404  1.106       cgd 	/*
    405  1.106       cgd 	 * Initalize the (temporary) bootstrap console interface, so
    406  1.106       cgd 	 * we can use printf until the VM system starts being setup.
    407  1.106       cgd 	 * The real console is initialized before then.
    408  1.106       cgd 	 */
    409  1.106       cgd 	init_bootstrap_console();
    410  1.106       cgd 
    411  1.106       cgd 	/* OUTPUT NOW ALLOWED */
    412  1.106       cgd 
    413  1.106       cgd 	/* delayed from above */
    414  1.106       cgd 	if (bootinfo_msg)
    415  1.106       cgd 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    416  1.106       cgd 		    bootinfo_msg, bim, bip, biv);
    417  1.106       cgd 
    418  1.147   thorpej 	/* Initialize the trap vectors on the primary processor. */
    419  1.147   thorpej 	trap_init();
    420    1.1       cgd 
    421    1.1       cgd 	/*
    422  1.106       cgd 	 * Find out what hardware we're on, and do basic initialization.
    423  1.106       cgd 	 */
    424  1.106       cgd 	cputype = hwrpb->rpb_type;
    425  1.106       cgd 	if (cputype >= ncpuinit) {
    426  1.106       cgd 		platform_not_supported();
    427  1.106       cgd 		/* NOTREACHED */
    428  1.106       cgd 	}
    429  1.106       cgd 	(*cpuinit[cputype].init)();
    430  1.106       cgd 	strcpy(cpu_model, platform.model);
    431  1.106       cgd 
    432  1.106       cgd 	/*
    433  1.106       cgd 	 * Initalize the real console, so the the bootstrap console is
    434  1.106       cgd 	 * no longer necessary.
    435  1.106       cgd 	 */
    436  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    437  1.106       cgd 	if (!pmap_uses_prom_console())
    438  1.106       cgd #endif
    439  1.106       cgd 		(*platform.cons_init)();
    440  1.106       cgd 
    441  1.106       cgd #ifdef DIAGNOSTIC
    442  1.106       cgd 	/* Paranoid sanity checking */
    443  1.106       cgd 
    444  1.106       cgd 	/* We should always be running on the the primary. */
    445  1.106       cgd 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
    446  1.106       cgd 
    447  1.116    mjacob 	/*
    448  1.116    mjacob 	 * On single-CPU systypes, the primary should always be CPU 0,
    449  1.116    mjacob 	 * except on Alpha 8200 systems where the CPU id is related
    450  1.116    mjacob 	 * to the VID, which is related to the Turbo Laser node id.
    451  1.116    mjacob 	 */
    452  1.106       cgd 	if (cputype != ST_DEC_21000)
    453  1.106       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);
    454  1.106       cgd #endif
    455  1.106       cgd 
    456  1.106       cgd 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    457  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    458  1.106       cgd 	/*
    459  1.106       cgd 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    460  1.106       cgd 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    461  1.106       cgd 	 */
    462  1.106       cgd #endif
    463  1.106       cgd 
    464  1.106       cgd 	/*
    465  1.106       cgd 	 * find out this system's page size
    466   1.95   thorpej 	 */
    467   1.95   thorpej 	PAGE_SIZE = hwrpb->rpb_page_size;
    468   1.95   thorpej 	if (PAGE_SIZE != 8192)
    469   1.95   thorpej 		panic("page size %d != 8192?!", PAGE_SIZE);
    470   1.95   thorpej 
    471   1.95   thorpej 	/*
    472   1.95   thorpej 	 * Initialize PAGE_SIZE-dependent variables.
    473   1.95   thorpej 	 */
    474  1.112   thorpej #if defined(UVM)
    475  1.112   thorpej 	uvm_setpagesize();
    476  1.112   thorpej #else
    477   1.95   thorpej 	vm_set_page_size();
    478  1.112   thorpej #endif
    479   1.95   thorpej 
    480   1.95   thorpej 	/*
    481  1.101       cgd 	 * Find the beginning and end of the kernel (and leave a
    482  1.101       cgd 	 * bit of space before the beginning for the bootstrap
    483  1.101       cgd 	 * stack).
    484   1.95   thorpej 	 */
    485  1.101       cgd 	kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
    486   1.95   thorpej #ifdef DDB
    487  1.102       cgd 	ksym_start = (void *)bootinfo.ssym;
    488  1.102       cgd 	ksym_end   = (void *)bootinfo.esym;
    489  1.140   thorpej 	kernend = (vaddr_t)round_page(ksym_end);
    490  1.102       cgd #else
    491  1.140   thorpej 	kernend = (vaddr_t)round_page(_end);
    492   1.95   thorpej #endif
    493   1.95   thorpej 
    494  1.110   thorpej 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    495  1.110   thorpej 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    496  1.110   thorpej 
    497   1.95   thorpej 	/*
    498    1.1       cgd 	 * Find out how much memory is available, by looking at
    499    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    500    1.7       cgd 	 * its best to detect things things that have never been seen
    501    1.7       cgd 	 * before...
    502    1.1       cgd 	 */
    503    1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    504    1.7       cgd 
    505  1.110   thorpej 	/* MDDT SANITY CHECKING */
    506    1.7       cgd 	mddtweird = 0;
    507  1.110   thorpej 	if (mddtp->mddt_cluster_cnt < 2) {
    508    1.7       cgd 		mddtweird = 1;
    509  1.110   thorpej 		printf("WARNING: weird number of mem clusters: %d\n",
    510  1.110   thorpej 		    mddtp->mddt_cluster_cnt);
    511    1.7       cgd 	}
    512    1.7       cgd 
    513  1.110   thorpej #if 0
    514  1.110   thorpej 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    515  1.110   thorpej #endif
    516  1.110   thorpej 
    517  1.110   thorpej 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    518  1.110   thorpej 		memc = &mddtp->mddt_clusters[i];
    519  1.110   thorpej #if 0
    520  1.110   thorpej 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    521  1.110   thorpej 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    522  1.110   thorpej #endif
    523  1.110   thorpej 		totalphysmem += memc->mddt_pg_cnt;
    524  1.110   thorpej 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    525  1.110   thorpej 			mem_clusters[mem_cluster_cnt].start =
    526  1.110   thorpej 			    ptoa(memc->mddt_pfn);
    527  1.110   thorpej 			mem_clusters[mem_cluster_cnt].size =
    528  1.110   thorpej 			    ptoa(memc->mddt_pg_cnt);
    529  1.110   thorpej 			if (memc->mddt_usage & MDDT_mbz ||
    530  1.110   thorpej 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    531  1.110   thorpej 			    memc->mddt_usage & MDDT_PALCODE)
    532  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    533  1.110   thorpej 				    PROT_READ;
    534  1.110   thorpej 			else
    535  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    536  1.110   thorpej 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    537  1.110   thorpej 			mem_cluster_cnt++;
    538  1.110   thorpej 		}
    539  1.110   thorpej 
    540  1.110   thorpej 		if (memc->mddt_usage & MDDT_mbz) {
    541    1.7       cgd 			mddtweird = 1;
    542  1.110   thorpej 			printf("WARNING: mem cluster %d has weird "
    543  1.110   thorpej 			    "usage 0x%lx\n", i, memc->mddt_usage);
    544  1.110   thorpej 			unknownmem += memc->mddt_pg_cnt;
    545  1.110   thorpej 			continue;
    546    1.7       cgd 		}
    547  1.110   thorpej 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    548  1.110   thorpej 			/* XXX should handle these... */
    549  1.110   thorpej 			printf("WARNING: skipping non-volatile mem "
    550  1.110   thorpej 			    "cluster %d\n", i);
    551  1.110   thorpej 			unusedmem += memc->mddt_pg_cnt;
    552  1.110   thorpej 			continue;
    553  1.110   thorpej 		}
    554  1.110   thorpej 		if (memc->mddt_usage & MDDT_PALCODE) {
    555  1.110   thorpej 			resvmem += memc->mddt_pg_cnt;
    556  1.110   thorpej 			continue;
    557  1.110   thorpej 		}
    558  1.110   thorpej 
    559  1.110   thorpej 		/*
    560  1.110   thorpej 		 * We have a memory cluster available for system
    561  1.110   thorpej 		 * software use.  We must determine if this cluster
    562  1.110   thorpej 		 * holds the kernel.
    563  1.110   thorpej 		 */
    564  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    565  1.110   thorpej 		/*
    566  1.110   thorpej 		 * XXX If the kernel uses the PROM console, we only use the
    567  1.110   thorpej 		 * XXX memory after the kernel in the first system segment,
    568  1.110   thorpej 		 * XXX to avoid clobbering prom mapping, data, etc.
    569  1.110   thorpej 		 */
    570  1.110   thorpej 	    if (!pmap_uses_prom_console() || physmem == 0) {
    571  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    572  1.110   thorpej 		physmem += memc->mddt_pg_cnt;
    573  1.110   thorpej 		pfn0 = memc->mddt_pfn;
    574  1.110   thorpej 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    575  1.110   thorpej 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    576  1.110   thorpej 			/*
    577  1.110   thorpej 			 * Must compute the location of the kernel
    578  1.110   thorpej 			 * within the segment.
    579  1.110   thorpej 			 */
    580  1.110   thorpej #if 0
    581  1.110   thorpej 			printf("Cluster %d contains kernel\n", i);
    582  1.110   thorpej #endif
    583  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    584  1.110   thorpej 		    if (!pmap_uses_prom_console()) {
    585  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    586  1.110   thorpej 			if (pfn0 < kernstartpfn) {
    587  1.110   thorpej 				/*
    588  1.110   thorpej 				 * There is a chunk before the kernel.
    589  1.110   thorpej 				 */
    590  1.110   thorpej #if 0
    591  1.110   thorpej 				printf("Loading chunk before kernel: "
    592  1.110   thorpej 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    593  1.110   thorpej #endif
    594  1.112   thorpej #if defined(UVM)
    595  1.112   thorpej 				uvm_page_physload(pfn0, kernstartpfn,
    596  1.135   thorpej 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    597  1.112   thorpej #else
    598  1.110   thorpej 				vm_page_physload(pfn0, kernstartpfn,
    599  1.110   thorpej 				    pfn0, kernstartpfn);
    600  1.112   thorpej #endif
    601  1.110   thorpej 			}
    602  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    603  1.110   thorpej 		    }
    604  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    605  1.110   thorpej 			if (kernendpfn < pfn1) {
    606  1.110   thorpej 				/*
    607  1.110   thorpej 				 * There is a chunk after the kernel.
    608  1.110   thorpej 				 */
    609  1.110   thorpej #if 0
    610  1.110   thorpej 				printf("Loading chunk after kernel: "
    611  1.110   thorpej 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    612  1.110   thorpej #endif
    613  1.112   thorpej #if defined(UVM)
    614  1.112   thorpej 				uvm_page_physload(kernendpfn, pfn1,
    615  1.135   thorpej 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    616  1.112   thorpej #else
    617  1.110   thorpej 				vm_page_physload(kernendpfn, pfn1,
    618  1.110   thorpej 				    kernendpfn, pfn1);
    619  1.112   thorpej #endif
    620  1.110   thorpej 			}
    621  1.110   thorpej 		} else {
    622  1.110   thorpej 			/*
    623  1.110   thorpej 			 * Just load this cluster as one chunk.
