machdep.c revision 1.154 1 1.154 ross /* $NetBSD: machdep.c,v 1.154 1998/11/02 04:43:23 ross Exp $ */
2 1.110 thorpej
3 1.110 thorpej /*-
4 1.110 thorpej * Copyright (c) 1998 The NetBSD Foundation, Inc.
5 1.110 thorpej * All rights reserved.
6 1.110 thorpej *
7 1.110 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.110 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.110 thorpej * NASA Ames Research Center and by Chris G. Demetriou.
10 1.110 thorpej *
11 1.110 thorpej * Redistribution and use in source and binary forms, with or without
12 1.110 thorpej * modification, are permitted provided that the following conditions
13 1.110 thorpej * are met:
14 1.110 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.110 thorpej * notice, this list of conditions and the following disclaimer.
16 1.110 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.110 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.110 thorpej * documentation and/or other materials provided with the distribution.
19 1.110 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.110 thorpej * must display the following acknowledgement:
21 1.110 thorpej * This product includes software developed by the NetBSD
22 1.110 thorpej * Foundation, Inc. and its contributors.
23 1.110 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.110 thorpej * contributors may be used to endorse or promote products derived
25 1.110 thorpej * from this software without specific prior written permission.
26 1.110 thorpej *
27 1.110 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.110 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.110 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.110 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.110 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.110 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.110 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.110 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.110 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.110 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.110 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.110 thorpej */
39 1.1 cgd
40 1.1 cgd /*
41 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 1.1 cgd * All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Author: Chris G. Demetriou
45 1.1 cgd *
46 1.1 cgd * Permission to use, copy, modify and distribute this software and
47 1.1 cgd * its documentation is hereby granted, provided that both the copyright
48 1.1 cgd * notice and this permission notice appear in all copies of the
49 1.1 cgd * software, derivative works or modified versions, and any portions
50 1.1 cgd * thereof, and that both notices appear in supporting documentation.
51 1.1 cgd *
52 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 1.1 cgd *
56 1.1 cgd * Carnegie Mellon requests users of this software to return to
57 1.1 cgd *
58 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 1.1 cgd * School of Computer Science
60 1.1 cgd * Carnegie Mellon University
61 1.1 cgd * Pittsburgh PA 15213-3890
62 1.1 cgd *
63 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
64 1.1 cgd * rights to redistribute these changes.
65 1.1 cgd */
66 1.74 cgd
67 1.129 jonathan #include "opt_ddb.h"
68 1.147 thorpej #include "opt_multiprocessor.h"
69 1.112 thorpej #include "opt_uvm.h"
70 1.113 thorpej #include "opt_pmap_new.h"
71 1.123 thorpej #include "opt_dec_3000_300.h"
72 1.123 thorpej #include "opt_dec_3000_500.h"
73 1.127 thorpej #include "opt_compat_osf1.h"
74 1.141 thorpej #include "opt_compat_netbsd.h"
75 1.129 jonathan #include "opt_inet.h"
76 1.129 jonathan #include "opt_atalk.h"
77 1.131 jonathan #include "opt_ccitt.h"
78 1.131 jonathan #include "opt_iso.h"
79 1.132 jonathan #include "opt_ns.h"
80 1.133 jonathan #include "opt_natm.h"
81 1.153 tron #include "opt_sysv.h"
82 1.112 thorpej
83 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
84 1.75 cgd
85 1.154 ross __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.154 1998/11/02 04:43:23 ross Exp $");
86 1.1 cgd
87 1.1 cgd #include <sys/param.h>
88 1.1 cgd #include <sys/systm.h>
89 1.1 cgd #include <sys/signalvar.h>
90 1.1 cgd #include <sys/kernel.h>
91 1.1 cgd #include <sys/map.h>
92 1.1 cgd #include <sys/proc.h>
93 1.1 cgd #include <sys/buf.h>
94 1.1 cgd #include <sys/reboot.h>
95 1.28 cgd #include <sys/device.h>
96 1.1 cgd #include <sys/file.h>
97 1.1 cgd #ifdef REAL_CLISTS
98 1.1 cgd #include <sys/clist.h>
99 1.1 cgd #endif
100 1.1 cgd #include <sys/callout.h>
101 1.1 cgd #include <sys/malloc.h>
102 1.1 cgd #include <sys/mbuf.h>
103 1.110 thorpej #include <sys/mman.h>
104 1.1 cgd #include <sys/msgbuf.h>
105 1.1 cgd #include <sys/ioctl.h>
106 1.1 cgd #include <sys/tty.h>
107 1.1 cgd #include <sys/user.h>
108 1.1 cgd #include <sys/exec.h>
109 1.1 cgd #include <sys/exec_ecoff.h>
110 1.91 mjacob #include <vm/vm.h>
111 1.1 cgd #include <sys/sysctl.h>
112 1.43 cgd #include <sys/core.h>
113 1.43 cgd #include <sys/kcore.h>
114 1.43 cgd #include <machine/kcore.h>
115 1.1 cgd #ifdef SYSVMSG
116 1.1 cgd #include <sys/msg.h>
117 1.1 cgd #endif
118 1.1 cgd #ifdef SYSVSEM
119 1.1 cgd #include <sys/sem.h>
120 1.1 cgd #endif
121 1.1 cgd #ifdef SYSVSHM
122 1.1 cgd #include <sys/shm.h>
123 1.1 cgd #endif
124 1.1 cgd
125 1.1 cgd #include <sys/mount.h>
126 1.1 cgd #include <sys/syscallargs.h>
127 1.1 cgd
128 1.1 cgd #include <vm/vm_kern.h>
129 1.1 cgd
130 1.112 thorpej #if defined(UVM)
131 1.112 thorpej #include <uvm/uvm_extern.h>
132 1.112 thorpej #endif
133 1.112 thorpej
134 1.1 cgd #include <dev/cons.h>
135 1.1 cgd
136 1.81 thorpej #include <machine/autoconf.h>
137 1.1 cgd #include <machine/cpu.h>
138 1.1 cgd #include <machine/reg.h>
139 1.1 cgd #include <machine/rpb.h>
140 1.1 cgd #include <machine/prom.h>
141 1.73 cgd #include <machine/conf.h>
142 1.8 cgd
143 1.148 thorpej #include <alpha/alpha/cpuvar.h>
144 1.148 thorpej
145 1.49 cgd #include <net/netisr.h>
146 1.33 cgd #include <net/if.h>
147 1.49 cgd
148 1.49 cgd #ifdef INET
149 1.120 ross #include <net/route.h>
150 1.33 cgd #include <netinet/in.h>
151 1.72 cgd #include <netinet/ip_var.h>
152 1.72 cgd #include "arp.h"
153 1.72 cgd #if NARP > 0
154 1.67 is #include <netinet/if_inarp.h>
155 1.72 cgd #endif
156 1.49 cgd #endif
157 1.49 cgd #ifdef NS
158 1.49 cgd #include <netns/ns_var.h>
159 1.49 cgd #endif
160 1.49 cgd #ifdef ISO
161 1.49 cgd #include <netiso/iso.h>
162 1.49 cgd #include <netiso/clnp.h>
163 1.49 cgd #endif
164 1.55 cgd #ifdef CCITT
165 1.55 cgd #include <netccitt/x25.h>
166 1.55 cgd #include <netccitt/pk.h>
167 1.55 cgd #include <netccitt/pk_extern.h>
168 1.55 cgd #endif
169 1.55 cgd #ifdef NATM
170 1.55 cgd #include <netnatm/natm.h>
171 1.55 cgd #endif
172 1.70 christos #ifdef NETATALK
173 1.70 christos #include <netatalk/at_extern.h>
174 1.70 christos #endif
175 1.49 cgd #include "ppp.h"
176 1.49 cgd #if NPPP > 0
177 1.49 cgd #include <net/ppp_defs.h>
178 1.49 cgd #include <net/if_ppp.h>
179 1.49 cgd #endif
180 1.1 cgd
181 1.81 thorpej #ifdef DDB
182 1.81 thorpej #include <machine/db_machdep.h>
183 1.81 thorpej #include <ddb/db_access.h>
184 1.81 thorpej #include <ddb/db_sym.h>
185 1.81 thorpej #include <ddb/db_extern.h>
186 1.81 thorpej #include <ddb/db_interface.h>
187 1.81 thorpej #endif
188 1.81 thorpej
189 1.143 matt #include "com.h"
190 1.143 matt #if NCOM > 0
191 1.143 matt extern void comsoft __P((void));
192 1.143 matt #endif
193 1.143 matt
194 1.112 thorpej #if defined(UVM)
195 1.112 thorpej vm_map_t exec_map = NULL;
196 1.112 thorpej vm_map_t mb_map = NULL;
197 1.112 thorpej vm_map_t phys_map = NULL;
198 1.112 thorpej #else
199 1.1 cgd vm_map_t buffer_map;
200 1.112 thorpej #endif
201 1.1 cgd
202 1.1 cgd /*
203 1.1 cgd * Declare these as initialized data so we can patch them.
204 1.1 cgd */
205 1.1 cgd int nswbuf = 0;
206 1.1 cgd #ifdef NBUF
207 1.1 cgd int nbuf = NBUF;
208 1.1 cgd #else
209 1.1 cgd int nbuf = 0;
210 1.1 cgd #endif
211 1.154 ross
212 1.154 ross #ifndef BUFPAGES
213 1.154 ross #define BUFPAGES 0
214 1.154 ross #endif
215 1.154 ross #ifndef BUFCACHE
216 1.154 ross #define BUFCACHE 10
217 1.1 cgd #endif
218 1.154 ross
219 1.154 ross int bufpages = BUFPAGES; /* optional hardwired count */
220 1.154 ross int bufcache = BUFCACHE; /* % of RAM to use for buffer cache */
221 1.154 ross
222 1.86 leo caddr_t msgbufaddr;
223 1.86 leo
224 1.1 cgd int maxmem; /* max memory per process */
225 1.7 cgd
226 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
227 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
228 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
229 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
230 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
231 1.1 cgd
232 1.1 cgd int cputype; /* system type, from the RPB */
233 1.1 cgd
234 1.1 cgd /*
235 1.1 cgd * XXX We need an address to which we can assign things so that they
236 1.1 cgd * won't be optimized away because we didn't use the value.
237 1.1 cgd */
238 1.1 cgd u_int32_t no_optimize;
239 1.1 cgd
240 1.1 cgd /* the following is used externally (sysctl_hw) */
241 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
242 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
243 1.29 cgd char cpu_model[128];
244 1.1 cgd
245 1.1 cgd struct user *proc0paddr;
246 1.1 cgd
247 1.1 cgd /* Number of machine cycles per microsecond */
248 1.1 cgd u_int64_t cycles_per_usec;
249 1.1 cgd
250 1.7 cgd /* number of cpus in the box. really! */
251 1.7 cgd int ncpus;
252 1.7 cgd
253 1.138 ross /* machine check info array, valloc()'ed in allocsys() */
254 1.138 ross
255 1.138 ross static struct mchkinfo startup_info,
256 1.138 ross *mchkinfo_all_cpus;
257 1.134 mjacob
258 1.102 cgd struct bootinfo_kernel bootinfo;
259 1.81 thorpej
260 1.123 thorpej /* For built-in TCDS */
261 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
262 1.123 thorpej u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
263 1.123 thorpej #endif
264 1.123 thorpej
265 1.89 mjacob struct platform platform;
266 1.89 mjacob
267 1.100 thorpej u_int32_t vm_mbuf_size = _VM_MBUF_SIZE;
268 1.100 thorpej u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
269 1.100 thorpej u_int32_t vm_phys_size = _VM_PHYS_SIZE;
270 1.90 mjacob
271 1.81 thorpej #ifdef DDB
272 1.81 thorpej /* start and end of kernel symbol table */
273 1.81 thorpej void *ksym_start, *ksym_end;
274 1.81 thorpej #endif
275 1.81 thorpej
276 1.30 cgd /* for cpu_sysctl() */
277 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
278 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
279 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
280 1.30 cgd
281 1.110 thorpej /*
282 1.110 thorpej * XXX This should be dynamically sized, but we have the chicken-egg problem!
283 1.110 thorpej * XXX it should also be larger than it is, because not all of the mddt
284 1.110 thorpej * XXX clusters end up being used for VM.
