Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.174
      1  1.174   thorpej /* $NetBSD: machdep.c,v 1.174 1999/05/21 00:09:09 thorpej Exp $ */
      2  1.110   thorpej 
      3  1.110   thorpej /*-
      4  1.169   thorpej  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  1.110   thorpej  * All rights reserved.
      6  1.110   thorpej  *
      7  1.110   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.110   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.110   thorpej  * NASA Ames Research Center and by Chris G. Demetriou.
     10  1.110   thorpej  *
     11  1.110   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.110   thorpej  * modification, are permitted provided that the following conditions
     13  1.110   thorpej  * are met:
     14  1.110   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.110   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.110   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.110   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.110   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.110   thorpej  * 3. All advertising materials mentioning features or use of this software
     20  1.110   thorpej  *    must display the following acknowledgement:
     21  1.110   thorpej  *	This product includes software developed by the NetBSD
     22  1.110   thorpej  *	Foundation, Inc. and its contributors.
     23  1.110   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.110   thorpej  *    contributors may be used to endorse or promote products derived
     25  1.110   thorpej  *    from this software without specific prior written permission.
     26  1.110   thorpej  *
     27  1.110   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.110   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.110   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.110   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.110   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.110   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.110   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.110   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.110   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.110   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.110   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38  1.110   thorpej  */
     39    1.1       cgd 
     40    1.1       cgd /*
     41   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42    1.1       cgd  * All rights reserved.
     43    1.1       cgd  *
     44    1.1       cgd  * Author: Chris G. Demetriou
     45    1.1       cgd  *
     46    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     47    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     48    1.1       cgd  * notice and this permission notice appear in all copies of the
     49    1.1       cgd  * software, derivative works or modified versions, and any portions
     50    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     51    1.1       cgd  *
     52    1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53    1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55    1.1       cgd  *
     56    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     57    1.1       cgd  *
     58    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59    1.1       cgd  *  School of Computer Science
     60    1.1       cgd  *  Carnegie Mellon University
     61    1.1       cgd  *  Pittsburgh PA 15213-3890
     62    1.1       cgd  *
     63    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     64    1.1       cgd  * rights to redistribute these changes.
     65    1.1       cgd  */
     66   1.74       cgd 
     67  1.129  jonathan #include "opt_ddb.h"
     68  1.147   thorpej #include "opt_multiprocessor.h"
     69  1.113   thorpej #include "opt_pmap_new.h"
     70  1.123   thorpej #include "opt_dec_3000_300.h"
     71  1.123   thorpej #include "opt_dec_3000_500.h"
     72  1.127   thorpej #include "opt_compat_osf1.h"
     73  1.141   thorpej #include "opt_compat_netbsd.h"
     74  1.129  jonathan #include "opt_inet.h"
     75  1.129  jonathan #include "opt_atalk.h"
     76  1.131  jonathan #include "opt_ccitt.h"
     77  1.131  jonathan #include "opt_iso.h"
     78  1.132  jonathan #include "opt_ns.h"
     79  1.133  jonathan #include "opt_natm.h"
     80  1.112   thorpej 
     81   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     82   1.75       cgd 
     83  1.174   thorpej __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.174 1999/05/21 00:09:09 thorpej Exp $");
     84    1.1       cgd 
     85    1.1       cgd #include <sys/param.h>
     86    1.1       cgd #include <sys/systm.h>
     87    1.1       cgd #include <sys/signalvar.h>
     88    1.1       cgd #include <sys/kernel.h>
     89    1.1       cgd #include <sys/map.h>
     90    1.1       cgd #include <sys/proc.h>
     91    1.1       cgd #include <sys/buf.h>
     92    1.1       cgd #include <sys/reboot.h>
     93   1.28       cgd #include <sys/device.h>
     94    1.1       cgd #include <sys/file.h>
     95    1.1       cgd #include <sys/callout.h>
     96    1.1       cgd #include <sys/malloc.h>
     97    1.1       cgd #include <sys/mbuf.h>
     98  1.110   thorpej #include <sys/mman.h>
     99    1.1       cgd #include <sys/msgbuf.h>
    100    1.1       cgd #include <sys/ioctl.h>
    101    1.1       cgd #include <sys/tty.h>
    102    1.1       cgd #include <sys/user.h>
    103    1.1       cgd #include <sys/exec.h>
    104    1.1       cgd #include <sys/exec_ecoff.h>
    105   1.91    mjacob #include <vm/vm.h>
    106    1.1       cgd #include <sys/sysctl.h>
    107   1.43       cgd #include <sys/core.h>
    108   1.43       cgd #include <sys/kcore.h>
    109   1.43       cgd #include <machine/kcore.h>
    110    1.1       cgd 
    111    1.1       cgd #include <sys/mount.h>
    112    1.1       cgd #include <sys/syscallargs.h>
    113    1.1       cgd 
    114    1.1       cgd #include <vm/vm_kern.h>
    115    1.1       cgd 
    116  1.112   thorpej #include <uvm/uvm_extern.h>
    117  1.112   thorpej 
    118    1.1       cgd #include <dev/cons.h>
    119    1.1       cgd 
    120   1.81   thorpej #include <machine/autoconf.h>
    121    1.1       cgd #include <machine/cpu.h>
    122    1.1       cgd #include <machine/reg.h>
    123    1.1       cgd #include <machine/rpb.h>
    124    1.1       cgd #include <machine/prom.h>
    125   1.73       cgd #include <machine/conf.h>
    126  1.172      ross #include <machine/ieeefp.h>
    127    1.8       cgd 
    128  1.148   thorpej #include <alpha/alpha/cpuvar.h>
    129  1.148   thorpej 
    130   1.49       cgd #include <net/netisr.h>
    131   1.33       cgd #include <net/if.h>
    132   1.49       cgd 
    133   1.49       cgd #ifdef INET
    134  1.120      ross #include <net/route.h>
    135   1.33       cgd #include <netinet/in.h>
    136   1.72       cgd #include <netinet/ip_var.h>
    137   1.72       cgd #include "arp.h"
    138   1.72       cgd #if NARP > 0
    139   1.67        is #include <netinet/if_inarp.h>
    140   1.72       cgd #endif
    141   1.49       cgd #endif
    142   1.49       cgd #ifdef NS
    143   1.49       cgd #include <netns/ns_var.h>
    144   1.49       cgd #endif
    145   1.49       cgd #ifdef ISO
    146   1.49       cgd #include <netiso/iso.h>
    147   1.49       cgd #include <netiso/clnp.h>
    148   1.49       cgd #endif
    149   1.55       cgd #ifdef CCITT
    150   1.55       cgd #include <netccitt/x25.h>
    151   1.55       cgd #include <netccitt/pk.h>
    152   1.55       cgd #include <netccitt/pk_extern.h>
    153   1.55       cgd #endif
    154   1.55       cgd #ifdef NATM
    155   1.55       cgd #include <netnatm/natm.h>
    156   1.55       cgd #endif
    157   1.70  christos #ifdef NETATALK
    158   1.70  christos #include <netatalk/at_extern.h>
    159   1.70  christos #endif
    160   1.49       cgd #include "ppp.h"
    161   1.49       cgd #if NPPP > 0
    162   1.49       cgd #include <net/ppp_defs.h>
    163   1.49       cgd #include <net/if_ppp.h>
    164   1.49       cgd #endif
    165    1.1       cgd 
    166   1.81   thorpej #ifdef DDB
    167   1.81   thorpej #include <machine/db_machdep.h>
    168   1.81   thorpej #include <ddb/db_access.h>
    169   1.81   thorpej #include <ddb/db_sym.h>
    170   1.81   thorpej #include <ddb/db_extern.h>
    171   1.81   thorpej #include <ddb/db_interface.h>
    172   1.81   thorpej #endif
    173   1.81   thorpej 
    174  1.155      ross #include <machine/alpha.h>
    175  1.155      ross #include <machine/intrcnt.h>
    176  1.155      ross 
    177  1.143      matt #include "com.h"
    178  1.143      matt #if NCOM > 0
    179  1.143      matt extern void comsoft __P((void));
    180  1.143      matt #endif
    181  1.143      matt 
    182  1.112   thorpej vm_map_t exec_map = NULL;
    183  1.112   thorpej vm_map_t mb_map = NULL;
    184  1.112   thorpej vm_map_t phys_map = NULL;
    185    1.1       cgd 
    186   1.86       leo caddr_t msgbufaddr;
    187   1.86       leo 
    188    1.1       cgd int	maxmem;			/* max memory per process */
    189    1.7       cgd 
    190    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    191    1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    192    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    193    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    194    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    195    1.1       cgd 
    196    1.1       cgd int	cputype;		/* system type, from the RPB */
    197    1.1       cgd 
    198    1.1       cgd /*
    199    1.1       cgd  * XXX We need an address to which we can assign things so that they
    200    1.1       cgd  * won't be optimized away because we didn't use the value.
    201    1.1       cgd  */
    202    1.1       cgd u_int32_t no_optimize;
    203    1.1       cgd 
    204    1.1       cgd /* the following is used externally (sysctl_hw) */
    205   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    206   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    207   1.29       cgd char	cpu_model[128];
    208    1.1       cgd 
    209    1.1       cgd struct	user *proc0paddr;
    210    1.1       cgd 
    211    1.1       cgd /* Number of machine cycles per microsecond */
    212    1.1       cgd u_int64_t	cycles_per_usec;
    213    1.1       cgd 
    214    1.7       cgd /* number of cpus in the box.  really! */
    215    1.7       cgd int		ncpus;
    216    1.7       cgd 
    217  1.173     lukem /* machine check info array, valloc()'ed in mdallocsys() */
    218  1.138      ross 
    219  1.138      ross static struct mchkinfo startup_info,
    220  1.138      ross 			*mchkinfo_all_cpus;
    221  1.134    mjacob 
    222  1.102       cgd struct bootinfo_kernel bootinfo;
    223   1.81   thorpej 
    224  1.123   thorpej /* For built-in TCDS */
    225  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    226  1.123   thorpej u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    227  1.123   thorpej #endif
    228  1.123   thorpej 
    229   1.89    mjacob struct platform platform;
    230   1.89    mjacob 
    231  1.100   thorpej u_int32_t vm_kmem_size = _VM_KMEM_SIZE;
    232  1.100   thorpej u_int32_t vm_phys_size = _VM_PHYS_SIZE;
    233   1.90    mjacob 
    234   1.81   thorpej #ifdef DDB
    235   1.81   thorpej /* start and end of kernel symbol table */
    236   1.81   thorpej void	*ksym_start, *ksym_end;
    237   1.81   thorpej #endif
    238   1.81   thorpej 
    239   1.30       cgd /* for cpu_sysctl() */
    240   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    241   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    242   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    243   1.30       cgd 
    244  1.110   thorpej /*
    245  1.110   thorpej  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    246  1.110   thorpej  * XXX it should also be larger than it is, because not all of the mddt
    247  1.110   thorpej  * XXX clusters end up being used for VM.