    624  1.110   thorpej 			 */
    625  1.110   thorpej #if 0
    626  1.110   thorpej 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    627  1.110   thorpej 			    pfn0, pfn1);
    628  1.110   thorpej #endif
    629  1.112   thorpej #if defined(UVM)
    630  1.135   thorpej 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    631  1.135   thorpej 			    VM_FREELIST_DEFAULT);
    632  1.112   thorpej #else
    633  1.110   thorpej 			vm_page_physload(pfn0, pfn1, pfn0, pfn1);
    634  1.112   thorpej #endif
    635    1.7       cgd 		}
    636  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    637  1.110   thorpej 	    }
    638  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    639    1.7       cgd 	}
    640    1.7       cgd 
    641  1.110   thorpej 	/*
    642  1.110   thorpej 	 * Dump out the MDDT if it looks odd...
    643  1.110   thorpej 	 */
    644    1.7       cgd 	if (mddtweird) {
    645   1.46  christos 		printf("\n");
    646   1.46  christos 		printf("complete memory cluster information:\n");
    647    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    648   1.46  christos 			printf("mddt %d:\n", i);
    649   1.46  christos 			printf("\tpfn %lx\n",
    650    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    651   1.46  christos 			printf("\tcnt %lx\n",
    652    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    653   1.46  christos 			printf("\ttest %lx\n",
    654    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    655   1.46  christos 			printf("\tbva %lx\n",
    656    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    657   1.46  christos 			printf("\tbpa %lx\n",
    658    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    659   1.46  christos 			printf("\tbcksum %lx\n",
    660    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    661   1.46  christos 			printf("\tusage %lx\n",
    662    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    663    1.2       cgd 		}
    664   1.46  christos 		printf("\n");
    665    1.2       cgd 	}
    666    1.2       cgd 
    667    1.7       cgd 	if (totalphysmem == 0)
    668    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    669  1.110   thorpej 
    670  1.110   thorpej #ifdef LIMITMEM
    671  1.110   thorpej 	/*
    672  1.110   thorpej 	 * XXX Kludge so we can run on machines with memory larger
    673  1.110   thorpej 	 * XXX than 1G until all device drivers are converted to
    674  1.110   thorpej 	 * XXX use bus_dma.  (Relies on the fact that vm_physmem
    675  1.110   thorpej 	 * XXX sorted in order of increasing addresses.)
    676  1.110   thorpej 	 */
    677  1.110   thorpej 	if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
    678  1.110   thorpej 
    679  1.110   thorpej 		printf("******** LIMITING MEMORY TO %dMB **********\n",
    680  1.110   thorpej 		    LIMITMEM);
    681  1.110   thorpej 
    682  1.110   thorpej 		do {
    683  1.110   thorpej 			u_long ovf;
    684  1.110   thorpej 
    685  1.110   thorpej 			vps = &vm_physmem[vm_nphysseg - 1];
    686  1.110   thorpej 
    687  1.110   thorpej 			if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
    688  1.110   thorpej 				/*
    689  1.110   thorpej 				 * If the start is too high, just drop
    690  1.110   thorpej 				 * the whole segment.
    691  1.110   thorpej 				 *
    692  1.110   thorpej 				 * XXX can start != avail_start in this
    693  1.110   thorpej 				 * XXX case?  wouldn't that mean that
    694  1.110   thorpej 				 * XXX some memory was stolen above the
    695  1.110   thorpej 				 * XXX limit?  What to do?
    696  1.110   thorpej 				 */
    697  1.110   thorpej 				ovf = vps->end - vps->start;
    698  1.110   thorpej 				vm_nphysseg--;
    699  1.110   thorpej 			} else {
    700  1.110   thorpej 				/*
    701  1.110   thorpej 				 * If the start is OK, calculate how much
    702  1.110   thorpej 				 * to drop and drop it.
    703  1.110   thorpej 				 */
    704  1.110   thorpej 				ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
    705  1.110   thorpej 				vps->end -= ovf;
    706  1.110   thorpej 				vps->avail_end -= ovf;
    707  1.110   thorpej 			}
    708  1.110   thorpej 			physmem -= ovf;
    709  1.110   thorpej 			unusedmem += ovf;
    710  1.110   thorpej 		} while (vps->end > atop(LIMITMEM * 1024 * 1024));
    711   1.88    mjacob 	}
    712  1.110   thorpej #endif /* LIMITMEM */
    713  1.110   thorpej 
    714    1.1       cgd 	maxmem = physmem;
    715    1.1       cgd 
    716    1.7       cgd #if 0
    717   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    718   1.46  christos 	printf("physmem = %d\n", physmem);
    719   1.46  christos 	printf("resvmem = %d\n", resvmem);
    720   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    721   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    722    1.7       cgd #endif
    723   1.90    mjacob 
    724   1.90    mjacob 	/*
    725   1.90    mjacob 	 * Adjust some parameters if the amount of physmem
    726   1.90    mjacob 	 * available would cause us to croak. This is completely
    727   1.90    mjacob 	 * eyeballed and isn't meant to be the final answer.
    728   1.90    mjacob 	 * vm_phys_size is probably the only one to really worry
    729   1.90    mjacob 	 * about.
    730   1.90    mjacob  	 *
    731   1.90    mjacob 	 * It's for booting a GENERIC kernel on a large memory platform.
    732   1.90    mjacob 	 */
    733  1.110   thorpej 	if (physmem >= atop(128 * 1024 * 1024)) {
    734   1.90    mjacob 		vm_mbuf_size <<= 1;
    735   1.93    mjacob 		vm_kmem_size <<= 3;
    736   1.93    mjacob 		vm_phys_size <<= 2;
    737   1.90    mjacob 	}
    738    1.7       cgd 
    739    1.1       cgd 	/*
    740    1.1       cgd 	 * Initialize error message buffer (at end of core).
    741    1.1       cgd 	 */
    742  1.110   thorpej 	{
    743  1.110   thorpej 		size_t sz = round_page(MSGBUFSIZE);
    744  1.110   thorpej 
    745  1.110   thorpej 		vps = &vm_physmem[vm_nphysseg - 1];
    746  1.110   thorpej 
    747  1.110   thorpej 		/* shrink so that it'll fit in the last segment */
    748  1.110   thorpej 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    749  1.110   thorpej 			sz = ptoa(vps->avail_end - vps->avail_start);
    750  1.110   thorpej 
    751  1.110   thorpej 		vps->end -= atop(sz);
    752  1.110   thorpej 		vps->avail_end -= atop(sz);
    753  1.110   thorpej 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    754  1.110   thorpej 		initmsgbuf(msgbufaddr, sz);
    755  1.110   thorpej 
    756  1.110   thorpej 		/* Remove the last segment if it now has no pages. */
    757  1.110   thorpej 		if (vps->start == vps->end)
    758  1.110   thorpej 			vm_nphysseg--;
    759  1.110   thorpej 
    760  1.110   thorpej 		/* warn if the message buffer had to be shrunk */
    761  1.110   thorpej 		if (sz != round_page(MSGBUFSIZE))
    762  1.110   thorpej 			printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
    763  1.110   thorpej 			    round_page(MSGBUFSIZE), sz);
    764  1.110   thorpej 
    765  1.110   thorpej 	}
    766    1.1       cgd 
    767    1.1       cgd 	/*
    768   1.95   thorpej 	 * Init mapping for u page(s) for proc 0
    769    1.1       cgd 	 */
    770  1.110   thorpej 	proc0.p_addr = proc0paddr =
    771  1.110   thorpej 	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
    772    1.1       cgd 
    773    1.1       cgd 	/*
    774   1.95   thorpej 	 * Allocate space for system data structures.  These data structures
    775   1.95   thorpej 	 * are allocated here instead of cpu_startup() because physical
    776   1.95   thorpej 	 * memory is directly addressable.  We don't have to map these into
    777   1.95   thorpej 	 * virtual address space.
    778   1.95   thorpej 	 */
    779  1.140   thorpej 	size = (vsize_t)allocsys(0);
    780  1.110   thorpej 	v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
    781  1.110   thorpej 	if ((allocsys(v) - v) != size)
    782   1.95   thorpej 		panic("alpha_init: table size inconsistency");
    783    1.1       cgd 
    784    1.1       cgd 	/*
    785    1.1       cgd 	 * Initialize the virtual memory system, and set the
    786    1.1       cgd 	 * page table base register in proc 0's PCB.
    787    1.1       cgd 	 */
    788  1.110   thorpej 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    789  1.144   thorpej 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    790    1.1       cgd 
    791    1.1       cgd 	/*
    792    1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    793    1.3       cgd 	 * address.
    794    1.3       cgd 	 */
    795    1.3       cgd 	proc0.p_md.md_pcbpaddr =
    796  1.140   thorpej 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
    797    1.3       cgd 
    798    1.3       cgd 	/*
    799    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    800    1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    801    1.3       cgd 	 */
    802   1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    803    1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    804   1.81   thorpej 	proc0.p_md.md_tf =
    805   1.81   thorpej 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    806    1.1       cgd 
    807    1.1       cgd 	/*
    808   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    809    1.8       cgd 	 */
    810    1.1       cgd 
    811    1.8       cgd 	boothowto = RB_SINGLE;
    812    1.1       cgd #ifdef KADB
    813    1.1       cgd 	boothowto |= RB_KDB;
    814    1.1       cgd #endif
    815  1.102       cgd 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    816   1.26       cgd 		/*
    817   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    818   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    819   1.26       cgd 		 * says that we shouldn't.
    820   1.26       cgd 		 */
    821    1.8       cgd 		switch (*p) {
    822   1.26       cgd 		case 'a': /* autoboot */
    823   1.26       cgd 		case 'A':
    824   1.26       cgd 			boothowto &= ~RB_SINGLE;
    825   1.21       cgd 			break;
    826   1.21       cgd 
    827   1.43       cgd #ifdef DEBUG
    828   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    829   1.43       cgd 		case 'C':
    830   1.43       cgd 			boothowto |= RB_DUMP;
    831   1.43       cgd 			break;
    832   1.43       cgd #endif
    833   1.43       cgd 
    834   1.81   thorpej #if defined(KGDB) || defined(DDB)
    835   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    836   1.81   thorpej 		case 'D':
    837   1.81   thorpej 			boothowto |= RB_KDB;
    838   1.81   thorpej 			break;
    839   1.81   thorpej #endif
    840   1.81   thorpej 
    841   1.36       cgd 		case 'h': /* always halt, never reboot */
    842   1.36       cgd 		case 'H':
    843   1.36       cgd 			boothowto |= RB_HALT;
    844    1.8       cgd 			break;
    845    1.8       cgd 
    846   1.21       cgd #if 0
    847    1.8       cgd 		case 'm': /* mini root present in memory */
    848   1.26       cgd 		case 'M':
    849    1.8       cgd 			boothowto |= RB_MINIROOT;
    850    1.8       cgd 			break;
    851   1.21       cgd #endif
    852   1.36       cgd 
    853   1.36       cgd 		case 'n': /* askname */
    854   1.36       cgd 		case 'N':
    855   1.36       cgd 			boothowto |= RB_ASKNAME;
    856   1.65       cgd 			break;
    857   1.65       cgd 
    858   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    859   1.65       cgd 		case 'S':
    860   1.65       cgd 			boothowto |= RB_SINGLE;
    861  1.119   thorpej 			break;
    862  1.119   thorpej 
    863  1.119   thorpej 		case '-':
    864  1.119   thorpej 			/*
    865  1.119   thorpej 			 * Just ignore this.  It's not required, but it's
    866  1.119   thorpej 			 * common for it to be passed regardless.