285 1.110 thorpej */
286 1.110 thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
287 1.110 thorpej int mem_cluster_cnt;
288 1.110 thorpej
289 1.95 thorpej caddr_t allocsys __P((caddr_t));
290 1.55 cgd int cpu_dump __P((void));
291 1.55 cgd int cpu_dumpsize __P((void));
292 1.110 thorpej u_long cpu_dump_mempagecnt __P((void));
293 1.55 cgd void dumpsys __P((void));
294 1.55 cgd void identifycpu __P((void));
295 1.55 cgd void netintr __P((void));
296 1.55 cgd void printregs __P((struct reg *));
297 1.33 cgd
298 1.55 cgd void
299 1.102 cgd alpha_init(pfn, ptb, bim, bip, biv)
300 1.1 cgd u_long pfn; /* first free PFN number */
301 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
302 1.81 thorpej u_long bim; /* bootinfo magic */
303 1.81 thorpej u_long bip; /* bootinfo pointer */
304 1.102 cgd u_long biv; /* bootinfo version */
305 1.1 cgd {
306 1.95 thorpej extern char kernel_text[], _end[];
307 1.1 cgd struct mddt *mddtp;
308 1.110 thorpej struct mddt_cluster *memc;
309 1.7 cgd int i, mddtweird;
310 1.110 thorpej struct vm_physseg *vps;
311 1.140 thorpej vaddr_t kernstart, kernend;
312 1.140 thorpej paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
313 1.140 thorpej vsize_t size;
314 1.1 cgd char *p;
315 1.95 thorpej caddr_t v;
316 1.106 cgd char *bootinfo_msg;
317 1.106 cgd
318 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
319 1.1 cgd
320 1.1 cgd /*
321 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
322 1.1 cgd * Make sure the instruction and data streams are consistent.
323 1.1 cgd */
324 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
325 1.32 cgd alpha_pal_wrfen(0);
326 1.37 cgd ALPHA_TBIA();
327 1.32 cgd alpha_pal_imb();
328 1.1 cgd
329 1.1 cgd /*
330 1.106 cgd * Get critical system information (if possible, from the
331 1.106 cgd * information provided by the boot program).
332 1.81 thorpej */
333 1.106 cgd bootinfo_msg = NULL;
334 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
335 1.102 cgd if (biv == 0) { /* backward compat */
336 1.102 cgd biv = *(u_long *)bip;
337 1.102 cgd bip += 8;
338 1.102 cgd }
339 1.102 cgd switch (biv) {
340 1.102 cgd case 1: {
341 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
342 1.102 cgd
343 1.102 cgd bootinfo.ssym = v1p->ssym;
344 1.102 cgd bootinfo.esym = v1p->esym;
345 1.106 cgd /* hwrpb may not be provided by boot block in v1 */
346 1.106 cgd if (v1p->hwrpb != NULL) {
347 1.106 cgd bootinfo.hwrpb_phys =
348 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys;
349 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize;
350 1.106 cgd } else {
351 1.106 cgd bootinfo.hwrpb_phys =
352 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys;
353 1.106 cgd bootinfo.hwrpb_size =
354 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size;
355 1.106 cgd }
356 1.102 cgd bcopy(v1p->boot_flags, bootinfo.boot_flags,
357 1.102 cgd min(sizeof v1p->boot_flags,
358 1.102 cgd sizeof bootinfo.boot_flags));
359 1.102 cgd bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
360 1.102 cgd min(sizeof v1p->booted_kernel,
361 1.102 cgd sizeof bootinfo.booted_kernel));
362 1.106 cgd /* booted dev not provided in bootinfo */
363 1.106 cgd init_prom_interface((struct rpb *)
364 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
365 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
366 1.102 cgd sizeof bootinfo.booted_dev);
367 1.81 thorpej break;
368 1.102 cgd }
369 1.81 thorpej default:
370 1.106 cgd bootinfo_msg = "unknown bootinfo version";
371 1.102 cgd goto nobootinfo;
372 1.81 thorpej }
373 1.102 cgd } else {
374 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo";
375 1.102 cgd nobootinfo:
376 1.102 cgd bootinfo.ssym = (u_long)_end;
377 1.102 cgd bootinfo.esym = (u_long)_end;
378 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
379 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
380 1.106 cgd init_prom_interface((struct rpb *)HWRPB_ADDR);
381 1.102 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
382 1.102 cgd sizeof bootinfo.boot_flags);
383 1.102 cgd prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
384 1.102 cgd sizeof bootinfo.booted_kernel);
385 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
386 1.102 cgd sizeof bootinfo.booted_dev);
387 1.102 cgd }
388 1.102 cgd
389 1.81 thorpej /*
390 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for
391 1.106 cgd * lots of things.
392 1.106 cgd */
393 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
394 1.123 thorpej
395 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
396 1.123 thorpej if (hwrpb->rpb_type == ST_DEC_3000_300 ||
397 1.123 thorpej hwrpb->rpb_type == ST_DEC_3000_500) {
398 1.123 thorpej prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
399 1.123 thorpej sizeof(dec_3000_scsiid));
400 1.123 thorpej prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
401 1.123 thorpej sizeof(dec_3000_scsifast));
402 1.123 thorpej }
403 1.123 thorpej #endif
404 1.106 cgd
405 1.106 cgd /*
406 1.106 cgd * Remember how many cycles there are per microsecond,
407 1.106 cgd * so that we can use delay(). Round up, for safety.
408 1.106 cgd */
409 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
410 1.106 cgd
411 1.106 cgd /*
412 1.106 cgd * Initalize the (temporary) bootstrap console interface, so
413 1.106 cgd * we can use printf until the VM system starts being setup.
414 1.106 cgd * The real console is initialized before then.
415 1.106 cgd */
416 1.106 cgd init_bootstrap_console();
417 1.106 cgd
418 1.106 cgd /* OUTPUT NOW ALLOWED */
419 1.106 cgd
420 1.106 cgd /* delayed from above */
421 1.106 cgd if (bootinfo_msg)
422 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
423 1.106 cgd bootinfo_msg, bim, bip, biv);
424 1.106 cgd
425 1.147 thorpej /* Initialize the trap vectors on the primary processor. */
426 1.147 thorpej trap_init();
427 1.1 cgd
428 1.1 cgd /*
429 1.106 cgd * Find out what hardware we're on, and do basic initialization.
430 1.106 cgd */
431 1.106 cgd cputype = hwrpb->rpb_type;
432 1.106 cgd if (cputype >= ncpuinit) {
433 1.106 cgd platform_not_supported();
434 1.106 cgd /* NOTREACHED */
435 1.106 cgd }
436 1.106 cgd (*cpuinit[cputype].init)();
437 1.106 cgd strcpy(cpu_model, platform.model);
438 1.106 cgd
439 1.106 cgd /*
440 1.106 cgd * Initalize the real console, so the the bootstrap console is
441 1.106 cgd * no longer necessary.
442 1.106 cgd */
443 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
444 1.106 cgd if (!pmap_uses_prom_console())
445 1.106 cgd #endif
446 1.106 cgd (*platform.cons_init)();
447 1.106 cgd
448 1.106 cgd #ifdef DIAGNOSTIC
449 1.106 cgd /* Paranoid sanity checking */
450 1.106 cgd
451 1.106 cgd /* We should always be running on the the primary. */
452 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
453 1.106 cgd
454 1.116 mjacob /*
455 1.116 mjacob * On single-CPU systypes, the primary should always be CPU 0,
456 1.116 mjacob * except on Alpha 8200 systems where the CPU id is related
457 1.116 mjacob * to the VID, which is related to the Turbo Laser node id.
458 1.116 mjacob */
459 1.106 cgd if (cputype != ST_DEC_21000)
460 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0);
461 1.106 cgd #endif
462 1.106 cgd
463 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */
464 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
465 1.106 cgd /*
466 1.106 cgd * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
467 1.106 cgd * XXX pmap_uses_prom_console() evaluates to non-zero.)
468 1.106 cgd */
469 1.106 cgd #endif
470 1.106 cgd
471 1.106 cgd /*
472 1.106 cgd * find out this system's page size
473 1.95 thorpej */
474 1.95 thorpej PAGE_SIZE = hwrpb->rpb_page_size;
475 1.95 thorpej if (PAGE_SIZE != 8192)
476 1.95 thorpej panic("page size %d != 8192?!", PAGE_SIZE);
477 1.95 thorpej
478 1.95 thorpej /*
479 1.95 thorpej * Initialize PAGE_SIZE-dependent variables.
480 1.95 thorpej */
481 1.112 thorpej #if defined(UVM)
482 1.112 thorpej uvm_setpagesize();
483 1.112 thorpej #else
484 1.95 thorpej vm_set_page_size();
485 1.112 thorpej #endif
486 1.95 thorpej
487 1.95 thorpej /*
488 1.101 cgd * Find the beginning and end of the kernel (and leave a
489 1.101 cgd * bit of space before the beginning for the bootstrap
490 1.101 cgd * stack).
491 1.95 thorpej */
492 1.101 cgd kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
493 1.95 thorpej #ifdef DDB
494 1.102 cgd ksym_start = (void *)bootinfo.ssym;
495 1.102 cgd ksym_end = (void *)bootinfo.esym;
496 1.140 thorpej kernend = (vaddr_t)round_page(ksym_end);
497 1.102 cgd #else
498 1.140 thorpej kernend = (vaddr_t)round_page(_end);
499 1.95 thorpej #endif
500 1.95 thorpej
501 1.110 thorpej kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
502 1.110 thorpej kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
503 1.110 thorpej
504 1.95 thorpej /*
505 1.1 cgd * Find out how much memory is available, by looking at
506 1.7 cgd * the memory cluster descriptors. This also tries to do
507 1.7 cgd * its best to detect things things that have never been seen
508 1.7 cgd * before...
509 1.1 cgd */
510 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
511 1.7 cgd
512 1.110 thorpej /* MDDT SANITY CHECKING */
513 1.7 cgd mddtweird = 0;
514 1.110 thorpej if (mddtp->mddt_cluster_cnt < 2) {
515 1.7 cgd mddtweird = 1;
516 1.110 thorpej printf("WARNING: weird number of mem clusters: %d\n",
517 1.110 thorpej mddtp->mddt_cluster_cnt);
518 1.7 cgd }
519 1.7 cgd
520 1.110 thorpej #if 0
521 1.110 thorpej printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
522 1.110 thorpej #endif
523 1.110 thorpej
524 1.110 thorpej for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
525 1.110 thorpej memc = &mddtp->mddt_clusters[i];
526 1.110 thorpej #if 0
527 1.110 thorpej printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
528 1.110 thorpej memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
529 1.110 thorpej #endif
530 1.110 thorpej totalphysmem += memc->mddt_pg_cnt;
531 1.110 thorpej if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
532 1.110 thorpej mem_clusters[mem_cluster_cnt].start =
533 1.110 thorpej ptoa(memc->mddt_pfn);
534 1.110 thorpej mem_clusters[mem_cluster_cnt].size =
535 1.110 thorpej ptoa(memc->mddt_pg_cnt);
536 1.110 thorpej if (memc->mddt_usage & MDDT_mbz ||
537 1.110 thorpej memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
538 1.110 thorpej memc->mddt_usage & MDDT_PALCODE)
539 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
540 1.110 thorpej PROT_READ;
541 1.110 thorpej else
542 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
543 1.110 thorpej PROT_READ | PROT_WRITE | PROT_EXEC;
544 1.110 thorpej mem_cluster_cnt++;
545 1.110 thorpej }
546 1.110 thorpej
547 1.110 thorpej if (memc->mddt_usage & MDDT_mbz) {
548 1.7 cgd mddtweird = 1;
549 1.110 thorpej printf("WARNING: mem cluster %d has weird "
550 1.110 thorpej "usage 0x%lx\n", i, memc->mddt_usage);
551 1.110 thorpej unknownmem += memc->mddt_pg_cnt;
552 1.110 thorpej continue;
553 1.7 cgd }
554 1.110 thorpej if (memc->mddt_usage & MDDT_NONVOLATILE) {
555 1.110 thorpej /* XXX should handle these... */
556 1.110 thorpej printf("WARNING: skipping non-volatile mem "
557 1.110 thorpej "cluster %d\n", i);
558 1.110 thorpej unusedmem += memc->mddt_pg_cnt;
559 1.110 thorpej continue;
560 1.110 thorpej }
561 1.110 thorpej if (memc->mddt_usage & MDDT_PALCODE) {
562 1.110 thorpej resvmem += memc->mddt_pg_cnt;
563 1.110 thorpej continue;
564 1.110 thorpej }
565 1.110 thorpej
566 1.110 thorpej /*
567 1.110 thorpej * We have a memory cluster available for system
568 1.110 thorpej * software use. We must determine if this cluster
569 1.110 thorpej * holds the kernel.