    248  1.110   thorpej  */
    249  1.110   thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    250  1.110   thorpej int	mem_cluster_cnt;
    251  1.110   thorpej 
    252   1.55       cgd int	cpu_dump __P((void));
    253   1.55       cgd int	cpu_dumpsize __P((void));
    254  1.110   thorpej u_long	cpu_dump_mempagecnt __P((void));
    255   1.55       cgd void	dumpsys __P((void));
    256   1.55       cgd void	identifycpu __P((void));
    257  1.173     lukem caddr_t	mdallocsys __P((caddr_t));
    258   1.55       cgd void	netintr __P((void));
    259   1.55       cgd void	printregs __P((struct reg *));
    260   1.33       cgd 
    261   1.55       cgd void
    262  1.102       cgd alpha_init(pfn, ptb, bim, bip, biv)
    263    1.1       cgd 	u_long pfn;		/* first free PFN number */
    264    1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    265   1.81   thorpej 	u_long bim;		/* bootinfo magic */
    266   1.81   thorpej 	u_long bip;		/* bootinfo pointer */
    267  1.102       cgd 	u_long biv;		/* bootinfo version */
    268    1.1       cgd {
    269   1.95   thorpej 	extern char kernel_text[], _end[];
    270    1.1       cgd 	struct mddt *mddtp;
    271  1.110   thorpej 	struct mddt_cluster *memc;
    272    1.7       cgd 	int i, mddtweird;
    273  1.110   thorpej 	struct vm_physseg *vps;
    274  1.140   thorpej 	vaddr_t kernstart, kernend;
    275  1.140   thorpej 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    276  1.140   thorpej 	vsize_t size;
    277    1.1       cgd 	char *p;
    278   1.95   thorpej 	caddr_t v;
    279  1.106       cgd 	char *bootinfo_msg;
    280  1.106       cgd 
    281  1.106       cgd 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    282    1.1       cgd 
    283    1.1       cgd 	/*
    284   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    285    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    286    1.1       cgd 	 */
    287   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    288   1.32       cgd 	alpha_pal_wrfen(0);
    289   1.37       cgd 	ALPHA_TBIA();
    290   1.32       cgd 	alpha_pal_imb();
    291    1.1       cgd 
    292    1.1       cgd 	/*
    293  1.106       cgd 	 * Get critical system information (if possible, from the
    294  1.106       cgd 	 * information provided by the boot program).
    295   1.81   thorpej 	 */
    296  1.106       cgd 	bootinfo_msg = NULL;
    297   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    298  1.102       cgd 		if (biv == 0) {		/* backward compat */
    299  1.102       cgd 			biv = *(u_long *)bip;
    300  1.102       cgd 			bip += 8;
    301  1.102       cgd 		}
    302  1.102       cgd 		switch (biv) {
    303  1.102       cgd 		case 1: {
    304  1.102       cgd 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    305  1.102       cgd 
    306  1.102       cgd 			bootinfo.ssym = v1p->ssym;
    307  1.102       cgd 			bootinfo.esym = v1p->esym;
    308  1.106       cgd 			/* hwrpb may not be provided by boot block in v1 */
    309  1.106       cgd 			if (v1p->hwrpb != NULL) {
    310  1.106       cgd 				bootinfo.hwrpb_phys =
    311  1.106       cgd 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    312  1.106       cgd 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    313  1.106       cgd 			} else {
    314  1.106       cgd 				bootinfo.hwrpb_phys =
    315  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    316  1.106       cgd 				bootinfo.hwrpb_size =
    317  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    318  1.106       cgd 			}
    319  1.102       cgd 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    320  1.102       cgd 			    min(sizeof v1p->boot_flags,
    321  1.102       cgd 			      sizeof bootinfo.boot_flags));
    322  1.102       cgd 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    323  1.102       cgd 			    min(sizeof v1p->booted_kernel,
    324  1.102       cgd 			      sizeof bootinfo.booted_kernel));
    325  1.106       cgd 			/* booted dev not provided in bootinfo */
    326  1.106       cgd 			init_prom_interface((struct rpb *)
    327  1.106       cgd 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    328  1.102       cgd                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    329  1.102       cgd 			    sizeof bootinfo.booted_dev);
    330   1.81   thorpej 			break;
    331  1.102       cgd 		}
    332   1.81   thorpej 		default:
    333  1.106       cgd 			bootinfo_msg = "unknown bootinfo version";
    334  1.102       cgd 			goto nobootinfo;
    335   1.81   thorpej 		}
    336  1.102       cgd 	} else {
    337  1.106       cgd 		bootinfo_msg = "boot program did not pass bootinfo";
    338  1.102       cgd nobootinfo:
    339  1.102       cgd 		bootinfo.ssym = (u_long)_end;
    340  1.102       cgd 		bootinfo.esym = (u_long)_end;
    341  1.106       cgd 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    342  1.106       cgd 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    343  1.106       cgd 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    344  1.102       cgd 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    345  1.102       cgd 		    sizeof bootinfo.boot_flags);
    346  1.102       cgd 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    347  1.102       cgd 		    sizeof bootinfo.booted_kernel);
    348  1.102       cgd 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    349  1.102       cgd 		    sizeof bootinfo.booted_dev);
    350  1.102       cgd 	}
    351  1.102       cgd 
    352   1.81   thorpej 	/*
    353  1.106       cgd 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    354  1.106       cgd 	 * lots of things.
    355  1.106       cgd 	 */
    356  1.106       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    357  1.123   thorpej 
    358  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    359  1.123   thorpej 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    360  1.123   thorpej 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    361  1.123   thorpej 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    362  1.123   thorpej 		    sizeof(dec_3000_scsiid));
    363  1.123   thorpej 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    364  1.123   thorpej 		    sizeof(dec_3000_scsifast));
    365  1.123   thorpej 	}
    366  1.123   thorpej #endif
    367  1.106       cgd 
    368  1.106       cgd 	/*
    369  1.106       cgd 	 * Remember how many cycles there are per microsecond,
    370  1.106       cgd 	 * so that we can use delay().  Round up, for safety.
    371  1.106       cgd 	 */
    372  1.106       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    373  1.106       cgd 
    374  1.106       cgd 	/*
    375  1.106       cgd 	 * Initalize the (temporary) bootstrap console interface, so
    376  1.106       cgd 	 * we can use printf until the VM system starts being setup.
    377  1.106       cgd 	 * The real console is initialized before then.
    378  1.106       cgd 	 */
    379  1.106       cgd 	init_bootstrap_console();
    380  1.106       cgd 
    381  1.106       cgd 	/* OUTPUT NOW ALLOWED */
    382  1.106       cgd 
    383  1.106       cgd 	/* delayed from above */
    384  1.106       cgd 	if (bootinfo_msg)
    385  1.106       cgd 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    386  1.106       cgd 		    bootinfo_msg, bim, bip, biv);
    387  1.106       cgd 
    388  1.147   thorpej 	/* Initialize the trap vectors on the primary processor. */
    389  1.147   thorpej 	trap_init();
    390    1.1       cgd 
    391    1.1       cgd 	/*
    392  1.106       cgd 	 * Find out what hardware we're on, and do basic initialization.
    393  1.106       cgd 	 */
    394  1.106       cgd 	cputype = hwrpb->rpb_type;
    395  1.167       cgd 	if (cputype < 0) {
    396  1.167       cgd 		/*
    397  1.167       cgd 		 * At least some white-box systems have SRM which
    398  1.167       cgd 		 * reports a systype that's the negative of their
    399  1.167       cgd 		 * blue-box counterpart.
    400  1.167       cgd 		 */
    401  1.167       cgd 		cputype = -cputype;
    402  1.167       cgd 	}
    403  1.106       cgd 	if (cputype >= ncpuinit) {
    404  1.106       cgd 		platform_not_supported();
    405  1.106       cgd 		/* NOTREACHED */
    406  1.106       cgd 	}
    407  1.106       cgd 	(*cpuinit[cputype].init)();
    408  1.106       cgd 	strcpy(cpu_model, platform.model);
    409  1.106       cgd 
    410  1.106       cgd 	/*
    411  1.106       cgd 	 * Initalize the real console, so the the bootstrap console is
    412  1.106       cgd 	 * no longer necessary.
    413  1.106       cgd 	 */
    414  1.169   thorpej 	(*platform.cons_init)();
    415  1.106       cgd 
    416  1.106       cgd #ifdef DIAGNOSTIC
    417  1.106       cgd 	/* Paranoid sanity checking */
    418  1.106       cgd 
    419  1.106       cgd 	/* We should always be running on the the primary. */
    420  1.106       cgd 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
    421  1.106       cgd 
    422  1.116    mjacob 	/*
    423  1.116    mjacob 	 * On single-CPU systypes, the primary should always be CPU 0,
    424  1.116    mjacob 	 * except on Alpha 8200 systems where the CPU id is related
    425  1.116    mjacob 	 * to the VID, which is related to the Turbo Laser node id.
