Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.164
      1  1.164   thorpej /* $NetBSD: machdep.c,v 1.164 1999/03/26 00:15:04 thorpej Exp $ */
      2  1.110   thorpej 
      3  1.110   thorpej /*-
      4  1.110   thorpej  * Copyright (c) 1998 The NetBSD Foundation, Inc.
      5  1.110   thorpej  * All rights reserved.
      6  1.110   thorpej  *
      7  1.110   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.110   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.110   thorpej  * NASA Ames Research Center and by Chris G. Demetriou.
     10  1.110   thorpej  *
     11  1.110   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.110   thorpej  * modification, are permitted provided that the following conditions
     13  1.110   thorpej  * are met:
     14  1.110   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.110   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.110   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.110   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.110   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.110   thorpej  * 3. All advertising materials mentioning features or use of this software
     20  1.110   thorpej  *    must display the following acknowledgement:
     21  1.110   thorpej  *	This product includes software developed by the NetBSD
     22  1.110   thorpej  *	Foundation, Inc. and its contributors.
     23  1.110   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.110   thorpej  *    contributors may be used to endorse or promote products derived
     25  1.110   thorpej  *    from this software without specific prior written permission.
     26  1.110   thorpej  *
     27  1.110   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.110   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.110   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.110   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.110   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.110   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.110   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.110   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.110   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.110   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.110   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38  1.110   thorpej  */
     39    1.1       cgd 
     40    1.1       cgd /*
     41   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42    1.1       cgd  * All rights reserved.
     43    1.1       cgd  *
     44    1.1       cgd  * Author: Chris G. Demetriou
     45    1.1       cgd  *
     46    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     47    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     48    1.1       cgd  * notice and this permission notice appear in all copies of the
     49    1.1       cgd  * software, derivative works or modified versions, and any portions
     50    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     51    1.1       cgd  *
     52    1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53    1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55    1.1       cgd  *
     56    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     57    1.1       cgd  *
     58    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59    1.1       cgd  *  School of Computer Science
     60    1.1       cgd  *  Carnegie Mellon University
     61    1.1       cgd  *  Pittsburgh PA 15213-3890
     62    1.1       cgd  *
     63    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     64    1.1       cgd  * rights to redistribute these changes.
     65    1.1       cgd  */
     66   1.74       cgd 
     67  1.162    scottr #include "opt_bufcache.h"
     68  1.129  jonathan #include "opt_ddb.h"
     69  1.147   thorpej #include "opt_multiprocessor.h"
     70  1.113   thorpej #include "opt_pmap_new.h"
     71  1.123   thorpej #include "opt_dec_3000_300.h"
     72  1.123   thorpej #include "opt_dec_3000_500.h"
     73  1.127   thorpej #include "opt_compat_osf1.h"
     74  1.141   thorpej #include "opt_compat_netbsd.h"
     75  1.129  jonathan #include "opt_inet.h"
     76  1.129  jonathan #include "opt_atalk.h"
     77  1.131  jonathan #include "opt_ccitt.h"
     78  1.131  jonathan #include "opt_iso.h"
     79  1.132  jonathan #include "opt_ns.h"
     80  1.133  jonathan #include "opt_natm.h"
     81  1.153      tron #include "opt_sysv.h"
     82  1.112   thorpej 
     83   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     84   1.75       cgd 
     85  1.164   thorpej __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.164 1999/03/26 00:15:04 thorpej Exp $");
     86    1.1       cgd 
     87    1.1       cgd #include <sys/param.h>
     88    1.1       cgd #include <sys/systm.h>
     89    1.1       cgd #include <sys/signalvar.h>
     90    1.1       cgd #include <sys/kernel.h>
     91    1.1       cgd #include <sys/map.h>
     92    1.1       cgd #include <sys/proc.h>
     93    1.1       cgd #include <sys/buf.h>
     94    1.1       cgd #include <sys/reboot.h>
     95   1.28       cgd #include <sys/device.h>
     96    1.1       cgd #include <sys/file.h>
     97    1.1       cgd #ifdef REAL_CLISTS
     98    1.1       cgd #include <sys/clist.h>
     99    1.1       cgd #endif
    100    1.1       cgd #include <sys/callout.h>
    101    1.1       cgd #include <sys/malloc.h>
    102    1.1       cgd #include <sys/mbuf.h>
    103  1.110   thorpej #include <sys/mman.h>
    104    1.1       cgd #include <sys/msgbuf.h>
    105    1.1       cgd #include <sys/ioctl.h>
    106    1.1       cgd #include <sys/tty.h>
    107    1.1       cgd #include <sys/user.h>
    108    1.1       cgd #include <sys/exec.h>
    109    1.1       cgd #include <sys/exec_ecoff.h>
    110   1.91    mjacob #include <vm/vm.h>
    111    1.1       cgd #include <sys/sysctl.h>
    112   1.43       cgd #include <sys/core.h>
    113   1.43       cgd #include <sys/kcore.h>
    114   1.43       cgd #include <machine/kcore.h>
    115    1.1       cgd #ifdef SYSVMSG
    116    1.1       cgd #include <sys/msg.h>
    117    1.1       cgd #endif
    118    1.1       cgd #ifdef SYSVSEM
    119    1.1       cgd #include <sys/sem.h>
    120    1.1       cgd #endif
    121    1.1       cgd #ifdef SYSVSHM
    122    1.1       cgd #include <sys/shm.h>
    123    1.1       cgd #endif
    124    1.1       cgd 
    125    1.1       cgd #include <sys/mount.h>
    126    1.1       cgd #include <sys/syscallargs.h>
    127    1.1       cgd 
    128    1.1       cgd #include <vm/vm_kern.h>
    129    1.1       cgd 
    130  1.112   thorpej #include <uvm/uvm_extern.h>
    131  1.112   thorpej 
    132    1.1       cgd #include <dev/cons.h>
    133    1.1       cgd 
    134   1.81   thorpej #include <machine/autoconf.h>
    135    1.1       cgd #include <machine/cpu.h>
    136    1.1       cgd #include <machine/reg.h>
    137    1.1       cgd #include <machine/rpb.h>
    138    1.1       cgd #include <machine/prom.h>
    139   1.73       cgd #include <machine/conf.h>
    140    1.8       cgd 
    141  1.148   thorpej #include <alpha/alpha/cpuvar.h>
    142  1.148   thorpej 
    143   1.49       cgd #include <net/netisr.h>
    144   1.33       cgd #include <net/if.h>
    145   1.49       cgd 
    146   1.49       cgd #ifdef INET
    147  1.120      ross #include <net/route.h>
    148   1.33       cgd #include <netinet/in.h>
    149   1.72       cgd #include <netinet/ip_var.h>
    150   1.72       cgd #include "arp.h"
    151   1.72       cgd #if NARP > 0
    152   1.67        is #include <netinet/if_inarp.h>
    153   1.72       cgd #endif
    154   1.49       cgd #endif
    155   1.49       cgd #ifdef NS
    156   1.49       cgd #include <netns/ns_var.h>
    157   1.49       cgd #endif
    158   1.49       cgd #ifdef ISO
    159   1.49       cgd #include <netiso/iso.h>
    160   1.49       cgd #include <netiso/clnp.h>
    161   1.49       cgd #endif
    162   1.55       cgd #ifdef CCITT
    163   1.55       cgd #include <netccitt/x25.h>
    164   1.55       cgd #include <netccitt/pk.h>
    165   1.55       cgd #include <netccitt/pk_extern.h>
    166   1.55       cgd #endif
    167   1.55       cgd #ifdef NATM
    168   1.55       cgd #include <netnatm/natm.h>
    169   1.55       cgd #endif
    170   1.70  christos #ifdef NETATALK
    171   1.70  christos #include <netatalk/at_extern.h>
    172   1.70  christos #endif
    173   1.49       cgd #include "ppp.h"
    174   1.49       cgd #if NPPP > 0
    175   1.49       cgd #include <net/ppp_defs.h>
    176   1.49       cgd #include <net/if_ppp.h>
    177   1.49       cgd #endif
    178    1.1       cgd 
    179   1.81   thorpej #ifdef DDB
    180   1.81   thorpej #include <machine/db_machdep.h>
    181   1.81   thorpej #include <ddb/db_access.h>
    182   1.81   thorpej #include <ddb/db_sym.h>
    183   1.81   thorpej #include <ddb/db_extern.h>
    184   1.81   thorpej #include <ddb/db_interface.h>
    185   1.81   thorpej #endif
    186   1.81   thorpej 
    187  1.155      ross #include <machine/alpha.h>
    188  1.155      ross #include <machine/intrcnt.h>
    189  1.155      ross 
    190  1.143      matt #include "com.h"
    191  1.143      matt #if NCOM > 0
    192  1.143      matt extern void comsoft __P((void));
    193  1.143      matt #endif
    194  1.143      matt 
    195  1.112   thorpej vm_map_t exec_map = NULL;
    196  1.112   thorpej vm_map_t mb_map = NULL;
    197  1.112   thorpej vm_map_t phys_map = NULL;
    198    1.1       cgd 
    199    1.1       cgd /*
    200    1.1       cgd  * Declare these as initialized data so we can patch them.
    201    1.1       cgd  */
    202    1.1       cgd int	nswbuf = 0;
    203    1.1       cgd #ifdef	NBUF
    204    1.1       cgd int	nbuf = NBUF;
    205    1.1       cgd #else
    206    1.1       cgd int	nbuf = 0;
    207    1.1       cgd #endif
    208  1.154      ross 
    209  1.154      ross #ifndef	BUFPAGES
    210  1.154      ross #define BUFPAGES 0
    211  1.154      ross #endif
    212  1.154      ross #ifndef BUFCACHE
    213  1.154      ross #define BUFCACHE 10
    214    1.1       cgd #endif
    215  1.154      ross 
    216  1.154      ross int	bufpages = BUFPAGES;	/* optional hardwired count */
    217  1.154      ross int	bufcache = BUFCACHE;	/* % of RAM to use for buffer cache */
    218  1.154      ross 
    219   1.86       leo caddr_t msgbufaddr;
    220   1.86       leo 
    221    1.1       cgd int	maxmem;			/* max memory per process */
    222    1.7       cgd 
    223    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    224    1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    225    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    226    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    227    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    228    1.1       cgd 
    229    1.1       cgd int	cputype;		/* system type, from the RPB */
    230    1.1       cgd 
    231    1.1       cgd /*
    232    1.1       cgd  * XXX We need an address to which we can assign things so that they
    233    1.1       cgd  * won't be optimized away because we didn't use the value.
    234    1.1       cgd  */
    235    1.1       cgd u_int32_t no_optimize;
    236    1.1       cgd 
    237    1.1       cgd /* the following is used externally (sysctl_hw) */
    238   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    239   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    240   1.29       cgd char	cpu_model[128];
    241    1.1       cgd 
    242    1.1       cgd struct	user *proc0paddr;
    243    1.1       cgd 
    244    1.1       cgd /* Number of machine cycles per microsecond */
    245    1.1       cgd u_int64_t	cycles_per_usec;
    246    1.1       cgd 
    247    1.7       cgd /* number of cpus in the box.  really! */
    248    1.7       cgd int		ncpus;
    249    1.7       cgd 
    250  1.138      ross /* machine check info array, valloc()'ed in allocsys() */
    251  1.138      ross 
    252  1.138      ross static struct mchkinfo startup_info,
    253  1.138      ross 			*mchkinfo_all_cpus;
    254  1.134    mjacob 
    255  1.102       cgd struct bootinfo_kernel bootinfo;
    256   1.81   thorpej 
    257  1.123   thorpej /* For built-in TCDS */
    258  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    259  1.123   thorpej u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    260  1.123   thorpej #endif
    261  1.123   thorpej 
    262   1.89    mjacob struct platform platform;
    263   1.89    mjacob 
    264  1.100   thorpej u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
    265  1.100   thorpej u_int32_t vm_phys_size = _VM_PHYS_SIZE;
    266   1.90    mjacob 
    267   1.81   thorpej #ifdef DDB
    268   1.81   thorpej /* start and end of kernel symbol table */
    269   1.81   thorpej void	*ksym_start, *ksym_end;
    270   1.81   thorpej #endif
    271   1.81   thorpej 
    272   1.30       cgd /* for cpu_sysctl() */
    273   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    274   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    275   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    276   1.30       cgd 
    277  1.110   thorpej /*
    278  1.110   thorpej  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    279  1.110   thorpej  * XXX it should also be larger than it is, because not all of the mddt
    280  1.110   thorpej  * XXX clusters end up being used for VM.