570 1.110 thorpej */
571 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
572 1.110 thorpej /*
573 1.110 thorpej * XXX If the kernel uses the PROM console, we only use the
574 1.110 thorpej * XXX memory after the kernel in the first system segment,
575 1.110 thorpej * XXX to avoid clobbering prom mapping, data, etc.
576 1.110 thorpej */
577 1.110 thorpej if (!pmap_uses_prom_console() || physmem == 0) {
578 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
579 1.110 thorpej physmem += memc->mddt_pg_cnt;
580 1.110 thorpej pfn0 = memc->mddt_pfn;
581 1.110 thorpej pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
582 1.110 thorpej if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
583 1.110 thorpej /*
584 1.110 thorpej * Must compute the location of the kernel
585 1.110 thorpej * within the segment.
586 1.110 thorpej */
587 1.110 thorpej #if 0
588 1.110 thorpej printf("Cluster %d contains kernel\n", i);
589 1.110 thorpej #endif
590 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
591 1.110 thorpej if (!pmap_uses_prom_console()) {
592 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
593 1.110 thorpej if (pfn0 < kernstartpfn) {
594 1.110 thorpej /*
595 1.110 thorpej * There is a chunk before the kernel.
596 1.110 thorpej */
597 1.110 thorpej #if 0
598 1.110 thorpej printf("Loading chunk before kernel: "
599 1.110 thorpej "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
600 1.110 thorpej #endif
601 1.112 thorpej #if defined(UVM)
602 1.112 thorpej uvm_page_physload(pfn0, kernstartpfn,
603 1.135 thorpej pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
604 1.112 thorpej #else
605 1.110 thorpej vm_page_physload(pfn0, kernstartpfn,
606 1.110 thorpej pfn0, kernstartpfn);
607 1.112 thorpej #endif
608 1.110 thorpej }
609 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
610 1.110 thorpej }
611 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
612 1.110 thorpej if (kernendpfn < pfn1) {
613 1.110 thorpej /*
614 1.110 thorpej * There is a chunk after the kernel.
615 1.110 thorpej */
616 1.110 thorpej #if 0
617 1.110 thorpej printf("Loading chunk after kernel: "
618 1.110 thorpej "0x%lx / 0x%lx\n", kernendpfn, pfn1);
619 1.110 thorpej #endif
620 1.112 thorpej #if defined(UVM)
621 1.112 thorpej uvm_page_physload(kernendpfn, pfn1,
622 1.135 thorpej kernendpfn, pfn1, VM_FREELIST_DEFAULT);
623 1.112 thorpej #else
624 1.110 thorpej vm_page_physload(kernendpfn, pfn1,
625 1.110 thorpej kernendpfn, pfn1);
626 1.112 thorpej #endif
627 1.110 thorpej }
628 1.110 thorpej } else {
629 1.110 thorpej /*
630 1.110 thorpej * Just load this cluster as one chunk.
631 1.110 thorpej */
632 1.110 thorpej #if 0
633 1.110 thorpej printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
634 1.110 thorpej pfn0, pfn1);
635 1.110 thorpej #endif
636 1.112 thorpej #if defined(UVM)
637 1.135 thorpej uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
638 1.135 thorpej VM_FREELIST_DEFAULT);
639 1.112 thorpej #else
640 1.110 thorpej vm_page_physload(pfn0, pfn1, pfn0, pfn1);
641 1.112 thorpej #endif
642 1.7 cgd }
643 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
644 1.110 thorpej }
645 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
646 1.7 cgd }
647 1.7 cgd
648 1.110 thorpej /*
649 1.110 thorpej * Dump out the MDDT if it looks odd...
650 1.110 thorpej */
651 1.7 cgd if (mddtweird) {
652 1.46 christos printf("\n");
653 1.46 christos printf("complete memory cluster information:\n");
654 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
655 1.46 christos printf("mddt %d:\n", i);
656 1.46 christos printf("\tpfn %lx\n",
657 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
658 1.46 christos printf("\tcnt %lx\n",
659 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
660 1.46 christos printf("\ttest %lx\n",
661 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
662 1.46 christos printf("\tbva %lx\n",
663 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
664 1.46 christos printf("\tbpa %lx\n",
665 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
666 1.46 christos printf("\tbcksum %lx\n",
667 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
668 1.46 christos printf("\tusage %lx\n",
669 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
670 1.2 cgd }
671 1.46 christos printf("\n");
672 1.2 cgd }
673 1.2 cgd
674 1.7 cgd if (totalphysmem == 0)
675 1.1 cgd panic("can't happen: system seems to have no memory!");
676 1.110 thorpej
677 1.110 thorpej #ifdef LIMITMEM
678 1.110 thorpej /*
679 1.110 thorpej * XXX Kludge so we can run on machines with memory larger
680 1.110 thorpej * XXX than 1G until all device drivers are converted to
681 1.110 thorpej * XXX use bus_dma. (Relies on the fact that vm_physmem
682 1.110 thorpej * XXX sorted in order of increasing addresses.)
683 1.110 thorpej */
684 1.110 thorpej if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
685 1.110 thorpej
686 1.110 thorpej printf("******** LIMITING MEMORY TO %dMB **********\n",
687 1.110 thorpej LIMITMEM);
688 1.110 thorpej
689 1.110 thorpej do {
690 1.110 thorpej u_long ovf;
691 1.110 thorpej
692 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
693 1.110 thorpej
694 1.110 thorpej if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
695 1.110 thorpej /*
696 1.110 thorpej * If the start is too high, just drop
697 1.110 thorpej * the whole segment.
698 1.110 thorpej *
699 1.110 thorpej * XXX can start != avail_start in this
700 1.110 thorpej * XXX case? wouldn't that mean that
701 1.110 thorpej * XXX some memory was stolen above the
702 1.110 thorpej * XXX limit? What to do?
703 1.110 thorpej */
704 1.110 thorpej ovf = vps->end - vps->start;
705 1.110 thorpej vm_nphysseg--;
706 1.110 thorpej } else {
707 1.110 thorpej /*
708 1.110 thorpej * If the start is OK, calculate how much
709 1.110 thorpej * to drop and drop it.
710 1.110 thorpej */
711 1.110 thorpej ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
712 1.110 thorpej vps->end -= ovf;
713 1.110 thorpej vps->avail_end -= ovf;
714 1.110 thorpej }
715 1.110 thorpej physmem -= ovf;
716 1.110 thorpej unusedmem += ovf;
717 1.110 thorpej } while (vps->end > atop(LIMITMEM * 1024 * 1024));
718 1.88 mjacob }
719 1.110 thorpej #endif /* LIMITMEM */
720 1.110 thorpej
721 1.1 cgd maxmem = physmem;
722 1.1 cgd
723 1.7 cgd #if 0
724 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
725 1.46 christos printf("physmem = %d\n", physmem);
726 1.46 christos printf("resvmem = %d\n", resvmem);
727 1.46 christos printf("unusedmem = %d\n", unusedmem);
728 1.46 christos printf("unknownmem = %d\n", unknownmem);
729 1.7 cgd #endif
730 1.90 mjacob
731 1.90 mjacob /*
732 1.90 mjacob * Adjust some parameters if the amount of physmem
733 1.90 mjacob * available would cause us to croak. This is completely
734 1.90 mjacob * eyeballed and isn't meant to be the final answer.
735 1.90 mjacob * vm_phys_size is probably the only one to really worry
736 1.90 mjacob * about.
737 1.90 mjacob *
738 1.90 mjacob * It's for booting a GENERIC kernel on a large memory platform.
739 1.90 mjacob */
740 1.110 thorpej if (physmem >= atop(128 * 1024 * 1024)) {
741 1.90 mjacob vm_mbuf_size <<= 1;
742 1.93 mjacob vm_kmem_size <<= 3;
743 1.93 mjacob vm_phys_size <<= 2;
744 1.90 mjacob }
745 1.7 cgd
746 1.1 cgd /*
747 1.1 cgd * Initialize error message buffer (at end of core).
748 1.1 cgd */
749 1.110 thorpej {
750 1.110 thorpej size_t sz = round_page(MSGBUFSIZE);
751 1.110 thorpej
752 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
753 1.110 thorpej
754 1.110 thorpej /* shrink so that it'll fit in the last segment */
755 1.110 thorpej if ((vps->avail_end - vps->avail_start) < atop(sz))
756 1.110 thorpej sz = ptoa(vps->avail_end - vps->avail_start);
757 1.110 thorpej
758 1.110 thorpej vps->end -= atop(sz);
759 1.110 thorpej vps->avail_end -= atop(sz);
760 1.110 thorpej msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
761 1.110 thorpej initmsgbuf(msgbufaddr, sz);
762 1.110 thorpej
763 1.110 thorpej /* Remove the last segment if it now has no pages. */
764 1.110 thorpej if (vps->start == vps->end)
765 1.110 thorpej vm_nphysseg--;
766 1.110 thorpej
767 1.110 thorpej /* warn if the message buffer had to be shrunk */
768 1.110 thorpej if (sz != round_page(MSGBUFSIZE))
769 1.110 thorpej printf("WARNING: %d bytes not available for msgbuf in last cluster (%d used)\n",
770 1.110 thorpej round_page(MSGBUFSIZE), sz);
771 1.110 thorpej
772 1.110 thorpej }
773 1.1 cgd
774 1.1 cgd /*
775 1.95 thorpej * Init mapping for u page(s) for proc 0
776 1.1 cgd */
777 1.110 thorpej proc0.p_addr = proc0paddr =
778 1.110 thorpej (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
779 1.1 cgd
780 1.1 cgd /*
781 1.95 thorpej * Allocate space for system data structures. These data structures
782 1.95 thorpej * are allocated here instead of cpu_startup() because physical
783 1.95 thorpej * memory is directly addressable. We don't have to map these into
784 1.95 thorpej * virtual address space.
785 1.95 thorpej */
786 1.140 thorpej size = (vsize_t)allocsys(0);
787 1.110 thorpej v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
788 1.110 thorpej if ((allocsys(v) - v) != size)
789 1.95 thorpej panic("alpha_init: table size inconsistency");
790 1.1 cgd
791 1.1 cgd /*
792 1.1 cgd * Initialize the virtual memory system, and set the
793 1.1 cgd * page table base register in proc 0's PCB.
794 1.1 cgd */
795 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
796 1.144 thorpej hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
797 1.1 cgd
798 1.1 cgd /*
799 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
800 1.3 cgd * address.
801 1.3 cgd */
802 1.3 cgd proc0.p_md.md_pcbpaddr =
803 1.140 thorpej (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
804 1.3 cgd
805 1.3 cgd /*
806 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
807 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
808 1.3 cgd */
809 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
810 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
811 1.81 thorpej proc0.p_md.md_tf =
812 1.81 thorpej (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
813 1.1 cgd
814 1.1 cgd /*
815 1.25 cgd * Look at arguments passed to us and compute boothowto.
816 1.8 cgd */
817 1.1 cgd
818 1.8 cgd boothowto = RB_SINGLE;
819 1.1 cgd #ifdef KADB
820 1.1 cgd boothowto |= RB_KDB;
821 1.1 cgd #endif
822 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
823 1.26 cgd /*
824 1.26 cgd * Note that we'd really like to differentiate case here,
825 1.26 cgd * but the Alpha AXP Architecture Reference Manual
826 1.26 cgd * says that we shouldn't.
827 1.26 cgd */
828 1.8 cgd switch (*p) {
829 1.26 cgd case 'a': /* autoboot */
830 1.26 cgd case 'A':
831 1.26 cgd boothowto &= ~RB_SINGLE;
832 1.21 cgd break;
833 1.21 cgd
834 1.43 cgd #ifdef DEBUG
835 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
836 1.43 cgd case 'C':
837 1.43 cgd boothowto |= RB_DUMP;
838 1.43 cgd break;
839 1.43 cgd #endif
840 1.43 cgd
841 1.81 thorpej #if defined(KGDB) || defined(DDB)
842 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
843 1.81 thorpej case 'D':
844 1.81 thorpej boothowto |= RB_KDB;
845 1.81 thorpej break;
846 1.81 thorpej #endif
847 1.81 thorpej
848 1.36 cgd case 'h': /* always halt, never reboot */
849 1.36 cgd case 'H':
850 1.36 cgd boothowto |= RB_HALT;
851 1.8 cgd break;
852 1.8 cgd
853 1.21 cgd #if 0
854 1.8 cgd case 'm': /* mini root present in memory */
855 1.26 cgd case 'M':
856 1.8 cgd boothowto |= RB_MINIROOT;
857 1.8 cgd break;
858 1.21 cgd #endif
859 1.36 cgd
860 1.36 cgd case 'n': /* askname */
861 1.36 cgd case 'N':
862 1.36 cgd boothowto |= RB_ASKNAME;
863 1.65 cgd break;
864 1.65 cgd
865 1.65 cgd case 's': /* single-user (default, supported for sanity) */
866 1.65 cgd case 'S':
867 1.65 cgd boothowto |= RB_SINGLE;
868 1.119 thorpej break;
869 1.119 thorpej
870 1.119 thorpej case '-':
871 1.119 thorpej /*
872 1.119 thorpej * Just ignore this. It's not required, but it's
873 1.119 thorpej * common for it to be passed regardless.