    426  1.116    mjacob 	 */
    427  1.106       cgd 	if (cputype != ST_DEC_21000)
    428  1.106       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);
    429  1.106       cgd #endif
    430  1.106       cgd 
    431  1.106       cgd 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    432  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    433  1.106       cgd 	/*
    434  1.106       cgd 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    435  1.106       cgd 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    436  1.106       cgd 	 */
    437  1.106       cgd #endif
    438  1.106       cgd 
    439  1.106       cgd 	/*
    440  1.106       cgd 	 * find out this system's page size
    441   1.95   thorpej 	 */
    442   1.95   thorpej 	PAGE_SIZE = hwrpb->rpb_page_size;
    443   1.95   thorpej 	if (PAGE_SIZE != 8192)
    444   1.95   thorpej 		panic("page size %d != 8192?!", PAGE_SIZE);
    445   1.95   thorpej 
    446   1.95   thorpej 	/*
    447   1.95   thorpej 	 * Initialize PAGE_SIZE-dependent variables.
    448   1.95   thorpej 	 */
    449  1.112   thorpej 	uvm_setpagesize();
    450   1.95   thorpej 
    451   1.95   thorpej 	/*
    452  1.101       cgd 	 * Find the beginning and end of the kernel (and leave a
    453  1.101       cgd 	 * bit of space before the beginning for the bootstrap
    454  1.101       cgd 	 * stack).
    455   1.95   thorpej 	 */
    456  1.101       cgd 	kernstart = trunc_page(kernel_text) - 2 * PAGE_SIZE;
    457   1.95   thorpej #ifdef DDB
    458  1.102       cgd 	ksym_start = (void *)bootinfo.ssym;
    459  1.102       cgd 	ksym_end   = (void *)bootinfo.esym;
    460  1.140   thorpej 	kernend = (vaddr_t)round_page(ksym_end);
    461  1.102       cgd #else
    462  1.140   thorpej 	kernend = (vaddr_t)round_page(_end);
    463   1.95   thorpej #endif
    464   1.95   thorpej 
    465  1.110   thorpej 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    466  1.110   thorpej 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    467  1.110   thorpej 
    468   1.95   thorpej 	/*
    469    1.1       cgd 	 * Find out how much memory is available, by looking at
    470    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    471    1.7       cgd 	 * its best to detect things things that have never been seen
    472    1.7       cgd 	 * before...
    473    1.1       cgd 	 */
    474    1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    475    1.7       cgd 
    476  1.110   thorpej 	/* MDDT SANITY CHECKING */
    477    1.7       cgd 	mddtweird = 0;
    478  1.110   thorpej 	if (mddtp->mddt_cluster_cnt < 2) {
    479    1.7       cgd 		mddtweird = 1;
    480  1.160   thorpej 		printf("WARNING: weird number of mem clusters: %lu\n",
    481  1.110   thorpej 		    mddtp->mddt_cluster_cnt);
    482    1.7       cgd 	}
    483    1.7       cgd 
    484  1.110   thorpej #if 0
    485  1.110   thorpej 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    486  1.110   thorpej #endif
    487  1.110   thorpej 
    488  1.110   thorpej 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    489  1.110   thorpej 		memc = &mddtp->mddt_clusters[i];
    490  1.110   thorpej #if 0
    491  1.110   thorpej 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    492  1.110   thorpej 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    493  1.110   thorpej #endif
    494  1.110   thorpej 		totalphysmem += memc->mddt_pg_cnt;
    495  1.110   thorpej 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    496  1.110   thorpej 			mem_clusters[mem_cluster_cnt].start =
    497  1.110   thorpej 			    ptoa(memc->mddt_pfn);
    498  1.110   thorpej 			mem_clusters[mem_cluster_cnt].size =
    499  1.110   thorpej 			    ptoa(memc->mddt_pg_cnt);
    500  1.110   thorpej 			if (memc->mddt_usage & MDDT_mbz ||
    501  1.110   thorpej 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    502  1.110   thorpej 			    memc->mddt_usage & MDDT_PALCODE)
    503  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    504  1.110   thorpej 				    PROT_READ;
    505  1.110   thorpej 			else
    506  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    507  1.110   thorpej 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    508  1.110   thorpej 			mem_cluster_cnt++;
    509  1.110   thorpej 		}
    510  1.110   thorpej 
    511  1.110   thorpej 		if (memc->mddt_usage & MDDT_mbz) {
    512    1.7       cgd 			mddtweird = 1;
    513  1.110   thorpej 			printf("WARNING: mem cluster %d has weird "
    514  1.110   thorpej 			    "usage 0x%lx\n", i, memc->mddt_usage);
    515  1.110   thorpej 			unknownmem += memc->mddt_pg_cnt;
    516  1.110   thorpej 			continue;
    517    1.7       cgd 		}
    518  1.110   thorpej 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    519  1.110   thorpej 			/* XXX should handle these... */
    520  1.110   thorpej 			printf("WARNING: skipping non-volatile mem "
    521  1.110   thorpej 			    "cluster %d\n", i);
    522  1.110   thorpej 			unusedmem += memc->mddt_pg_cnt;
    523  1.110   thorpej 			continue;
    524  1.110   thorpej 		}
    525  1.110   thorpej 		if (memc->mddt_usage & MDDT_PALCODE) {
    526  1.110   thorpej 			resvmem += memc->mddt_pg_cnt;
    527  1.110   thorpej 			continue;
    528  1.110   thorpej 		}
    529  1.110   thorpej 
    530  1.110   thorpej 		/*
    531  1.110   thorpej 		 * We have a memory cluster available for system
    532  1.110   thorpej 		 * software use.  We must determine if this cluster
    533  1.110   thorpej 		 * holds the kernel.
    534  1.110   thorpej 		 */
    535  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    536  1.110   thorpej 		/*
    537  1.110   thorpej 		 * XXX If the kernel uses the PROM console, we only use the
    538  1.110   thorpej 		 * XXX memory after the kernel in the first system segment,
    539  1.110   thorpej 		 * XXX to avoid clobbering prom mapping, data, etc.
    540  1.110   thorpej 		 */
    541  1.110   thorpej 	    if (!pmap_uses_prom_console() || physmem == 0) {
    542  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    543  1.110   thorpej 		physmem += memc->mddt_pg_cnt;
    544  1.110   thorpej 		pfn0 = memc->mddt_pfn;
    545  1.110   thorpej 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    546  1.110   thorpej 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    547  1.110   thorpej 			/*
    548  1.110   thorpej 			 * Must compute the location of the kernel
    549  1.110   thorpej 			 * within the segment.
    550  1.110   thorpej 			 */
    551  1.110   thorpej #if 0
    552  1.110   thorpej 			printf("Cluster %d contains kernel\n", i);
    553  1.110   thorpej #endif
    554  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    555  1.110   thorpej 		    if (!pmap_uses_prom_console()) {
    556  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    557  1.110   thorpej 			if (pfn0 < kernstartpfn) {
    558  1.110   thorpej 				/*
    559  1.110   thorpej 				 * There is a chunk before the kernel.
    560  1.110   thorpej 				 */
    561  1.110   thorpej #if 0
    562  1.110   thorpej 				printf("Loading chunk before kernel: "
    563  1.110   thorpej 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    564  1.110   thorpej #endif
    565  1.112   thorpej 				uvm_page_physload(pfn0, kernstartpfn,
    566  1.135   thorpej 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    567  1.110   thorpej 			}
    568  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    569  1.110   thorpej 		    }
    570  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    571  1.110   thorpej 			if (kernendpfn < pfn1) {
    572  1.110   thorpej 				/*
    573  1.110   thorpej 				 * There is a chunk after the kernel.
    574  1.110   thorpej 				 */
    575  1.110   thorpej #if 0
    576  1.110   thorpej 				printf("Loading chunk after kernel: "
    577  1.110   thorpej 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    578  1.110   thorpej #endif
    579  1.112   thorpej 				uvm_page_physload(kernendpfn, pfn1,
    580  1.135   thorpej 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    581  1.110   thorpej 			}
    582  1.110   thorpej 		} else {
    583  1.110   thorpej 			/*
    584  1.110   thorpej 			 * Just load this cluster as one chunk.
    585  1.110   thorpej 			 */
    586  1.110   thorpej #if 0
    587  1.110   thorpej 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    588  1.110   thorpej 			    pfn0, pfn1);
    589  1.110   thorpej #endif
    590  1.135   thorpej 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    591  1.135   thorpej 			    VM_FREELIST_DEFAULT);
    592    1.7       cgd 		}
    593  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    594  1.110   thorpej 	    }
    595  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    596    1.7       cgd 	}
    597    1.7       cgd 
    598  1.110   thorpej 	/*
    599  1.110   thorpej 	 * Dump out the MDDT if it looks odd...
    600  1.110   thorpej 	 */
    601    1.7       cgd 	if (mddtweird) {
    602   1.46  christos 		printf("\n");
    603   1.46  christos 		printf("complete memory cluster information:\n");
    604    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    605   1.46  christos 			printf("mddt %d:\n", i);
    606   1.46  christos 			printf("\tpfn %lx\n",
    607    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    608   1.46  christos 			printf("\tcnt %lx\n",
    609    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    610   1.46  christos 			printf("\ttest %lx\n",
    611    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    612   1.46  christos 			printf("\tbva %lx\n",
    613    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    614   1.46  christos 			printf("\tbpa %lx\n",
    615    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    616   1.46  christos 			printf("\tbcksum %lx\n",
    617    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    618   1.46  christos 			printf("\tusage %lx\n",
    619    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    620    1.2       cgd 		}
    621   1.46  christos 		printf("\n");
    622    1.2       cgd 	}
    623    1.2       cgd 
    624    1.7       cgd 	if (totalphysmem == 0)
    625    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    626  1.110   thorpej 
    627  1.110   thorpej #ifdef LIMITMEM
    628  1.110   thorpej 	/*
    629  1.110   thorpej 	 * XXX Kludge so we can run on machines with memory larger
    630  1.110   thorpej 	 * XXX than 1G until all device drivers are converted to
    631  1.110   thorpej 	 * XXX use bus_dma.  (Relies on the fact that vm_physmem
    632  1.110   thorpej 	 * XXX sorted in order of increasing addresses.)