    281  1.110   thorpej  */
    282  1.110   thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    283  1.110   thorpej int	mem_cluster_cnt;
    284  1.110   thorpej 
    285   1.95   thorpej caddr_t	allocsys __P((caddr_t));
    286   1.55       cgd int	cpu_dump __P((void));
    287   1.55       cgd int	cpu_dumpsize __P((void));
    288  1.110   thorpej u_long	cpu_dump_mempagecnt __P((void));
    289   1.55       cgd void	dumpsys __P((void));
    290   1.55       cgd void	identifycpu __P((void));
    291   1.55       cgd void	netintr __P((void));
    292   1.55       cgd void	printregs __P((struct reg *));
    293   1.33       cgd 
    294   1.55       cgd void
    295  1.102       cgd alpha_init(pfn, ptb, bim, bip, biv)
    296    1.1       cgd 	u_long pfn;		/* first free PFN number */
    297    1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    298   1.81   thorpej 	u_long bim;		/* bootinfo magic */
    299   1.81   thorpej 	u_long bip;		/* bootinfo pointer */
    300  1.102       cgd 	u_long biv;		/* bootinfo version */
    301    1.1       cgd {
    302   1.95   thorpej 	extern char kernel_text[], _end[];
    303    1.1       cgd 	struct mddt *mddtp;
    304  1.110   thorpej 	struct mddt_cluster *memc;
    305    1.7       cgd 	int i, mddtweird;
    306  1.110   thorpej 	struct vm_physseg *vps;
    307  1.140   thorpej 	vaddr_t kernstart, kernend;
    308  1.140   thorpej 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    309  1.140   thorpej 	vsize_t size;
    310    1.1       cgd 	char *p;
    311   1.95   thorpej 	caddr_t v;
    312  1.106       cgd 	char *bootinfo_msg;
    313  1.106       cgd 
    314  1.106       cgd 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    315    1.1       cgd 
    316    1.1       cgd 	/*
    317   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    318    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    319    1.1       cgd 	 */
    320   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    321   1.32       cgd 	alpha_pal_wrfen(0);
    322   1.37       cgd 	ALPHA_TBIA();
    323   1.32       cgd 	alpha_pal_imb();
    324    1.1       cgd 
    325    1.1       cgd 	/*
    326  1.106       cgd 	 * Get critical system information (if possible, from the
    327  1.106       cgd 	 * information provided by the boot program).
    328   1.81   thorpej 	 */
    329  1.106       cgd 	bootinfo_msg = NULL;
    330   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    331  1.102       cgd 		if (biv == 0) {		/* backward compat */
    332  1.102       cgd 			biv = *(u_long *)bip;
    333  1.102       cgd 			bip += 8;
    334  1.102       cgd 		}
    335  1.102       cgd 		switch (biv) {
    336  1.102       cgd 		case 1: {
    337  1.102       cgd 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    338  1.102       cgd 
    339  1.102       cgd 			bootinfo.ssym = v1p->ssym;
    340  1.102       cgd 			bootinfo.esym = v1p->esym;
    341  1.106       cgd 			/* hwrpb may not be provided by boot block in v1 */
    342  1.106       cgd 			if (v1p->hwrpb != NULL) {
    343  1.106       cgd 				bootinfo.hwrpb_phys =
    344  1.106       cgd 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    345  1.106       cgd 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    346  1.106       cgd 			} else {
    347  1.106       cgd 				bootinfo.hwrpb_phys =
    348  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    349  1.106       cgd 				bootinfo.hwrpb_size =
    350  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    351  1.106       cgd 			}
    352  1.102       cgd 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    353  1.102       cgd 			    min(sizeof v1p->boot_flags,
    354  1.102       cgd 			      sizeof bootinfo.boot_flags));
    355  1.102       cgd 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    356  1.102       cgd 			    min(sizeof v1p->booted_kernel,
    357  1.102       cgd 			      sizeof bootinfo.booted_kernel));
    358  1.106       cgd 			/* booted dev not provided in bootinfo */
    359  1.106       cgd 			init_prom_interface((struct rpb *)
    360  1.106       cgd 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    361  1.102       cgd                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    362  1.102       cgd 			    sizeof bootinfo.booted_dev);
    363   1.81   thorpej 			break;
    364  1.102       cgd 		}
    365   1.81   thorpej 		default:
    366  1.106       cgd 			bootinfo_msg = "unknown bootinfo version";
    367  1.102       cgd 			goto nobootinfo;
    368   1.81   thorpej 		}
    369  1.102       cgd 	} else {
    370  1.106       cgd 		bootinfo_msg = "boot program did not pass bootinfo";
    371  1.102       cgd nobootinfo:
    372  1.102       cgd 		bootinfo.ssym = (u_long)_end;
    373  1.102       cgd 		bootinfo.esym = (u_long)_end;
    374  1.106       cgd 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    375  1.106       cgd 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    376  1.106       cgd 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    377  1.102       cgd 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    378  1.102       cgd 		    sizeof bootinfo.boot_flags);
    379  1.102       cgd 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    380  1.102       cgd 		    sizeof bootinfo.booted_kernel);
    381  1.102       cgd 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    382  1.102       cgd 		    sizeof bootinfo.booted_dev);
    383  1.102       cgd 	}
    384  1.102       cgd 
    385   1.81   thorpej 	/*
    386  1.106       cgd 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    387  1.106       cgd 	 * lots of things.
    388  1.106       cgd 	 */
    389  1.106       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    390  1.123   thorpej 
    391  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    392  1.123   thorpej 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    393  1.123   thorpej 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    394  1.123   thorpej 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    395  1.123   thorpej 		    sizeof(dec_3000_scsiid));
    396  1.123   thorpej 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    397  1.123   thorpej 		    sizeof(dec_3000_scsifast));
    398  1.123   thorpej 	}
    399  1.123   thorpej #endif
    400  1.106       cgd 
    401  1.106       cgd 	/*
    402  1.106       cgd 	 * Remember how many cycles there are per microsecond,
    403  1.106       cgd 	 * so that we can use delay().  Round up, for safety.
    404  1.106       cgd 	 */
    405  1.106       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    406  1.106       cgd 
    407  1.106       cgd 	/*
    408  1.106       cgd 	 * Initalize the (temporary) bootstrap console interface, so
    409  1.106       cgd 	 * we can use printf until the VM system starts being setup.
    410  1.106       cgd 	 * The real console is initialized before then.
    411  1.106       cgd 	 */
    412  1.106       cgd 	init_bootstrap_console();
    413  1.106       cgd 
    414  1.106       cgd 	/* OUTPUT NOW ALLOWED */
    415  1.106       cgd 
    416  1.106       cgd 	/* delayed from above */
    417  1.106       cgd 	if (bootinfo_msg)
    418  1.106       cgd 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    419  1.106       cgd 		    bootinfo_msg, bim, bip, biv);
    420  1.106       cgd 
    421  1.147   thorpej 	/* Initialize the trap vectors on the primary processor. */
    422  1.147   thorpej 	trap_init();
    423    1.1       cgd 
    424    1.1       cgd 	/*
    425  1.106       cgd 	 * Find out what hardware we're on, and do basic initialization.
    426  1.106       cgd 	 */
    427  1.106       cgd 	cputype = hwrpb->rpb_type;
    428  1.106       cgd 	if (cputype >= ncpuinit) {
    429  1.106       cgd 		platform_not_supported();
    430  1.106       cgd 		/* NOTREACHED */
    431  1.106       cgd 	}
    432  1.106       cgd 	(*cpuinit[cputype].init)();
    433  1.106       cgd 	strcpy(cpu_model, platform.model);
    434  1.106       cgd 
    435  1.106       cgd 	/*
    436  1.106       cgd 	 * Initalize the real console, so the the bootstrap console is
    437  1.106       cgd 	 * no longer necessary.
    438  1.106       cgd 	 */
    439  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    440  1.106       cgd 	if (!pmap_uses_prom_console())
    441  1.106       cgd #endif
    442  1.106       cgd 		(*platform.cons_init)();
    443  1.106       cgd 
    444  1.106       cgd #ifdef DIAGNOSTIC
    445  1.106       cgd 	/* Paranoid sanity checking */
    446  1.106       cgd 
    447  1.106       cgd 	/* We should always be running on the the primary. */
    448  1.106       cgd 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
    449  1.106       cgd 
    450  1.116    mjacob 	/*
    451  1.116    mjacob 	 * On single-CPU systypes, the primary should always be CPU 0,
    452  1.116    mjacob 	 * except on Alpha 8200 systems where the CPU id is related
    453  1.116    mjacob 	 * to the VID, which is related to the Turbo Laser node id.
    454  1.116    mjacob 	 */
    455  1.106       cgd 	if (cputype != ST_DEC_21000)
    456  1.106       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);
    457  1.106       cgd #endif
    458  1.106       cgd 
    459  1.106       cgd 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    460  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    461  1.106       cgd 	/*
    462  1.106       cgd 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    463  1.106       cgd 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    464  1.106       cgd 	 */
    465  1.106       cgd #endif
    466  1.106       cgd 
    467  1.106       cgd 	/*
    468  1.106       cgd 	 * find out this system's page size
    469   1.95   thorpej 	 */
    470   1.95   thorpej 	PAGE_SIZE = hwrpb->rpb_page_size;
    471   1.95   thorpej 	if (PAGE_SIZE != 8192)
    472   1.95   thorpej 		panic("page size %d != 8192?!", PAGE_SIZE);
    473   1.95   thorpej 
    474   1.95   thorpej 	/*
    475   1.95   thorpej 	 * Initialize PAGE_SIZE-dependent variables.
    476   1.95   thorpej 	 */
    477  1.112   thorpej 	uvm_setpagesize();
    478   1.95   thorpej 
    479   1.95   thorpej 	/*
    480  1.101       cgd 	 * Find the beginning and end of the kernel (and leave a
    481  1.101       cgd 	 * bit of space before the beginning for the bootstrap
    482  1.101       cgd 	 * stack).
    483   1.95   thorpej 	 */
    484  1.101       cgd 	kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
    485   1.95   thorpej #ifdef DDB
    486  1.102       cgd 	ksym_start = (void *)bootinfo.ssym;
    487  1.102       cgd 	ksym_end   = (void *)bootinfo.esym;
    488  1.140   thorpej 	kernend = (vaddr_t)round_page(ksym_end);
    489  1.102       cgd #else
    490  1.140   thorpej 	kernend = (vaddr_t)round_page(_end);
    491   1.95   thorpej #endif
    492   1.95   thorpej 
    493  1.110   thorpej 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    494  1.110   thorpej 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    495  1.110   thorpej 
    496   1.95   thorpej 	/*
    497    1.1       cgd 	 * Find out how much memory is available, by looking at
    498    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    499    1.7       cgd 	 * its best to detect things things that have never been seen
    500    1.7       cgd 	 * before...
    501    1.1       cgd 	 */
    502    1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    503    1.7       cgd 
    504  1.110   thorpej 	/* MDDT SANITY CHECKING */
    505    1.7       cgd 	mddtweird = 0;
    506  1.110   thorpej 	if (mddtp->mddt_cluster_cnt < 2) {
    507    1.7       cgd 		mddtweird = 1;
    508  1.160   thorpej 		printf("WARNING: weird number of mem clusters: %lu\n",
    509  1.110   thorpej 		    mddtp->mddt_cluster_cnt);
    510    1.7       cgd 	}
    511    1.7       cgd 
    512  1.110   thorpej #if 0
    513  1.110   thorpej 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    514  1.110   thorpej #endif
    515  1.110   thorpej 
    516  1.110   thorpej 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    517  1.110   thorpej 		memc = &mddtp->mddt_clusters[i];
    518  1.110   thorpej #if 0
    519  1.110   thorpej 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    520  1.110   thorpej 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    521  1.110   thorpej #endif
    522  1.110   thorpej 		totalphysmem += memc->mddt_pg_cnt;
    523  1.110   thorpej 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    524  1.110   thorpej 			mem_clusters[mem_cluster_cnt].start =
    525  1.110   thorpej 			    ptoa(memc->mddt_pfn);
    526  1.110   thorpej 			mem_clusters[mem_cluster_cnt].size =
    527  1.110   thorpej 			    ptoa(memc->mddt_pg_cnt);
    528  1.110   thorpej 			if (memc->mddt_usage & MDDT_mbz ||
    529  1.110   thorpej 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    530  1.110   thorpej 			    memc->mddt_usage & MDDT_PALCODE)
    531  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    532  1.110   thorpej 				    PROT_READ;
    533  1.110   thorpej 			else
    534  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    535  1.110   thorpej 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    536  1.110   thorpej 			mem_cluster_cnt++;
    537  1.110   thorpej 		}
    538  1.110   thorpej 
    539  1.110   thorpej 		if (memc->mddt_usage & MDDT_mbz) {
    540    1.7       cgd 			mddtweird = 1;
    541  1.110   thorpej 			printf("WARNING: mem cluster %d has weird "
    542  1.110   thorpej 			    "usage 0x%lx\n", i, memc->mddt_usage);
    543  1.110   thorpej 			unknownmem += memc->mddt_pg_cnt;
    544  1.110   thorpej 			continue;
    545    1.7       cgd 		}
    546  1.110   thorpej 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    547  1.110   thorpej 			/* XXX should handle these... */
    548  1.110   thorpej 			printf("WARNING: skipping non-volatile mem "
    549  1.110   thorpej 			    "cluster %d\n", i);
    550  1.110   thorpej 			unusedmem += memc->mddt_pg_cnt;
    551  1.110   thorpej 			continue;
    552  1.110   thorpej 		}
    553  1.110   thorpej 		if (memc->mddt_usage & MDDT_PALCODE) {
    554  1.110   thorpej 			resvmem += memc->mddt_pg_cnt;
    555  1.110   thorpej 			continue;
    556  1.110   thorpej 		}
    557  1.110   thorpej 
    558  1.110   thorpej 		/*
    559  1.110   thorpej 		 * We have a memory cluster available for system
    560  1.110   thorpej 		 * software use.  We must determine if this cluster
    561  1.110   thorpej 		 * holds the kernel.