874 1.119 thorpej */
875 1.65 cgd break;
876 1.65 cgd
877 1.65 cgd default:
878 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
879 1.36 cgd break;
880 1.1 cgd }
881 1.1 cgd }
882 1.1 cgd
883 1.136 mjacob
884 1.136 mjacob /*
885 1.136 mjacob * Figure out the number of cpus in the box, from RPB fields.
886 1.136 mjacob * Really. We mean it.
887 1.136 mjacob */
888 1.136 mjacob for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
889 1.136 mjacob struct pcs *pcsp;
890 1.136 mjacob
891 1.144 thorpej pcsp = LOCATE_PCS(hwrpb, i);
892 1.136 mjacob if ((pcsp->pcs_flags & PCS_PP) != 0)
893 1.136 mjacob ncpus++;
894 1.136 mjacob }
895 1.136 mjacob
896 1.7 cgd /*
897 1.106 cgd * Initialize debuggers, and break into them if appropriate.
898 1.106 cgd */
899 1.106 cgd #ifdef DDB
900 1.106 cgd db_machine_init();
901 1.106 cgd ddb_init(ksym_start, ksym_end);
902 1.106 cgd if (boothowto & RB_KDB)
903 1.106 cgd Debugger();
904 1.106 cgd #endif
905 1.106 cgd #ifdef KGDB
906 1.106 cgd if (boothowto & RB_KDB)
907 1.106 cgd kgdb_connect(0);
908 1.106 cgd #endif
909 1.106 cgd /*
910 1.106 cgd * Figure out our clock frequency, from RPB fields.
911 1.106 cgd */
912 1.106 cgd hz = hwrpb->rpb_intr_freq >> 12;
913 1.106 cgd if (!(60 <= hz && hz <= 10240)) {
914 1.106 cgd hz = 1024;
915 1.106 cgd #ifdef DIAGNOSTIC
916 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
917 1.106 cgd hwrpb->rpb_intr_freq, hz);
918 1.106 cgd #endif
919 1.106 cgd }
920 1.95 thorpej }
921 1.95 thorpej
922 1.95 thorpej /*
923 1.95 thorpej * Allocate space for system data structures. We are given
924 1.95 thorpej * a starting virtual address and we return a final virtual
925 1.95 thorpej * address; along the way we set each data structure pointer.
926 1.95 thorpej *
927 1.95 thorpej * We call allocsys() with 0 to find out how much space we want,
928 1.95 thorpej * allocate that much and fill it with zeroes, and the call
929 1.95 thorpej * allocsys() again with the correct base virtual address.
930 1.95 thorpej */
931 1.95 thorpej caddr_t
932 1.95 thorpej allocsys(v)
933 1.95 thorpej caddr_t v;
934 1.95 thorpej {
935 1.95 thorpej
936 1.95 thorpej #define valloc(name, type, num) \
937 1.95 thorpej (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
938 1.134 mjacob
939 1.95 thorpej #ifdef REAL_CLISTS
940 1.95 thorpej valloc(cfree, struct cblock, nclist);
941 1.95 thorpej #endif
942 1.95 thorpej valloc(callout, struct callout, ncallout);
943 1.95 thorpej #ifdef SYSVSHM
944 1.95 thorpej valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
945 1.95 thorpej #endif
946 1.95 thorpej #ifdef SYSVSEM
947 1.95 thorpej valloc(sema, struct semid_ds, seminfo.semmni);
948 1.95 thorpej valloc(sem, struct sem, seminfo.semmns);
949 1.95 thorpej /* This is pretty disgusting! */
950 1.95 thorpej valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
951 1.95 thorpej #endif
952 1.95 thorpej #ifdef SYSVMSG
953 1.95 thorpej valloc(msgpool, char, msginfo.msgmax);
954 1.95 thorpej valloc(msgmaps, struct msgmap, msginfo.msgseg);
955 1.95 thorpej valloc(msghdrs, struct msg, msginfo.msgtql);
956 1.95 thorpej valloc(msqids, struct msqid_ds, msginfo.msgmni);
957 1.95 thorpej #endif
958 1.95 thorpej
959 1.95 thorpej /*
960 1.95 thorpej * Determine how many buffers to allocate.
961 1.154 ross * We allocate bufcache % of memory for buffer space. Insure a
962 1.95 thorpej * minimum of 16 buffers. We allocate 1/2 as many swap buffer
963 1.95 thorpej * headers as file i/o buffers.
964 1.95 thorpej */
965 1.95 thorpej if (bufpages == 0)
966 1.154 ross bufpages = physmem / CLSIZE * bufcache / 100;
967 1.95 thorpej if (nbuf == 0) {
968 1.95 thorpej nbuf = bufpages;
969 1.95 thorpej if (nbuf < 16)
970 1.95 thorpej nbuf = 16;
971 1.95 thorpej }
972 1.95 thorpej if (nswbuf == 0) {
973 1.95 thorpej nswbuf = (nbuf / 2) &~ 1; /* force even */
974 1.95 thorpej if (nswbuf > 256)
975 1.95 thorpej nswbuf = 256; /* sanity */
976 1.95 thorpej }
977 1.112 thorpej #if !defined(UVM)
978 1.95 thorpej valloc(swbuf, struct buf, nswbuf);
979 1.112 thorpej #endif
980 1.95 thorpej valloc(buf, struct buf, nbuf);
981 1.136 mjacob
982 1.136 mjacob /*
983 1.136 mjacob * There appears to be a correlation between the number
984 1.136 mjacob * of processor slots defined in the HWRPB and the whami
985 1.136 mjacob * value that can be returned.
986 1.136 mjacob */
987 1.138 ross valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
988 1.136 mjacob
989 1.95 thorpej return (v);
990 1.98 cgd #undef valloc
991 1.1 cgd }
992 1.1 cgd
993 1.18 cgd void
994 1.1 cgd consinit()
995 1.1 cgd {
996 1.81 thorpej
997 1.106 cgd /*
998 1.106 cgd * Everything related to console initialization is done
999 1.106 cgd * in alpha_init().
1000 1.106 cgd */
1001 1.106 cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
1002 1.106 cgd printf("consinit: %susing prom console\n",
1003 1.106 cgd pmap_uses_prom_console() ? "" : "not ");
1004 1.81 thorpej #endif
1005 1.1 cgd }
1006 1.118 thorpej
1007 1.118 thorpej #include "pckbc.h"
1008 1.118 thorpej #include "pckbd.h"
1009 1.118 thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
1010 1.118 thorpej
1011 1.118 thorpej #include <machine/bus.h>
1012 1.118 thorpej #include <dev/isa/pckbcvar.h>
1013 1.118 thorpej
1014 1.118 thorpej /*
1015 1.118 thorpej * This is called by the pbkbc driver if no pckbd is configured.
1016 1.118 thorpej * On the i386, it is used to glue in the old, deprecated console
1017 1.118 thorpej * code. On the Alpha, it does nothing.
1018 1.118 thorpej */
1019 1.118 thorpej int
1020 1.118 thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
1021 1.118 thorpej pckbc_tag_t kbctag;
1022 1.118 thorpej pckbc_slot_t kbcslot;
1023 1.118 thorpej {
1024 1.118 thorpej
1025 1.118 thorpej return (ENXIO);
1026 1.118 thorpej }
1027 1.118 thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
1028 1.1 cgd
1029 1.18 cgd void
1030 1.1 cgd cpu_startup()
1031 1.1 cgd {
1032 1.1 cgd register unsigned i;
1033 1.1 cgd int base, residual;
1034 1.140 thorpej vaddr_t minaddr, maxaddr;
1035 1.140 thorpej vsize_t size;
1036 1.40 cgd #if defined(DEBUG)
1037 1.1 cgd extern int pmapdebug;
1038 1.1 cgd int opmapdebug = pmapdebug;
1039 1.1 cgd
1040 1.1 cgd pmapdebug = 0;
1041 1.1 cgd #endif
1042 1.1 cgd
1043 1.1 cgd /*
1044 1.1 cgd * Good {morning,afternoon,evening,night}.
1045 1.1 cgd */
1046 1.46 christos printf(version);
1047 1.1 cgd identifycpu();
1048 1.110 thorpej printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
1049 1.140 thorpej ((psize_t) totalphysmem << (psize_t) PAGE_SHIFT),
1050 1.137 mjacob ptoa(resvmem), ptoa(physmem));
1051 1.7 cgd if (unusedmem)
1052 1.46 christos printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
1053 1.7 cgd if (unknownmem)
1054 1.46 christos printf("WARNING: %d bytes of memory with unknown purpose\n",
1055 1.7 cgd ctob(unknownmem));
1056 1.1 cgd
1057 1.1 cgd /*
1058 1.1 cgd * Allocate virtual address space for file I/O buffers.
1059 1.1 cgd * Note they are different than the array of headers, 'buf',
1060 1.1 cgd * and usually occupy more virtual memory than physical.
1061 1.1 cgd */
1062 1.1 cgd size = MAXBSIZE * nbuf;
1063 1.112 thorpej #if defined(UVM)
1064 1.140 thorpej if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
1065 1.112 thorpej NULL, UVM_UNKNOWN_OFFSET,
1066 1.112 thorpej UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
1067 1.112 thorpej UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
1068 1.112 thorpej panic("startup: cannot allocate VM for buffers");
1069 1.112 thorpej #else
1070 1.140 thorpej buffer_map = kmem_suballoc(kernel_map, (vaddr_t *)&buffers,
1071 1.1 cgd &maxaddr, size, TRUE);
1072 1.140 thorpej minaddr = (vaddr_t)buffers;
1073 1.140 thorpej if (vm_map_find(buffer_map, vm_object_allocate(size), (vaddr_t)0,
1074 1.1 cgd &minaddr, size, FALSE) != KERN_SUCCESS)
1075 1.1 cgd panic("startup: cannot allocate buffers");
1076 1.112 thorpej #endif /* UVM */
1077 1.1 cgd base = bufpages / nbuf;
1078 1.1 cgd residual = bufpages % nbuf;
1079 1.1 cgd for (i = 0; i < nbuf; i++) {
1080 1.112 thorpej #if defined(UVM)
1081 1.140 thorpej vsize_t curbufsize;
1082 1.140 thorpej vaddr_t curbuf;
1083 1.112 thorpej struct vm_page *pg;
1084 1.112 thorpej
1085 1.112 thorpej /*
1086 1.112 thorpej * Each buffer has MAXBSIZE bytes of VM space allocated. Of
1087 1.112 thorpej * that MAXBSIZE space, we allocate and map (base+1) pages
1088 1.112 thorpej * for the first "residual" buffers, and then we allocate
1089 1.112 thorpej * "base" pages for the rest.
1090 1.112 thorpej */
1091 1.140 thorpej curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
1092 1.112 thorpej curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
1093 1.112 thorpej
1094 1.112 thorpej while (curbufsize) {
1095 1.112 thorpej pg = uvm_pagealloc(NULL, 0, NULL);
1096 1.112 thorpej if (pg == NULL)
1097 1.112 thorpej panic("cpu_startup: not enough memory for "
1098 1.112 thorpej "buffer cache");
1099 1.112 thorpej #if defined(PMAP_NEW)
1100 1.112 thorpej pmap_kenter_pgs(curbuf, &pg, 1);
1101 1.112 thorpej #else
1102 1.112 thorpej pmap_enter(kernel_map->pmap, curbuf,
1103 1.112 thorpej VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
1104 1.112 thorpej #endif
1105 1.112 thorpej curbuf += PAGE_SIZE;
1106 1.112 thorpej curbufsize -= PAGE_SIZE;
1107 1.112 thorpej }
1108 1.112 thorpej #else /* ! UVM */
1109 1.140 thorpej vsize_t curbufsize;
1110 1.140 thorpej vaddr_t curbuf;
1111 1.1 cgd
1112 1.1 cgd /*
1113 1.1 cgd * First <residual> buffers get (base+1) physical pages
1114 1.1 cgd * allocated for them. The rest get (base) physical pages.