    633  1.110   thorpej 	 */
    634  1.110   thorpej 	if (vm_physmem[vm_nphysseg - 1].end > atop(LIMITMEM * 1024 * 1024)) {
    635  1.110   thorpej 
    636  1.110   thorpej 		printf("******** LIMITING MEMORY TO %dMB **********\n",
    637  1.110   thorpej 		    LIMITMEM);
    638  1.110   thorpej 
    639  1.110   thorpej 		do {
    640  1.110   thorpej 			u_long ovf;
    641  1.110   thorpej 
    642  1.110   thorpej 			vps = &vm_physmem[vm_nphysseg - 1];
    643  1.110   thorpej 
    644  1.110   thorpej 			if (vps->start >= atop(LIMITMEM * 1024 * 1024)) {
    645  1.110   thorpej 				/*
    646  1.110   thorpej 				 * If the start is too high, just drop
    647  1.110   thorpej 				 * the whole segment.
    648  1.110   thorpej 				 *
    649  1.110   thorpej 				 * XXX can start != avail_start in this
    650  1.110   thorpej 				 * XXX case?  wouldn't that mean that
    651  1.110   thorpej 				 * XXX some memory was stolen above the
    652  1.110   thorpej 				 * XXX limit?  What to do?
    653  1.110   thorpej 				 */
    654  1.110   thorpej 				ovf = vps->end - vps->start;
    655  1.110   thorpej 				vm_nphysseg--;
    656  1.110   thorpej 			} else {
    657  1.110   thorpej 				/*
    658  1.110   thorpej 				 * If the start is OK, calculate how much
    659  1.110   thorpej 				 * to drop and drop it.
    660  1.110   thorpej 				 */
    661  1.110   thorpej 				ovf = vps->end - atop(LIMITMEM * 1024 * 1024);
    662  1.110   thorpej 				vps->end -= ovf;
    663  1.110   thorpej 				vps->avail_end -= ovf;
    664  1.110   thorpej 			}
    665  1.110   thorpej 			physmem -= ovf;
    666  1.110   thorpej 			unusedmem += ovf;
    667  1.110   thorpej 		} while (vps->end > atop(LIMITMEM * 1024 * 1024));
    668   1.88    mjacob 	}
    669  1.110   thorpej #endif /* LIMITMEM */
    670  1.110   thorpej 
    671    1.1       cgd 	maxmem = physmem;
    672    1.1       cgd 
    673    1.7       cgd #if 0
    674   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    675   1.46  christos 	printf("physmem = %d\n", physmem);
    676   1.46  christos 	printf("resvmem = %d\n", resvmem);
    677   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    678   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    679    1.7       cgd #endif
    680   1.90    mjacob 
    681   1.90    mjacob 	/*
    682   1.90    mjacob 	 * Adjust some parameters if the amount of physmem
    683   1.90    mjacob 	 * available would cause us to croak. This is completely
    684   1.90    mjacob 	 * eyeballed and isn't meant to be the final answer.
    685   1.90    mjacob 	 * vm_phys_size is probably the only one to really worry
    686   1.90    mjacob 	 * about.
    687   1.90    mjacob  	 *
    688   1.90    mjacob 	 * It's for booting a GENERIC kernel on a large memory platform.
    689   1.90    mjacob 	 */
    690  1.110   thorpej 	if (physmem >= atop(128 * 1024 * 1024)) {
    691   1.93    mjacob 		vm_kmem_size <<= 3;
    692   1.93    mjacob 		vm_phys_size <<= 2;
    693   1.90    mjacob 	}
    694    1.7       cgd 
    695    1.1       cgd 	/*
    696    1.1       cgd 	 * Initialize error message buffer (at end of core).
    697    1.1       cgd 	 */
    698  1.110   thorpej 	{
    699  1.110   thorpej 		size_t sz = round_page(MSGBUFSIZE);
    700  1.110   thorpej 
    701  1.110   thorpej 		vps = &vm_physmem[vm_nphysseg - 1];
    702  1.110   thorpej 
    703  1.110   thorpej 		/* shrink so that it'll fit in the last segment */
    704  1.110   thorpej 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    705  1.110   thorpej 			sz = ptoa(vps->avail_end - vps->avail_start);
    706  1.110   thorpej 
    707  1.110   thorpej 		vps->end -= atop(sz);
    708  1.110   thorpej 		vps->avail_end -= atop(sz);
    709  1.110   thorpej 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    710  1.110   thorpej 		initmsgbuf(msgbufaddr, sz);
    711  1.110   thorpej 
    712  1.110   thorpej 		/* Remove the last segment if it now has no pages. */
    713  1.110   thorpej 		if (vps->start == vps->end)
    714  1.110   thorpej 			vm_nphysseg--;
    715  1.110   thorpej 
    716  1.110   thorpej 		/* warn if the message buffer had to be shrunk */
    717  1.110   thorpej 		if (sz != round_page(MSGBUFSIZE))
    718  1.160   thorpej 			printf("WARNING: %ld bytes not available for msgbuf in last cluster (%ld used)\n",
    719  1.110   thorpej 			    round_page(MSGBUFSIZE), sz);
    720  1.110   thorpej 
    721  1.110   thorpej 	}
    722    1.1       cgd 
    723    1.1       cgd 	/*
    724   1.95   thorpej 	 * Init mapping for u page(s) for proc 0
    725    1.1       cgd 	 */
    726  1.110   thorpej 	proc0.p_addr = proc0paddr =
    727  1.110   thorpej 	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
    728    1.1       cgd 
    729    1.1       cgd 	/*
    730   1.95   thorpej 	 * Allocate space for system data structures.  These data structures
    731   1.95   thorpej 	 * are allocated here instead of cpu_startup() because physical
    732   1.95   thorpej 	 * memory is directly addressable.  We don't have to map these into
    733   1.95   thorpej 	 * virtual address space.
    734   1.95   thorpej 	 */
    735  1.174   thorpej 	size = (vsize_t)allocsys(NULL, mdallocsys);
    736  1.110   thorpej 	v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
    737  1.174   thorpej 	if ((allocsys(v, mdallocsys) - v) != size)
    738   1.95   thorpej 		panic("alpha_init: table size inconsistency");
    739    1.1       cgd 
    740    1.1       cgd 	/*
    741    1.1       cgd 	 * Initialize the virtual memory system, and set the
    742    1.1       cgd 	 * page table base register in proc 0's PCB.
    743    1.1       cgd 	 */
    744  1.110   thorpej 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    745  1.144   thorpej 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    746    1.1       cgd 
    747    1.1       cgd 	/*
    748    1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    749    1.3       cgd 	 * address.
    750    1.3       cgd 	 */
    751    1.3       cgd 	proc0.p_md.md_pcbpaddr =
    752  1.140   thorpej 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
    753    1.3       cgd 
    754    1.3       cgd 	/*
    755    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    756    1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    757    1.3       cgd 	 */
    758   1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    759    1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    760   1.81   thorpej 	proc0.p_md.md_tf =
    761   1.81   thorpej 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    762    1.1       cgd 
    763    1.1       cgd 	/*
    764   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    765    1.8       cgd 	 */
    766    1.1       cgd 
    767    1.8       cgd 	boothowto = RB_SINGLE;
    768    1.1       cgd #ifdef KADB
    769    1.1       cgd 	boothowto |= RB_KDB;
    770    1.1       cgd #endif
    771  1.102       cgd 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    772   1.26       cgd 		/*
    773   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    774   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    775   1.26       cgd 		 * says that we shouldn't.
    776   1.26       cgd 		 */
    777    1.8       cgd 		switch (*p) {
    778   1.26       cgd 		case 'a': /* autoboot */
    779   1.26       cgd 		case 'A':
    780   1.26       cgd 			boothowto &= ~RB_SINGLE;
    781   1.21       cgd 			break;
    782   1.21       cgd 
    783   1.43       cgd #ifdef DEBUG
    784   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    785   1.43       cgd 		case 'C':
    786   1.43       cgd 			boothowto |= RB_DUMP;
    787   1.43       cgd 			break;
    788   1.43       cgd #endif
    789   1.43       cgd 
    790   1.81   thorpej #if defined(KGDB) || defined(DDB)
    791   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    792   1.81   thorpej 		case 'D':
    793   1.81   thorpej 			boothowto |= RB_KDB;
    794   1.81   thorpej 			break;
    795   1.81   thorpej #endif
    796   1.81   thorpej 
    797   1.36       cgd 		case 'h': /* always halt, never reboot */
    798   1.36       cgd 		case 'H':
    799   1.36       cgd 			boothowto |= RB_HALT;
    800    1.8       cgd 			break;
    801    1.8       cgd 
    802   1.21       cgd #if 0
    803    1.8       cgd 		case 'm': /* mini root present in memory */
    804   1.26       cgd 		case 'M':
    805    1.8       cgd 			boothowto |= RB_MINIROOT;
    806    1.8       cgd 			break;
    807   1.21       cgd #endif
    808   1.36       cgd 
    809   1.36       cgd 		case 'n': /* askname */
    810   1.36       cgd 		case 'N':
    811   1.36       cgd 			boothowto |= RB_ASKNAME;
    812   1.65       cgd 			break;
    813   1.65       cgd 
    814   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    815   1.65       cgd 		case 'S':
    816   1.65       cgd 			boothowto |= RB_SINGLE;
    817  1.119   thorpej 			break;
    818  1.119   thorpej 
    819  1.119   thorpej 		case '-':
    820  1.119   thorpej 			/*
    821  1.119   thorpej 			 * Just ignore this.  It's not required, but it's
    822  1.119   thorpej 			 * common for it to be passed regardless.
    823  1.119   thorpej 			 */
    824   1.65       cgd 			break;
    825   1.65       cgd 
    826   1.65       cgd 		default:
    827   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    828   1.36       cgd 			break;
    829    1.1       cgd 		}
    830    1.1       cgd 	}
    831    1.1       cgd 
    832  1.136    mjacob 
    833  1.136    mjacob 	/*
    834  1.136    mjacob 	 * Figure out the number of cpus in the box, from RPB fields.
    835  1.136    mjacob 	 * Really.  We mean it.