    867  1.119   thorpej 			 */
    868   1.65       cgd 			break;
    869   1.65       cgd 
    870   1.65       cgd 		default:
    871   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    872   1.36       cgd 			break;
    873    1.1       cgd 		}
    874    1.1       cgd 	}
    875    1.1       cgd 
    876  1.136    mjacob 
    877  1.136    mjacob 	/*
    878  1.136    mjacob 	 * Figure out the number of cpus in the box, from RPB fields.
    879  1.136    mjacob 	 * Really.  We mean it.
    880  1.136    mjacob 	 */
    881  1.136    mjacob 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    882  1.136    mjacob 		struct pcs *pcsp;
    883  1.136    mjacob 
    884  1.144   thorpej 		pcsp = LOCATE_PCS(hwrpb, i);
    885  1.136    mjacob 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    886  1.136    mjacob 			ncpus++;
    887  1.136    mjacob 	}
    888  1.136    mjacob 
    889    1.7       cgd 	/*
    890  1.106       cgd 	 * Initialize debuggers, and break into them if appropriate.
    891  1.106       cgd 	 */
    892  1.106       cgd #ifdef DDB
    893  1.106       cgd 	db_machine_init();
    894  1.106       cgd 	ddb_init(ksym_start, ksym_end);
    895  1.106       cgd 	if (boothowto & RB_KDB)
    896  1.106       cgd 		Debugger();
    897  1.106       cgd #endif
    898  1.106       cgd #ifdef KGDB
    899  1.106       cgd 	if (boothowto & RB_KDB)
    900  1.106       cgd 		kgdb_connect(0);
    901  1.106       cgd #endif
    902  1.106       cgd 	/*
    903  1.106       cgd 	 * Figure out our clock frequency, from RPB fields.
    904  1.106       cgd 	 */
    905  1.106       cgd 	hz = hwrpb->rpb_intr_freq >> 12;
    906  1.106       cgd 	if (!(60 <= hz && hz <= 10240)) {
    907  1.106       cgd 		hz = 1024;
    908  1.106       cgd #ifdef DIAGNOSTIC
    909  1.106       cgd 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    910  1.106       cgd 			hwrpb->rpb_intr_freq, hz);
    911  1.106       cgd #endif
    912  1.106       cgd 	}
    913   1.95   thorpej }
    914   1.95   thorpej 
    915   1.95   thorpej /*
    916   1.95   thorpej  * Allocate space for system data structures.  We are given
    917   1.95   thorpej  * a starting virtual address and we return a final virtual
    918   1.95   thorpej  * address; along the way we set each data structure pointer.
    919   1.95   thorpej  *
    920   1.95   thorpej  * We call allocsys() with 0 to find out how much space we want,
    921   1.95   thorpej  * allocate that much and fill it with zeroes, and the call
    922   1.95   thorpej  * allocsys() again with the correct base virtual address.
    923   1.95   thorpej  */
    924   1.95   thorpej caddr_t
    925   1.95   thorpej allocsys(v)
    926   1.95   thorpej 	caddr_t v;
    927   1.95   thorpej {
    928   1.95   thorpej 
    929   1.95   thorpej #define valloc(name, type, num) \
    930   1.95   thorpej 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    931  1.134    mjacob 
    932   1.95   thorpej #ifdef REAL_CLISTS
    933   1.95   thorpej 	valloc(cfree, struct cblock, nclist);
    934   1.95   thorpej #endif
    935   1.95   thorpej 	valloc(callout, struct callout, ncallout);
    936   1.95   thorpej #ifdef SYSVSHM
    937   1.95   thorpej 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    938   1.95   thorpej #endif
    939   1.95   thorpej #ifdef SYSVSEM
    940   1.95   thorpej 	valloc(sema, struct semid_ds, seminfo.semmni);
    941   1.95   thorpej 	valloc(sem, struct sem, seminfo.semmns);
    942   1.95   thorpej 	/* This is pretty disgusting! */
    943   1.95   thorpej 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    944   1.95   thorpej #endif
    945   1.95   thorpej #ifdef SYSVMSG
    946   1.95   thorpej 	valloc(msgpool, char, msginfo.msgmax);
    947   1.95   thorpej 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    948   1.95   thorpej 	valloc(msghdrs, struct msg, msginfo.msgtql);
    949   1.95   thorpej 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    950   1.95   thorpej #endif
    951   1.95   thorpej 
    952   1.95   thorpej 	/*
    953   1.95   thorpej 	 * Determine how many buffers to allocate.
    954   1.95   thorpej 	 * We allocate 10% of memory for buffer space.  Insure a
    955   1.95   thorpej 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    956   1.95   thorpej 	 * headers as file i/o buffers.
    957   1.95   thorpej 	 */
    958   1.95   thorpej 	if (bufpages == 0)
    959   1.95   thorpej 		bufpages = (physmem * 10) / (CLSIZE * 100);
    960   1.95   thorpej 	if (nbuf == 0) {
    961   1.95   thorpej 		nbuf = bufpages;
    962   1.95   thorpej 		if (nbuf < 16)
    963   1.95   thorpej 			nbuf = 16;
    964   1.95   thorpej 	}
    965   1.95   thorpej 	if (nswbuf == 0) {
    966   1.95   thorpej 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    967   1.95   thorpej 		if (nswbuf > 256)
    968   1.95   thorpej 			nswbuf = 256;		/* sanity */
    969   1.95   thorpej 	}
    970  1.112   thorpej #if !defined(UVM)
    971   1.95   thorpej 	valloc(swbuf, struct buf, nswbuf);
    972  1.112   thorpej #endif
    973   1.95   thorpej 	valloc(buf, struct buf, nbuf);
    974  1.136    mjacob 
    975  1.136    mjacob 	/*
    976  1.136    mjacob 	 * There appears to be a correlation between the number
    977  1.136    mjacob 	 * of processor slots defined in the HWRPB and the whami
    978  1.136    mjacob 	 * value that can be returned.
    979  1.136    mjacob 	 */
    980  1.138      ross 	valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
    981  1.136    mjacob 
    982   1.95   thorpej 	return (v);
    983   1.98       cgd #undef valloc
    984    1.1       cgd }
    985    1.1       cgd 
    986   1.18       cgd void
    987    1.1       cgd consinit()
    988    1.1       cgd {
    989   1.81   thorpej 
    990  1.106       cgd 	/*
    991  1.106       cgd 	 * Everything related to console initialization is done
    992  1.106       cgd 	 * in alpha_init().
    993  1.106       cgd 	 */
    994  1.106       cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    995  1.106       cgd 	printf("consinit: %susing prom console\n",
    996  1.106       cgd 	    pmap_uses_prom_console() ? "" : "not ");
    997   1.81   thorpej #endif
    998    1.1       cgd }
    999  1.118   thorpej 
   1000  1.118   thorpej #include "pckbc.h"
   1001  1.118   thorpej #include "pckbd.h"
   1002  1.118   thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
   1003  1.118   thorpej 
   1004  1.118   thorpej #include <machine/bus.h>
   1005  1.118   thorpej #include <dev/isa/pckbcvar.h>
   1006  1.118   thorpej 
   1007  1.118   thorpej /*
   1008  1.118   thorpej  * This is called by the pbkbc driver if no pckbd is configured.
   1009  1.118   thorpej  * On the i386, it is used to glue in the old, deprecated console
   1010  1.118   thorpej  * code.  On the Alpha, it does nothing.
   1011  1.118   thorpej  */
   1012  1.118   thorpej int
   1013  1.118   thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
   1014  1.118   thorpej 	pckbc_tag_t kbctag;
   1015  1.118   thorpej 	pckbc_slot_t kbcslot;
   1016  1.118   thorpej {
   1017  1.118   thorpej 
   1018  1.118   thorpej 	return (ENXIO);
   1019  1.118   thorpej }
   1020  1.118   thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
   1021    1.1       cgd 
   1022   1.18       cgd void
   1023    1.1       cgd cpu_startup()
   1024    1.1       cgd {
   1025    1.1       cgd 	register unsigned i;
   1026    1.1       cgd 	int base, residual;
   1027  1.140   thorpej 	vaddr_t minaddr, maxaddr;
   1028  1.140   thorpej 	vsize_t size;
   1029   1.40       cgd #if defined(DEBUG)
   1030    1.1       cgd 	extern int pmapdebug;
   1031    1.1       cgd 	int opmapdebug = pmapdebug;
   1032    1.1       cgd 
   1033    1.1       cgd 	pmapdebug = 0;
   1034    1.1       cgd #endif
   1035    1.1       cgd 
   1036    1.1       cgd 	/*
   1037    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
   1038    1.1       cgd 	 */
   1039   1.46  christos 	printf(version);
   1040    1.1       cgd 	identifycpu();
   1041  1.110   thorpej 	printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
   1042  1.140   thorpej 	    ((psize_t) totalphysmem << (psize_t) PAGE_SHIFT),
   1043  1.137    mjacob 	    ptoa(resvmem), ptoa(physmem));
   1044    1.7       cgd 	if (unusedmem)
   1045   1.46  christos 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
   1046    1.7       cgd 	if (unknownmem)
   1047   1.46  christos 		printf("WARNING: %d bytes of memory with unknown purpose\n",
   1048    1.7       cgd 		    ctob(unknownmem));
   1049    1.1       cgd 
   1050    1.1       cgd 	/*
   1051    1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
   1052    1.1       cgd 	 * Note they are different than the array of headers, 'buf',
   1053    1.1       cgd 	 * and usually occupy more virtual memory than physical.