    562  1.110   thorpej 		 */
    563  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    564  1.110   thorpej 		/*
    565  1.110   thorpej 		 * XXX If the kernel uses the PROM console, we only use the
    566  1.110   thorpej 		 * XXX memory after the kernel in the first system segment,
    567  1.110   thorpej 		 * XXX to avoid clobbering prom mapping, data, etc.
    568  1.110   thorpej 		 */
    569  1.110   thorpej 	    if (!pmap_uses_prom_console() || physmem == 0) {
    570  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    571  1.110   thorpej 		physmem += memc->mddt_pg_cnt;
    572  1.110   thorpej 		pfn0 = memc->mddt_pfn;
    573  1.110   thorpej 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    574  1.110   thorpej 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    575  1.110   thorpej 			/*
    576  1.110   thorpej 			 * Must compute the location of the kernel
    577  1.110   thorpej 			 * within the segment.
    578  1.110   thorpej 			 */
    579  1.110   thorpej #if 0
    580  1.110   thorpej 			printf("Cluster %d contains kernel\n", i);
    581  1.110   thorpej #endif
    582  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    583  1.110   thorpej 		    if (!pmap_uses_prom_console()) {
    584  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    585  1.110   thorpej 			if (pfn0 < kernstartpfn) {
    586  1.110   thorpej 				/*
    587  1.110   thorpej 				 * There is a chunk before the kernel.
    588  1.110   thorpej 				 */
    589  1.110   thorpej #if 0
    590  1.110   thorpej 				printf("Loading chunk before kernel: "
    591  1.110   thorpej 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    592  1.110   thorpej #endif
    593  1.112   thorpej 				uvm_page_physload(pfn0, kernstartpfn,
    594  1.135   thorpej 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    595  1.110   thorpej 			}
    596  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    597  1.110   thorpej 		    }
    598  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    599  1.110   thorpej 			if (kernendpfn < pfn1) {
    600  1.110   thorpej 				/*
    601  1.110   thorpej 				 * There is a chunk after the kernel.
    602  1.110   thorpej 				 */
    603  1.110   thorpej #if 0
    604  1.110   thorpej 				printf("Loading chunk after kernel: "
    605  1.110   thorpej 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    606  1.110   thorpej #endif
    607  1.112   thorpej 				uvm_page_physload(kernendpfn, pfn1,
    608  1.135   thorpej 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    609  1.110   thorpej 			}
    610  1.110   thorpej 		} else {
    611  1.110   thorpej 			/*
    612  1.110   thorpej 			 * Just load this cluster as one chunk.
    613  1.110   thorpej 			 */
    614  1.110   thorpej #if 0
    615  1.110   thorpej 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    616  1.110   thorpej 			    pfn0, pfn1);
    617  1.110   thorpej #endif
    618  1.135   thorpej 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    619  1.135   thorpej 			    VM_FREELIST_DEFAULT);
    620    1.7       cgd 		}
    621  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    622  1.110   thorpej 	    }
    623  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    624    1.7       cgd 	}
    625    1.7       cgd 
    626  1.110   thorpej 	/*
    627  1.110   thorpej 	 * Dump out the MDDT if it looks odd...
    628  1.110   thorpej 	 */
    629    1.7       cgd 	if (mddtweird) {
    630   1.46  christos 		printf("\n");
    631   1.46  christos 		printf("complete memory cluster information:\n");
    632    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    633   1.46  christos 			printf("mddt %d:\n", i);
    634   1.46  christos 			printf("\tpfn %lx\n",
    635    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    636   1.46  christos 			printf("\tcnt %lx\n",
    637    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    638   1.46  christos 			printf("\ttest %lx\n",
    639    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    640   1.46  christos 			printf("\tbva %lx\n",
    641    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    642   1.46  christos 			printf("\tbpa %lx\n",
    643    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    644   1.46  christos 			printf("\tbcksum %lx\n",
    645    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    646   1.46  christos 			printf("\tusage %lx\n",
    647    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    648    1.2       cgd 		}
    649   1.46  christos 		printf("\n");
    650    1.2       cgd 	}
    651    1.2       cgd 
    652    1.7       cgd 	if (totalphysmem == 0)
    653    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    654  1.110   thorpej 
    655  1.110   thorpej #ifdef LIMITMEM
    656  1.110   thorpej 	/*
    657  1.110   thorpej 	 * XXX Kludge so we can run on machines with memory larger
    658  1.110   thorpej 	 * XXX than 1G until all device drivers are converted to
    659  1.110   thorpej 	 * XXX use bus_dma.  (Relies on the fact that vm_physmem
    660  1.110   thorpej 	 * XXX sorted in order of increasing addresses.)
    661  1.110   thorpej 	 */
    662  1.110   thorpej 	if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
    663  1.110   thorpej 
    664  1.110   thorpej 		printf("******** LIMITING MEMORY TO %dMB **********\n",
    665  1.110   thorpej 		    LIMITMEM);
    666  1.110   thorpej 
    667  1.110   thorpej 		do {
    668  1.110   thorpej 			u_long ovf;
    669  1.110   thorpej 
    670  1.110   thorpej 			vps = &vm_physmem[vm_nphysseg - 1];
    671  1.110   thorpej 
    672  1.110   thorpej 			if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
    673  1.110   thorpej 				/*
    674  1.110   thorpej 				 * If the start is too high, just drop
    675  1.110   thorpej 				 * the whole segment.
    676  1.110   thorpej 				 *
    677  1.110   thorpej 				 * XXX can start != avail_start in this
    678  1.110   thorpej 				 * XXX case?  wouldn't that mean that
    679  1.110   thorpej 				 * XXX some memory was stolen above the
    680  1.110   thorpej 				 * XXX limit?  What to do?
    681  1.110   thorpej 				 */
    682  1.110   thorpej 				ovf = vps->end - vps->start;
    683  1.110   thorpej 				vm_nphysseg--;
    684  1.110   thorpej 			} else {
    685  1.110   thorpej 				/*
    686  1.110   thorpej 				 * If the start is OK, calculate how much
    687  1.110   thorpej 				 * to drop and drop it.
    688  1.110   thorpej 				 */
    689  1.110   thorpej 				ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
    690  1.110   thorpej 				vps->end -= ovf;
    691  1.110   thorpej 				vps->avail_end -= ovf;
    692  1.110   thorpej 			}
    693  1.110   thorpej 			physmem -= ovf;
    694  1.110   thorpej 			unusedmem += ovf;
    695  1.110   thorpej 		} while (vps->end > atop(LIMITMEM * 1024 * 1024));
    696   1.88    mjacob 	}
    697  1.110   thorpej #endif /* LIMITMEM */
    698  1.110   thorpej 
    699    1.1       cgd 	maxmem = physmem;
    700    1.1       cgd 
    701    1.7       cgd #if 0
    702   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    703   1.46  christos 	printf("physmem = %d\n", physmem);
    704   1.46  christos 	printf("resvmem = %d\n", resvmem);
    705   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    706   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    707    1.7       cgd #endif
    708   1.90    mjacob 
    709   1.90    mjacob 	/*
    710   1.90    mjacob 	 * Adjust some parameters if the amount of physmem
    711   1.90    mjacob 	 * available would cause us to croak. This is completely
    712   1.90    mjacob 	 * eyeballed and isn't meant to be the final answer.
    713   1.90    mjacob 	 * vm_phys_size is probably the only one to really worry
    714   1.90    mjacob 	 * about.
    715   1.90    mjacob  	 *
    716   1.90    mjacob 	 * It's for booting a GENERIC kernel on a large memory platform.
    717   1.90    mjacob 	 */
    718  1.110   thorpej 	if (physmem >= atop(128 * 1024 * 1024)) {
    719   1.93    mjacob 		vm_kmem_size <<= 3;
    720   1.93    mjacob 		vm_phys_size <<= 2;
    721   1.90    mjacob 	}
    722    1.7       cgd 
    723    1.1       cgd 	/*
    724    1.1       cgd 	 * Initialize error message buffer (at end of core).
    725    1.1       cgd 	 */
    726  1.110   thorpej 	{
    727  1.110   thorpej 		size_t sz = round_page(MSGBUFSIZE);
    728  1.110   thorpej 
    729  1.110   thorpej 		vps = &vm_physmem[vm_nphysseg - 1];
    730  1.110   thorpej 
    731  1.110   thorpej 		/* shrink so that it'll fit in the last segment */
    732  1.110   thorpej 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    733  1.110   thorpej 			sz = ptoa(vps->avail_end - vps->avail_start);
    734  1.110   thorpej 
    735  1.110   thorpej 		vps->end -= atop(sz);
    736  1.110   thorpej 		vps->avail_end -= atop(sz);
    737  1.110   thorpej 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    738  1.110   thorpej 		initmsgbuf(msgbufaddr, sz);
    739  1.110   thorpej 
    740  1.110   thorpej 		/* Remove the last segment if it now has no pages. */
    741  1.110   thorpej 		if (vps->start == vps->end)
    742  1.110   thorpej 			vm_nphysseg--;
    743  1.110   thorpej 
    744  1.110   thorpej 		/* warn if the message buffer had to be shrunk */
    745  1.110   thorpej 		if (sz != round_page(MSGBUFSIZE))
    746  1.160   thorpej 			printf("WARNING: %ld bytes not available for msgbuf in last cluster (%ld used)\n",
    747  1.110   thorpej 			    round_page(MSGBUFSIZE), sz);
    748  1.110   thorpej 
    749  1.110   thorpej 	}
    750    1.1       cgd 
    751    1.1       cgd 	/*
    752   1.95   thorpej 	 * Init mapping for u page(s) for proc 0
    753    1.1       cgd 	 */
    754  1.110   thorpej 	proc0.p_addr = proc0paddr =
    755  1.110   thorpej 	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
    756    1.1       cgd 
    757    1.1       cgd 	/*
    758   1.95   thorpej 	 * Allocate space for system data structures.  These data structures
    759   1.95   thorpej 	 * are allocated here instead of cpu_startup() because physical
    760   1.95   thorpej 	 * memory is directly addressable.  We don't have to map these into
    761   1.95   thorpej 	 * virtual address space.
    762   1.95   thorpej 	 */
    763  1.140   thorpej 	size = (vsize_t)allocsys(0);
    764  1.110   thorpej 	v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
    765  1.110   thorpej 	if ((allocsys(v) - v) != size)
    766   1.95   thorpej 		panic("alpha_init: table size inconsistency");
    767    1.1       cgd 
    768    1.1       cgd 	/*
    769    1.1       cgd 	 * Initialize the virtual memory system, and set the
    770    1.1       cgd 	 * page table base register in proc 0's PCB.
    771    1.1       cgd 	 */
    772  1.110   thorpej 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    773  1.144   thorpej 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    774    1.1       cgd 
    775    1.1       cgd 	/*
    776    1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    777    1.3       cgd 	 * address.
    778    1.3       cgd 	 */
    779    1.3       cgd 	proc0.p_md.md_pcbpaddr =
    780  1.140   thorpej 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
    781    1.3       cgd 
    782    1.3       cgd 	/*
    783    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    784    1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    785    1.3       cgd 	 */
    786   1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    787    1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    788   1.81   thorpej 	proc0.p_md.md_tf =
    789   1.81   thorpej 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    790    1.1       cgd 
    791    1.1       cgd 	/*
    792   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    793    1.8       cgd 	 */
    794    1.1       cgd 
    795    1.8       cgd 	boothowto = RB_SINGLE;
    796    1.1       cgd #ifdef KADB
    797    1.1       cgd 	boothowto |= RB_KDB;
    798    1.1       cgd #endif
    799  1.102       cgd 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    800   1.26       cgd 		/*
    801   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    802   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    803   1.26       cgd 		 * says that we shouldn't.