    836  1.136    mjacob 	 */
    837  1.136    mjacob 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    838  1.136    mjacob 		struct pcs *pcsp;
    839  1.136    mjacob 
    840  1.144   thorpej 		pcsp = LOCATE_PCS(hwrpb, i);
    841  1.136    mjacob 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    842  1.136    mjacob 			ncpus++;
    843  1.136    mjacob 	}
    844  1.136    mjacob 
    845    1.7       cgd 	/*
    846  1.106       cgd 	 * Initialize debuggers, and break into them if appropriate.
    847  1.106       cgd 	 */
    848  1.106       cgd #ifdef DDB
    849  1.106       cgd 	db_machine_init();
    850  1.159    mjacob 	ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    851  1.159    mjacob 	    ksym_start, ksym_end);
    852  1.106       cgd 	if (boothowto & RB_KDB)
    853  1.106       cgd 		Debugger();
    854  1.106       cgd #endif
    855  1.106       cgd #ifdef KGDB
    856  1.106       cgd 	if (boothowto & RB_KDB)
    857  1.106       cgd 		kgdb_connect(0);
    858  1.106       cgd #endif
    859  1.106       cgd 	/*
    860  1.106       cgd 	 * Figure out our clock frequency, from RPB fields.
    861  1.106       cgd 	 */
    862  1.106       cgd 	hz = hwrpb->rpb_intr_freq >> 12;
    863  1.106       cgd 	if (!(60 <= hz && hz <= 10240)) {
    864  1.106       cgd 		hz = 1024;
    865  1.106       cgd #ifdef DIAGNOSTIC
    866  1.106       cgd 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    867  1.106       cgd 			hwrpb->rpb_intr_freq, hz);
    868  1.106       cgd #endif
    869  1.106       cgd 	}
    870   1.95   thorpej }
    871   1.95   thorpej 
    872   1.95   thorpej caddr_t
    873  1.173     lukem mdallocsys(v)
    874  1.173     lukem 	caddr_t	v;
    875   1.95   thorpej {
    876  1.136    mjacob 	/*
    877  1.136    mjacob 	 * There appears to be a correlation between the number
    878  1.136    mjacob 	 * of processor slots defined in the HWRPB and the whami
    879  1.136    mjacob 	 * value that can be returned.
    880  1.136    mjacob 	 */
    881  1.173     lukem 	ALLOCSYS(v, mchkinfo_all_cpus, struct mchkinfo, hwrpb->rpb_pcs_cnt);
    882   1.95   thorpej 	return (v);
    883    1.1       cgd }
    884    1.1       cgd 
    885   1.18       cgd void
    886    1.1       cgd consinit()
    887    1.1       cgd {
    888   1.81   thorpej 
    889  1.106       cgd 	/*
    890  1.106       cgd 	 * Everything related to console initialization is done
    891  1.106       cgd 	 * in alpha_init().
    892  1.106       cgd 	 */
    893  1.106       cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    894  1.106       cgd 	printf("consinit: %susing prom console\n",
    895  1.106       cgd 	    pmap_uses_prom_console() ? "" : "not ");
    896   1.81   thorpej #endif
    897    1.1       cgd }
    898  1.118   thorpej 
    899  1.118   thorpej #include "pckbc.h"
    900  1.118   thorpej #include "pckbd.h"
    901  1.118   thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
    902  1.118   thorpej 
    903  1.118   thorpej #include <dev/isa/pckbcvar.h>
    904  1.118   thorpej 
    905  1.118   thorpej /*
    906  1.118   thorpej  * This is called by the pbkbc driver if no pckbd is configured.
    907  1.118   thorpej  * On the i386, it is used to glue in the old, deprecated console
    908  1.118   thorpej  * code.  On the Alpha, it does nothing.
    909  1.118   thorpej  */
    910  1.118   thorpej int
    911  1.118   thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
    912  1.118   thorpej 	pckbc_tag_t kbctag;
    913  1.118   thorpej 	pckbc_slot_t kbcslot;
    914  1.118   thorpej {
    915  1.118   thorpej 
    916  1.118   thorpej 	return (ENXIO);
    917  1.118   thorpej }
    918  1.118   thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
    919    1.1       cgd 
    920   1.18       cgd void
    921    1.1       cgd cpu_startup()
    922    1.1       cgd {
    923    1.1       cgd 	register unsigned i;
    924    1.1       cgd 	int base, residual;
    925  1.140   thorpej 	vaddr_t minaddr, maxaddr;
    926  1.140   thorpej 	vsize_t size;
    927  1.173     lukem 	char pbuf[9];
    928   1.40       cgd #if defined(DEBUG)
    929    1.1       cgd 	extern int pmapdebug;
    930    1.1       cgd 	int opmapdebug = pmapdebug;
    931    1.1       cgd 
    932    1.1       cgd 	pmapdebug = 0;
    933    1.1       cgd #endif
    934    1.1       cgd 
    935    1.1       cgd 	/*
    936    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    937    1.1       cgd 	 */
    938   1.46  christos 	printf(version);
    939    1.1       cgd 	identifycpu();
    940  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), totalphysmem << PAGE_SHIFT);
    941  1.173     lukem 	printf("total memory = %s\n", pbuf);
    942  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    943  1.173     lukem 	printf("(%s reserved for PROM, ", pbuf);
    944  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    945  1.173     lukem 	printf("%s used by NetBSD)\n", pbuf);
    946  1.173     lukem 	if (unusedmem) {
    947  1.173     lukem 		format_bytes(pbuf, sizeof(pbuf), ctob(unusedmem));
    948  1.173     lukem 		printf("WARNING: unused memory = %s\n", pbuf);
    949  1.173     lukem 	}
    950  1.173     lukem 	if (unknownmem) {
    951  1.173     lukem 		format_bytes(pbuf, sizeof(pbuf), ctob(unknownmem));
    952  1.173     lukem 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    953  1.173     lukem 	}
    954    1.1       cgd 
    955    1.1       cgd 	/*
    956    1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    957    1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    958    1.1       cgd 	 * and usually occupy more virtual memory than physical.
    959    1.1       cgd 	 */
    960    1.1       cgd 	size = MAXBSIZE * nbuf;
    961  1.140   thorpej 	if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
    962  1.112   thorpej 		    NULL, UVM_UNKNOWN_OFFSET,
    963  1.112   thorpej 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
    964  1.112   thorpej 				UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
    965  1.112   thorpej 		panic("startup: cannot allocate VM for buffers");
    966    1.1       cgd 	base = bufpages / nbuf;
    967    1.1       cgd 	residual = bufpages % nbuf;
    968    1.1       cgd 	for (i = 0; i < nbuf; i++) {
    969  1.140   thorpej 		vsize_t curbufsize;
    970  1.140   thorpej 		vaddr_t curbuf;
    971  1.112   thorpej 		struct vm_page *pg;
    972  1.112   thorpej 
    973  1.112   thorpej 		/*
    974  1.112   thorpej 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
    975  1.112   thorpej 		 * that MAXBSIZE space, we allocate and map (base+1) pages
    976  1.112   thorpej 		 * for the first "residual" buffers, and then we allocate
    977  1.112   thorpej 		 * "base" pages for the rest.
    978  1.112   thorpej 		 */
    979  1.140   thorpej 		curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
    980  1.112   thorpej 		curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
    981  1.112   thorpej 
    982  1.112   thorpej 		while (curbufsize) {
    983  1.168       chs 			pg = uvm_pagealloc(NULL, 0, NULL, 0);
    984  1.112   thorpej 			if (pg == NULL)
    985  1.112   thorpej 				panic("cpu_startup: not enough memory for "
    986  1.112   thorpej 				    "buffer cache");
    987  1.112   thorpej #if defined(PMAP_NEW)
    988  1.112   thorpej 			pmap_kenter_pgs(curbuf, &pg, 1);
    989  1.112   thorpej #else
    990  1.112   thorpej 			pmap_enter(kernel_map->pmap, curbuf,
    991  1.165   mycroft 			    VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE,
    992  1.165   mycroft 			    TRUE, VM_PROT_READ|VM_PROT_WRITE);
    993  1.112   thorpej #endif
    994  1.112   thorpej 			curbuf += PAGE_SIZE;
    995  1.112   thorpej 			curbufsize -= PAGE_SIZE;
    996  1.112   thorpej 		}
    997    1.1       cgd 	}
    998    1.1       cgd 	/*
    999    1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
   1000    1.1       cgd 	 * limits the number of processes exec'ing at any time.
   1001    1.1       cgd 	 */
   1002  1.112   thorpej 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1003  1.112   thorpej 				   16 * NCARGS, TRUE, FALSE, NULL);
   1004    1.1       cgd 
   1005    1.1       cgd 	/*
   1006    1.1       cgd 	 * Allocate a submap for physio
   1007    1.1       cgd 	 */
   1008  1.112   thorpej 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
   1009  1.112   thorpej 				   VM_PHYS_SIZE, TRUE, FALSE, NULL);
   1010    1.1       cgd 
   1011    1.1       cgd 	/*
   1012  1.164   thorpej 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
   1013  1.164   thorpej 	 * are allocated via the pool allocator, and we use K0SEG to
   1014  1.164   thorpej 	 * map those pages.
   1015    1.1       cgd 	 */
   1016  1.164   thorpej 
   1017    1.1       cgd 	/*
   1018    1.1       cgd 	 * Initialize callouts
   1019    1.1       cgd 	 */
   1020    1.1       cgd 	callfree = callout;
   1021    1.1       cgd 	for (i = 1; i < ncallout; i++)
   1022    1.1       cgd 		callout[i-1].c_next = &callout[i];
   1023    1.1       cgd 	callout[i-1].c_next = NULL;
   1024    1.1       cgd 
   1025   1.40       cgd #if defined(DEBUG)
   1026    1.1       cgd 	pmapdebug = opmapdebug;
   1027    1.1       cgd #endif
   1028  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
   1029  1.173     lukem 	printf("avail memory = %s\n", pbuf);
   1030  1.139   thorpej #if 0
   1031  1.139   thorpej 	{
   1032  1.139   thorpej 		extern u_long pmap_pages_stolen;
   1033  1.173     lukem 
   1034  1.173     lukem 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
   1035  1.173     lukem 		printf("stolen memory for VM structures = %s\n", pbuf);
   1036  1.139   thorpej 	}
   1037  1.112   thorpej #endif
   1038  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), bufpages * CLBYTES);
   1039  1.173     lukem 	printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
   1040    1.1       cgd 
   1041    1.1       cgd 	/*
   1042    1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
   1043    1.1       cgd 	 */
   1044    1.1       cgd 	bufinit();
   1045  1.151   thorpej 
   1046  1.151   thorpej 	/*
   1047  1.151   thorpej 	 * Set up the HWPCB so that it's safe to configure secondary
   1048  1.151   thorpej 	 * CPUs.