   1054    1.1       cgd 	 */
   1055    1.1       cgd 	size = MAXBSIZE * nbuf;
   1056  1.112   thorpej #if defined(UVM)
   1057  1.140   thorpej 	if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
   1058  1.112   thorpej 		    NULL, UVM_UNKNOWN_OFFSET,
   1059  1.112   thorpej 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
   1060  1.112   thorpej 				UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
   1061  1.112   thorpej 		panic("startup: cannot allocate VM for buffers");
   1062  1.112   thorpej #else
   1063  1.140   thorpej 	buffer_map = kmem_suballoc(kernel_map, (vaddr_t *)&buffers,
   1064    1.1       cgd 	    &maxaddr, size, TRUE);
   1065  1.140   thorpej 	minaddr = (vaddr_t)buffers;
   1066  1.140   thorpej 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vaddr_t)0,
   1067    1.1       cgd 			&minaddr, size, FALSE) != KERN_SUCCESS)
   1068    1.1       cgd 		panic("startup: cannot allocate buffers");
   1069  1.112   thorpej #endif /* UVM */
   1070    1.1       cgd 	base = bufpages / nbuf;
   1071    1.1       cgd 	residual = bufpages % nbuf;
   1072    1.1       cgd 	for (i = 0; i < nbuf; i++) {
   1073  1.112   thorpej #if defined(UVM)
   1074  1.140   thorpej 		vsize_t curbufsize;
   1075  1.140   thorpej 		vaddr_t curbuf;
   1076  1.112   thorpej 		struct vm_page *pg;
   1077  1.112   thorpej 
   1078  1.112   thorpej 		/*
   1079  1.112   thorpej 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
   1080  1.112   thorpej 		 * that MAXBSIZE space, we allocate and map (base+1) pages
   1081  1.112   thorpej 		 * for the first "residual" buffers, and then we allocate
   1082  1.112   thorpej 		 * "base" pages for the rest.
   1083  1.112   thorpej 		 */
   1084  1.140   thorpej 		curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
   1085  1.112   thorpej 		curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
   1086  1.112   thorpej 
   1087  1.112   thorpej 		while (curbufsize) {
   1088  1.112   thorpej 			pg = uvm_pagealloc(NULL, 0, NULL);
   1089  1.112   thorpej 			if (pg == NULL)
   1090  1.112   thorpej 				panic("cpu_startup: not enough memory for "
   1091  1.112   thorpej 				    "buffer cache");
   1092  1.112   thorpej #if defined(PMAP_NEW)
   1093  1.112   thorpej 			pmap_kenter_pgs(curbuf, &pg, 1);
   1094  1.112   thorpej #else
   1095  1.112   thorpej 			pmap_enter(kernel_map->pmap, curbuf,
   1096  1.112   thorpej 				   VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
   1097  1.112   thorpej #endif
   1098  1.112   thorpej 			curbuf += PAGE_SIZE;
   1099  1.112   thorpej 			curbufsize -= PAGE_SIZE;
   1100  1.112   thorpej 		}
   1101  1.112   thorpej #else /* ! UVM */
   1102  1.140   thorpej 		vsize_t curbufsize;
   1103  1.140   thorpej 		vaddr_t curbuf;
   1104    1.1       cgd 
   1105    1.1       cgd 		/*
   1106    1.1       cgd 		 * First <residual> buffers get (base+1) physical pages
   1107    1.1       cgd 		 * allocated for them.  The rest get (base) physical pages.
   1108    1.1       cgd 		 *
   1109    1.1       cgd 		 * The rest of each buffer occupies virtual space,
   1110    1.1       cgd 		 * but has no physical memory allocated for it.
   1111    1.1       cgd 		 */
   1112  1.140   thorpej 		curbuf = (vaddr_t)buffers + i * MAXBSIZE;
   1113    1.1       cgd 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
   1114    1.1       cgd 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
   1115    1.1       cgd 		vm_map_simplify(buffer_map, curbuf);
   1116  1.112   thorpej #endif /* UVM */
   1117    1.1       cgd 	}
   1118    1.1       cgd 	/*
   1119    1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
   1120    1.1       cgd 	 * limits the number of processes exec'ing at any time.
   1121    1.1       cgd 	 */
   1122  1.112   thorpej #if defined(UVM)
   1123  1.112   thorpej 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1124  1.112   thorpej 				   16 * NCARGS, TRUE, FALSE, NULL);
   1125  1.112   thorpej #else
   1126    1.1       cgd 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
   1127    1.1       cgd 				 16 * NCARGS, TRUE);
   1128  1.112   thorpej #endif
   1129    1.1       cgd 
   1130    1.1       cgd 	/*
   1131    1.1       cgd 	 * Allocate a submap for physio
   1132    1.1       cgd 	 */
   1133  1.112   thorpej #if defined(UVM)
   1134  1.112   thorpej 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1135  1.112   thorpej 				   VM_PHYS_SIZE, TRUE, FALSE, NULL);
   1136  1.112   thorpej #else
   1137    1.1       cgd 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
   1138    1.1       cgd 				 VM_PHYS_SIZE, TRUE);
   1139  1.112   thorpej #endif
   1140    1.1       cgd 
   1141    1.1       cgd 	/*
   1142   1.69   thorpej 	 * Finally, allocate mbuf cluster submap.
   1143    1.1       cgd 	 */
   1144  1.112   thorpej #if defined(UVM)
   1145  1.140   thorpej 	mb_map = uvm_km_suballoc(kernel_map, (vaddr_t *)&mbutl, &maxaddr,
   1146  1.112   thorpej 				 VM_MBUF_SIZE, FALSE, FALSE, NULL);
   1147  1.112   thorpej #else
   1148  1.140   thorpej 	mb_map = kmem_suballoc(kernel_map, (vaddr_t *)&mbutl, &maxaddr,
   1149  1.112   thorpej 			       VM_MBUF_SIZE, FALSE);
   1150  1.112   thorpej #endif
   1151    1.1       cgd 	/*
   1152    1.1       cgd 	 * Initialize callouts
   1153    1.1       cgd 	 */
   1154    1.1       cgd 	callfree = callout;
   1155    1.1       cgd 	for (i = 1; i < ncallout; i++)
   1156    1.1       cgd 		callout[i-1].c_next = &callout[i];
   1157    1.1       cgd 	callout[i-1].c_next = NULL;
   1158    1.1       cgd 
   1159   1.40       cgd #if defined(DEBUG)
   1160    1.1       cgd 	pmapdebug = opmapdebug;
   1161    1.1       cgd #endif
   1162  1.112   thorpej #if defined(UVM)
   1163  1.112   thorpej 	printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
   1164  1.112   thorpej #else
   1165   1.46  christos 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
   1166  1.139   thorpej #endif
   1167  1.139   thorpej #if 0
   1168  1.139   thorpej 	{
   1169  1.139   thorpej 		extern u_long pmap_pages_stolen;
   1170  1.139   thorpej 		printf("stolen memory for VM structures = %ld bytes\n",
   1171  1.139   thorpej 		    pmap_pages_stolen * PAGE_SIZE);
   1172  1.139   thorpej 	}
   1173  1.112   thorpej #endif
   1174   1.46  christos 	printf("using %ld buffers containing %ld bytes of memory\n",
   1175    1.1       cgd 		(long)nbuf, (long)(bufpages * CLBYTES));
   1176    1.1       cgd 
   1177    1.1       cgd 	/*
   1178    1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
   1179    1.1       cgd 	 */
   1180    1.1       cgd 	bufinit();
   1181    1.1       cgd 
   1182    1.1       cgd 	/*
   1183    1.1       cgd 	 * Configure the system.
   1184    1.1       cgd 	 */
   1185    1.1       cgd 	configure();
   1186   1.48       cgd 
   1187   1.48       cgd 	/*
   1188   1.48       cgd 	 * Note that bootstrapping is finished, and set the HWRPB up
   1189   1.48       cgd 	 * to do restarts.
   1190   1.48       cgd 	 */
   1191   1.55       cgd 	hwrpb_restart_setup();
   1192  1.147   thorpej 
   1193  1.147   thorpej #if defined(MULTIPROCESSOR)
   1194  1.147   thorpej 	/*
   1195  1.147   thorpej 	 * Spin up any secondary CPUs.
   1196  1.147   thorpej 	 */
   1197  1.147   thorpej 	cpu_run_spinup_queue();
   1198  1.147   thorpej #endif /* MULTIPROCESSOR */
   1199  1.104   thorpej }
   1200  1.104   thorpej 
   1201  1.104   thorpej /*
   1202  1.104   thorpej  * Retrieve the platform name from the DSR.
   1203  1.104   thorpej  */
   1204  1.104   thorpej const char *
   1205  1.104   thorpej alpha_dsr_sysname()
   1206  1.104   thorpej {
   1207  1.104   thorpej 	struct dsrdb *dsr;
   1208  1.104   thorpej 	const char *sysname;
   1209  1.104   thorpej 
   1210  1.104   thorpej 	/*
   1211  1.104   thorpej 	 * DSR does not exist on early HWRPB versions.
   1212  1.104   thorpej 	 */
   1213  1.104   thorpej 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
   1214  1.104   thorpej 		return (NULL);
   1215  1.104   thorpej 
   1216  1.104   thorpej 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
   1217  1.104   thorpej 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
   1218  1.104   thorpej 	    sizeof(u_int64_t)));
   1219  1.104   thorpej 	return (sysname);
   1220  1.104   thorpej }
   1221  1.104   thorpej 
   1222  1.104   thorpej /*
   1223  1.104   thorpej  * Lookup the system specified system variation in the provided table,
   1224  1.104   thorpej  * returning the model string on match.
   1225  1.104   thorpej  */
   1226  1.104   thorpej const char *
   1227  1.104   thorpej alpha_variation_name(variation, avtp)
   1228  1.104   thorpej 	u_int64_t variation;
   1229  1.104   thorpej 	const struct alpha_variation_table *avtp;
   1230  1.104   thorpej {
   1231  1.104   thorpej 	int i;
   1232  1.104   thorpej 
   1233  1.104   thorpej 	for (i = 0; avtp[i].avt_model != NULL; i++)
   1234  1.104   thorpej 		if (avtp[i].avt_variation == variation)
   1235  1.104   thorpej 			return (avtp[i].avt_model);
   1236  1.104   thorpej 	return (NULL);
   1237  1.104   thorpej }
   1238  1.104   thorpej 
   1239  1.104   thorpej /*
   1240  1.104   thorpej  * Generate a default platform name based for unknown system variations.
   1241  1.104   thorpej  */
   1242  1.104   thorpej const char *
   1243  1.104   thorpej alpha_unknown_sysname()
   1244  1.104   thorpej {
   1245  1.105   thorpej 	static char s[128];		/* safe size */
   1246  1.104   thorpej 
   1247  1.105   thorpej 	sprintf(s, "%s family, unknown model variation 0x%lx",
   1248  1.105   thorpej 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1249  1.104   thorpej 	return ((const char *)s);
   1250    1.1       cgd }
   1251    1.1       cgd 
   1252   1.33       cgd void
   1253    1.1       cgd identifycpu()
   1254    1.1       cgd {
   1255    1.1       cgd 
   1256    1.7       cgd 	/*
   1257    1.7       cgd 	 * print out CPU identification information.