    804   1.26       cgd 		 */
    805    1.8       cgd 		switch (*p) {
    806   1.26       cgd 		case 'a': /* autoboot */
    807   1.26       cgd 		case 'A':
    808   1.26       cgd 			boothowto &= ~RB_SINGLE;
    809   1.21       cgd 			break;
    810   1.21       cgd 
    811   1.43       cgd #ifdef DEBUG
    812   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    813   1.43       cgd 		case 'C':
    814   1.43       cgd 			boothowto |= RB_DUMP;
    815   1.43       cgd 			break;
    816   1.43       cgd #endif
    817   1.43       cgd 
    818   1.81   thorpej #if defined(KGDB) || defined(DDB)
    819   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    820   1.81   thorpej 		case 'D':
    821   1.81   thorpej 			boothowto |= RB_KDB;
    822   1.81   thorpej 			break;
    823   1.81   thorpej #endif
    824   1.81   thorpej 
    825   1.36       cgd 		case 'h': /* always halt, never reboot */
    826   1.36       cgd 		case 'H':
    827   1.36       cgd 			boothowto |= RB_HALT;
    828    1.8       cgd 			break;
    829    1.8       cgd 
    830   1.21       cgd #if 0
    831    1.8       cgd 		case 'm': /* mini root present in memory */
    832   1.26       cgd 		case 'M':
    833    1.8       cgd 			boothowto |= RB_MINIROOT;
    834    1.8       cgd 			break;
    835   1.21       cgd #endif
    836   1.36       cgd 
    837   1.36       cgd 		case 'n': /* askname */
    838   1.36       cgd 		case 'N':
    839   1.36       cgd 			boothowto |= RB_ASKNAME;
    840   1.65       cgd 			break;
    841   1.65       cgd 
    842   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    843   1.65       cgd 		case 'S':
    844   1.65       cgd 			boothowto |= RB_SINGLE;
    845  1.119   thorpej 			break;
    846  1.119   thorpej 
    847  1.119   thorpej 		case '-':
    848  1.119   thorpej 			/*
    849  1.119   thorpej 			 * Just ignore this.  It's not required, but it's
    850  1.119   thorpej 			 * common for it to be passed regardless.
    851  1.119   thorpej 			 */
    852   1.65       cgd 			break;
    853   1.65       cgd 
    854   1.65       cgd 		default:
    855   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    856   1.36       cgd 			break;
    857    1.1       cgd 		}
    858    1.1       cgd 	}
    859    1.1       cgd 
    860  1.136    mjacob 
    861  1.136    mjacob 	/*
    862  1.136    mjacob 	 * Figure out the number of cpus in the box, from RPB fields.
    863  1.136    mjacob 	 * Really.  We mean it.
    864  1.136    mjacob 	 */
    865  1.136    mjacob 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    866  1.136    mjacob 		struct pcs *pcsp;
    867  1.136    mjacob 
    868  1.144   thorpej 		pcsp = LOCATE_PCS(hwrpb, i);
    869  1.136    mjacob 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    870  1.136    mjacob 			ncpus++;
    871  1.136    mjacob 	}
    872  1.136    mjacob 
    873    1.7       cgd 	/*
    874  1.106       cgd 	 * Initialize debuggers, and break into them if appropriate.
    875  1.106       cgd 	 */
    876  1.106       cgd #ifdef DDB
    877  1.106       cgd 	db_machine_init();
    878  1.159    mjacob 	ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    879  1.159    mjacob 	    ksym_start, ksym_end);
    880  1.106       cgd 	if (boothowto & RB_KDB)
    881  1.106       cgd 		Debugger();
    882  1.106       cgd #endif
    883  1.106       cgd #ifdef KGDB
    884  1.106       cgd 	if (boothowto & RB_KDB)
    885  1.106       cgd 		kgdb_connect(0);
    886  1.106       cgd #endif
    887  1.106       cgd 	/*
    888  1.106       cgd 	 * Figure out our clock frequency, from RPB fields.
    889  1.106       cgd 	 */
    890  1.106       cgd 	hz = hwrpb->rpb_intr_freq >> 12;
    891  1.106       cgd 	if (!(60 <= hz && hz <= 10240)) {
    892  1.106       cgd 		hz = 1024;
    893  1.106       cgd #ifdef DIAGNOSTIC
    894  1.106       cgd 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    895  1.106       cgd 			hwrpb->rpb_intr_freq, hz);
    896  1.106       cgd #endif
    897  1.106       cgd 	}
    898   1.95   thorpej }
    899   1.95   thorpej 
    900   1.95   thorpej /*
    901   1.95   thorpej  * Allocate space for system data structures.  We are given
    902   1.95   thorpej  * a starting virtual address and we return a final virtual
    903   1.95   thorpej  * address; along the way we set each data structure pointer.
    904   1.95   thorpej  *
    905   1.95   thorpej  * We call allocsys() with 0 to find out how much space we want,
    906   1.95   thorpej  * allocate that much and fill it with zeroes, and the call
    907   1.95   thorpej  * allocsys() again with the correct base virtual address.
    908   1.95   thorpej  */
    909   1.95   thorpej caddr_t
    910   1.95   thorpej allocsys(v)
    911   1.95   thorpej 	caddr_t v;
    912   1.95   thorpej {
    913   1.95   thorpej 
    914   1.95   thorpej #define valloc(name, type, num) \
    915   1.95   thorpej 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    916  1.134    mjacob 
    917   1.95   thorpej #ifdef REAL_CLISTS
    918   1.95   thorpej 	valloc(cfree, struct cblock, nclist);
    919   1.95   thorpej #endif
    920   1.95   thorpej 	valloc(callout, struct callout, ncallout);
    921   1.95   thorpej #ifdef SYSVSHM
    922   1.95   thorpej 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    923   1.95   thorpej #endif
    924   1.95   thorpej #ifdef SYSVSEM
    925   1.95   thorpej 	valloc(sema, struct semid_ds, seminfo.semmni);
    926   1.95   thorpej 	valloc(sem, struct sem, seminfo.semmns);
    927   1.95   thorpej 	/* This is pretty disgusting! */
    928   1.95   thorpej 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    929   1.95   thorpej #endif
    930   1.95   thorpej #ifdef SYSVMSG
    931   1.95   thorpej 	valloc(msgpool, char, msginfo.msgmax);
    932   1.95   thorpej 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    933   1.95   thorpej 	valloc(msghdrs, struct msg, msginfo.msgtql);
    934   1.95   thorpej 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    935   1.95   thorpej #endif
    936   1.95   thorpej 
    937   1.95   thorpej 	/*
    938   1.95   thorpej 	 * Determine how many buffers to allocate.
    939  1.154      ross 	 * We allocate bufcache % of memory for buffer space.  Insure a
    940   1.95   thorpej 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    941   1.95   thorpej 	 * headers as file i/o buffers.
    942   1.95   thorpej 	 */
    943   1.95   thorpej 	if (bufpages == 0)
    944  1.154      ross 		bufpages = physmem / CLSIZE * bufcache / 100;
    945   1.95   thorpej 	if (nbuf == 0) {
    946   1.95   thorpej 		nbuf = bufpages;
    947   1.95   thorpej 		if (nbuf < 16)
    948   1.95   thorpej 			nbuf = 16;
    949   1.95   thorpej 	}
    950   1.95   thorpej 	if (nswbuf == 0) {
    951   1.95   thorpej 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    952   1.95   thorpej 		if (nswbuf > 256)
    953   1.95   thorpej 			nswbuf = 256;		/* sanity */
    954   1.95   thorpej 	}
    955   1.95   thorpej 	valloc(buf, struct buf, nbuf);
    956  1.136    mjacob 
    957  1.136    mjacob 	/*
    958  1.136    mjacob 	 * There appears to be a correlation between the number
    959  1.136    mjacob 	 * of processor slots defined in the HWRPB and the whami
    960  1.136    mjacob 	 * value that can be returned.
    961  1.136    mjacob 	 */
    962  1.138      ross 	valloc(mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
    963  1.136    mjacob 
    964   1.95   thorpej 	return (v);
    965   1.98       cgd #undef valloc
    966    1.1       cgd }
    967    1.1       cgd 
    968   1.18       cgd void
    969    1.1       cgd consinit()
    970    1.1       cgd {
    971   1.81   thorpej 
    972  1.106       cgd 	/*
    973  1.106       cgd 	 * Everything related to console initialization is done
    974  1.106       cgd 	 * in alpha_init().
    975  1.106       cgd 	 */
    976  1.106       cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    977  1.106       cgd 	printf("consinit: %susing prom console\n",
    978  1.106       cgd 	    pmap_uses_prom_console() ? "" : "not ");
    979   1.81   thorpej #endif
    980    1.1       cgd }
    981  1.118   thorpej 
    982  1.118   thorpej #include "pckbc.h"
    983  1.118   thorpej #include "pckbd.h"
    984  1.118   thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
    985  1.118   thorpej 
    986  1.118   thorpej #include <dev/isa/pckbcvar.h>
    987  1.118   thorpej 
    988  1.118   thorpej /*
    989  1.118   thorpej  * This is called by the pbkbc driver if no pckbd is configured.
    990  1.118   thorpej  * On the i386, it is used to glue in the old, deprecated console
    991  1.118   thorpej  * code.  On the Alpha, it does nothing.
    992  1.118   thorpej  */
    993  1.118   thorpej int
    994  1.118   thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
    995  1.118   thorpej 	pckbc_tag_t kbctag;
    996  1.118   thorpej 	pckbc_slot_t kbcslot;
    997  1.118   thorpej {
    998  1.118   thorpej 
    999  1.118   thorpej 	return (ENXIO);
   1000  1.118   thorpej }
   1001  1.118   thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
   1002    1.1       cgd 
   1003   1.18       cgd void
   1004    1.1       cgd cpu_startup()
   1005    1.1       cgd {
   1006    1.1       cgd 	register unsigned i;
   1007    1.1       cgd 	int base, residual;
   1008  1.140   thorpej 	vaddr_t minaddr, maxaddr;
   1009  1.140   thorpej 	vsize_t size;
   1010   1.40       cgd #if defined(DEBUG)
   1011    1.1       cgd 	extern int pmapdebug;
   1012    1.1       cgd 	int opmapdebug = pmapdebug;
   1013    1.1       cgd 
   1014    1.1       cgd 	pmapdebug = 0;
   1015    1.1       cgd #endif
   1016    1.1       cgd 
   1017    1.1       cgd 	/*
   1018    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
   1019    1.1       cgd 	 */
   1020   1.46  christos 	printf(version);
   1021    1.1       cgd 	identifycpu();
   1022  1.110   thorpej 	printf("real mem = %lu (%lu reserved for PROM, %lu used by NetBSD)\n",
   1023  1.140   thorpej 	    ((psize_t) totalphysmem << (psize_t) PAGE_SHIFT),
   1024  1.137    mjacob 	    ptoa(resvmem), ptoa(physmem));
   1025    1.7       cgd 	if (unusedmem)
   1026   1.46  christos 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
   1027    1.7       cgd 	if (unknownmem)
   1028   1.46  christos 		printf("WARNING: %d bytes of memory with unknown purpose\n",
   1029    1.7       cgd 		    ctob(unknownmem));
   1030    1.1       cgd 
   1031    1.1       cgd 	/*
   1032    1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
   1033    1.1       cgd 	 * Note they are different than the array of headers, 'buf',
   1034    1.1       cgd 	 * and usually occupy more virtual memory than physical.
   1035    1.1       cgd 	 */
   1036    1.1       cgd 	size = MAXBSIZE * nbuf;
   1037  1.140   thorpej 	if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
   1038  1.112   thorpej 		    NULL, UVM_UNKNOWN_OFFSET,
   1039  1.112   thorpej 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
   1040  1.112   thorpej 				UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
   1041  1.112   thorpej 		panic("startup: cannot allocate VM for buffers");
   1042    1.1       cgd 	base = bufpages / nbuf;
   1043    1.1       cgd 	residual = bufpages % nbuf;
   1044    1.1       cgd 	for (i = 0; i < nbuf; i++) {
   1045  1.140   thorpej 		vsize_t curbufsize;
   1046  1.140   thorpej 		vaddr_t curbuf;
   1047  1.112   thorpej 		struct vm_page *pg;
   1048  1.112   thorpej 
   1049  1.112   thorpej 		/*
   1050  1.112   thorpej 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
   1051  1.112   thorpej 		 * that MAXBSIZE space, we allocate and map (base+1) pages
   1052  1.112   thorpej 		 * for the first "residual" buffers, and then we allocate
   1053  1.112   thorpej 		 * "base" pages for the rest.