   1049  1.151   thorpej 	 */
   1050  1.151   thorpej 	hwrpb_primary_init();
   1051  1.104   thorpej }
   1052  1.104   thorpej 
   1053  1.104   thorpej /*
   1054  1.104   thorpej  * Retrieve the platform name from the DSR.
   1055  1.104   thorpej  */
   1056  1.104   thorpej const char *
   1057  1.104   thorpej alpha_dsr_sysname()
   1058  1.104   thorpej {
   1059  1.104   thorpej 	struct dsrdb *dsr;
   1060  1.104   thorpej 	const char *sysname;
   1061  1.104   thorpej 
   1062  1.104   thorpej 	/*
   1063  1.104   thorpej 	 * DSR does not exist on early HWRPB versions.
   1064  1.104   thorpej 	 */
   1065  1.104   thorpej 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
   1066  1.104   thorpej 		return (NULL);
   1067  1.104   thorpej 
   1068  1.104   thorpej 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
   1069  1.104   thorpej 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
   1070  1.104   thorpej 	    sizeof(u_int64_t)));
   1071  1.104   thorpej 	return (sysname);
   1072  1.104   thorpej }
   1073  1.104   thorpej 
   1074  1.104   thorpej /*
   1075  1.104   thorpej  * Lookup the system specified system variation in the provided table,
   1076  1.104   thorpej  * returning the model string on match.
   1077  1.104   thorpej  */
   1078  1.104   thorpej const char *
   1079  1.104   thorpej alpha_variation_name(variation, avtp)
   1080  1.104   thorpej 	u_int64_t variation;
   1081  1.104   thorpej 	const struct alpha_variation_table *avtp;
   1082  1.104   thorpej {
   1083  1.104   thorpej 	int i;
   1084  1.104   thorpej 
   1085  1.104   thorpej 	for (i = 0; avtp[i].avt_model != NULL; i++)
   1086  1.104   thorpej 		if (avtp[i].avt_variation == variation)
   1087  1.104   thorpej 			return (avtp[i].avt_model);
   1088  1.104   thorpej 	return (NULL);
   1089  1.104   thorpej }
   1090  1.104   thorpej 
   1091  1.104   thorpej /*
   1092  1.104   thorpej  * Generate a default platform name based for unknown system variations.
   1093  1.104   thorpej  */
   1094  1.104   thorpej const char *
   1095  1.104   thorpej alpha_unknown_sysname()
   1096  1.104   thorpej {
   1097  1.105   thorpej 	static char s[128];		/* safe size */
   1098  1.104   thorpej 
   1099  1.105   thorpej 	sprintf(s, "%s family, unknown model variation 0x%lx",
   1100  1.105   thorpej 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1101  1.104   thorpej 	return ((const char *)s);
   1102    1.1       cgd }
   1103    1.1       cgd 
   1104   1.33       cgd void
   1105    1.1       cgd identifycpu()
   1106    1.1       cgd {
   1107    1.1       cgd 
   1108    1.7       cgd 	/*
   1109    1.7       cgd 	 * print out CPU identification information.
   1110    1.7       cgd 	 */
   1111   1.46  christos 	printf("%s, %ldMHz\n", cpu_model,
   1112    1.7       cgd 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
   1113   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
   1114    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1115    1.7       cgd #if 0
   1116    1.7       cgd 	/* this isn't defined for any systems that we run on? */
   1117   1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
   1118    1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1119    1.7       cgd 
   1120    1.7       cgd 	/* and these aren't particularly useful! */
   1121   1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
   1122    1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1123    1.7       cgd #endif
   1124    1.1       cgd }
   1125    1.1       cgd 
   1126    1.1       cgd int	waittime = -1;
   1127    1.7       cgd struct pcb dumppcb;
   1128    1.1       cgd 
   1129   1.18       cgd void
   1130   1.68       gwr cpu_reboot(howto, bootstr)
   1131    1.1       cgd 	int howto;
   1132   1.39       mrg 	char *bootstr;
   1133    1.1       cgd {
   1134    1.1       cgd 	extern int cold;
   1135  1.148   thorpej #if defined(MULTIPROCESSOR)
   1136  1.150   thorpej #if 0 /* XXX See below. */
   1137  1.148   thorpej 	u_long cpu_id;
   1138  1.150   thorpej #endif
   1139  1.148   thorpej #endif
   1140  1.148   thorpej 
   1141  1.148   thorpej #if defined(MULTIPROCESSOR)
   1142  1.148   thorpej 	/* We must be running on the primary CPU. */
   1143  1.148   thorpej 	if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
   1144  1.148   thorpej 		panic("cpu_reboot: not on primary CPU!");
   1145  1.148   thorpej #endif
   1146    1.1       cgd 
   1147    1.1       cgd 	/* If system is cold, just halt. */
   1148    1.1       cgd 	if (cold) {
   1149    1.1       cgd 		howto |= RB_HALT;
   1150    1.1       cgd 		goto haltsys;
   1151    1.1       cgd 	}
   1152    1.1       cgd 
   1153   1.36       cgd 	/* If "always halt" was specified as a boot flag, obey. */
   1154   1.36       cgd 	if ((boothowto & RB_HALT) != 0)
   1155   1.36       cgd 		howto |= RB_HALT;
   1156   1.36       cgd 
   1157    1.7       cgd 	boothowto = howto;
   1158    1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
   1159    1.1       cgd 		waittime = 0;
   1160    1.7       cgd 		vfs_shutdown();
   1161    1.1       cgd 		/*
   1162    1.1       cgd 		 * If we've been adjusting the clock, the todr
   1163    1.1       cgd 		 * will be out of synch; adjust it now.
   1164    1.1       cgd 		 */
   1165    1.1       cgd 		resettodr();
   1166    1.1       cgd 	}
   1167    1.1       cgd 
   1168    1.1       cgd 	/* Disable interrupts. */
   1169    1.1       cgd 	splhigh();
   1170    1.1       cgd 
   1171    1.7       cgd 	/* If rebooting and a dump is requested do it. */
   1172   1.42       cgd #if 0
   1173   1.42       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1174   1.42       cgd #else
   1175   1.42       cgd 	if (howto & RB_DUMP)
   1176   1.42       cgd #endif
   1177    1.1       cgd 		dumpsys();
   1178    1.6       cgd 
   1179   1.12       cgd haltsys:
   1180   1.12       cgd 
   1181    1.6       cgd 	/* run any shutdown hooks */
   1182    1.6       cgd 	doshutdownhooks();
   1183  1.148   thorpej 
   1184  1.148   thorpej #if defined(MULTIPROCESSOR)
   1185  1.149   thorpej #if 0 /* XXX doesn't work when called from here?! */
   1186  1.148   thorpej 	/* Kill off any secondary CPUs. */
   1187  1.148   thorpej 	for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
   1188  1.148   thorpej 		if (cpu_id == hwrpb->rpb_primary_cpu_id ||
   1189  1.161   thorpej 		    cpu_info[cpu_id].ci_softc == NULL)
   1190  1.148   thorpej 			continue;
   1191  1.148   thorpej 		cpu_halt_secondary(cpu_id);
   1192  1.148   thorpej 	}
   1193  1.149   thorpej #endif
   1194  1.148   thorpej #endif
   1195    1.1       cgd 
   1196    1.7       cgd #ifdef BOOTKEY
   1197   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1198  1.117  drochner 	cnpollc(1);	/* for proper keyboard command handling */
   1199    1.7       cgd 	cngetc();
   1200  1.117  drochner 	cnpollc(0);
   1201   1.46  christos 	printf("\n");
   1202    1.7       cgd #endif
   1203    1.7       cgd 
   1204  1.124   thorpej 	/* Finally, powerdown/halt/reboot the system. */
   1205  1.124   thorpej 	if ((howto && RB_POWERDOWN) == RB_POWERDOWN &&
   1206  1.124   thorpej 	    platform.powerdown != NULL) {
   1207  1.124   thorpej 		(*platform.powerdown)();
   1208  1.124   thorpej 		printf("WARNING: powerdown failed!\n");
   1209  1.124   thorpej 	}
   1210   1.46  christos 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
   1211    1.1       cgd 	prom_halt(howto & RB_HALT);
   1212    1.1       cgd 	/*NOTREACHED*/
   1213    1.1       cgd }
   1214    1.1       cgd 
   1215    1.7       cgd /*
   1216    1.7       cgd  * These variables are needed by /sbin/savecore
   1217    1.7       cgd  */
   1218    1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
   1219    1.7       cgd int 	dumpsize = 0;		/* pages */
   1220    1.7       cgd long	dumplo = 0; 		/* blocks */
   1221    1.7       cgd 
   1222    1.7       cgd /*
   1223   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1224   1.43       cgd  */
   1225   1.43       cgd int
   1226   1.43       cgd cpu_dumpsize()
   1227   1.43       cgd {
   1228   1.43       cgd 	int size;
   1229   1.43       cgd 
   1230  1.108       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1231  1.110   thorpej 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1232   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
   1233   1.43       cgd 		return -1;
   1234   1.43       cgd 
   1235   1.43       cgd 	return (1);
   1236   1.43       cgd }
   1237   1.43       cgd 
   1238   1.43       cgd /*
   1239  1.110   thorpej  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1240  1.110   thorpej  */
   1241  1.110   thorpej u_long
   1242  1.110   thorpej cpu_dump_mempagecnt()
   1243  1.110   thorpej {
   1244  1.110   thorpej 	u_long i, n;
   1245  1.110   thorpej 
   1246  1.110   thorpej 	n = 0;
   1247  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++)
   1248  1.110   thorpej 		n += atop(mem_clusters[i].size);
   1249  1.110   thorpej 	return (n);
   1250  1.110   thorpej }
   1251  1.110   thorpej 
   1252  1.110   thorpej /*
   1253   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
   1254   1.43       cgd  */
   1255   1.43       cgd int
   1256   1.43       cgd cpu_dump()
   1257   1.43       cgd {
   1258   1.43       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1259  1.107       cgd 	char buf[dbtob(1)];
   1260  1.107       cgd 	kcore_seg_t *segp;
   1261  1.107       cgd 	cpu_kcore_hdr_t *cpuhdrp;
   1262  1.107       cgd 	phys_ram_seg_t *memsegp;
   1263  1.110   thorpej 	int i;
   1264   1.43       cgd 
   1265  1.107       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1266   1.43       cgd 
   1267  1.107       cgd 	bzero(buf, sizeof buf);
   1268   1.43       cgd 	segp = (kcore_seg_t *)buf;
   1269  1.107       cgd 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1270  1.107       cgd 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1271  1.107       cgd 	    ALIGN(sizeof(*cpuhdrp))];
   1272   1.43       cgd 
   1273   1.43       cgd 	/*
   1274   1.43       cgd 	 * Generate a segment header.