1115 1.1 cgd *
1116 1.1 cgd * The rest of each buffer occupies virtual space,
1117 1.1 cgd * but has no physical memory allocated for it.
1118 1.1 cgd */
1119 1.140 thorpej curbuf = (vaddr_t)buffers + i * MAXBSIZE;
1120 1.1 cgd curbufsize = CLBYTES * (i < residual ? base+1 : base);
1121 1.1 cgd vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
1122 1.1 cgd vm_map_simplify(buffer_map, curbuf);
1123 1.112 thorpej #endif /* UVM */
1124 1.1 cgd }
1125 1.1 cgd /*
1126 1.1 cgd * Allocate a submap for exec arguments. This map effectively
1127 1.1 cgd * limits the number of processes exec'ing at any time.
1128 1.1 cgd */
1129 1.112 thorpej #if defined(UVM)
1130 1.112 thorpej exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1131 1.112 thorpej 16 * NCARGS, TRUE, FALSE, NULL);
1132 1.112 thorpej #else
1133 1.1 cgd exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1134 1.1 cgd 16 * NCARGS, TRUE);
1135 1.112 thorpej #endif
1136 1.1 cgd
1137 1.1 cgd /*
1138 1.1 cgd * Allocate a submap for physio
1139 1.1 cgd */
1140 1.112 thorpej #if defined(UVM)
1141 1.112 thorpej phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
1142 1.112 thorpej VM_PHYS_SIZE, TRUE, FALSE, NULL);
1143 1.112 thorpej #else
1144 1.1 cgd phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
1145 1.1 cgd VM_PHYS_SIZE, TRUE);
1146 1.112 thorpej #endif
1147 1.1 cgd
1148 1.1 cgd /*
1149 1.69 thorpej * Finally, allocate mbuf cluster submap.
1150 1.1 cgd */
1151 1.112 thorpej #if defined(UVM)
1152 1.140 thorpej mb_map = uvm_km_suballoc(kernel_map, (vaddr_t *)&mbutl, &maxaddr,
1153 1.112 thorpej VM_MBUF_SIZE, FALSE, FALSE, NULL);
1154 1.112 thorpej #else
1155 1.140 thorpej mb_map = kmem_suballoc(kernel_map, (vaddr_t *)&mbutl, &maxaddr,
1156 1.112 thorpej VM_MBUF_SIZE, FALSE);
1157 1.112 thorpej #endif
1158 1.1 cgd /*
1159 1.1 cgd * Initialize callouts
1160 1.1 cgd */
1161 1.1 cgd callfree = callout;
1162 1.1 cgd for (i = 1; i < ncallout; i++)
1163 1.1 cgd callout[i-1].c_next = &callout[i];
1164 1.1 cgd callout[i-1].c_next = NULL;
1165 1.1 cgd
1166 1.40 cgd #if defined(DEBUG)
1167 1.1 cgd pmapdebug = opmapdebug;
1168 1.1 cgd #endif
1169 1.112 thorpej #if defined(UVM)
1170 1.112 thorpej printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
1171 1.112 thorpej #else
1172 1.46 christos printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
1173 1.139 thorpej #endif
1174 1.139 thorpej #if 0
1175 1.139 thorpej {
1176 1.139 thorpej extern u_long pmap_pages_stolen;
1177 1.139 thorpej printf("stolen memory for VM structures = %ld bytes\n",
1178 1.139 thorpej pmap_pages_stolen * PAGE_SIZE);
1179 1.139 thorpej }
1180 1.112 thorpej #endif
1181 1.46 christos printf("using %ld buffers containing %ld bytes of memory\n",
1182 1.1 cgd (long)nbuf, (long)(bufpages * CLBYTES));
1183 1.1 cgd
1184 1.1 cgd /*
1185 1.1 cgd * Set up buffers, so they can be used to read disk labels.
1186 1.1 cgd */
1187 1.1 cgd bufinit();
1188 1.151 thorpej
1189 1.151 thorpej /*
1190 1.151 thorpej * Set up the HWPCB so that it's safe to configure secondary
1191 1.151 thorpej * CPUs.
1192 1.151 thorpej */
1193 1.151 thorpej hwrpb_primary_init();
1194 1.1 cgd
1195 1.1 cgd /*
1196 1.1 cgd * Configure the system.
1197 1.1 cgd */
1198 1.1 cgd configure();
1199 1.104 thorpej }
1200 1.104 thorpej
1201 1.104 thorpej /*
1202 1.104 thorpej * Retrieve the platform name from the DSR.
1203 1.104 thorpej */
1204 1.104 thorpej const char *
1205 1.104 thorpej alpha_dsr_sysname()
1206 1.104 thorpej {
1207 1.104 thorpej struct dsrdb *dsr;
1208 1.104 thorpej const char *sysname;
1209 1.104 thorpej
1210 1.104 thorpej /*
1211 1.104 thorpej * DSR does not exist on early HWRPB versions.
1212 1.104 thorpej */
1213 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
1214 1.104 thorpej return (NULL);
1215 1.104 thorpej
1216 1.104 thorpej dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
1217 1.104 thorpej sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
1218 1.104 thorpej sizeof(u_int64_t)));
1219 1.104 thorpej return (sysname);
1220 1.104 thorpej }
1221 1.104 thorpej
1222 1.104 thorpej /*
1223 1.104 thorpej * Lookup the system specified system variation in the provided table,
1224 1.104 thorpej * returning the model string on match.
1225 1.104 thorpej */
1226 1.104 thorpej const char *
1227 1.104 thorpej alpha_variation_name(variation, avtp)
1228 1.104 thorpej u_int64_t variation;
1229 1.104 thorpej const struct alpha_variation_table *avtp;
1230 1.104 thorpej {
1231 1.104 thorpej int i;
1232 1.104 thorpej
1233 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++)
1234 1.104 thorpej if (avtp[i].avt_variation == variation)
1235 1.104 thorpej return (avtp[i].avt_model);
1236 1.104 thorpej return (NULL);
1237 1.104 thorpej }
1238 1.104 thorpej
1239 1.104 thorpej /*
1240 1.104 thorpej * Generate a default platform name based for unknown system variations.
1241 1.104 thorpej */
1242 1.104 thorpej const char *
1243 1.104 thorpej alpha_unknown_sysname()
1244 1.104 thorpej {
1245 1.105 thorpej static char s[128]; /* safe size */
1246 1.104 thorpej
1247 1.105 thorpej sprintf(s, "%s family, unknown model variation 0x%lx",
1248 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1249 1.104 thorpej return ((const char *)s);
1250 1.1 cgd }
1251 1.1 cgd
1252 1.33 cgd void
1253 1.1 cgd identifycpu()
1254 1.1 cgd {
1255 1.1 cgd
1256 1.7 cgd /*
1257 1.7 cgd * print out CPU identification information.
1258 1.7 cgd */
1259 1.46 christos printf("%s, %ldMHz\n", cpu_model,
1260 1.7 cgd hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
1261 1.46 christos printf("%ld byte page size, %d processor%s.\n",
1262 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1263 1.7 cgd #if 0
1264 1.7 cgd /* this isn't defined for any systems that we run on? */
1265 1.46 christos printf("serial number 0x%lx 0x%lx\n",
1266 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1267 1.7 cgd
1268 1.7 cgd /* and these aren't particularly useful! */
1269 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
1270 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1271 1.7 cgd #endif
1272 1.1 cgd }
1273 1.1 cgd
1274 1.1 cgd int waittime = -1;
1275 1.7 cgd struct pcb dumppcb;
1276 1.1 cgd
1277 1.18 cgd void
1278 1.68 gwr cpu_reboot(howto, bootstr)
1279 1.1 cgd int howto;
1280 1.39 mrg char *bootstr;
1281 1.1 cgd {
1282 1.1 cgd extern int cold;
1283 1.148 thorpej #if defined(MULTIPROCESSOR)
1284 1.150 thorpej #if 0 /* XXX See below. */
1285 1.148 thorpej u_long cpu_id;
1286 1.150 thorpej #endif
1287 1.148 thorpej #endif
1288 1.148 thorpej
1289 1.148 thorpej #if defined(MULTIPROCESSOR)
1290 1.148 thorpej /* We must be running on the primary CPU. */
1291 1.148 thorpej if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1292 1.148 thorpej panic("cpu_reboot: not on primary CPU!");
1293 1.148 thorpej #endif
1294 1.1 cgd
1295 1.1 cgd /* If system is cold, just halt. */
1296 1.1 cgd if (cold) {
1297 1.1 cgd howto |= RB_HALT;
1298 1.1 cgd goto haltsys;
1299 1.1 cgd }
1300 1.1 cgd
1301 1.36 cgd /* If "always halt" was specified as a boot flag, obey. */
1302 1.36 cgd if ((boothowto & RB_HALT) != 0)
1303 1.36 cgd howto |= RB_HALT;
1304 1.36 cgd
1305 1.7 cgd boothowto = howto;
1306 1.7 cgd if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1307 1.1 cgd waittime = 0;
1308 1.7 cgd vfs_shutdown();
1309 1.1 cgd /*
1310 1.1 cgd * If we've been adjusting the clock, the todr
1311 1.1 cgd * will be out of synch; adjust it now.
1312 1.1 cgd */
1313 1.1 cgd resettodr();
1314 1.1 cgd }
1315 1.1 cgd
1316 1.1 cgd /* Disable interrupts. */
1317 1.1 cgd splhigh();
1318 1.1 cgd
1319 1.7 cgd /* If rebooting and a dump is requested do it. */
1320 1.42 cgd #if 0
1321 1.42 cgd if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1322 1.42 cgd #else
1323 1.42 cgd if (howto & RB_DUMP)
1324 1.42 cgd #endif
1325 1.1 cgd dumpsys();
1326 1.6 cgd
1327 1.12 cgd haltsys:
1328 1.12 cgd
1329 1.6 cgd /* run any shutdown hooks */
1330 1.6 cgd doshutdownhooks();
1331 1.148 thorpej
1332 1.148 thorpej #if defined(MULTIPROCESSOR)
1333 1.149 thorpej #if 0 /* XXX doesn't work when called from here?! */
1334 1.148 thorpej /* Kill off any secondary CPUs. */
1335 1.148 thorpej for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1336 1.148 thorpej if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1337 1.148 thorpej cpus[cpu_id] == NULL)
1338 1.148 thorpej continue;
1339 1.148 thorpej cpu_halt_secondary(cpu_id);
1340 1.148 thorpej }
1341 1.149 thorpej #endif
1342 1.148 thorpej #endif
1343 1.1 cgd
1344 1.7 cgd #ifdef BOOTKEY
1345 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1346 1.117 drochner cnpollc(1); /* for proper keyboard command handling */
1347 1.7 cgd cngetc();
1348 1.117 drochner cnpollc(0);
1349 1.46 christos printf("\n");
1350 1.7 cgd #endif
1351 1.7 cgd
1352 1.124 thorpej /* Finally, powerdown/halt/reboot the system. */
1353 1.124 thorpej if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
1354 1.124 thorpej platform.powerdown != NULL) {
1355 1.124 thorpej (*platform.powerdown)();
1356 1.124 thorpej printf("WARNING: powerdown failed!\n");
1357 1.124 thorpej }
1358 1.46 christos printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1359 1.1 cgd prom_halt(howto & RB_HALT);
1360 1.1 cgd /*NOTREACHED*/
1361 1.1 cgd }
1362 1.1 cgd
1363 1.7 cgd /*
1364 1.7 cgd * These variables are needed by /sbin/savecore
1365 1.7 cgd */
1366 1.7 cgd u_long dumpmag = 0x8fca0101; /* magic number */
1367 1.7 cgd int dumpsize = 0; /* pages */
1368 1.7 cgd long dumplo = 0; /* blocks */
1369 1.7 cgd
1370 1.7 cgd /*
1371 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1372 1.43 cgd */
1373 1.43 cgd int
1374 1.43 cgd cpu_dumpsize()
1375 1.43 cgd {
1376 1.43 cgd int size;
1377 1.43 cgd
1378 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1379 1.110 thorpej ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1380 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
1381 1.43 cgd return -1;
1382 1.43 cgd
1383 1.43 cgd return (1);
1384 1.43 cgd }
1385 1.43 cgd
1386 1.43 cgd /*
1387 1.110 thorpej * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1388 1.110 thorpej */
1389 1.110 thorpej u_long
1390 1.110 thorpej cpu_dump_mempagecnt()
1391 1.110 thorpej {
1392 1.110 thorpej u_long i, n;
1393 1.110 thorpej
1394 1.110 thorpej n = 0;
1395 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++)
1396 1.110 thorpej n += atop(mem_clusters[i].size);
1397 1.110 thorpej return (n);
1398 1.110 thorpej }
1399 1.110 thorpej
1400 1.110 thorpej /*
1401 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
1402 1.43 cgd */
1403 1.43 cgd int
1404 1.43 cgd cpu_dump()
1405 1.43 cgd {
1406 1.43 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1407 1.107 cgd char buf[dbtob(1)];
1408 1.107 cgd kcore_seg_t *segp;
1409 1.107 cgd cpu_kcore_hdr_t *cpuhdrp;
1410 1.107 cgd phys_ram_seg_t *memsegp;
1411 1.110 thorpej int i;
1412 1.43 cgd
1413 1.107 cgd dump = bdevsw[major(dumpdev)].d_dump;
1414 1.43 cgd
1415 1.107 cgd bzero(buf, sizeof buf);
1416 1.43 cgd segp = (kcore_seg_t *)buf;
1417 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1418 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1419 1.107 cgd ALIGN(sizeof(*cpuhdrp))];
1420 1.43 cgd
1421 1.43 cgd /*
1422 1.43 cgd * Generate a segment header.