   1054  1.112   thorpej 		 */
   1055  1.140   thorpej 		curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
   1056  1.112   thorpej 		curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
   1057  1.112   thorpej 
   1058  1.112   thorpej 		while (curbufsize) {
   1059  1.112   thorpej 			pg = uvm_pagealloc(NULL, 0, NULL);
   1060  1.112   thorpej 			if (pg == NULL)
   1061  1.112   thorpej 				panic("cpu_startup: not enough memory for "
   1062  1.112   thorpej 				    "buffer cache");
   1063  1.112   thorpej #if defined(PMAP_NEW)
   1064  1.112   thorpej 			pmap_kenter_pgs(curbuf, &pg, 1);
   1065  1.112   thorpej #else
   1066  1.112   thorpej 			pmap_enter(kernel_map->pmap, curbuf,
   1067  1.112   thorpej 				   VM_PAGE_TO_PHYS(pg), VM_PROT_ALL, TRUE);
   1068  1.112   thorpej #endif
   1069  1.112   thorpej 			curbuf += PAGE_SIZE;
   1070  1.112   thorpej 			curbufsize -= PAGE_SIZE;
   1071  1.112   thorpej 		}
   1072    1.1       cgd 	}
   1073    1.1       cgd 	/*
   1074    1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
   1075    1.1       cgd 	 * limits the number of processes exec'ing at any time.
   1076    1.1       cgd 	 */
   1077  1.112   thorpej 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1078  1.112   thorpej 				   16 * NCARGS, TRUE, FALSE, NULL);
   1079    1.1       cgd 
   1080    1.1       cgd 	/*
   1081    1.1       cgd 	 * Allocate a submap for physio
   1082    1.1       cgd 	 */
   1083  1.112   thorpej 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1084  1.112   thorpej 				   VM_PHYS_SIZE, TRUE, FALSE, NULL);
   1085    1.1       cgd 
   1086    1.1       cgd 	/*
   1087  1.164   thorpej 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
   1088  1.164   thorpej 	 * are allocated via the pool allocator, and we use K0SEG to
   1089  1.164   thorpej 	 * map those pages.
   1090    1.1       cgd 	 */
   1091  1.164   thorpej 
   1092    1.1       cgd 	/*
   1093    1.1       cgd 	 * Initialize callouts
   1094    1.1       cgd 	 */
   1095    1.1       cgd 	callfree = callout;
   1096    1.1       cgd 	for (i = 1; i < ncallout; i++)
   1097    1.1       cgd 		callout[i-1].c_next = &callout[i];
   1098    1.1       cgd 	callout[i-1].c_next = NULL;
   1099    1.1       cgd 
   1100   1.40       cgd #if defined(DEBUG)
   1101    1.1       cgd 	pmapdebug = opmapdebug;
   1102    1.1       cgd #endif
   1103  1.112   thorpej 	printf("avail mem = %ld\n", (long)ptoa(uvmexp.free));
   1104  1.139   thorpej #if 0
   1105  1.139   thorpej 	{
   1106  1.139   thorpej 		extern u_long pmap_pages_stolen;
   1107  1.139   thorpej 		printf("stolen memory for VM structures = %ld bytes\n",
   1108  1.139   thorpej 		    pmap_pages_stolen * PAGE_SIZE);
   1109  1.139   thorpej 	}
   1110  1.112   thorpej #endif
   1111   1.46  christos 	printf("using %ld buffers containing %ld bytes of memory\n",
   1112    1.1       cgd 		(long)nbuf, (long)(bufpages * CLBYTES));
   1113    1.1       cgd 
   1114    1.1       cgd 	/*
   1115    1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
   1116    1.1       cgd 	 */
   1117    1.1       cgd 	bufinit();
   1118  1.151   thorpej 
   1119  1.151   thorpej 	/*
   1120  1.151   thorpej 	 * Set up the HWPCB so that it's safe to configure secondary
   1121  1.151   thorpej 	 * CPUs.
   1122  1.151   thorpej 	 */
   1123  1.151   thorpej 	hwrpb_primary_init();
   1124    1.1       cgd 
   1125    1.1       cgd 	/*
   1126    1.1       cgd 	 * Configure the system.
   1127    1.1       cgd 	 */
   1128    1.1       cgd 	configure();
   1129  1.104   thorpej }
   1130  1.104   thorpej 
   1131  1.104   thorpej /*
   1132  1.104   thorpej  * Retrieve the platform name from the DSR.
   1133  1.104   thorpej  */
   1134  1.104   thorpej const char *
   1135  1.104   thorpej alpha_dsr_sysname()
   1136  1.104   thorpej {
   1137  1.104   thorpej 	struct dsrdb *dsr;
   1138  1.104   thorpej 	const char *sysname;
   1139  1.104   thorpej 
   1140  1.104   thorpej 	/*
   1141  1.104   thorpej 	 * DSR does not exist on early HWRPB versions.
   1142  1.104   thorpej 	 */
   1143  1.104   thorpej 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
   1144  1.104   thorpej 		return (NULL);
   1145  1.104   thorpej 
   1146  1.104   thorpej 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
   1147  1.104   thorpej 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
   1148  1.104   thorpej 	    sizeof(u_int64_t)));
   1149  1.104   thorpej 	return (sysname);
   1150  1.104   thorpej }
   1151  1.104   thorpej 
   1152  1.104   thorpej /*
   1153  1.104   thorpej  * Lookup the system specified system variation in the provided table,
   1154  1.104   thorpej  * returning the model string on match.
   1155  1.104   thorpej  */
   1156  1.104   thorpej const char *
   1157  1.104   thorpej alpha_variation_name(variation, avtp)
   1158  1.104   thorpej 	u_int64_t variation;
   1159  1.104   thorpej 	const struct alpha_variation_table *avtp;
   1160  1.104   thorpej {
   1161  1.104   thorpej 	int i;
   1162  1.104   thorpej 
   1163  1.104   thorpej 	for (i = 0; avtp[i].avt_model != NULL; i++)
   1164  1.104   thorpej 		if (avtp[i].avt_variation == variation)
   1165  1.104   thorpej 			return (avtp[i].avt_model);
   1166  1.104   thorpej 	return (NULL);
   1167  1.104   thorpej }
   1168  1.104   thorpej 
   1169  1.104   thorpej /*
   1170  1.104   thorpej  * Generate a default platform name based for unknown system variations.
   1171  1.104   thorpej  */
   1172  1.104   thorpej const char *
   1173  1.104   thorpej alpha_unknown_sysname()
   1174  1.104   thorpej {
   1175  1.105   thorpej 	static char s[128];		/* safe size */
   1176  1.104   thorpej 
   1177  1.105   thorpej 	sprintf(s, "%s family, unknown model variation 0x%lx",
   1178  1.105   thorpej 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1179  1.104   thorpej 	return ((const char *)s);
   1180    1.1       cgd }
   1181    1.1       cgd 
   1182   1.33       cgd void
   1183    1.1       cgd identifycpu()
   1184    1.1       cgd {
   1185    1.1       cgd 
   1186    1.7       cgd 	/*
   1187    1.7       cgd 	 * print out CPU identification information.
   1188    1.7       cgd 	 */
   1189   1.46  christos 	printf("%s, %ldMHz\n", cpu_model,
   1190    1.7       cgd 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
   1191   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
   1192    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1193    1.7       cgd #if 0
   1194    1.7       cgd 	/* this isn't defined for any systems that we run on? */
   1195   1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
   1196    1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1197    1.7       cgd 
   1198    1.7       cgd 	/* and these aren't particularly useful! */
   1199   1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
   1200    1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1201    1.7       cgd #endif
   1202    1.1       cgd }
   1203    1.1       cgd 
   1204    1.1       cgd int	waittime = -1;
   1205    1.7       cgd struct pcb dumppcb;
   1206    1.1       cgd 
   1207   1.18       cgd void
   1208   1.68       gwr cpu_reboot(howto, bootstr)
   1209    1.1       cgd 	int howto;
   1210   1.39       mrg 	char *bootstr;
   1211    1.1       cgd {
   1212    1.1       cgd 	extern int cold;
   1213  1.148   thorpej #if defined(MULTIPROCESSOR)
   1214  1.150   thorpej #if 0 /* XXX See below. */
   1215  1.148   thorpej 	u_long cpu_id;
   1216  1.150   thorpej #endif
   1217  1.148   thorpej #endif
   1218  1.148   thorpej 
   1219  1.148   thorpej #if defined(MULTIPROCESSOR)
   1220  1.148   thorpej 	/* We must be running on the primary CPU. */
   1221  1.148   thorpej 	if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
   1222  1.148   thorpej 		panic("cpu_reboot: not on primary CPU!");
   1223  1.148   thorpej #endif
   1224    1.1       cgd 
   1225    1.1       cgd 	/* If system is cold, just halt. */
   1226    1.1       cgd 	if (cold) {
   1227    1.1       cgd 		howto |= RB_HALT;
   1228    1.1       cgd 		goto haltsys;
   1229    1.1       cgd 	}
   1230    1.1       cgd 
   1231   1.36       cgd 	/* If "always halt" was specified as a boot flag, obey. */
   1232   1.36       cgd 	if ((boothowto & RB_HALT) != 0)
   1233   1.36       cgd 		howto |= RB_HALT;
   1234   1.36       cgd 
   1235    1.7       cgd 	boothowto = howto;
   1236    1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
   1237    1.1       cgd 		waittime = 0;
   1238    1.7       cgd 		vfs_shutdown();
   1239    1.1       cgd 		/*
   1240    1.1       cgd 		 * If we've been adjusting the clock, the todr
   1241    1.1       cgd 		 * will be out of synch; adjust it now.
   1242    1.1       cgd 		 */
   1243    1.1       cgd 		resettodr();
   1244    1.1       cgd 	}
   1245    1.1       cgd 
   1246    1.1       cgd 	/* Disable interrupts. */
   1247    1.1       cgd 	splhigh();
   1248    1.1       cgd 
   1249    1.7       cgd 	/* If rebooting and a dump is requested do it. */
   1250   1.42       cgd #if 0
   1251   1.42       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1252   1.42       cgd #else
   1253   1.42       cgd 	if (howto & RB_DUMP)
   1254   1.42       cgd #endif
   1255    1.1       cgd 		dumpsys();
   1256    1.6       cgd 
   1257   1.12       cgd haltsys:
   1258   1.12       cgd 
   1259    1.6       cgd 	/* run any shutdown hooks */
   1260    1.6       cgd 	doshutdownhooks();
   1261  1.148   thorpej 
   1262  1.148   thorpej #if defined(MULTIPROCESSOR)
   1263  1.149   thorpej #if 0 /* XXX doesn't work when called from here?! */
   1264  1.148   thorpej 	/* Kill off any secondary CPUs. */
   1265  1.148   thorpej 	for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
   1266  1.148   thorpej 		if (cpu_id == hwrpb->rpb_primary_cpu_id ||
   1267  1.161   thorpej 		    cpu_info[cpu_id].ci_softc == NULL)
   1268  1.148   thorpej 			continue;
   1269  1.148   thorpej 		cpu_halt_secondary(cpu_id);
   1270  1.148   thorpej 	}
   1271  1.149   thorpej #endif
   1272  1.148   thorpej #endif
   1273    1.1       cgd 
   1274    1.7       cgd #ifdef BOOTKEY
   1275   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1276  1.117  drochner 	cnpollc(1);	/* for proper keyboard command handling */
   1277    1.7       cgd 	cngetc();
   1278  1.117  drochner 	cnpollc(0);
   1279   1.46  christos 	printf("\n");
   1280    1.7       cgd #endif
   1281    1.7       cgd 
   1282  1.124   thorpej 	/* Finally, powerdown/halt/reboot the system. */
   1283  1.124   thorpej 	if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
   1284  1.124   thorpej 	    platform.powerdown != NULL) {
   1285  1.124   thorpej 		(*platform.powerdown)();
   1286  1.124   thorpej 		printf("WARNING: powerdown failed!\n");
   1287  1.124   thorpej 	}
   1288   1.46  christos 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
   1289    1.1       cgd 	prom_halt(howto & RB_HALT);
   1290    1.1       cgd 	/*NOTREACHED*/
   1291    1.1       cgd }
   1292    1.1       cgd 
   1293    1.7       cgd /*
   1294    1.7       cgd  * These variables are needed by /sbin/savecore
   1295    1.7       cgd  */
   1296    1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
   1297    1.7       cgd int 	dumpsize = 0;		/* pages */
   1298    1.7       cgd long	dumplo = 0; 		/* blocks */
   1299    1.7       cgd 
   1300    1.7       cgd /*
   1301   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1302   1.43       cgd  */
   1303   1.43       cgd int
   1304   1.43       cgd cpu_dumpsize()
   1305   1.43       cgd {
   1306   1.43       cgd 	int size;
   1307   1.43       cgd 
   1308  1.108       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1309  1.110   thorpej 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1310   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
   1311   1.43       cgd 		return -1;
   1312   1.43       cgd 
   1313   1.43       cgd 	return (1);
   1314   1.43       cgd }
   1315   1.43       cgd 
   1316   1.43       cgd /*
   1317  1.110   thorpej  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1318  1.110   thorpej  */
   1319  1.110   thorpej u_long
   1320  1.110   thorpej cpu_dump_mempagecnt()
   1321  1.110   thorpej {
   1322  1.110   thorpej 	u_long i, n;
   1323  1.110   thorpej 
   1324  1.110   thorpej 	n = 0;
   1325  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++)
   1326  1.110   thorpej 		n += atop(mem_clusters[i].size);
   1327  1.110   thorpej 	return (n);
   1328  1.110   thorpej }
   1329  1.110   thorpej 
   1330  1.110   thorpej /*
   1331   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
   1332   1.43       cgd  */
   1333   1.43       cgd int
   1334   1.43       cgd cpu_dump()
   1335   1.43       cgd {
   1336   1.43       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1337  1.107       cgd 	char buf[dbtob(1)];
   1338  1.107       cgd 	kcore_seg_t *segp;
   1339  1.107       cgd 	cpu_kcore_hdr_t *cpuhdrp;
   1340  1.107       cgd 	phys_ram_seg_t *memsegp;
   1341  1.110   thorpej 	int i;
   1342   1.43       cgd 
   1343  1.107       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1344   1.43       cgd 
   1345  1.107       cgd 	bzero(buf, sizeof buf);
   1346   1.43       cgd 	segp = (kcore_seg_t *)buf;
   1347  1.107       cgd 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1348  1.107       cgd 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1349  1.107       cgd 	    ALIGN(sizeof(*cpuhdrp))];
   1350   1.43       cgd 
   1351   1.43       cgd 	/*
   1352   1.43       cgd 	 * Generate a segment header.