   1258    1.7       cgd 	 */
   1259   1.46  christos 	printf("%s, %ldMHz\n", cpu_model,
   1260    1.7       cgd 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
   1261   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
   1262    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1263    1.7       cgd #if 0
   1264    1.7       cgd 	/* this isn't defined for any systems that we run on? */
   1265   1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
   1266    1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1267    1.7       cgd 
   1268    1.7       cgd 	/* and these aren't particularly useful! */
   1269   1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
   1270    1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1271    1.7       cgd #endif
   1272    1.1       cgd }
   1273    1.1       cgd 
   1274    1.1       cgd int	waittime = -1;
   1275    1.7       cgd struct pcb dumppcb;
   1276    1.1       cgd 
   1277   1.18       cgd void
   1278   1.68       gwr cpu_reboot(howto, bootstr)
   1279    1.1       cgd 	int howto;
   1280   1.39       mrg 	char *bootstr;
   1281    1.1       cgd {
   1282    1.1       cgd 	extern int cold;
   1283  1.148   thorpej #if defined(MULTIPROCESSOR)
   1284  1.148   thorpej 	u_long cpu_id;
   1285  1.148   thorpej #endif
   1286  1.148   thorpej 
   1287  1.148   thorpej #if defined(MULTIPROCESSOR)
   1288  1.148   thorpej 	/* We must be running on the primary CPU. */
   1289  1.148   thorpej 	if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
   1290  1.148   thorpej 		panic("cpu_reboot: not on primary CPU!");
   1291  1.148   thorpej #endif
   1292    1.1       cgd 
   1293    1.1       cgd 	/* If system is cold, just halt. */
   1294    1.1       cgd 	if (cold) {
   1295    1.1       cgd 		howto |= RB_HALT;
   1296    1.1       cgd 		goto haltsys;
   1297    1.1       cgd 	}
   1298    1.1       cgd 
   1299   1.36       cgd 	/* If "always halt" was specified as a boot flag, obey. */
   1300   1.36       cgd 	if ((boothowto & RB_HALT) != 0)
   1301   1.36       cgd 		howto |= RB_HALT;
   1302   1.36       cgd 
   1303    1.7       cgd 	boothowto = howto;
   1304    1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
   1305    1.1       cgd 		waittime = 0;
   1306    1.7       cgd 		vfs_shutdown();
   1307    1.1       cgd 		/*
   1308    1.1       cgd 		 * If we've been adjusting the clock, the todr
   1309    1.1       cgd 		 * will be out of synch; adjust it now.
   1310    1.1       cgd 		 */
   1311    1.1       cgd 		resettodr();
   1312    1.1       cgd 	}
   1313    1.1       cgd 
   1314    1.1       cgd 	/* Disable interrupts. */
   1315    1.1       cgd 	splhigh();
   1316    1.1       cgd 
   1317    1.7       cgd 	/* If rebooting and a dump is requested do it. */
   1318   1.42       cgd #if 0
   1319   1.42       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1320   1.42       cgd #else
   1321   1.42       cgd 	if (howto & RB_DUMP)
   1322   1.42       cgd #endif
   1323    1.1       cgd 		dumpsys();
   1324    1.6       cgd 
   1325   1.12       cgd haltsys:
   1326   1.12       cgd 
   1327    1.6       cgd 	/* run any shutdown hooks */
   1328    1.6       cgd 	doshutdownhooks();
   1329  1.148   thorpej 
   1330  1.148   thorpej #if defined(MULTIPROCESSOR)
   1331  1.148   thorpej 	/* Kill off any secondary CPUs. */
   1332  1.148   thorpej 	for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
   1333  1.148   thorpej 		if (cpu_id == hwrpb->rpb_primary_cpu_id ||
   1334  1.148   thorpej 		    cpus[cpu_id] == NULL)
   1335  1.148   thorpej 			continue;
   1336  1.148   thorpej 		cpu_halt_secondary(cpu_id);
   1337  1.148   thorpej 	}
   1338  1.148   thorpej #endif
   1339    1.1       cgd 
   1340    1.7       cgd #ifdef BOOTKEY
   1341   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1342  1.117  drochner 	cnpollc(1);	/* for proper keyboard command handling */
   1343    1.7       cgd 	cngetc();
   1344  1.117  drochner 	cnpollc(0);
   1345   1.46  christos 	printf("\n");
   1346    1.7       cgd #endif
   1347    1.7       cgd 
   1348  1.124   thorpej 	/* Finally, powerdown/halt/reboot the system. */
   1349  1.124   thorpej 	if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
   1350  1.124   thorpej 	    platform.powerdown != NULL) {
   1351  1.124   thorpej 		(*platform.powerdown)();
   1352  1.124   thorpej 		printf("WARNING: powerdown failed!\n");
   1353  1.124   thorpej 	}
   1354   1.46  christos 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
   1355    1.1       cgd 	prom_halt(howto & RB_HALT);
   1356    1.1       cgd 	/*NOTREACHED*/
   1357    1.1       cgd }
   1358    1.1       cgd 
   1359    1.7       cgd /*
   1360    1.7       cgd  * These variables are needed by /sbin/savecore
   1361    1.7       cgd  */
   1362    1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
   1363    1.7       cgd int 	dumpsize = 0;		/* pages */
   1364    1.7       cgd long	dumplo = 0; 		/* blocks */
   1365    1.7       cgd 
   1366    1.7       cgd /*
   1367   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1368   1.43       cgd  */
   1369   1.43       cgd int
   1370   1.43       cgd cpu_dumpsize()
   1371   1.43       cgd {
   1372   1.43       cgd 	int size;
   1373   1.43       cgd 
   1374  1.108       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1375  1.110   thorpej 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1376   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
   1377   1.43       cgd 		return -1;
   1378   1.43       cgd 
   1379   1.43       cgd 	return (1);
   1380   1.43       cgd }
   1381   1.43       cgd 
   1382   1.43       cgd /*
   1383  1.110   thorpej  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1384  1.110   thorpej  */
   1385  1.110   thorpej u_long
   1386  1.110   thorpej cpu_dump_mempagecnt()
   1387  1.110   thorpej {
   1388  1.110   thorpej 	u_long i, n;
   1389  1.110   thorpej 
   1390  1.110   thorpej 	n = 0;
   1391  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++)
   1392  1.110   thorpej 		n += atop(mem_clusters[i].size);
   1393  1.110   thorpej 	return (n);
   1394  1.110   thorpej }
   1395  1.110   thorpej 
   1396  1.110   thorpej /*
   1397   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
   1398   1.43       cgd  */
   1399   1.43       cgd int
   1400   1.43       cgd cpu_dump()
   1401   1.43       cgd {
   1402   1.43       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1403  1.107       cgd 	char buf[dbtob(1)];
   1404  1.107       cgd 	kcore_seg_t *segp;
   1405  1.107       cgd 	cpu_kcore_hdr_t *cpuhdrp;
   1406  1.107       cgd 	phys_ram_seg_t *memsegp;
   1407  1.110   thorpej 	int i;
   1408   1.43       cgd 
   1409  1.107       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1410   1.43       cgd 
   1411  1.107       cgd 	bzero(buf, sizeof buf);
   1412   1.43       cgd 	segp = (kcore_seg_t *)buf;
   1413  1.107       cgd 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1414  1.107       cgd 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1415  1.107       cgd 	    ALIGN(sizeof(*cpuhdrp))];
   1416   1.43       cgd 
   1417   1.43       cgd 	/*
   1418   1.43       cgd 	 * Generate a segment header.
   1419   1.43       cgd 	 */
   1420   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1421   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1422   1.43       cgd 
   1423   1.43       cgd 	/*
   1424  1.107       cgd 	 * Add the machine-dependent header info.
   1425   1.43       cgd 	 */
   1426  1.140   thorpej 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1427   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
   1428  1.110   thorpej 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1429  1.107       cgd 
   1430  1.107       cgd 	/*
   1431  1.107       cgd 	 * Fill in the memory segment descriptors.
   1432  1.107       cgd 	 */
   1433  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1434  1.110   thorpej 		memsegp[i].start = mem_clusters[i].start;
   1435  1.110   thorpej 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1436  1.110   thorpej 	}
   1437   1.43       cgd 
   1438   1.43       cgd 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1439   1.43       cgd }
   1440   1.43       cgd 
   1441   1.43       cgd /*
   1442   1.68       gwr  * This is called by main to set dumplo and dumpsize.
   1443    1.7       cgd  * Dumps always skip the first CLBYTES of disk space
   1444    1.7       cgd  * in case there might be a disk label stored there.
   1445    1.7       cgd  * If there is extra space, put dump at the end to
   1446    1.7       cgd  * reduce the chance that swapping trashes it.
   1447    1.7       cgd  */
   1448    1.7       cgd void
   1449   1.68       gwr cpu_dumpconf()
   1450    1.7       cgd {
   1451   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
   1452    1.7       cgd 	int maj;
   1453    1.7       cgd 
   1454    1.7       cgd 	if (dumpdev == NODEV)
   1455   1.43       cgd 		goto bad;
   1456    1.7       cgd 	maj = major(dumpdev);
   1457    1.7       cgd 	if (maj < 0 || maj >= nblkdev)
   1458    1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1459    1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
   1460   1.43       cgd 		goto bad;
   1461    1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1462    1.7       cgd 	if (nblks <= ctod(1))
   1463   1.43       cgd 		goto bad;
   1464   1.43       cgd 
   1465   1.43       cgd 	dumpblks = cpu_dumpsize();
   1466   1.43       cgd 	if (dumpblks < 0)
   1467   1.43       cgd 		goto bad;
   1468  1.110   thorpej 	dumpblks += ctod(cpu_dump_mempagecnt());
   1469   1.43       cgd 
   1470   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1471   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1472   1.43       cgd 		goto bad;
   1473   1.43       cgd 
   1474   1.43       cgd 	/* Put dump at end of partition */
   1475   1.43       cgd 	dumplo = nblks - dumpblks;
   1476    1.7       cgd 
   1477   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1478  1.110   thorpej 	dumpsize = cpu_dump_mempagecnt();
   1479   1.43       cgd 	return;
   1480    1.7       cgd 
   1481   1.43       cgd bad:
   1482   1.43       cgd 	dumpsize = 0;
   1483   1.43       cgd 	return;
   1484    1.7       cgd }
   1485    1.7       cgd 
   1486    1.7       cgd /*
   1487   1.42       cgd  * Dump the kernel's image to the swap partition.
   1488    1.7       cgd  */
   1489   1.42       cgd #define	BYTES_PER_DUMP	NBPG
   1490   1.42       cgd 
   1491    1.7       cgd void
   1492    1.7       cgd dumpsys()
   1493    1.7       cgd {
   1494  1.110   thorpej 	u_long totalbytesleft, bytes, i, n, memcl;
   1495  1.110   thorpej 	u_long maddr;
   1496  1.110   thorpej 	int psize;
   1497   1.42       cgd 	daddr_t blkno;
   1498   1.42       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1499   1.42       cgd 	int error;
   1500   1.42       cgd 
   1501   1.42       cgd 	/* Save registers. */
   1502   1.42       cgd 	savectx(&dumppcb);
   1503    1.7       cgd 
   1504  1.111   thorpej 	msgbufenabled = 0;	/* don't record dump msgs in msgbuf */
   1505    1.7       cgd 	if (dumpdev == NODEV)
   1506    1.7       cgd 		return;
   1507   1.42       cgd 
   1508   1.42       cgd 	/*
   1509   1.42       cgd 	 * For dumps during autoconfiguration,
   1510   1.42       cgd 	 * if dump device has already configured...