1423 1.43 cgd */
1424 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1425 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1426 1.43 cgd
1427 1.43 cgd /*
1428 1.107 cgd * Add the machine-dependent header info.
1429 1.43 cgd */
1430 1.140 thorpej cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1431 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
1432 1.110 thorpej cpuhdrp->nmemsegs = mem_cluster_cnt;
1433 1.107 cgd
1434 1.107 cgd /*
1435 1.107 cgd * Fill in the memory segment descriptors.
1436 1.107 cgd */
1437 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1438 1.110 thorpej memsegp[i].start = mem_clusters[i].start;
1439 1.110 thorpej memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1440 1.110 thorpej }
1441 1.43 cgd
1442 1.43 cgd return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1443 1.43 cgd }
1444 1.43 cgd
1445 1.43 cgd /*
1446 1.68 gwr * This is called by main to set dumplo and dumpsize.
1447 1.7 cgd * Dumps always skip the first CLBYTES of disk space
1448 1.7 cgd * in case there might be a disk label stored there.
1449 1.7 cgd * If there is extra space, put dump at the end to
1450 1.7 cgd * reduce the chance that swapping trashes it.
1451 1.7 cgd */
1452 1.7 cgd void
1453 1.68 gwr cpu_dumpconf()
1454 1.7 cgd {
1455 1.43 cgd int nblks, dumpblks; /* size of dump area */
1456 1.7 cgd int maj;
1457 1.7 cgd
1458 1.7 cgd if (dumpdev == NODEV)
1459 1.43 cgd goto bad;
1460 1.7 cgd maj = major(dumpdev);
1461 1.7 cgd if (maj < 0 || maj >= nblkdev)
1462 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1463 1.7 cgd if (bdevsw[maj].d_psize == NULL)
1464 1.43 cgd goto bad;
1465 1.7 cgd nblks = (*bdevsw[maj].d_psize)(dumpdev);
1466 1.7 cgd if (nblks <= ctod(1))
1467 1.43 cgd goto bad;
1468 1.43 cgd
1469 1.43 cgd dumpblks = cpu_dumpsize();
1470 1.43 cgd if (dumpblks < 0)
1471 1.43 cgd goto bad;
1472 1.110 thorpej dumpblks += ctod(cpu_dump_mempagecnt());
1473 1.43 cgd
1474 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
1475 1.43 cgd if (dumpblks > (nblks - ctod(1)))
1476 1.43 cgd goto bad;
1477 1.43 cgd
1478 1.43 cgd /* Put dump at end of partition */
1479 1.43 cgd dumplo = nblks - dumpblks;
1480 1.7 cgd
1481 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1482 1.110 thorpej dumpsize = cpu_dump_mempagecnt();
1483 1.43 cgd return;
1484 1.7 cgd
1485 1.43 cgd bad:
1486 1.43 cgd dumpsize = 0;
1487 1.43 cgd return;
1488 1.7 cgd }
1489 1.7 cgd
1490 1.7 cgd /*
1491 1.42 cgd * Dump the kernel's image to the swap partition.
1492 1.7 cgd */
1493 1.42 cgd #define BYTES_PER_DUMP NBPG
1494 1.42 cgd
1495 1.7 cgd void
1496 1.7 cgd dumpsys()
1497 1.7 cgd {
1498 1.110 thorpej u_long totalbytesleft, bytes, i, n, memcl;
1499 1.110 thorpej u_long maddr;
1500 1.110 thorpej int psize;
1501 1.42 cgd daddr_t blkno;
1502 1.42 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1503 1.42 cgd int error;
1504 1.42 cgd
1505 1.42 cgd /* Save registers. */
1506 1.42 cgd savectx(&dumppcb);
1507 1.7 cgd
1508 1.111 thorpej msgbufenabled = 0; /* don't record dump msgs in msgbuf */
1509 1.7 cgd if (dumpdev == NODEV)
1510 1.7 cgd return;
1511 1.42 cgd
1512 1.42 cgd /*
1513 1.42 cgd * For dumps during autoconfiguration,
1514 1.42 cgd * if dump device has already configured...
1515 1.42 cgd */
1516 1.42 cgd if (dumpsize == 0)
1517 1.68 gwr cpu_dumpconf();
1518 1.47 cgd if (dumplo <= 0) {
1519 1.97 mycroft printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1520 1.97 mycroft minor(dumpdev));
1521 1.42 cgd return;
1522 1.43 cgd }
1523 1.97 mycroft printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1524 1.97 mycroft minor(dumpdev), dumplo);
1525 1.7 cgd
1526 1.42 cgd psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1527 1.46 christos printf("dump ");
1528 1.42 cgd if (psize == -1) {
1529 1.46 christos printf("area unavailable\n");
1530 1.42 cgd return;
1531 1.42 cgd }
1532 1.42 cgd
1533 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1534 1.42 cgd
1535 1.43 cgd if ((error = cpu_dump()) != 0)
1536 1.43 cgd goto err;
1537 1.43 cgd
1538 1.110 thorpej totalbytesleft = ptoa(cpu_dump_mempagecnt());
1539 1.43 cgd blkno = dumplo + cpu_dumpsize();
1540 1.42 cgd dump = bdevsw[major(dumpdev)].d_dump;
1541 1.42 cgd error = 0;
1542 1.42 cgd
1543 1.110 thorpej for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1544 1.110 thorpej maddr = mem_clusters[memcl].start;
1545 1.110 thorpej bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1546 1.110 thorpej
1547 1.110 thorpej for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1548 1.110 thorpej
1549 1.110 thorpej /* Print out how many MBs we to go. */
1550 1.110 thorpej if ((totalbytesleft % (1024*1024)) == 0)
1551 1.110 thorpej printf("%d ", totalbytesleft / (1024 * 1024));
1552 1.110 thorpej
1553 1.110 thorpej /* Limit size for next transfer. */
1554 1.110 thorpej n = bytes - i;
1555 1.110 thorpej if (n > BYTES_PER_DUMP)
1556 1.110 thorpej n = BYTES_PER_DUMP;
1557 1.110 thorpej
1558 1.110 thorpej error = (*dump)(dumpdev, blkno,
1559 1.110 thorpej (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1560 1.110 thorpej if (error)
1561 1.110 thorpej goto err;
1562 1.110 thorpej maddr += n;
1563 1.110 thorpej blkno += btodb(n); /* XXX? */
1564 1.42 cgd
1565 1.110 thorpej /* XXX should look for keystrokes, to cancel. */
1566 1.110 thorpej }
1567 1.42 cgd }
1568 1.42 cgd
1569 1.43 cgd err:
1570 1.42 cgd switch (error) {
1571 1.7 cgd
1572 1.7 cgd case ENXIO:
1573 1.46 christos printf("device bad\n");
1574 1.7 cgd break;
1575 1.7 cgd
1576 1.7 cgd case EFAULT:
1577 1.46 christos printf("device not ready\n");
1578 1.7 cgd break;
1579 1.7 cgd
1580 1.7 cgd case EINVAL:
1581 1.46 christos printf("area improper\n");
1582 1.7 cgd break;
1583 1.7 cgd
1584 1.7 cgd case EIO:
1585 1.46 christos printf("i/o error\n");
1586 1.7 cgd break;
1587 1.7 cgd
1588 1.7 cgd case EINTR:
1589 1.46 christos printf("aborted from console\n");
1590 1.7 cgd break;
1591 1.7 cgd
1592 1.42 cgd case 0:
1593 1.46 christos printf("succeeded\n");
1594 1.42 cgd break;
1595 1.42 cgd
1596 1.7 cgd default:
1597 1.46 christos printf("error %d\n", error);
1598 1.7 cgd break;
1599 1.7 cgd }
1600 1.46 christos printf("\n\n");
1601 1.7 cgd delay(1000);
1602 1.7 cgd }
1603 1.7 cgd
1604 1.1 cgd void
1605 1.1 cgd frametoreg(framep, regp)
1606 1.1 cgd struct trapframe *framep;
1607 1.1 cgd struct reg *regp;
1608 1.1 cgd {
1609 1.1 cgd
1610 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1611 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1612 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1613 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1614 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1615 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1616 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1617 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1618 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1619 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1620 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1621 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1622 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1623 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1624 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1625 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1626 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1627 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1628 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1629 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1630 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1631 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1632 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1633 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1634 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1635 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1636 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1637 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1638 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1639 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1640 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1641 1.1 cgd regp->r_regs[R_ZERO] = 0;
1642 1.1 cgd }
1643 1.1 cgd
1644 1.1 cgd void
1645 1.1 cgd regtoframe(regp, framep)
1646 1.1 cgd struct reg *regp;
1647 1.1 cgd struct trapframe *framep;
1648 1.1 cgd {
1649 1.1 cgd
1650 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1651 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1652 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1653 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1654 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1655 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1656 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1657 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1658 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1659 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1660 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1661 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1662 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1663 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1664 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1665 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1666 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1667 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1668 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1669 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1670 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1671 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1672 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1673 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1674 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1675 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1676 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1677 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1678 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1679 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1680 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1681 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1682 1.1 cgd }
1683 1.1 cgd
1684 1.1 cgd void
1685 1.1 cgd printregs(regp)
1686 1.1 cgd struct reg *regp;
1687 1.1 cgd {
1688 1.1 cgd int i;
1689 1.1 cgd
1690 1.1 cgd for (i = 0; i < 32; i++)
1691 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1692 1.1 cgd i & 1 ? "\n" : "\t");
1693 1.1 cgd }
1694 1.1 cgd
1695 1.1 cgd void
1696 1.1 cgd regdump(framep)
1697 1.1 cgd struct trapframe *framep;
1698 1.1 cgd {
1699 1.1 cgd struct reg reg;
1700 1.1 cgd
1701 1.1 cgd frametoreg(framep, ®);
1702 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1703 1.35 cgd
1704 1.46 christos printf("REGISTERS:\n");
1705 1.1 cgd printregs(®);
1706 1.1 cgd }
1707 1.1 cgd
1708 1.1 cgd #ifdef DEBUG
1709 1.1 cgd int sigdebug = 0;
1710 1.1 cgd int sigpid = 0;
1711 1.1 cgd #define SDB_FOLLOW 0x01
1712 1.1 cgd #define SDB_KSTACK 0x02
1713 1.1 cgd #endif
1714 1.1 cgd
1715 1.1 cgd /*
1716 1.1 cgd * Send an interrupt to process.