   1353   1.43       cgd 	 */
   1354   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1355   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1356   1.43       cgd 
   1357   1.43       cgd 	/*
   1358  1.107       cgd 	 * Add the machine-dependent header info.
   1359   1.43       cgd 	 */
   1360  1.140   thorpej 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1361   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
   1362  1.110   thorpej 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1363  1.107       cgd 
   1364  1.107       cgd 	/*
   1365  1.107       cgd 	 * Fill in the memory segment descriptors.
   1366  1.107       cgd 	 */
   1367  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1368  1.110   thorpej 		memsegp[i].start = mem_clusters[i].start;
   1369  1.110   thorpej 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1370  1.110   thorpej 	}
   1371   1.43       cgd 
   1372   1.43       cgd 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1373   1.43       cgd }
   1374   1.43       cgd 
   1375   1.43       cgd /*
   1376   1.68       gwr  * This is called by main to set dumplo and dumpsize.
   1377    1.7       cgd  * Dumps always skip the first CLBYTES of disk space
   1378    1.7       cgd  * in case there might be a disk label stored there.
   1379    1.7       cgd  * If there is extra space, put dump at the end to
   1380    1.7       cgd  * reduce the chance that swapping trashes it.
   1381    1.7       cgd  */
   1382    1.7       cgd void
   1383   1.68       gwr cpu_dumpconf()
   1384    1.7       cgd {
   1385   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
   1386    1.7       cgd 	int maj;
   1387    1.7       cgd 
   1388    1.7       cgd 	if (dumpdev == NODEV)
   1389   1.43       cgd 		goto bad;
   1390    1.7       cgd 	maj = major(dumpdev);
   1391    1.7       cgd 	if (maj < 0 || maj >= nblkdev)
   1392    1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1393    1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
   1394   1.43       cgd 		goto bad;
   1395    1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1396    1.7       cgd 	if (nblks <= ctod(1))
   1397   1.43       cgd 		goto bad;
   1398   1.43       cgd 
   1399   1.43       cgd 	dumpblks = cpu_dumpsize();
   1400   1.43       cgd 	if (dumpblks < 0)
   1401   1.43       cgd 		goto bad;
   1402  1.110   thorpej 	dumpblks += ctod(cpu_dump_mempagecnt());
   1403   1.43       cgd 
   1404   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1405   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1406   1.43       cgd 		goto bad;
   1407   1.43       cgd 
   1408   1.43       cgd 	/* Put dump at end of partition */
   1409   1.43       cgd 	dumplo = nblks - dumpblks;
   1410    1.7       cgd 
   1411   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1412  1.110   thorpej 	dumpsize = cpu_dump_mempagecnt();
   1413   1.43       cgd 	return;
   1414    1.7       cgd 
   1415   1.43       cgd bad:
   1416   1.43       cgd 	dumpsize = 0;
   1417   1.43       cgd 	return;
   1418    1.7       cgd }
   1419    1.7       cgd 
   1420    1.7       cgd /*
   1421   1.42       cgd  * Dump the kernel's image to the swap partition.
   1422    1.7       cgd  */
   1423   1.42       cgd #define	BYTES_PER_DUMP	NBPG
   1424   1.42       cgd 
   1425    1.7       cgd void
   1426    1.7       cgd dumpsys()
   1427    1.7       cgd {
   1428  1.110   thorpej 	u_long totalbytesleft, bytes, i, n, memcl;
   1429  1.110   thorpej 	u_long maddr;
   1430  1.110   thorpej 	int psize;
   1431   1.42       cgd 	daddr_t blkno;
   1432   1.42       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1433   1.42       cgd 	int error;
   1434   1.42       cgd 
   1435   1.42       cgd 	/* Save registers. */
   1436   1.42       cgd 	savectx(&dumppcb);
   1437    1.7       cgd 
   1438  1.111   thorpej 	msgbufenabled = 0;	/* don't record dump msgs in msgbuf */
   1439    1.7       cgd 	if (dumpdev == NODEV)
   1440    1.7       cgd 		return;
   1441   1.42       cgd 
   1442   1.42       cgd 	/*
   1443   1.42       cgd 	 * For dumps during autoconfiguration,
   1444   1.42       cgd 	 * if dump device has already configured...
   1445   1.42       cgd 	 */
   1446   1.42       cgd 	if (dumpsize == 0)
   1447   1.68       gwr 		cpu_dumpconf();
   1448   1.47       cgd 	if (dumplo <= 0) {
   1449   1.97   mycroft 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1450   1.97   mycroft 		    minor(dumpdev));
   1451   1.42       cgd 		return;
   1452   1.43       cgd 	}
   1453   1.97   mycroft 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1454   1.97   mycroft 	    minor(dumpdev), dumplo);
   1455    1.7       cgd 
   1456   1.42       cgd 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1457   1.46  christos 	printf("dump ");
   1458   1.42       cgd 	if (psize == -1) {
   1459   1.46  christos 		printf("area unavailable\n");
   1460   1.42       cgd 		return;
   1461   1.42       cgd 	}
   1462   1.42       cgd 
   1463   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1464   1.42       cgd 
   1465   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1466   1.43       cgd 		goto err;
   1467   1.43       cgd 
   1468  1.110   thorpej 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1469   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1470   1.42       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1471   1.42       cgd 	error = 0;
   1472   1.42       cgd 
   1473  1.110   thorpej 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1474  1.110   thorpej 		maddr = mem_clusters[memcl].start;
   1475  1.110   thorpej 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1476  1.110   thorpej 
   1477  1.110   thorpej 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1478  1.110   thorpej 
   1479  1.110   thorpej 			/* Print out how many MBs we to go. */
   1480  1.110   thorpej 			if ((totalbytesleft % (1024*1024)) == 0)
   1481  1.160   thorpej 				printf("%ld ", totalbytesleft / (1024 * 1024));
   1482  1.110   thorpej 
   1483  1.110   thorpej 			/* Limit size for next transfer. */
   1484  1.110   thorpej 			n = bytes - i;
   1485  1.110   thorpej 			if (n > BYTES_PER_DUMP)
   1486  1.110   thorpej 				n =  BYTES_PER_DUMP;
   1487  1.110   thorpej 
   1488  1.110   thorpej 			error = (*dump)(dumpdev, blkno,
   1489  1.110   thorpej 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1490  1.110   thorpej 			if (error)
   1491  1.110   thorpej 				goto err;
   1492  1.110   thorpej 			maddr += n;
   1493  1.110   thorpej 			blkno += btodb(n);			/* XXX? */
   1494   1.42       cgd 
   1495  1.110   thorpej 			/* XXX should look for keystrokes, to cancel. */
   1496  1.110   thorpej 		}
   1497   1.42       cgd 	}
   1498   1.42       cgd 
   1499   1.43       cgd err:
   1500   1.42       cgd 	switch (error) {
   1501    1.7       cgd 
   1502    1.7       cgd 	case ENXIO:
   1503   1.46  christos 		printf("device bad\n");
   1504    1.7       cgd 		break;
   1505    1.7       cgd 
   1506    1.7       cgd 	case EFAULT:
   1507   1.46  christos 		printf("device not ready\n");
   1508    1.7       cgd 		break;
   1509    1.7       cgd 
   1510    1.7       cgd 	case EINVAL:
   1511   1.46  christos 		printf("area improper\n");
   1512    1.7       cgd 		break;
   1513    1.7       cgd 
   1514    1.7       cgd 	case EIO:
   1515   1.46  christos 		printf("i/o error\n");
   1516    1.7       cgd 		break;
   1517    1.7       cgd 
   1518    1.7       cgd 	case EINTR:
   1519   1.46  christos 		printf("aborted from console\n");
   1520    1.7       cgd 		break;
   1521    1.7       cgd 
   1522   1.42       cgd 	case 0:
   1523   1.46  christos 		printf("succeeded\n");
   1524   1.42       cgd 		break;
   1525   1.42       cgd 
   1526    1.7       cgd 	default:
   1527   1.46  christos 		printf("error %d\n", error);
   1528    1.7       cgd 		break;
   1529    1.7       cgd 	}
   1530   1.46  christos 	printf("\n\n");
   1531    1.7       cgd 	delay(1000);
   1532    1.7       cgd }
   1533    1.7       cgd 
   1534    1.1       cgd void
   1535    1.1       cgd frametoreg(framep, regp)
   1536    1.1       cgd 	struct trapframe *framep;
   1537    1.1       cgd 	struct reg *regp;
   1538    1.1       cgd {
   1539    1.1       cgd 
   1540    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1541    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1542    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1543    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1544    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1545    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1546    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1547    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1548    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1549    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1550    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1551    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1552    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1553    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1554    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1555    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1556   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1557   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1558   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1559    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1560    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1561    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1562    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1563    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1564    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1565    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1566    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1567    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1568    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1569   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1570   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1571    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1572    1.1       cgd }
   1573    1.1       cgd 
   1574    1.1       cgd void
   1575    1.1       cgd regtoframe(regp, framep)
   1576    1.1       cgd 	struct reg *regp;
   1577    1.1       cgd 	struct trapframe *framep;
   1578    1.1       cgd {
   1579    1.1       cgd 
   1580    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1581    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1582    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1583    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1584    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1585    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1586    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1587    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1588    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1589    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1590    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1591    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1592    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1593    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1594    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1595    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1596   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1597   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1598   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1599    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1600    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1601    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1602    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1603    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1604    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1605    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1606    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1607    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1608    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1609   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1610   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1611    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1612    1.1       cgd }
   1613    1.1       cgd 
   1614    1.1       cgd void
   1615    1.1       cgd printregs(regp)
   1616    1.1       cgd 	struct reg *regp;
   1617    1.1       cgd {
   1618    1.1       cgd 	int i;
   1619    1.1       cgd 
   1620    1.1       cgd 	for (i = 0; i < 32; i++)
   1621   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1622    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1623    1.1       cgd }
   1624    1.1       cgd 
   1625    1.1       cgd void
   1626    1.1       cgd regdump(framep)
   1627    1.1       cgd 	struct trapframe *framep;
   1628    1.1       cgd {
   1629    1.1       cgd 	struct reg reg;
   1630    1.1       cgd 
   1631    1.1       cgd 	frametoreg(framep, &reg);
   1632   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1633   1.35       cgd 
   1634   1.46  christos 	printf("REGISTERS:\n");
   1635    1.1       cgd 	printregs(&reg);
   1636    1.1       cgd }
   1637    1.1       cgd 
   1638    1.1       cgd #ifdef DEBUG
   1639    1.1       cgd int sigdebug = 0;
   1640    1.1       cgd int sigpid = 0;
   1641    1.1       cgd #define	SDB_FOLLOW	0x01
   1642    1.1       cgd #define	SDB_KSTACK	0x02
   1643    1.1       cgd #endif
   1644    1.1       cgd 
   1645    1.1       cgd /*
   1646    1.1       cgd  * Send an interrupt to process.