   1511   1.42       cgd 	 */
   1512   1.42       cgd 	if (dumpsize == 0)
   1513   1.68       gwr 		cpu_dumpconf();
   1514   1.47       cgd 	if (dumplo <= 0) {
   1515   1.97   mycroft 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1516   1.97   mycroft 		    minor(dumpdev));
   1517   1.42       cgd 		return;
   1518   1.43       cgd 	}
   1519   1.97   mycroft 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1520   1.97   mycroft 	    minor(dumpdev), dumplo);
   1521    1.7       cgd 
   1522   1.42       cgd 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1523   1.46  christos 	printf("dump ");
   1524   1.42       cgd 	if (psize == -1) {
   1525   1.46  christos 		printf("area unavailable\n");
   1526   1.42       cgd 		return;
   1527   1.42       cgd 	}
   1528   1.42       cgd 
   1529   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1530   1.42       cgd 
   1531   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1532   1.43       cgd 		goto err;
   1533   1.43       cgd 
   1534  1.110   thorpej 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1535   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1536   1.42       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1537   1.42       cgd 	error = 0;
   1538   1.42       cgd 
   1539  1.110   thorpej 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1540  1.110   thorpej 		maddr = mem_clusters[memcl].start;
   1541  1.110   thorpej 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1542  1.110   thorpej 
   1543  1.110   thorpej 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1544  1.110   thorpej 
   1545  1.110   thorpej 			/* Print out how many MBs we to go. */
   1546  1.110   thorpej 			if ((totalbytesleft % (1024*1024)) == 0)
   1547  1.110   thorpej 				printf("%d ", totalbytesleft / (1024 * 1024));
   1548  1.110   thorpej 
   1549  1.110   thorpej 			/* Limit size for next transfer. */
   1550  1.110   thorpej 			n = bytes - i;
   1551  1.110   thorpej 			if (n > BYTES_PER_DUMP)
   1552  1.110   thorpej 				n =  BYTES_PER_DUMP;
   1553  1.110   thorpej 
   1554  1.110   thorpej 			error = (*dump)(dumpdev, blkno,
   1555  1.110   thorpej 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1556  1.110   thorpej 			if (error)
   1557  1.110   thorpej 				goto err;
   1558  1.110   thorpej 			maddr += n;
   1559  1.110   thorpej 			blkno += btodb(n);			/* XXX? */
   1560   1.42       cgd 
   1561  1.110   thorpej 			/* XXX should look for keystrokes, to cancel. */
   1562  1.110   thorpej 		}
   1563   1.42       cgd 	}
   1564   1.42       cgd 
   1565   1.43       cgd err:
   1566   1.42       cgd 	switch (error) {
   1567    1.7       cgd 
   1568    1.7       cgd 	case ENXIO:
   1569   1.46  christos 		printf("device bad\n");
   1570    1.7       cgd 		break;
   1571    1.7       cgd 
   1572    1.7       cgd 	case EFAULT:
   1573   1.46  christos 		printf("device not ready\n");
   1574    1.7       cgd 		break;
   1575    1.7       cgd 
   1576    1.7       cgd 	case EINVAL:
   1577   1.46  christos 		printf("area improper\n");
   1578    1.7       cgd 		break;
   1579    1.7       cgd 
   1580    1.7       cgd 	case EIO:
   1581   1.46  christos 		printf("i/o error\n");
   1582    1.7       cgd 		break;
   1583    1.7       cgd 
   1584    1.7       cgd 	case EINTR:
   1585   1.46  christos 		printf("aborted from console\n");
   1586    1.7       cgd 		break;
   1587    1.7       cgd 
   1588   1.42       cgd 	case 0:
   1589   1.46  christos 		printf("succeeded\n");
   1590   1.42       cgd 		break;
   1591   1.42       cgd 
   1592    1.7       cgd 	default:
   1593   1.46  christos 		printf("error %d\n", error);
   1594    1.7       cgd 		break;
   1595    1.7       cgd 	}
   1596   1.46  christos 	printf("\n\n");
   1597    1.7       cgd 	delay(1000);
   1598    1.7       cgd }
   1599    1.7       cgd 
   1600    1.1       cgd void
   1601    1.1       cgd frametoreg(framep, regp)
   1602    1.1       cgd 	struct trapframe *framep;
   1603    1.1       cgd 	struct reg *regp;
   1604    1.1       cgd {
   1605    1.1       cgd 
   1606    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1607    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1608    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1609    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1610    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1611    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1612    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1613    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1614    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1615    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1616    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1617    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1618    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1619    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1620    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1621    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1622   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1623   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1624   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1625    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1626    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1627    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1628    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1629    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1630    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1631    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1632    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1633    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1634    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1635   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1636   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1637    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1638    1.1       cgd }
   1639    1.1       cgd 
   1640    1.1       cgd void
   1641    1.1       cgd regtoframe(regp, framep)
   1642    1.1       cgd 	struct reg *regp;
   1643    1.1       cgd 	struct trapframe *framep;
   1644    1.1       cgd {
   1645    1.1       cgd 
   1646    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1647    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1648    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1649    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1650    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1651    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1652    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1653    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1654    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1655    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1656    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1657    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1658    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1659    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1660    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1661    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1662   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1663   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1664   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1665    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1666    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1667    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1668    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1669    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1670    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1671    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1672    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1673    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1674    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1675   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1676   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1677    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1678    1.1       cgd }
   1679    1.1       cgd 
   1680    1.1       cgd void
   1681    1.1       cgd printregs(regp)
   1682    1.1       cgd 	struct reg *regp;
   1683    1.1       cgd {
   1684    1.1       cgd 	int i;
   1685    1.1       cgd 
   1686    1.1       cgd 	for (i = 0; i < 32; i++)
   1687   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1688    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1689    1.1       cgd }
   1690    1.1       cgd 
   1691    1.1       cgd void
   1692    1.1       cgd regdump(framep)
   1693    1.1       cgd 	struct trapframe *framep;
   1694    1.1       cgd {
   1695    1.1       cgd 	struct reg reg;
   1696    1.1       cgd 
   1697    1.1       cgd 	frametoreg(framep, &reg);
   1698   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1699   1.35       cgd 
   1700   1.46  christos 	printf("REGISTERS:\n");
   1701    1.1       cgd 	printregs(&reg);
   1702    1.1       cgd }
   1703    1.1       cgd 
   1704    1.1       cgd #ifdef DEBUG
   1705    1.1       cgd int sigdebug = 0;
   1706    1.1       cgd int sigpid = 0;
   1707    1.1       cgd #define	SDB_FOLLOW	0x01
   1708    1.1       cgd #define	SDB_KSTACK	0x02
   1709    1.1       cgd #endif
   1710    1.1       cgd 
   1711    1.1       cgd /*
   1712    1.1       cgd  * Send an interrupt to process.
   1713    1.1       cgd  */
   1714    1.1       cgd void
   1715    1.1       cgd sendsig(catcher, sig, mask, code)
   1716    1.1       cgd 	sig_t catcher;
   1717  1.141   thorpej 	int sig;
   1718  1.141   thorpej 	sigset_t *mask;
   1719    1.1       cgd 	u_long code;
   1720    1.1       cgd {
   1721    1.1       cgd 	struct proc *p = curproc;
   1722    1.1       cgd 	struct sigcontext *scp, ksc;
   1723    1.1       cgd 	struct trapframe *frame;
   1724    1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1725  1.141   thorpej 	int onstack, fsize, rndfsize;
   1726    1.1       cgd 	extern struct proc *fpcurproc;
   1727    1.1       cgd 
   1728    1.1       cgd 	frame = p->p_md.md_tf;
   1729  1.141   thorpej 
   1730  1.141   thorpej 	/* Do we need to jump onto the signal stack? */
   1731  1.141   thorpej 	onstack =
   1732  1.141   thorpej 	    (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1733  1.141   thorpej 	    (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
   1734  1.141   thorpej 
   1735  1.141   thorpej 	/* Allocate space for the signal handler context. */
   1736  1.141   thorpej 	fsize = sizeof(ksc);
   1737    1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1738  1.141   thorpej 
   1739  1.141   thorpej 	if (onstack)
   1740  1.121    kleink 		scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
   1741  1.142   mycroft 						     psp->ps_sigstk.ss_size);
   1742  1.141   thorpej 	else
   1743  1.142   mycroft 		scp = (struct sigcontext *)(alpha_pal_rdusp());
   1744  1.142   mycroft 	scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
   1745  1.141   thorpej 
   1746    1.1       cgd #ifdef DEBUG
   1747    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1748   1.46  christos 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1749  1.141   thorpej 		    sig, &onstack, scp);
   1750  1.125      ross #endif
   1751    1.1       cgd 
   1752  1.141   thorpej 	/* Build stack frame for signal trampoline. */
   1753   1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1754   1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1755    1.1       cgd 
   1756  1.141   thorpej 	/* Save register context. */
   1757    1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1758    1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1759   1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1760    1.1       cgd 
   1761    1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1762    1.1       cgd 	if (p == fpcurproc) {
   1763   1.32       cgd 		alpha_pal_wrfen(1);
   1764    1.1       cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1765   1.32       cgd 		alpha_pal_wrfen(0);
   1766    1.1       cgd 		fpcurproc = NULL;
   1767    1.1       cgd 	}
   1768    1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1769    1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1770    1.1       cgd 	    sizeof(struct fpreg));
   1771    1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1772    1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1773    1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1774    1.1       cgd 
   1775  1.141   thorpej 	/* Save signal stack. */
   1776  1.141   thorpej 	ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1777  1.141   thorpej 
   1778  1.141   thorpej 	/* Save signal mask. */
   1779  1.141   thorpej 	ksc.sc_mask = *mask;
   1780  1.141   thorpej 
   1781  1.141   thorpej #ifdef COMPAT_13
   1782  1.141   thorpej 	/*
   1783  1.141   thorpej 	 * XXX We always have to save an old style signal mask because
   1784  1.141   thorpej 	 * XXX we might be delivering a signal to a process which will
   1785  1.141   thorpej 	 * XXX escape from the signal in a non-standard way and invoke
   1786  1.141   thorpej 	 * XXX sigreturn() directly.
   1787  1.141   thorpej 	 */
   1788  1.141   thorpej 	{
   1789  1.141   thorpej 		/* Note: it's a long in the stack frame. */
   1790  1.141   thorpej 		sigset13_t mask13;
   1791  1.141   thorpej 
   1792  1.141   thorpej 		native_sigset_to_sigset13(mask, &mask13);
   1793  1.141   thorpej 		ksc.__sc_mask13 = mask13;
   1794  1.141   thorpej 	}
   1795  1.141   thorpej #endif
   1796    1.1       cgd 
   1797    1.1       cgd #ifdef COMPAT_OSF1
   1798    1.1       cgd 	/*
   1799    1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1800    1.1       cgd 	 */
   1801    1.1       cgd #endif
   1802    1.1       cgd 
   1803  1.141   thorpej 	if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
   1804  1.141   thorpej 		/*
   1805  1.141   thorpej 		 * Process has trashed its stack; give it an illegal
   1806  1.141   thorpej 		 * instruction to halt it in its tracks.