   1275   1.43       cgd 	 */
   1276   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1277   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1278   1.43       cgd 
   1279   1.43       cgd 	/*
   1280  1.107       cgd 	 * Add the machine-dependent header info.
   1281   1.43       cgd 	 */
   1282  1.140   thorpej 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1283   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
   1284  1.110   thorpej 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1285  1.107       cgd 
   1286  1.107       cgd 	/*
   1287  1.107       cgd 	 * Fill in the memory segment descriptors.
   1288  1.107       cgd 	 */
   1289  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1290  1.110   thorpej 		memsegp[i].start = mem_clusters[i].start;
   1291  1.110   thorpej 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1292  1.110   thorpej 	}
   1293   1.43       cgd 
   1294   1.43       cgd 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1295   1.43       cgd }
   1296   1.43       cgd 
   1297   1.43       cgd /*
   1298   1.68       gwr  * This is called by main to set dumplo and dumpsize.
   1299    1.7       cgd  * Dumps always skip the first CLBYTES of disk space
   1300    1.7       cgd  * in case there might be a disk label stored there.
   1301    1.7       cgd  * If there is extra space, put dump at the end to
   1302    1.7       cgd  * reduce the chance that swapping trashes it.
   1303    1.7       cgd  */
   1304    1.7       cgd void
   1305   1.68       gwr cpu_dumpconf()
   1306    1.7       cgd {
   1307   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
   1308    1.7       cgd 	int maj;
   1309    1.7       cgd 
   1310    1.7       cgd 	if (dumpdev == NODEV)
   1311   1.43       cgd 		goto bad;
   1312    1.7       cgd 	maj = major(dumpdev);
   1313    1.7       cgd 	if (maj < 0 || maj >= nblkdev)
   1314    1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1315    1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
   1316   1.43       cgd 		goto bad;
   1317    1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1318    1.7       cgd 	if (nblks <= ctod(1))
   1319   1.43       cgd 		goto bad;
   1320   1.43       cgd 
   1321   1.43       cgd 	dumpblks = cpu_dumpsize();
   1322   1.43       cgd 	if (dumpblks < 0)
   1323   1.43       cgd 		goto bad;
   1324  1.110   thorpej 	dumpblks += ctod(cpu_dump_mempagecnt());
   1325   1.43       cgd 
   1326   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1327   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1328   1.43       cgd 		goto bad;
   1329   1.43       cgd 
   1330   1.43       cgd 	/* Put dump at end of partition */
   1331   1.43       cgd 	dumplo = nblks - dumpblks;
   1332    1.7       cgd 
   1333   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1334  1.110   thorpej 	dumpsize = cpu_dump_mempagecnt();
   1335   1.43       cgd 	return;
   1336    1.7       cgd 
   1337   1.43       cgd bad:
   1338   1.43       cgd 	dumpsize = 0;
   1339   1.43       cgd 	return;
   1340    1.7       cgd }
   1341    1.7       cgd 
   1342    1.7       cgd /*
   1343   1.42       cgd  * Dump the kernel's image to the swap partition.
   1344    1.7       cgd  */
   1345   1.42       cgd #define	BYTES_PER_DUMP	NBPG
   1346   1.42       cgd 
   1347    1.7       cgd void
   1348    1.7       cgd dumpsys()
   1349    1.7       cgd {
   1350  1.110   thorpej 	u_long totalbytesleft, bytes, i, n, memcl;
   1351  1.110   thorpej 	u_long maddr;
   1352  1.110   thorpej 	int psize;
   1353   1.42       cgd 	daddr_t blkno;
   1354   1.42       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1355   1.42       cgd 	int error;
   1356   1.42       cgd 
   1357   1.42       cgd 	/* Save registers. */
   1358   1.42       cgd 	savectx(&dumppcb);
   1359    1.7       cgd 
   1360  1.111   thorpej 	msgbufenabled = 0;	/* don't record dump msgs in msgbuf */
   1361    1.7       cgd 	if (dumpdev == NODEV)
   1362    1.7       cgd 		return;
   1363   1.42       cgd 
   1364   1.42       cgd 	/*
   1365   1.42       cgd 	 * For dumps during autoconfiguration,
   1366   1.42       cgd 	 * if dump device has already configured...
   1367   1.42       cgd 	 */
   1368   1.42       cgd 	if (dumpsize == 0)
   1369   1.68       gwr 		cpu_dumpconf();
   1370   1.47       cgd 	if (dumplo <= 0) {
   1371   1.97   mycroft 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1372   1.97   mycroft 		    minor(dumpdev));
   1373   1.42       cgd 		return;
   1374   1.43       cgd 	}
   1375   1.97   mycroft 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1376   1.97   mycroft 	    minor(dumpdev), dumplo);
   1377    1.7       cgd 
   1378   1.42       cgd 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1379   1.46  christos 	printf("dump ");
   1380   1.42       cgd 	if (psize == -1) {
   1381   1.46  christos 		printf("area unavailable\n");
   1382   1.42       cgd 		return;
   1383   1.42       cgd 	}
   1384   1.42       cgd 
   1385   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1386   1.42       cgd 
   1387   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1388   1.43       cgd 		goto err;
   1389   1.43       cgd 
   1390  1.110   thorpej 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1391   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1392   1.42       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1393   1.42       cgd 	error = 0;
   1394   1.42       cgd 
   1395  1.110   thorpej 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1396  1.110   thorpej 		maddr = mem_clusters[memcl].start;
   1397  1.110   thorpej 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1398  1.110   thorpej 
   1399  1.110   thorpej 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1400  1.110   thorpej 
   1401  1.110   thorpej 			/* Print out how many MBs we to go. */
   1402  1.110   thorpej 			if ((totalbytesleft % (1024*1024)) == 0)
   1403  1.160   thorpej 				printf("%ld ", totalbytesleft / (1024 * 1024));
   1404  1.110   thorpej 
   1405  1.110   thorpej 			/* Limit size for next transfer. */
   1406  1.110   thorpej 			n = bytes - i;
   1407  1.110   thorpej 			if (n > BYTES_PER_DUMP)
   1408  1.110   thorpej 				n =  BYTES_PER_DUMP;
   1409  1.110   thorpej 
   1410  1.110   thorpej 			error = (*dump)(dumpdev, blkno,
   1411  1.110   thorpej 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1412  1.110   thorpej 			if (error)
   1413  1.110   thorpej 				goto err;
   1414  1.110   thorpej 			maddr += n;
   1415  1.110   thorpej 			blkno += btodb(n);			/* XXX? */
   1416   1.42       cgd 
   1417  1.110   thorpej 			/* XXX should look for keystrokes, to cancel. */
   1418  1.110   thorpej 		}
   1419   1.42       cgd 	}
   1420   1.42       cgd 
   1421   1.43       cgd err:
   1422   1.42       cgd 	switch (error) {
   1423    1.7       cgd 
   1424    1.7       cgd 	case ENXIO:
   1425   1.46  christos 		printf("device bad\n");
   1426    1.7       cgd 		break;
   1427    1.7       cgd 
   1428    1.7       cgd 	case EFAULT:
   1429   1.46  christos 		printf("device not ready\n");
   1430    1.7       cgd 		break;
   1431    1.7       cgd 
   1432    1.7       cgd 	case EINVAL:
   1433   1.46  christos 		printf("area improper\n");
   1434    1.7       cgd 		break;
   1435    1.7       cgd 
   1436    1.7       cgd 	case EIO:
   1437   1.46  christos 		printf("i/o error\n");
   1438    1.7       cgd 		break;
   1439    1.7       cgd 
   1440    1.7       cgd 	case EINTR:
   1441   1.46  christos 		printf("aborted from console\n");
   1442    1.7       cgd 		break;
   1443    1.7       cgd 
   1444   1.42       cgd 	case 0:
   1445   1.46  christos 		printf("succeeded\n");
   1446   1.42       cgd 		break;
   1447   1.42       cgd 
   1448    1.7       cgd 	default:
   1449   1.46  christos 		printf("error %d\n", error);
   1450    1.7       cgd 		break;
   1451    1.7       cgd 	}
   1452   1.46  christos 	printf("\n\n");
   1453    1.7       cgd 	delay(1000);
   1454    1.7       cgd }
   1455    1.7       cgd 
   1456    1.1       cgd void
   1457    1.1       cgd frametoreg(framep, regp)
   1458    1.1       cgd 	struct trapframe *framep;
   1459    1.1       cgd 	struct reg *regp;
   1460    1.1       cgd {
   1461    1.1       cgd 
   1462    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1463    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1464    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1465    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1466    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1467    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1468    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1469    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1470    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1471    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1472    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1473    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1474    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1475    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1476    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1477    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1478   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1479   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1480   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1481    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1482    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1483    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1484    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1485    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1486    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1487    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1488    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1489    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1490    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1491   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1492   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1493    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1494    1.1       cgd }
   1495    1.1       cgd 
   1496    1.1       cgd void
   1497    1.1       cgd regtoframe(regp, framep)
   1498    1.1       cgd 	struct reg *regp;
   1499    1.1       cgd 	struct trapframe *framep;
   1500    1.1       cgd {
   1501    1.1       cgd 
   1502    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1503    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1504    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1505    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1506    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1507    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1508    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1509    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1510    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1511    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1512    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1513    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1514    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1515    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1516    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1517    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1518   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1519   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1520   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1521    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1522    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1523    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1524    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1525    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1526    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1527    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1528    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1529    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1530    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1531   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1532   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1533    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1534    1.1       cgd }
   1535    1.1       cgd 
   1536    1.1       cgd void
   1537    1.1       cgd printregs(regp)
   1538    1.1       cgd 	struct reg *regp;
   1539    1.1       cgd {
   1540    1.1       cgd 	int i;
   1541    1.1       cgd 
   1542    1.1       cgd 	for (i = 0; i < 32; i++)
   1543   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1544    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1545    1.1       cgd }
   1546    1.1       cgd 
   1547    1.1       cgd void
   1548    1.1       cgd regdump(framep)
   1549    1.1       cgd 	struct trapframe *framep;
   1550    1.1       cgd {
   1551    1.1       cgd 	struct reg reg;
   1552    1.1       cgd 
   1553    1.1       cgd 	frametoreg(framep, &reg);
   1554   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1555   1.35       cgd 
   1556   1.46  christos 	printf("REGISTERS:\n");
   1557    1.1       cgd 	printregs(&reg);
   1558    1.1       cgd }
   1559    1.1       cgd 
   1560    1.1       cgd #ifdef DEBUG
   1561    1.1       cgd int sigdebug = 0;
   1562    1.1       cgd int sigpid = 0;
   1563    1.1       cgd #define	SDB_FOLLOW	0x01
   1564    1.1       cgd #define	SDB_KSTACK	0x02
   1565    1.1       cgd #endif
   1566    1.1       cgd 
   1567    1.1       cgd /*
   1568    1.1       cgd  * Send an interrupt to process.