   1647    1.1       cgd  */
   1648    1.1       cgd void
   1649    1.1       cgd sendsig(catcher, sig, mask, code)
   1650    1.1       cgd 	sig_t catcher;
   1651  1.141   thorpej 	int sig;
   1652  1.141   thorpej 	sigset_t *mask;
   1653    1.1       cgd 	u_long code;
   1654    1.1       cgd {
   1655    1.1       cgd 	struct proc *p = curproc;
   1656    1.1       cgd 	struct sigcontext *scp, ksc;
   1657    1.1       cgd 	struct trapframe *frame;
   1658    1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1659  1.141   thorpej 	int onstack, fsize, rndfsize;
   1660    1.1       cgd 
   1661    1.1       cgd 	frame = p->p_md.md_tf;
   1662  1.141   thorpej 
   1663  1.141   thorpej 	/* Do we need to jump onto the signal stack? */
   1664  1.141   thorpej 	onstack =
   1665  1.141   thorpej 	    (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1666  1.141   thorpej 	    (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
   1667  1.141   thorpej 
   1668  1.141   thorpej 	/* Allocate space for the signal handler context. */
   1669  1.141   thorpej 	fsize = sizeof(ksc);
   1670    1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1671  1.141   thorpej 
   1672  1.141   thorpej 	if (onstack)
   1673  1.121    kleink 		scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
   1674  1.142   mycroft 						     psp->ps_sigstk.ss_size);
   1675  1.141   thorpej 	else
   1676  1.142   mycroft 		scp = (struct sigcontext *)(alpha_pal_rdusp());
   1677  1.142   mycroft 	scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
   1678  1.141   thorpej 
   1679    1.1       cgd #ifdef DEBUG
   1680    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1681   1.46  christos 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1682  1.141   thorpej 		    sig, &onstack, scp);
   1683  1.125      ross #endif
   1684    1.1       cgd 
   1685  1.141   thorpej 	/* Build stack frame for signal trampoline. */
   1686   1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1687   1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1688    1.1       cgd 
   1689  1.141   thorpej 	/* Save register context. */
   1690    1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1691    1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1692   1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1693    1.1       cgd 
   1694    1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1695    1.1       cgd 	if (p == fpcurproc) {
   1696   1.32       cgd 		alpha_pal_wrfen(1);
   1697    1.1       cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1698   1.32       cgd 		alpha_pal_wrfen(0);
   1699    1.1       cgd 		fpcurproc = NULL;
   1700    1.1       cgd 	}
   1701    1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1702    1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1703    1.1       cgd 	    sizeof(struct fpreg));
   1704    1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1705    1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1706    1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1707    1.1       cgd 
   1708  1.141   thorpej 	/* Save signal stack. */
   1709  1.141   thorpej 	ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1710  1.141   thorpej 
   1711  1.141   thorpej 	/* Save signal mask. */
   1712  1.141   thorpej 	ksc.sc_mask = *mask;
   1713  1.141   thorpej 
   1714  1.141   thorpej #ifdef COMPAT_13
   1715  1.141   thorpej 	/*
   1716  1.141   thorpej 	 * XXX We always have to save an old style signal mask because
   1717  1.141   thorpej 	 * XXX we might be delivering a signal to a process which will
   1718  1.141   thorpej 	 * XXX escape from the signal in a non-standard way and invoke
   1719  1.141   thorpej 	 * XXX sigreturn() directly.
   1720  1.141   thorpej 	 */
   1721  1.141   thorpej 	{
   1722  1.141   thorpej 		/* Note: it's a long in the stack frame. */
   1723  1.141   thorpej 		sigset13_t mask13;
   1724  1.141   thorpej 
   1725  1.141   thorpej 		native_sigset_to_sigset13(mask, &mask13);
   1726  1.141   thorpej 		ksc.__sc_mask13 = mask13;
   1727  1.141   thorpej 	}
   1728  1.141   thorpej #endif
   1729    1.1       cgd 
   1730    1.1       cgd #ifdef COMPAT_OSF1
   1731    1.1       cgd 	/*
   1732    1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1733    1.1       cgd 	 */
   1734    1.1       cgd #endif
   1735    1.1       cgd 
   1736  1.141   thorpej 	if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
   1737  1.141   thorpej 		/*
   1738  1.141   thorpej 		 * Process has trashed its stack; give it an illegal
   1739  1.141   thorpej 		 * instruction to halt it in its tracks.
   1740  1.141   thorpej 		 */
   1741  1.141   thorpej #ifdef DEBUG
   1742  1.141   thorpej 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1743  1.141   thorpej 			printf("sendsig(%d): copyout failed on sig %d\n",
   1744  1.141   thorpej 			    p->p_pid, sig);
   1745  1.141   thorpej #endif
   1746  1.141   thorpej 		sigexit(p, SIGILL);
   1747  1.141   thorpej 		/* NOTREACHED */
   1748  1.141   thorpej 	}
   1749    1.1       cgd #ifdef DEBUG
   1750    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1751   1.46  christos 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1752    1.1       cgd 		    scp, code);
   1753    1.1       cgd #endif
   1754    1.1       cgd 
   1755  1.141   thorpej 	/* Set up the registers to return to sigcode. */
   1756  1.142   mycroft 	frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
   1757   1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1758   1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1759   1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1760    1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1761   1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1762  1.142   mycroft 
   1763  1.142   mycroft 	/* Remember that we're now on the signal stack. */
   1764  1.142   mycroft 	if (onstack)
   1765  1.142   mycroft 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1766    1.1       cgd 
   1767    1.1       cgd #ifdef DEBUG
   1768    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1769   1.46  christos 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1770   1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1771    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1772   1.46  christos 		printf("sendsig(%d): sig %d returns\n",
   1773    1.1       cgd 		    p->p_pid, sig);
   1774    1.1       cgd #endif
   1775    1.1       cgd }
   1776    1.1       cgd 
   1777    1.1       cgd /*
   1778    1.1       cgd  * System call to cleanup state after a signal
   1779    1.1       cgd  * has been taken.  Reset signal mask and
   1780    1.1       cgd  * stack state from context left by sendsig (above).
   1781    1.1       cgd  * Return to previous pc and psl as specified by
   1782    1.1       cgd  * context left by sendsig. Check carefully to
   1783    1.1       cgd  * make sure that the user has not modified the
   1784    1.1       cgd  * psl to gain improper priviledges or to cause
   1785    1.1       cgd  * a machine fault.
   1786    1.1       cgd  */
   1787    1.1       cgd /* ARGSUSED */
   1788   1.11   mycroft int
   1789  1.141   thorpej sys___sigreturn14(p, v, retval)
   1790    1.1       cgd 	struct proc *p;
   1791   1.10   thorpej 	void *v;
   1792   1.10   thorpej 	register_t *retval;
   1793   1.10   thorpej {
   1794  1.141   thorpej 	struct sys___sigreturn14_args /* {
   1795    1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1796   1.10   thorpej 	} */ *uap = v;
   1797    1.1       cgd 	struct sigcontext *scp, ksc;
   1798    1.1       cgd 
   1799  1.141   thorpej 	/*
   1800  1.141   thorpej 	 * The trampoline code hands us the context.
   1801  1.141   thorpej 	 * It is unsafe to keep track of it ourselves, in the event that a
   1802  1.141   thorpej 	 * program jumps out of a signal handler.
   1803  1.141   thorpej 	 */
   1804    1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1805    1.1       cgd #ifdef DEBUG
   1806    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1807   1.46  christos 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1808    1.1       cgd #endif
   1809    1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1810    1.1       cgd 		return (EINVAL);
   1811    1.1       cgd 
   1812  1.141   thorpej 	if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
   1813  1.141   thorpej 		return (EFAULT);
   1814    1.1       cgd 
   1815    1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1816    1.1       cgd 		return (EINVAL);
   1817    1.1       cgd 
   1818  1.141   thorpej 	/* Restore register context. */
   1819   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1820   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1821   1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1822    1.1       cgd 
   1823    1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1824   1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1825    1.1       cgd 
   1826    1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1827    1.1       cgd 	if (p == fpcurproc)
   1828    1.1       cgd 		fpcurproc = NULL;
   1829    1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1830    1.1       cgd 	    sizeof(struct fpreg));
   1831    1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1832  1.141   thorpej 
   1833  1.141   thorpej 	/* Restore signal stack. */
   1834  1.141   thorpej 	if (ksc.sc_onstack & SS_ONSTACK)
   1835  1.141   thorpej 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1836  1.141   thorpej 	else
   1837  1.141   thorpej 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1838  1.141   thorpej 
   1839  1.141   thorpej 	/* Restore signal mask. */
   1840  1.141   thorpej 	(void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
   1841    1.1       cgd 
   1842    1.1       cgd #ifdef DEBUG
   1843    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1844   1.46  christos 		printf("sigreturn(%d): returns\n", p->p_pid);
   1845    1.1       cgd #endif
   1846    1.1       cgd 	return (EJUSTRETURN);
   1847    1.1       cgd }
   1848    1.1       cgd 
   1849    1.1       cgd /*
   1850    1.1       cgd  * machine dependent system variables.
   1851    1.1       cgd  */
   1852   1.33       cgd int
   1853    1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1854    1.1       cgd 	int *name;
   1855    1.1       cgd 	u_int namelen;
   1856    1.1       cgd 	void *oldp;
   1857    1.1       cgd 	size_t *oldlenp;
   1858    1.1       cgd 	void *newp;
   1859    1.1       cgd 	size_t newlen;
   1860    1.1       cgd 	struct proc *p;
   1861    1.1       cgd {
   1862    1.1       cgd 	dev_t consdev;
   1863    1.1       cgd 
   1864    1.1       cgd 	/* all sysctl names at this level are terminal */
   1865    1.1       cgd 	if (namelen != 1)
   1866    1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1867    1.1       cgd 
   1868    1.1       cgd 	switch (name[0]) {
   1869    1.1       cgd 	case CPU_CONSDEV:
   1870    1.1       cgd 		if (cn_tab != NULL)
   1871    1.1       cgd 			consdev = cn_tab->cn_dev;
   1872    1.1       cgd 		else
   1873    1.1       cgd 			consdev = NODEV;
   1874    1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1875    1.1       cgd 			sizeof consdev));
   1876   1.30       cgd 
   1877   1.30       cgd 	case CPU_ROOT_DEVICE:
   1878   1.64   thorpej 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1879   1.64   thorpej 		    root_device->dv_xname));
   1880   1.36       cgd 
   1881   1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1882   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1883   1.36       cgd 		    &alpha_unaligned_print));
   1884   1.36       cgd 
   1885   1.36       cgd 	case CPU_UNALIGNED_FIX:
   1886   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1887   1.36       cgd 		    &alpha_unaligned_fix));
   1888   1.36       cgd 
   1889   1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1890   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1891   1.36       cgd 		    &alpha_unaligned_sigbus));
   1892   1.61       cgd 
   1893   1.61       cgd 	case CPU_BOOTED_KERNEL:
   1894  1.102       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1895  1.102       cgd 		    bootinfo.booted_kernel));
   1896   1.30       cgd 
   1897    1.1       cgd 	default:
   1898    1.1       cgd 		return (EOPNOTSUPP);
   1899    1.1       cgd 	}
   1900    1.1       cgd 	/* NOTREACHED */
   1901    1.1       cgd }
   1902    1.1       cgd 
   1903    1.1       cgd /*
   1904    1.1       cgd  * Set registers on exec.
   1905    1.1       cgd  */
   1906    1.1       cgd void
   1907   1.85   mycroft setregs(p, pack, stack)
   1908    1.1       cgd 	register struct proc *p;
   1909    1.5  christos 	struct exec_package *pack;
   1910    1.1       cgd 	u_long stack;
   1911    1.1       cgd {
   1912    1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1913   1.56       cgd #ifdef DEBUG
   1914    1.1       cgd 	int i;
   1915   1.56       cgd #endif
   1916   1.43       cgd 
   1917   1.43       cgd #ifdef DEBUG
   1918   1.43       cgd 	/*
   1919   1.43       cgd 	 * Crash and dump, if the user requested it.