   1807  1.141   thorpej 		 */
   1808  1.141   thorpej #ifdef DEBUG
   1809  1.141   thorpej 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1810  1.141   thorpej 			printf("sendsig(%d): copyout failed on sig %d\n",
   1811  1.141   thorpej 			    p->p_pid, sig);
   1812  1.141   thorpej #endif
   1813  1.141   thorpej 		sigexit(p, SIGILL);
   1814  1.141   thorpej 		/* NOTREACHED */
   1815  1.141   thorpej 	}
   1816    1.1       cgd #ifdef DEBUG
   1817    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1818   1.46  christos 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1819    1.1       cgd 		    scp, code);
   1820    1.1       cgd #endif
   1821    1.1       cgd 
   1822  1.141   thorpej 	/* Set up the registers to return to sigcode. */
   1823  1.142   mycroft 	frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
   1824   1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1825   1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1826   1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1827    1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1828   1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1829  1.142   mycroft 
   1830  1.142   mycroft 	/* Remember that we're now on the signal stack. */
   1831  1.142   mycroft 	if (onstack)
   1832  1.142   mycroft 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1833    1.1       cgd 
   1834    1.1       cgd #ifdef DEBUG
   1835    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1836   1.46  christos 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1837   1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1838    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1839   1.46  christos 		printf("sendsig(%d): sig %d returns\n",
   1840    1.1       cgd 		    p->p_pid, sig);
   1841    1.1       cgd #endif
   1842    1.1       cgd }
   1843    1.1       cgd 
   1844    1.1       cgd /*
   1845    1.1       cgd  * System call to cleanup state after a signal
   1846    1.1       cgd  * has been taken.  Reset signal mask and
   1847    1.1       cgd  * stack state from context left by sendsig (above).
   1848    1.1       cgd  * Return to previous pc and psl as specified by
   1849    1.1       cgd  * context left by sendsig. Check carefully to
   1850    1.1       cgd  * make sure that the user has not modified the
   1851    1.1       cgd  * psl to gain improper priviledges or to cause
   1852    1.1       cgd  * a machine fault.
   1853    1.1       cgd  */
   1854    1.1       cgd /* ARGSUSED */
   1855   1.11   mycroft int
   1856  1.141   thorpej sys___sigreturn14(p, v, retval)
   1857    1.1       cgd 	struct proc *p;
   1858   1.10   thorpej 	void *v;
   1859   1.10   thorpej 	register_t *retval;
   1860   1.10   thorpej {
   1861  1.141   thorpej 	struct sys___sigreturn14_args /* {
   1862    1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1863   1.10   thorpej 	} */ *uap = v;
   1864    1.1       cgd 	struct sigcontext *scp, ksc;
   1865    1.1       cgd 	extern struct proc *fpcurproc;
   1866    1.1       cgd 
   1867  1.141   thorpej 	/*
   1868  1.141   thorpej 	 * The trampoline code hands us the context.
   1869  1.141   thorpej 	 * It is unsafe to keep track of it ourselves, in the event that a
   1870  1.141   thorpej 	 * program jumps out of a signal handler.
   1871  1.141   thorpej 	 */
   1872    1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1873    1.1       cgd #ifdef DEBUG
   1874    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1875   1.46  christos 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1876    1.1       cgd #endif
   1877    1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1878    1.1       cgd 		return (EINVAL);
   1879    1.1       cgd 
   1880  1.141   thorpej 	if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
   1881  1.141   thorpej 		return (EFAULT);
   1882    1.1       cgd 
   1883    1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1884    1.1       cgd 		return (EINVAL);
   1885    1.1       cgd 
   1886  1.141   thorpej 	/* Restore register context. */
   1887   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1888   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1889   1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1890    1.1       cgd 
   1891    1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1892   1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1893    1.1       cgd 
   1894    1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1895    1.1       cgd 	if (p == fpcurproc)
   1896    1.1       cgd 		fpcurproc = NULL;
   1897    1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1898    1.1       cgd 	    sizeof(struct fpreg));
   1899    1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1900  1.141   thorpej 
   1901  1.141   thorpej 	/* Restore signal stack. */
   1902  1.141   thorpej 	if (ksc.sc_onstack & SS_ONSTACK)
   1903  1.141   thorpej 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1904  1.141   thorpej 	else
   1905  1.141   thorpej 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1906  1.141   thorpej 
   1907  1.141   thorpej 	/* Restore signal mask. */
   1908  1.141   thorpej 	(void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
   1909    1.1       cgd 
   1910    1.1       cgd #ifdef DEBUG
   1911    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1912   1.46  christos 		printf("sigreturn(%d): returns\n", p->p_pid);
   1913    1.1       cgd #endif
   1914    1.1       cgd 	return (EJUSTRETURN);
   1915    1.1       cgd }
   1916    1.1       cgd 
   1917    1.1       cgd /*
   1918    1.1       cgd  * machine dependent system variables.
   1919    1.1       cgd  */
   1920   1.33       cgd int
   1921    1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1922    1.1       cgd 	int *name;
   1923    1.1       cgd 	u_int namelen;
   1924    1.1       cgd 	void *oldp;
   1925    1.1       cgd 	size_t *oldlenp;
   1926    1.1       cgd 	void *newp;
   1927    1.1       cgd 	size_t newlen;
   1928    1.1       cgd 	struct proc *p;
   1929    1.1       cgd {
   1930    1.1       cgd 	dev_t consdev;
   1931    1.1       cgd 
   1932    1.1       cgd 	/* all sysctl names at this level are terminal */
   1933    1.1       cgd 	if (namelen != 1)
   1934    1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1935    1.1       cgd 
   1936    1.1       cgd 	switch (name[0]) {
   1937    1.1       cgd 	case CPU_CONSDEV:
   1938    1.1       cgd 		if (cn_tab != NULL)
   1939    1.1       cgd 			consdev = cn_tab->cn_dev;
   1940    1.1       cgd 		else
   1941    1.1       cgd 			consdev = NODEV;
   1942    1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1943    1.1       cgd 			sizeof consdev));
   1944   1.30       cgd 
   1945   1.30       cgd 	case CPU_ROOT_DEVICE:
   1946   1.64   thorpej 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1947   1.64   thorpej 		    root_device->dv_xname));
   1948   1.36       cgd 
   1949   1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1950   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1951   1.36       cgd 		    &alpha_unaligned_print));
   1952   1.36       cgd 
   1953   1.36       cgd 	case CPU_UNALIGNED_FIX:
   1954   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1955   1.36       cgd 		    &alpha_unaligned_fix));
   1956   1.36       cgd 
   1957   1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1958   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1959   1.36       cgd 		    &alpha_unaligned_sigbus));
   1960   1.61       cgd 
   1961   1.61       cgd 	case CPU_BOOTED_KERNEL:
   1962  1.102       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1963  1.102       cgd 		    bootinfo.booted_kernel));
   1964   1.30       cgd 
   1965    1.1       cgd 	default:
   1966    1.1       cgd 		return (EOPNOTSUPP);
   1967    1.1       cgd 	}
   1968    1.1       cgd 	/* NOTREACHED */
   1969    1.1       cgd }
   1970    1.1       cgd 
   1971    1.1       cgd /*
   1972    1.1       cgd  * Set registers on exec.
   1973    1.1       cgd  */
   1974    1.1       cgd void
   1975   1.85   mycroft setregs(p, pack, stack)
   1976    1.1       cgd 	register struct proc *p;
   1977    1.5  christos 	struct exec_package *pack;
   1978    1.1       cgd 	u_long stack;
   1979    1.1       cgd {
   1980    1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1981   1.56       cgd 	extern struct proc *fpcurproc;
   1982   1.56       cgd #ifdef DEBUG
   1983    1.1       cgd 	int i;
   1984   1.56       cgd #endif
   1985   1.43       cgd 
   1986   1.43       cgd #ifdef DEBUG
   1987   1.43       cgd 	/*
   1988   1.43       cgd 	 * Crash and dump, if the user requested it.
   1989   1.43       cgd 	 */
   1990   1.43       cgd 	if (boothowto & RB_DUMP)
   1991   1.43       cgd 		panic("crash requested by boot flags");
   1992   1.43       cgd #endif
   1993    1.1       cgd 
   1994    1.1       cgd #ifdef DEBUG
   1995   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1996    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1997    1.1       cgd #else
   1998   1.34       cgd 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1999    1.1       cgd #endif
   2000    1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   2001    1.7       cgd #define FP_RN 2 /* XXX */
   2002    1.7       cgd 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   2003   1.35       cgd 	alpha_pal_wrusp(stack);
   2004   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   2005   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   2006   1.41       cgd 
   2007   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   2008   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   2009   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   2010   1.63       cgd 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   2011   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   2012    1.1       cgd 
   2013   1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   2014    1.1       cgd 	if (fpcurproc == p)
   2015    1.1       cgd 		fpcurproc = NULL;
   2016    1.1       cgd }
   2017    1.1       cgd 
   2018    1.1       cgd void
   2019    1.1       cgd netintr()
   2020    1.1       cgd {
   2021   1.49       cgd 	int n, s;
   2022   1.49       cgd 
   2023   1.49       cgd 	s = splhigh();
   2024   1.49       cgd 	n = netisr;
   2025   1.49       cgd 	netisr = 0;
   2026   1.49       cgd 	splx(s);
   2027   1.49       cgd 
   2028   1.49       cgd #define	DONETISR(bit, fn)						\
   2029   1.49       cgd 	do {								\
   2030   1.49       cgd 		if (n & (1 << (bit)))					\
   2031   1.49       cgd 			fn;						\
   2032   1.49       cgd 	} while (0)
   2033   1.49       cgd 
   2034    1.1       cgd #ifdef INET
   2035   1.72       cgd #if NARP > 0
   2036   1.49       cgd 	DONETISR(NETISR_ARP, arpintr());
   2037   1.72       cgd #endif
   2038   1.49       cgd 	DONETISR(NETISR_IP, ipintr());
   2039   1.70  christos #endif
   2040   1.70  christos #ifdef NETATALK
   2041   1.70  christos 	DONETISR(NETISR_ATALK, atintr());
   2042    1.1       cgd #endif
   2043    1.1       cgd #ifdef NS
   2044   1.49       cgd 	DONETISR(NETISR_NS, nsintr());
   2045    1.1       cgd #endif
   2046    1.1       cgd #ifdef ISO
   2047   1.49       cgd 	DONETISR(NETISR_ISO, clnlintr());
   2048    1.1       cgd #endif
   2049    1.1       cgd #ifdef CCITT
   2050   1.49       cgd 	DONETISR(NETISR_CCITT, ccittintr());
   2051   1.49       cgd #endif
   2052   1.49       cgd #ifdef NATM
   2053   1.49       cgd 	DONETISR(NETISR_NATM, natmintr());
   2054    1.1       cgd #endif
   2055   1.49       cgd #if NPPP > 1
   2056   1.49       cgd 	DONETISR(NETISR_PPP, pppintr());
   2057    1.8       cgd #endif
   2058   1.49       cgd 
   2059   1.49       cgd #undef DONETISR
   2060    1.1       cgd }
   2061    1.1       cgd 
   2062    1.1       cgd void
   2063    1.1       cgd do_sir()
   2064    1.1       cgd {
   2065   1.58       cgd 	u_int64_t n;
   2066    1.1       cgd 
   2067   1.59       cgd 	do {
   2068   1.60       cgd 		(void)splhigh();
   2069   1.58       cgd 		n = ssir;
   2070   1.58       cgd 		ssir = 0;
   2071   1.60       cgd 		splsoft();		/* don't recurse through spl0() */
   2072  1.112   thorpej 
   2073  1.112   thorpej #if defined(UVM)
   2074  1.112   thorpej #define	COUNT_SOFT	uvmexp.softs++
   2075  1.112   thorpej #else
   2076  1.112   thorpej #define	COUNT_SOFT	cnt.v_soft++
   2077  1.112   thorpej #endif
   2078  1.112   thorpej 
   2079   1.59       cgd #define	DO_SIR(bit, fn)							\
   2080   1.59       cgd 		do {							\
   2081   1.60       cgd 			if (n & (bit)) {				\
   2082  1.112   thorpej 				COUNT_SOFT;				\
   2083   1.59       cgd 				fn;					\
   2084   1.59       cgd 			}						\
   2085   1.59       cgd 		} while (0)
   2086   1.59       cgd 
   2087   1.60       cgd 		DO_SIR(SIR_NET, netintr());
   2088   1.60       cgd 		DO_SIR(SIR_CLOCK, softclock());
   2089  1.143      matt #if NCOM > 0
   2090  1.143      matt 		DO_SIR(SIR_SERIAL, comsoft());
   2091  1.143      matt #endif
   2092   1.60       cgd 
   2093  1.112   thorpej #undef COUNT_SOFT
   2094   1.60       cgd #undef DO_SIR
   2095   1.59       cgd 	} while (ssir != 0);
   2096    1.1       cgd }
   2097    1.1       cgd 
   2098    1.1       cgd int
   2099    1.1       cgd spl0()
   2100    1.1       cgd {
   2101    1.1       cgd 
   2102   1.59       cgd 	if (ssir)
   2103   1.59       cgd 		do_sir();		/* it lowers the IPL itself */
   2104    1.1       cgd 
   2105   1.32       cgd 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   2106    1.1       cgd }
   2107    1.1       cgd 
   2108    1.1       cgd /*
   2109    1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   2110    1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   2111   1.52       cgd  * into queues, Remrunqueue removes them from queues.  The running process is
   2112   1.52       cgd  * on no queue, other processes are on a queue related to p->p_priority,
   2113   1.52       cgd  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   2114   1.52       cgd  * available queues.