1717 1.1 cgd */
1718 1.1 cgd void
1719 1.1 cgd sendsig(catcher, sig, mask, code)
1720 1.1 cgd sig_t catcher;
1721 1.141 thorpej int sig;
1722 1.141 thorpej sigset_t *mask;
1723 1.1 cgd u_long code;
1724 1.1 cgd {
1725 1.1 cgd struct proc *p = curproc;
1726 1.1 cgd struct sigcontext *scp, ksc;
1727 1.1 cgd struct trapframe *frame;
1728 1.1 cgd struct sigacts *psp = p->p_sigacts;
1729 1.141 thorpej int onstack, fsize, rndfsize;
1730 1.1 cgd extern struct proc *fpcurproc;
1731 1.1 cgd
1732 1.1 cgd frame = p->p_md.md_tf;
1733 1.141 thorpej
1734 1.141 thorpej /* Do we need to jump onto the signal stack? */
1735 1.141 thorpej onstack =
1736 1.141 thorpej (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1737 1.141 thorpej (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1738 1.141 thorpej
1739 1.141 thorpej /* Allocate space for the signal handler context. */
1740 1.141 thorpej fsize = sizeof(ksc);
1741 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1742 1.141 thorpej
1743 1.141 thorpej if (onstack)
1744 1.121 kleink scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1745 1.142 mycroft psp->ps_sigstk.ss_size);
1746 1.141 thorpej else
1747 1.142 mycroft scp = (struct sigcontext *)(alpha_pal_rdusp());
1748 1.142 mycroft scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1749 1.141 thorpej
1750 1.1 cgd #ifdef DEBUG
1751 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1752 1.46 christos printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1753 1.141 thorpej sig, &onstack, scp);
1754 1.125 ross #endif
1755 1.1 cgd
1756 1.141 thorpej /* Build stack frame for signal trampoline. */
1757 1.34 cgd ksc.sc_pc = frame->tf_regs[FRAME_PC];
1758 1.34 cgd ksc.sc_ps = frame->tf_regs[FRAME_PS];
1759 1.1 cgd
1760 1.141 thorpej /* Save register context. */
1761 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1762 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1763 1.35 cgd ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1764 1.1 cgd
1765 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1766 1.1 cgd if (p == fpcurproc) {
1767 1.32 cgd alpha_pal_wrfen(1);
1768 1.1 cgd savefpstate(&p->p_addr->u_pcb.pcb_fp);
1769 1.32 cgd alpha_pal_wrfen(0);
1770 1.1 cgd fpcurproc = NULL;
1771 1.1 cgd }
1772 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1773 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1774 1.1 cgd sizeof(struct fpreg));
1775 1.1 cgd ksc.sc_fp_control = 0; /* XXX ? */
1776 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1777 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1778 1.1 cgd
1779 1.141 thorpej /* Save signal stack. */
1780 1.141 thorpej ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1781 1.141 thorpej
1782 1.141 thorpej /* Save signal mask. */
1783 1.141 thorpej ksc.sc_mask = *mask;
1784 1.141 thorpej
1785 1.141 thorpej #ifdef COMPAT_13
1786 1.141 thorpej /*
1787 1.141 thorpej * XXX We always have to save an old style signal mask because
1788 1.141 thorpej * XXX we might be delivering a signal to a process which will
1789 1.141 thorpej * XXX escape from the signal in a non-standard way and invoke
1790 1.141 thorpej * XXX sigreturn() directly.
1791 1.141 thorpej */
1792 1.141 thorpej {
1793 1.141 thorpej /* Note: it's a long in the stack frame. */
1794 1.141 thorpej sigset13_t mask13;
1795 1.141 thorpej
1796 1.141 thorpej native_sigset_to_sigset13(mask, &mask13);
1797 1.141 thorpej ksc.__sc_mask13 = mask13;
1798 1.141 thorpej }
1799 1.141 thorpej #endif
1800 1.1 cgd
1801 1.1 cgd #ifdef COMPAT_OSF1
1802 1.1 cgd /*
1803 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1804 1.1 cgd */
1805 1.1 cgd #endif
1806 1.1 cgd
1807 1.141 thorpej if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1808 1.141 thorpej /*
1809 1.141 thorpej * Process has trashed its stack; give it an illegal
1810 1.141 thorpej * instruction to halt it in its tracks.
1811 1.141 thorpej */
1812 1.141 thorpej #ifdef DEBUG
1813 1.141 thorpej if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1814 1.141 thorpej printf("sendsig(%d): copyout failed on sig %d\n",
1815 1.141 thorpej p->p_pid, sig);
1816 1.141 thorpej #endif
1817 1.141 thorpej sigexit(p, SIGILL);
1818 1.141 thorpej /* NOTREACHED */
1819 1.141 thorpej }
1820 1.1 cgd #ifdef DEBUG
1821 1.1 cgd if (sigdebug & SDB_FOLLOW)
1822 1.46 christos printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1823 1.1 cgd scp, code);
1824 1.1 cgd #endif
1825 1.1 cgd
1826 1.141 thorpej /* Set up the registers to return to sigcode. */
1827 1.142 mycroft frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1828 1.34 cgd frame->tf_regs[FRAME_A0] = sig;
1829 1.34 cgd frame->tf_regs[FRAME_A1] = code;
1830 1.34 cgd frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1831 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1832 1.35 cgd alpha_pal_wrusp((unsigned long)scp);
1833 1.142 mycroft
1834 1.142 mycroft /* Remember that we're now on the signal stack. */
1835 1.142 mycroft if (onstack)
1836 1.142 mycroft psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1837 1.1 cgd
1838 1.1 cgd #ifdef DEBUG
1839 1.1 cgd if (sigdebug & SDB_FOLLOW)
1840 1.46 christos printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1841 1.34 cgd frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1842 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1843 1.46 christos printf("sendsig(%d): sig %d returns\n",
1844 1.1 cgd p->p_pid, sig);
1845 1.1 cgd #endif
1846 1.1 cgd }
1847 1.1 cgd
1848 1.1 cgd /*
1849 1.1 cgd * System call to cleanup state after a signal
1850 1.1 cgd * has been taken. Reset signal mask and
1851 1.1 cgd * stack state from context left by sendsig (above).
1852 1.1 cgd * Return to previous pc and psl as specified by
1853 1.1 cgd * context left by sendsig. Check carefully to
1854 1.1 cgd * make sure that the user has not modified the
1855 1.1 cgd * psl to gain improper priviledges or to cause
1856 1.1 cgd * a machine fault.
1857 1.1 cgd */
1858 1.1 cgd /* ARGSUSED */
1859 1.11 mycroft int
1860 1.141 thorpej sys___sigreturn14(p, v, retval)
1861 1.1 cgd struct proc *p;
1862 1.10 thorpej void *v;
1863 1.10 thorpej register_t *retval;
1864 1.10 thorpej {
1865 1.141 thorpej struct sys___sigreturn14_args /* {
1866 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1867 1.10 thorpej } */ *uap = v;
1868 1.1 cgd struct sigcontext *scp, ksc;
1869 1.1 cgd extern struct proc *fpcurproc;
1870 1.1 cgd
1871 1.141 thorpej /*
1872 1.141 thorpej * The trampoline code hands us the context.
1873 1.141 thorpej * It is unsafe to keep track of it ourselves, in the event that a
1874 1.141 thorpej * program jumps out of a signal handler.
1875 1.141 thorpej */
1876 1.1 cgd scp = SCARG(uap, sigcntxp);
1877 1.1 cgd #ifdef DEBUG
1878 1.1 cgd if (sigdebug & SDB_FOLLOW)
1879 1.46 christos printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1880 1.1 cgd #endif
1881 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1882 1.1 cgd return (EINVAL);
1883 1.1 cgd
1884 1.141 thorpej if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1885 1.141 thorpej return (EFAULT);
1886 1.1 cgd
1887 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1888 1.1 cgd return (EINVAL);
1889 1.1 cgd
1890 1.141 thorpej /* Restore register context. */
1891 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1892 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PS] =
1893 1.32 cgd (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1894 1.1 cgd
1895 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1896 1.35 cgd alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1897 1.1 cgd
1898 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1899 1.1 cgd if (p == fpcurproc)
1900 1.1 cgd fpcurproc = NULL;
1901 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1902 1.1 cgd sizeof(struct fpreg));
1903 1.1 cgd /* XXX ksc.sc_fp_control ? */
1904 1.141 thorpej
1905 1.141 thorpej /* Restore signal stack. */
1906 1.141 thorpej if (ksc.sc_onstack & SS_ONSTACK)
1907 1.141 thorpej p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1908 1.141 thorpej else
1909 1.141 thorpej p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1910 1.141 thorpej
1911 1.141 thorpej /* Restore signal mask. */
1912 1.141 thorpej (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1913 1.1 cgd
1914 1.1 cgd #ifdef DEBUG
1915 1.1 cgd if (sigdebug & SDB_FOLLOW)
1916 1.46 christos printf("sigreturn(%d): returns\n", p->p_pid);
1917 1.1 cgd #endif
1918 1.1 cgd return (EJUSTRETURN);
1919 1.1 cgd }
1920 1.1 cgd
1921 1.1 cgd /*
1922 1.1 cgd * machine dependent system variables.
1923 1.1 cgd */
1924 1.33 cgd int
1925 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1926 1.1 cgd int *name;
1927 1.1 cgd u_int namelen;
1928 1.1 cgd void *oldp;
1929 1.1 cgd size_t *oldlenp;
1930 1.1 cgd void *newp;
1931 1.1 cgd size_t newlen;
1932 1.1 cgd struct proc *p;
1933 1.1 cgd {
1934 1.1 cgd dev_t consdev;
1935 1.1 cgd
1936 1.1 cgd /* all sysctl names at this level are terminal */
1937 1.1 cgd if (namelen != 1)
1938 1.1 cgd return (ENOTDIR); /* overloaded */
1939 1.1 cgd
1940 1.1 cgd switch (name[0]) {
1941 1.1 cgd case CPU_CONSDEV:
1942 1.1 cgd if (cn_tab != NULL)
1943 1.1 cgd consdev = cn_tab->cn_dev;
1944 1.1 cgd else
1945 1.1 cgd consdev = NODEV;
1946 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1947 1.1 cgd sizeof consdev));
1948 1.30 cgd
1949 1.30 cgd case CPU_ROOT_DEVICE:
1950 1.64 thorpej return (sysctl_rdstring(oldp, oldlenp, newp,
1951 1.64 thorpej root_device->dv_xname));
1952 1.36 cgd
1953 1.36 cgd case CPU_UNALIGNED_PRINT:
1954 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1955 1.36 cgd &alpha_unaligned_print));
1956 1.36 cgd
1957 1.36 cgd case CPU_UNALIGNED_FIX:
1958 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1959 1.36 cgd &alpha_unaligned_fix));
1960 1.36 cgd
1961 1.36 cgd case CPU_UNALIGNED_SIGBUS:
1962 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1963 1.36 cgd &alpha_unaligned_sigbus));
1964 1.61 cgd
1965 1.61 cgd case CPU_BOOTED_KERNEL:
1966 1.102 cgd return (sysctl_rdstring(oldp, oldlenp, newp,
1967 1.102 cgd bootinfo.booted_kernel));
1968 1.30 cgd
1969 1.1 cgd default:
1970 1.1 cgd return (EOPNOTSUPP);
1971 1.1 cgd }
1972 1.1 cgd /* NOTREACHED */
1973 1.1 cgd }
1974 1.1 cgd
1975 1.1 cgd /*
1976 1.1 cgd * Set registers on exec.
1977 1.1 cgd */
1978 1.1 cgd void
1979 1.85 mycroft setregs(p, pack, stack)
1980 1.1 cgd register struct proc *p;
1981 1.5 christos struct exec_package *pack;
1982 1.1 cgd u_long stack;
1983 1.1 cgd {
1984 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1985 1.56 cgd extern struct proc *fpcurproc;
1986 1.56 cgd #ifdef DEBUG
1987 1.1 cgd int i;
1988 1.56 cgd #endif
1989 1.43 cgd
1990 1.43 cgd #ifdef DEBUG
1991 1.43 cgd /*
1992 1.43 cgd * Crash and dump, if the user requested it.