   1920   1.43       cgd 	 */
   1921   1.43       cgd 	if (boothowto & RB_DUMP)
   1922   1.43       cgd 		panic("crash requested by boot flags");
   1923   1.43       cgd #endif
   1924    1.1       cgd 
   1925    1.1       cgd #ifdef DEBUG
   1926   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1927    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1928    1.1       cgd #else
   1929   1.34       cgd 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1930    1.1       cgd #endif
   1931    1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1932    1.7       cgd #define FP_RN 2 /* XXX */
   1933    1.7       cgd 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1934   1.35       cgd 	alpha_pal_wrusp(stack);
   1935   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1936   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1937   1.41       cgd 
   1938   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1939   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1940   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1941   1.63       cgd 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1942   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1943    1.1       cgd 
   1944   1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   1945    1.1       cgd 	if (fpcurproc == p)
   1946    1.1       cgd 		fpcurproc = NULL;
   1947    1.1       cgd }
   1948    1.1       cgd 
   1949    1.1       cgd void
   1950    1.1       cgd netintr()
   1951    1.1       cgd {
   1952   1.49       cgd 	int n, s;
   1953   1.49       cgd 
   1954   1.49       cgd 	s = splhigh();
   1955   1.49       cgd 	n = netisr;
   1956   1.49       cgd 	netisr = 0;
   1957   1.49       cgd 	splx(s);
   1958   1.49       cgd 
   1959   1.49       cgd #define	DONETISR(bit, fn)						\
   1960   1.49       cgd 	do {								\
   1961   1.49       cgd 		if (n & (1 << (bit)))					\
   1962   1.49       cgd 			fn;						\
   1963   1.49       cgd 	} while (0)
   1964   1.49       cgd 
   1965    1.1       cgd #ifdef INET
   1966   1.72       cgd #if NARP > 0
   1967   1.49       cgd 	DONETISR(NETISR_ARP, arpintr());
   1968   1.72       cgd #endif
   1969   1.49       cgd 	DONETISR(NETISR_IP, ipintr());
   1970   1.70  christos #endif
   1971   1.70  christos #ifdef NETATALK
   1972   1.70  christos 	DONETISR(NETISR_ATALK, atintr());
   1973    1.1       cgd #endif
   1974    1.1       cgd #ifdef NS
   1975   1.49       cgd 	DONETISR(NETISR_NS, nsintr());
   1976    1.1       cgd #endif
   1977    1.1       cgd #ifdef ISO
   1978   1.49       cgd 	DONETISR(NETISR_ISO, clnlintr());
   1979    1.1       cgd #endif
   1980    1.1       cgd #ifdef CCITT
   1981   1.49       cgd 	DONETISR(NETISR_CCITT, ccittintr());
   1982   1.49       cgd #endif
   1983   1.49       cgd #ifdef NATM
   1984   1.49       cgd 	DONETISR(NETISR_NATM, natmintr());
   1985    1.1       cgd #endif
   1986   1.49       cgd #if NPPP > 1
   1987   1.49       cgd 	DONETISR(NETISR_PPP, pppintr());
   1988    1.8       cgd #endif
   1989   1.49       cgd 
   1990   1.49       cgd #undef DONETISR
   1991    1.1       cgd }
   1992    1.1       cgd 
   1993    1.1       cgd void
   1994    1.1       cgd do_sir()
   1995    1.1       cgd {
   1996   1.58       cgd 	u_int64_t n;
   1997    1.1       cgd 
   1998   1.59       cgd 	do {
   1999   1.60       cgd 		(void)splhigh();
   2000   1.58       cgd 		n = ssir;
   2001   1.58       cgd 		ssir = 0;
   2002   1.60       cgd 		splsoft();		/* don't recurse through spl0() */
   2003  1.112   thorpej 
   2004  1.112   thorpej #define	COUNT_SOFT	uvmexp.softs++
   2005  1.112   thorpej 
   2006   1.59       cgd #define	DO_SIR(bit, fn)							\
   2007   1.59       cgd 		do {							\
   2008   1.60       cgd 			if (n & (bit)) {				\
   2009  1.112   thorpej 				COUNT_SOFT;				\
   2010   1.59       cgd 				fn;					\
   2011   1.59       cgd 			}						\
   2012   1.59       cgd 		} while (0)
   2013   1.59       cgd 
   2014   1.60       cgd 		DO_SIR(SIR_NET, netintr());
   2015   1.60       cgd 		DO_SIR(SIR_CLOCK, softclock());
   2016  1.143      matt #if NCOM > 0
   2017  1.143      matt 		DO_SIR(SIR_SERIAL, comsoft());
   2018  1.143      matt #endif
   2019   1.60       cgd 
   2020  1.112   thorpej #undef COUNT_SOFT
   2021   1.60       cgd #undef DO_SIR
   2022   1.59       cgd 	} while (ssir != 0);
   2023    1.1       cgd }
   2024    1.1       cgd 
   2025    1.1       cgd int
   2026    1.1       cgd spl0()
   2027    1.1       cgd {
   2028    1.1       cgd 
   2029   1.59       cgd 	if (ssir)
   2030   1.59       cgd 		do_sir();		/* it lowers the IPL itself */
   2031    1.1       cgd 
   2032   1.32       cgd 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   2033    1.1       cgd }
   2034    1.1       cgd 
   2035    1.1       cgd /*
   2036    1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   2037    1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   2038   1.52       cgd  * into queues, Remrunqueue removes them from queues.  The running process is
   2039   1.52       cgd  * on no queue, other processes are on a queue related to p->p_priority,
   2040   1.52       cgd  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   2041   1.52       cgd  * available queues.
   2042    1.1       cgd  */
   2043    1.1       cgd /*
   2044    1.1       cgd  * setrunqueue(p)
   2045    1.1       cgd  *	proc *p;
   2046    1.1       cgd  *
   2047    1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   2048    1.1       cgd  */
   2049    1.1       cgd 
   2050    1.1       cgd void
   2051    1.1       cgd setrunqueue(p)
   2052    1.1       cgd 	struct proc *p;
   2053    1.1       cgd {
   2054    1.1       cgd 	int bit;
   2055    1.1       cgd 
   2056    1.1       cgd 	/* firewall: p->p_back must be NULL */
   2057    1.1       cgd 	if (p->p_back != NULL)
   2058    1.1       cgd 		panic("setrunqueue");
   2059    1.1       cgd 
   2060    1.1       cgd 	bit = p->p_priority >> 2;
   2061    1.1       cgd 	whichqs |= (1 << bit);
   2062    1.1       cgd 	p->p_forw = (struct proc *)&qs[bit];
   2063    1.1       cgd 	p->p_back = qs[bit].ph_rlink;
   2064    1.1       cgd 	p->p_back->p_forw = p;
   2065    1.1       cgd 	qs[bit].ph_rlink = p;
   2066    1.1       cgd }
   2067    1.1       cgd 
   2068    1.1       cgd /*
   2069   1.52       cgd  * remrunqueue(p)
   2070    1.1       cgd  *
   2071    1.1       cgd  * Call should be made at splclock().
   2072    1.1       cgd  */
   2073    1.1       cgd void
   2074   1.52       cgd remrunqueue(p)
   2075    1.1       cgd 	struct proc *p;
   2076    1.1       cgd {
   2077    1.1       cgd 	int bit;
   2078    1.1       cgd 
   2079    1.1       cgd 	bit = p->p_priority >> 2;
   2080    1.1       cgd 	if ((whichqs & (1 << bit)) == 0)
   2081   1.52       cgd 		panic("remrunqueue");
   2082    1.1       cgd 
   2083    1.1       cgd 	p->p_back->p_forw = p->p_forw;
   2084    1.1       cgd 	p->p_forw->p_back = p->p_back;
   2085    1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   2086    1.1       cgd 
   2087    1.1       cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   2088    1.1       cgd 		whichqs &= ~(1 << bit);
   2089    1.1       cgd }
   2090    1.1       cgd 
   2091    1.1       cgd /*
   2092    1.1       cgd  * Return the best possible estimate of the time in the timeval
   2093    1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   2094    1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   2095    1.1       cgd  * previous call.
   2096    1.1       cgd  */
   2097    1.1       cgd void
   2098    1.1       cgd microtime(tvp)
   2099    1.1       cgd 	register struct timeval *tvp;
   2100    1.1       cgd {
   2101    1.1       cgd 	int s = splclock();
   2102    1.1       cgd 	static struct timeval lasttime;
   2103    1.1       cgd 
   2104    1.1       cgd 	*tvp = time;
   2105    1.1       cgd #ifdef notdef
   2106    1.1       cgd 	tvp->tv_usec += clkread();
   2107    1.1       cgd 	while (tvp->tv_usec > 1000000) {
   2108    1.1       cgd 		tvp->tv_sec++;
   2109    1.1       cgd 		tvp->tv_usec -= 1000000;
   2110    1.1       cgd 	}
   2111    1.1       cgd #endif
   2112    1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   2113    1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   2114    1.1       cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   2115    1.1       cgd 		tvp->tv_sec++;
   2116    1.1       cgd 		tvp->tv_usec -= 1000000;
   2117    1.1       cgd 	}
   2118    1.1       cgd 	lasttime = *tvp;
   2119    1.1       cgd 	splx(s);
   2120   1.15       cgd }
   2121   1.15       cgd 
   2122   1.15       cgd /*
   2123   1.15       cgd  * Wait "n" microseconds.
   2124   1.15       cgd  */
   2125   1.32       cgd void
   2126   1.15       cgd delay(n)
   2127   1.32       cgd 	unsigned long n;
   2128   1.15       cgd {
   2129   1.15       cgd 	long N = cycles_per_usec * (n);
   2130   1.15       cgd 
   2131   1.15       cgd 	while (N > 0)				/* XXX */
   2132   1.15       cgd 		N -= 3;				/* XXX */
   2133    1.1       cgd }
   2134    1.1       cgd 
   2135    1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   2136   1.55       cgd void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   2137   1.85   mycroft 	    u_long));
   2138   1.55       cgd 
   2139    1.1       cgd void
   2140   1.85   mycroft cpu_exec_ecoff_setregs(p, epp, stack)
   2141    1.1       cgd 	struct proc *p;
   2142   1.19       cgd 	struct exec_package *epp;
   2143    1.5  christos 	u_long stack;
   2144    1.1       cgd {
   2145   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2146    1.1       cgd 
   2147   1.85   mycroft 	setregs(p, epp, stack);
   2148   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   2149    1.1       cgd }
   2150    1.1       cgd 
   2151    1.1       cgd /*
   2152    1.1       cgd  * cpu_exec_ecoff_hook():
   2153    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   2154    1.1       cgd  *
   2155    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2156    1.1       cgd  *
   2157    1.1       cgd  */
   2158    1.1       cgd int
   2159   1.19       cgd cpu_exec_ecoff_hook(p, epp)
   2160    1.1       cgd 	struct proc *p;
   2161    1.1       cgd 	struct exec_package *epp;
   2162    1.1       cgd {
   2163   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2164    1.5  christos 	extern struct emul emul_netbsd;
   2165    1.5  christos #ifdef COMPAT_OSF1
   2166    1.5  christos 	extern struct emul emul_osf1;
   2167    1.5  christos #endif
   2168    1.1       cgd 
   2169   1.19       cgd 	switch (execp->f.f_magic) {
   2170    1.5  christos #ifdef COMPAT_OSF1
   2171    1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   2172    1.5  christos 		epp->ep_emul = &emul_osf1;
   2173    1.1       cgd 		break;
   2174    1.5  christos #endif
   2175    1.1       cgd 
   2176    1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   2177    1.5  christos 		epp->ep_emul = &emul_netbsd;
   2178    1.1       cgd 		break;
   2179    1.1       cgd 
   2180    1.1       cgd 	default:
   2181   1.12       cgd 		return ENOEXEC;
   2182    1.1       cgd 	}
   2183    1.1       cgd 	return 0;
   2184    1.1       cgd }
   2185    1.1       cgd #endif
   2186  1.110   thorpej 
   2187  1.110   thorpej int
   2188  1.110   thorpej alpha_pa_access(pa)
   2189  1.110   thorpej 	u_long pa;
   2190  1.110   thorpej {
   2191  1.110   thorpej 	int i;
   2192  1.110   thorpej 
   2193  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   2194  1.110   thorpej 		if (pa < mem_clusters[i].start)
   2195  1.110   thorpej 			continue;
   2196  1.110   thorpej 		if ((pa - mem_clusters[i].start) >=
   2197  1.110   thorpej 		    (mem_clusters[i].size & ~PAGE_MASK))
   2198  1.110   thorpej 			continue;
   2199  1.110   thorpej 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2200  1.110   thorpej 	}
   2201  1.110   thorpej 	return (PROT_NONE);
   2202  1.110   thorpej }
   2203   1.50       cgd 
   2204   1.50       cgd /* XXX XXX BEGIN XXX XXX */
   2205  1.140   thorpej paddr_t alpha_XXX_dmamap_or;					/* XXX */
   2206   1.50       cgd 								/* XXX */
   2207  1.140   thorpej paddr_t								/* XXX */
   2208   1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   2209  1.140   thorpej 	vaddr_t v;						/* XXX */
   2210   1.50       cgd {								/* XXX */
   2211   1.50       cgd 								/* XXX */
   2212   1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2213   1.50       cgd }								/* XXX */
   2214   1.50       cgd /* XXX XXX END XXX XXX */
   2215  1.138      ross 
   2216  1.138      ross struct mchkinfo *
   2217  1.138      ross cpu_mchkinfo()
   2218  1.138      ross {
   2219  1.138      ross 	if (mchkinfo_all_cpus == NULL)
   2220  1.138      ross 		return &startup_info;
   2221  1.138      ross 	return mchkinfo_all_cpus + alpha_pal_whami();
   2222  1.138      ross }
   2223