   2115    1.1       cgd  */
   2116    1.1       cgd /*
   2117    1.1       cgd  * setrunqueue(p)
   2118    1.1       cgd  *	proc *p;
   2119    1.1       cgd  *
   2120    1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   2121    1.1       cgd  */
   2122    1.1       cgd 
   2123    1.1       cgd void
   2124    1.1       cgd setrunqueue(p)
   2125    1.1       cgd 	struct proc *p;
   2126    1.1       cgd {
   2127    1.1       cgd 	int bit;
   2128    1.1       cgd 
   2129    1.1       cgd 	/* firewall: p->p_back must be NULL */
   2130    1.1       cgd 	if (p->p_back != NULL)
   2131    1.1       cgd 		panic("setrunqueue");
   2132    1.1       cgd 
   2133    1.1       cgd 	bit = p->p_priority >> 2;
   2134    1.1       cgd 	whichqs |= (1 << bit);
   2135    1.1       cgd 	p->p_forw = (struct proc *)&qs[bit];
   2136    1.1       cgd 	p->p_back = qs[bit].ph_rlink;
   2137    1.1       cgd 	p->p_back->p_forw = p;
   2138    1.1       cgd 	qs[bit].ph_rlink = p;
   2139    1.1       cgd }
   2140    1.1       cgd 
   2141    1.1       cgd /*
   2142   1.52       cgd  * remrunqueue(p)
   2143    1.1       cgd  *
   2144    1.1       cgd  * Call should be made at splclock().
   2145    1.1       cgd  */
   2146    1.1       cgd void
   2147   1.52       cgd remrunqueue(p)
   2148    1.1       cgd 	struct proc *p;
   2149    1.1       cgd {
   2150    1.1       cgd 	int bit;
   2151    1.1       cgd 
   2152    1.1       cgd 	bit = p->p_priority >> 2;
   2153    1.1       cgd 	if ((whichqs & (1 << bit)) == 0)
   2154   1.52       cgd 		panic("remrunqueue");
   2155    1.1       cgd 
   2156    1.1       cgd 	p->p_back->p_forw = p->p_forw;
   2157    1.1       cgd 	p->p_forw->p_back = p->p_back;
   2158    1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   2159    1.1       cgd 
   2160    1.1       cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   2161    1.1       cgd 		whichqs &= ~(1 << bit);
   2162    1.1       cgd }
   2163    1.1       cgd 
   2164    1.1       cgd /*
   2165    1.1       cgd  * Return the best possible estimate of the time in the timeval
   2166    1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   2167    1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   2168    1.1       cgd  * previous call.
   2169    1.1       cgd  */
   2170    1.1       cgd void
   2171    1.1       cgd microtime(tvp)
   2172    1.1       cgd 	register struct timeval *tvp;
   2173    1.1       cgd {
   2174    1.1       cgd 	int s = splclock();
   2175    1.1       cgd 	static struct timeval lasttime;
   2176    1.1       cgd 
   2177    1.1       cgd 	*tvp = time;
   2178    1.1       cgd #ifdef notdef
   2179    1.1       cgd 	tvp->tv_usec += clkread();
   2180    1.1       cgd 	while (tvp->tv_usec > 1000000) {
   2181    1.1       cgd 		tvp->tv_sec++;
   2182    1.1       cgd 		tvp->tv_usec -= 1000000;
   2183    1.1       cgd 	}
   2184    1.1       cgd #endif
   2185    1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   2186    1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   2187    1.1       cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   2188    1.1       cgd 		tvp->tv_sec++;
   2189    1.1       cgd 		tvp->tv_usec -= 1000000;
   2190    1.1       cgd 	}
   2191    1.1       cgd 	lasttime = *tvp;
   2192    1.1       cgd 	splx(s);
   2193   1.15       cgd }
   2194   1.15       cgd 
   2195   1.15       cgd /*
   2196   1.15       cgd  * Wait "n" microseconds.
   2197   1.15       cgd  */
   2198   1.32       cgd void
   2199   1.15       cgd delay(n)
   2200   1.32       cgd 	unsigned long n;
   2201   1.15       cgd {
   2202   1.15       cgd 	long N = cycles_per_usec * (n);
   2203   1.15       cgd 
   2204   1.15       cgd 	while (N > 0)				/* XXX */
   2205   1.15       cgd 		N -= 3;				/* XXX */
   2206    1.1       cgd }
   2207    1.1       cgd 
   2208    1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   2209   1.55       cgd void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   2210   1.85   mycroft 	    u_long));
   2211   1.55       cgd 
   2212    1.1       cgd void
   2213   1.85   mycroft cpu_exec_ecoff_setregs(p, epp, stack)
   2214    1.1       cgd 	struct proc *p;
   2215   1.19       cgd 	struct exec_package *epp;
   2216    1.5  christos 	u_long stack;
   2217    1.1       cgd {
   2218   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2219    1.1       cgd 
   2220   1.85   mycroft 	setregs(p, epp, stack);
   2221   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   2222    1.1       cgd }
   2223    1.1       cgd 
   2224    1.1       cgd /*
   2225    1.1       cgd  * cpu_exec_ecoff_hook():
   2226    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   2227    1.1       cgd  *
   2228    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2229    1.1       cgd  *
   2230    1.1       cgd  */
   2231    1.1       cgd int
   2232   1.19       cgd cpu_exec_ecoff_hook(p, epp)
   2233    1.1       cgd 	struct proc *p;
   2234    1.1       cgd 	struct exec_package *epp;
   2235    1.1       cgd {
   2236   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2237    1.5  christos 	extern struct emul emul_netbsd;
   2238    1.5  christos #ifdef COMPAT_OSF1
   2239    1.5  christos 	extern struct emul emul_osf1;
   2240    1.5  christos #endif
   2241    1.1       cgd 
   2242   1.19       cgd 	switch (execp->f.f_magic) {
   2243    1.5  christos #ifdef COMPAT_OSF1
   2244    1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   2245    1.5  christos 		epp->ep_emul = &emul_osf1;
   2246    1.1       cgd 		break;
   2247    1.5  christos #endif
   2248    1.1       cgd 
   2249    1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   2250    1.5  christos 		epp->ep_emul = &emul_netbsd;
   2251    1.1       cgd 		break;
   2252    1.1       cgd 
   2253    1.1       cgd 	default:
   2254   1.12       cgd 		return ENOEXEC;
   2255    1.1       cgd 	}
   2256    1.1       cgd 	return 0;
   2257    1.1       cgd }
   2258    1.1       cgd #endif
   2259  1.110   thorpej 
   2260  1.110   thorpej int
   2261  1.110   thorpej alpha_pa_access(pa)
   2262  1.110   thorpej 	u_long pa;
   2263  1.110   thorpej {
   2264  1.110   thorpej 	int i;
   2265  1.110   thorpej 
   2266  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   2267  1.110   thorpej 		if (pa < mem_clusters[i].start)
   2268  1.110   thorpej 			continue;
   2269  1.110   thorpej 		if ((pa - mem_clusters[i].start) >=
   2270  1.110   thorpej 		    (mem_clusters[i].size & ~PAGE_MASK))
   2271  1.110   thorpej 			continue;
   2272  1.110   thorpej 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2273  1.110   thorpej 	}
   2274  1.110   thorpej 	return (PROT_NONE);
   2275  1.110   thorpej }
   2276   1.50       cgd 
   2277   1.50       cgd /* XXX XXX BEGIN XXX XXX */
   2278  1.140   thorpej paddr_t alpha_XXX_dmamap_or;					/* XXX */
   2279   1.50       cgd 								/* XXX */
   2280  1.140   thorpej paddr_t								/* XXX */
   2281   1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   2282  1.140   thorpej 	vaddr_t v;						/* XXX */
   2283   1.50       cgd {								/* XXX */
   2284   1.50       cgd 								/* XXX */
   2285   1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2286   1.50       cgd }								/* XXX */
   2287   1.50       cgd /* XXX XXX END XXX XXX */
   2288  1.138      ross 
   2289  1.138      ross struct mchkinfo *
   2290  1.138      ross cpu_mchkinfo()
   2291  1.138      ross {
   2292  1.138      ross 	if (mchkinfo_all_cpus == NULL)
   2293  1.138      ross 		return &startup_info;
   2294  1.138      ross 	return mchkinfo_all_cpus + alpha_pal_whami();
   2295  1.138      ross }
   2296