1993 1.43 cgd */
1994 1.43 cgd if (boothowto & RB_DUMP)
1995 1.43 cgd panic("crash requested by boot flags");
1996 1.43 cgd #endif
1997 1.1 cgd
1998 1.1 cgd #ifdef DEBUG
1999 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
2000 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
2001 1.1 cgd #else
2002 1.34 cgd bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
2003 1.1 cgd #endif
2004 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
2005 1.7 cgd #define FP_RN 2 /* XXX */
2006 1.7 cgd p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
2007 1.35 cgd alpha_pal_wrusp(stack);
2008 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
2009 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
2010 1.41 cgd
2011 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
2012 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
2013 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
2014 1.63 cgd tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
2015 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
2016 1.1 cgd
2017 1.33 cgd p->p_md.md_flags &= ~MDP_FPUSED;
2018 1.1 cgd if (fpcurproc == p)
2019 1.1 cgd fpcurproc = NULL;
2020 1.1 cgd }
2021 1.1 cgd
2022 1.1 cgd void
2023 1.1 cgd netintr()
2024 1.1 cgd {
2025 1.49 cgd int n, s;
2026 1.49 cgd
2027 1.49 cgd s = splhigh();
2028 1.49 cgd n = netisr;
2029 1.49 cgd netisr = 0;
2030 1.49 cgd splx(s);
2031 1.49 cgd
2032 1.49 cgd #define DONETISR(bit, fn) \
2033 1.49 cgd do { \
2034 1.49 cgd if (n & (1 << (bit))) \
2035 1.49 cgd fn; \
2036 1.49 cgd } while (0)
2037 1.49 cgd
2038 1.1 cgd #ifdef INET
2039 1.72 cgd #if NARP > 0
2040 1.49 cgd DONETISR(NETISR_ARP, arpintr());
2041 1.72 cgd #endif
2042 1.49 cgd DONETISR(NETISR_IP, ipintr());
2043 1.70 christos #endif
2044 1.70 christos #ifdef NETATALK
2045 1.70 christos DONETISR(NETISR_ATALK, atintr());
2046 1.1 cgd #endif
2047 1.1 cgd #ifdef NS
2048 1.49 cgd DONETISR(NETISR_NS, nsintr());
2049 1.1 cgd #endif
2050 1.1 cgd #ifdef ISO
2051 1.49 cgd DONETISR(NETISR_ISO, clnlintr());
2052 1.1 cgd #endif
2053 1.1 cgd #ifdef CCITT
2054 1.49 cgd DONETISR(NETISR_CCITT, ccittintr());
2055 1.49 cgd #endif
2056 1.49 cgd #ifdef NATM
2057 1.49 cgd DONETISR(NETISR_NATM, natmintr());
2058 1.1 cgd #endif
2059 1.49 cgd #if NPPP > 1
2060 1.49 cgd DONETISR(NETISR_PPP, pppintr());
2061 1.8 cgd #endif
2062 1.49 cgd
2063 1.49 cgd #undef DONETISR
2064 1.1 cgd }
2065 1.1 cgd
2066 1.1 cgd void
2067 1.1 cgd do_sir()
2068 1.1 cgd {
2069 1.58 cgd u_int64_t n;
2070 1.1 cgd
2071 1.59 cgd do {
2072 1.60 cgd (void)splhigh();
2073 1.58 cgd n = ssir;
2074 1.58 cgd ssir = 0;
2075 1.60 cgd splsoft(); /* don't recurse through spl0() */
2076 1.112 thorpej
2077 1.112 thorpej #if defined(UVM)
2078 1.112 thorpej #define COUNT_SOFT uvmexp.softs++
2079 1.112 thorpej #else
2080 1.112 thorpej #define COUNT_SOFT cnt.v_soft++
2081 1.112 thorpej #endif
2082 1.112 thorpej
2083 1.59 cgd #define DO_SIR(bit, fn) \
2084 1.59 cgd do { \
2085 1.60 cgd if (n & (bit)) { \
2086 1.112 thorpej COUNT_SOFT; \
2087 1.59 cgd fn; \
2088 1.59 cgd } \
2089 1.59 cgd } while (0)
2090 1.59 cgd
2091 1.60 cgd DO_SIR(SIR_NET, netintr());
2092 1.60 cgd DO_SIR(SIR_CLOCK, softclock());
2093 1.143 matt #if NCOM > 0
2094 1.143 matt DO_SIR(SIR_SERIAL, comsoft());
2095 1.143 matt #endif
2096 1.60 cgd
2097 1.112 thorpej #undef COUNT_SOFT
2098 1.60 cgd #undef DO_SIR
2099 1.59 cgd } while (ssir != 0);
2100 1.1 cgd }
2101 1.1 cgd
2102 1.1 cgd int
2103 1.1 cgd spl0()
2104 1.1 cgd {
2105 1.1 cgd
2106 1.59 cgd if (ssir)
2107 1.59 cgd do_sir(); /* it lowers the IPL itself */
2108 1.1 cgd
2109 1.32 cgd return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
2110 1.1 cgd }
2111 1.1 cgd
2112 1.1 cgd /*
2113 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
2114 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
2115 1.52 cgd * into queues, Remrunqueue removes them from queues. The running process is
2116 1.52 cgd * on no queue, other processes are on a queue related to p->p_priority,
2117 1.52 cgd * divided by 4 actually to shrink the 0-127 range of priorities into the 32
2118 1.52 cgd * available queues.
2119 1.1 cgd */
2120 1.1 cgd /*
2121 1.1 cgd * setrunqueue(p)
2122 1.1 cgd * proc *p;
2123 1.1 cgd *
2124 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
2125 1.1 cgd */
2126 1.1 cgd
2127 1.1 cgd void
2128 1.1 cgd setrunqueue(p)
2129 1.1 cgd struct proc *p;
2130 1.1 cgd {
2131 1.1 cgd int bit;
2132 1.1 cgd
2133 1.1 cgd /* firewall: p->p_back must be NULL */
2134 1.1 cgd if (p->p_back != NULL)
2135 1.1 cgd panic("setrunqueue");
2136 1.1 cgd
2137 1.1 cgd bit = p->p_priority >> 2;
2138 1.1 cgd whichqs |= (1 << bit);
2139 1.1 cgd p->p_forw = (struct proc *)&qs[bit];
2140 1.1 cgd p->p_back = qs[bit].ph_rlink;
2141 1.1 cgd p->p_back->p_forw = p;
2142 1.1 cgd qs[bit].ph_rlink = p;
2143 1.1 cgd }
2144 1.1 cgd
2145 1.1 cgd /*
2146 1.52 cgd * remrunqueue(p)
2147 1.1 cgd *
2148 1.1 cgd * Call should be made at splclock().
2149 1.1 cgd */
2150 1.1 cgd void
2151 1.52 cgd remrunqueue(p)
2152 1.1 cgd struct proc *p;
2153 1.1 cgd {
2154 1.1 cgd int bit;
2155 1.1 cgd
2156 1.1 cgd bit = p->p_priority >> 2;
2157 1.1 cgd if ((whichqs & (1 << bit)) == 0)
2158 1.52 cgd panic("remrunqueue");
2159 1.1 cgd
2160 1.1 cgd p->p_back->p_forw = p->p_forw;
2161 1.1 cgd p->p_forw->p_back = p->p_back;
2162 1.1 cgd p->p_back = NULL; /* for firewall checking. */
2163 1.1 cgd
2164 1.1 cgd if ((struct proc *)&qs[bit] == qs[bit].ph_link)
2165 1.1 cgd whichqs &= ~(1 << bit);
2166 1.1 cgd }
2167 1.1 cgd
2168 1.1 cgd /*
2169 1.1 cgd * Return the best possible estimate of the time in the timeval
2170 1.1 cgd * to which tvp points. Unfortunately, we can't read the hardware registers.
2171 1.1 cgd * We guarantee that the time will be greater than the value obtained by a
2172 1.1 cgd * previous call.
2173 1.1 cgd */
2174 1.1 cgd void
2175 1.1 cgd microtime(tvp)
2176 1.1 cgd register struct timeval *tvp;
2177 1.1 cgd {
2178 1.1 cgd int s = splclock();
2179 1.1 cgd static struct timeval lasttime;
2180 1.1 cgd
2181 1.1 cgd *tvp = time;
2182 1.1 cgd #ifdef notdef
2183 1.1 cgd tvp->tv_usec += clkread();
2184 1.1 cgd while (tvp->tv_usec > 1000000) {
2185 1.1 cgd tvp->tv_sec++;
2186 1.1 cgd tvp->tv_usec -= 1000000;
2187 1.1 cgd }
2188 1.1 cgd #endif
2189 1.1 cgd if (tvp->tv_sec == lasttime.tv_sec &&
2190 1.1 cgd tvp->tv_usec <= lasttime.tv_usec &&
2191 1.1 cgd (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
2192 1.1 cgd tvp->tv_sec++;
2193 1.1 cgd tvp->tv_usec -= 1000000;
2194 1.1 cgd }
2195 1.1 cgd lasttime = *tvp;
2196 1.1 cgd splx(s);
2197 1.15 cgd }
2198 1.15 cgd
2199 1.15 cgd /*
2200 1.15 cgd * Wait "n" microseconds.
2201 1.15 cgd */
2202 1.32 cgd void
2203 1.15 cgd delay(n)
2204 1.32 cgd unsigned long n;
2205 1.15 cgd {
2206 1.15 cgd long N = cycles_per_usec * (n);
2207 1.15 cgd
2208 1.15 cgd while (N > 0) /* XXX */
2209 1.15 cgd N -= 3; /* XXX */
2210 1.1 cgd }
2211 1.1 cgd
2212 1.8 cgd #if defined(COMPAT_OSF1) || 1 /* XXX */
2213 1.55 cgd void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
2214 1.85 mycroft u_long));
2215 1.55 cgd
2216 1.1 cgd void
2217 1.85 mycroft cpu_exec_ecoff_setregs(p, epp, stack)
2218 1.1 cgd struct proc *p;
2219 1.19 cgd struct exec_package *epp;
2220 1.5 christos u_long stack;
2221 1.1 cgd {
2222 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2223 1.1 cgd
2224 1.85 mycroft setregs(p, epp, stack);
2225 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2226 1.1 cgd }
2227 1.1 cgd
2228 1.1 cgd /*
2229 1.1 cgd * cpu_exec_ecoff_hook():
2230 1.1 cgd * cpu-dependent ECOFF format hook for execve().
2231 1.1 cgd *
2232 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
2233 1.1 cgd *
2234 1.1 cgd */
2235 1.1 cgd int
2236 1.19 cgd cpu_exec_ecoff_hook(p, epp)
2237 1.1 cgd struct proc *p;
2238 1.1 cgd struct exec_package *epp;
2239 1.1 cgd {
2240 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2241 1.5 christos extern struct emul emul_netbsd;
2242 1.5 christos #ifdef COMPAT_OSF1
2243 1.5 christos extern struct emul emul_osf1;
2244 1.5 christos #endif
2245 1.1 cgd
2246 1.19 cgd switch (execp->f.f_magic) {
2247 1.5 christos #ifdef COMPAT_OSF1
2248 1.1 cgd case ECOFF_MAGIC_ALPHA:
2249 1.5 christos epp->ep_emul = &emul_osf1;
2250 1.1 cgd break;
2251 1.5 christos #endif
2252 1.1 cgd
2253 1.1 cgd case ECOFF_MAGIC_NETBSD_ALPHA:
2254 1.5 christos epp->ep_emul = &emul_netbsd;
2255 1.1 cgd break;
2256 1.1 cgd
2257 1.1 cgd default:
2258 1.12 cgd return ENOEXEC;
2259 1.1 cgd }
2260 1.1 cgd return 0;
2261 1.1 cgd }
2262 1.1 cgd #endif
2263 1.110 thorpej
2264 1.110 thorpej int
2265 1.110 thorpej alpha_pa_access(pa)
2266 1.110 thorpej u_long pa;
2267 1.110 thorpej {
2268 1.110 thorpej int i;
2269 1.110 thorpej
2270 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
2271 1.110 thorpej if (pa < mem_clusters[i].start)
2272 1.110 thorpej continue;
2273 1.110 thorpej if ((pa - mem_clusters[i].start) >=
2274 1.110 thorpej (mem_clusters[i].size & ~PAGE_MASK))
2275 1.110 thorpej continue;
2276 1.110 thorpej return (mem_clusters[i].size & PAGE_MASK); /* prot */
2277 1.110 thorpej }
2278 1.110 thorpej return (PROT_NONE);
2279 1.110 thorpej }
2280 1.50 cgd
2281 1.50 cgd /* XXX XXX BEGIN XXX XXX */
2282 1.140 thorpej paddr_t alpha_XXX_dmamap_or; /* XXX */
2283 1.50 cgd /* XXX */
2284 1.140 thorpej paddr_t /* XXX */
2285 1.50 cgd alpha_XXX_dmamap(v) /* XXX */
2286 1.140 thorpej vaddr_t v; /* XXX */
2287 1.50 cgd { /* XXX */
2288 1.50 cgd /* XXX */
2289 1.51 cgd return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2290 1.50 cgd } /* XXX */
2291 1.50 cgd /* XXX XXX END XXX XXX */
2292 1.138 ross
2293 1.138 ross struct mchkinfo *
2294 1.138 ross cpu_mchkinfo()
2295 1.138 ross {
2296 1.138 ross if (mchkinfo_all_cpus == NULL)
2297 1.138 ross return &startup_info;
2298 1.138 ross return mchkinfo_all_cpus + alpha_pal_whami();
2299 1.138 ross }
2300