   1569    1.1       cgd  */
   1570    1.1       cgd void
   1571    1.1       cgd sendsig(catcher, sig, mask, code)
   1572    1.1       cgd 	sig_t catcher;
   1573  1.141   thorpej 	int sig;
   1574  1.141   thorpej 	sigset_t *mask;
   1575    1.1       cgd 	u_long code;
   1576    1.1       cgd {
   1577    1.1       cgd 	struct proc *p = curproc;
   1578    1.1       cgd 	struct sigcontext *scp, ksc;
   1579    1.1       cgd 	struct trapframe *frame;
   1580    1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1581  1.141   thorpej 	int onstack, fsize, rndfsize;
   1582    1.1       cgd 
   1583    1.1       cgd 	frame = p->p_md.md_tf;
   1584  1.141   thorpej 
   1585  1.141   thorpej 	/* Do we need to jump onto the signal stack? */
   1586  1.141   thorpej 	onstack =
   1587  1.141   thorpej 	    (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1588  1.141   thorpej 	    (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
   1589  1.141   thorpej 
   1590  1.141   thorpej 	/* Allocate space for the signal handler context. */
   1591  1.141   thorpej 	fsize = sizeof(ksc);
   1592    1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1593  1.141   thorpej 
   1594  1.141   thorpej 	if (onstack)
   1595  1.121    kleink 		scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
   1596  1.142   mycroft 						     psp->ps_sigstk.ss_size);
   1597  1.141   thorpej 	else
   1598  1.142   mycroft 		scp = (struct sigcontext *)(alpha_pal_rdusp());
   1599  1.142   mycroft 	scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
   1600  1.141   thorpej 
   1601    1.1       cgd #ifdef DEBUG
   1602    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1603   1.46  christos 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1604  1.141   thorpej 		    sig, &onstack, scp);
   1605  1.125      ross #endif
   1606    1.1       cgd 
   1607  1.141   thorpej 	/* Build stack frame for signal trampoline. */
   1608   1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1609   1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1610    1.1       cgd 
   1611  1.141   thorpej 	/* Save register context. */
   1612    1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1613    1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1614   1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1615    1.1       cgd 
   1616    1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1617    1.1       cgd 	if (p == fpcurproc) {
   1618   1.32       cgd 		alpha_pal_wrfen(1);
   1619    1.1       cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1620   1.32       cgd 		alpha_pal_wrfen(0);
   1621    1.1       cgd 		fpcurproc = NULL;
   1622    1.1       cgd 	}
   1623    1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1624    1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1625    1.1       cgd 	    sizeof(struct fpreg));
   1626    1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1627    1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1628    1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1629    1.1       cgd 
   1630  1.141   thorpej 	/* Save signal stack. */
   1631  1.141   thorpej 	ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1632  1.141   thorpej 
   1633  1.141   thorpej 	/* Save signal mask. */
   1634  1.141   thorpej 	ksc.sc_mask = *mask;
   1635  1.141   thorpej 
   1636  1.141   thorpej #ifdef COMPAT_13
   1637  1.141   thorpej 	/*
   1638  1.141   thorpej 	 * XXX We always have to save an old style signal mask because
   1639  1.141   thorpej 	 * XXX we might be delivering a signal to a process which will
   1640  1.141   thorpej 	 * XXX escape from the signal in a non-standard way and invoke
   1641  1.141   thorpej 	 * XXX sigreturn() directly.
   1642  1.141   thorpej 	 */
   1643  1.141   thorpej 	{
   1644  1.141   thorpej 		/* Note: it's a long in the stack frame. */
   1645  1.141   thorpej 		sigset13_t mask13;
   1646  1.141   thorpej 
   1647  1.141   thorpej 		native_sigset_to_sigset13(mask, &mask13);
   1648  1.141   thorpej 		ksc.__sc_mask13 = mask13;
   1649  1.141   thorpej 	}
   1650  1.141   thorpej #endif
   1651    1.1       cgd 
   1652    1.1       cgd #ifdef COMPAT_OSF1
   1653    1.1       cgd 	/*
   1654    1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1655    1.1       cgd 	 */
   1656    1.1       cgd #endif
   1657    1.1       cgd 
   1658  1.141   thorpej 	if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
   1659  1.141   thorpej 		/*
   1660  1.141   thorpej 		 * Process has trashed its stack; give it an illegal
   1661  1.141   thorpej 		 * instruction to halt it in its tracks.
   1662  1.141   thorpej 		 */
   1663  1.141   thorpej #ifdef DEBUG
   1664  1.141   thorpej 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1665  1.141   thorpej 			printf("sendsig(%d): copyout failed on sig %d\n",
   1666  1.141   thorpej 			    p->p_pid, sig);
   1667  1.141   thorpej #endif
   1668  1.141   thorpej 		sigexit(p, SIGILL);
   1669  1.141   thorpej 		/* NOTREACHED */
   1670  1.141   thorpej 	}
   1671    1.1       cgd #ifdef DEBUG
   1672    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1673   1.46  christos 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1674    1.1       cgd 		    scp, code);
   1675    1.1       cgd #endif
   1676    1.1       cgd 
   1677  1.141   thorpej 	/* Set up the registers to return to sigcode. */
   1678  1.142   mycroft 	frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
   1679   1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1680   1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1681   1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1682    1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1683   1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1684  1.142   mycroft 
   1685  1.142   mycroft 	/* Remember that we're now on the signal stack. */
   1686  1.142   mycroft 	if (onstack)
   1687  1.142   mycroft 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1688    1.1       cgd 
   1689    1.1       cgd #ifdef DEBUG
   1690    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1691   1.46  christos 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1692   1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1693    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1694   1.46  christos 		printf("sendsig(%d): sig %d returns\n",
   1695    1.1       cgd 		    p->p_pid, sig);
   1696    1.1       cgd #endif
   1697    1.1       cgd }
   1698    1.1       cgd 
   1699    1.1       cgd /*
   1700    1.1       cgd  * System call to cleanup state after a signal
   1701    1.1       cgd  * has been taken.  Reset signal mask and
   1702    1.1       cgd  * stack state from context left by sendsig (above).
   1703    1.1       cgd  * Return to previous pc and psl as specified by
   1704    1.1       cgd  * context left by sendsig. Check carefully to
   1705    1.1       cgd  * make sure that the user has not modified the
   1706    1.1       cgd  * psl to gain improper priviledges or to cause
   1707    1.1       cgd  * a machine fault.
   1708    1.1       cgd  */
   1709    1.1       cgd /* ARGSUSED */
   1710   1.11   mycroft int
   1711  1.141   thorpej sys___sigreturn14(p, v, retval)
   1712    1.1       cgd 	struct proc *p;
   1713   1.10   thorpej 	void *v;
   1714   1.10   thorpej 	register_t *retval;
   1715   1.10   thorpej {
   1716  1.141   thorpej 	struct sys___sigreturn14_args /* {
   1717    1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1718   1.10   thorpej 	} */ *uap = v;
   1719    1.1       cgd 	struct sigcontext *scp, ksc;
   1720    1.1       cgd 
   1721  1.141   thorpej 	/*
   1722  1.141   thorpej 	 * The trampoline code hands us the context.
   1723  1.141   thorpej 	 * It is unsafe to keep track of it ourselves, in the event that a
   1724  1.141   thorpej 	 * program jumps out of a signal handler.
   1725  1.141   thorpej 	 */
   1726    1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1727    1.1       cgd #ifdef DEBUG
   1728    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1729   1.46  christos 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1730    1.1       cgd #endif
   1731    1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1732    1.1       cgd 		return (EINVAL);
   1733    1.1       cgd 
   1734  1.141   thorpej 	if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
   1735  1.141   thorpej 		return (EFAULT);
   1736    1.1       cgd 
   1737    1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1738    1.1       cgd 		return (EINVAL);
   1739    1.1       cgd 
   1740  1.141   thorpej 	/* Restore register context. */
   1741   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1742   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1743   1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1744    1.1       cgd 
   1745    1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1746   1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1747    1.1       cgd 
   1748    1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1749    1.1       cgd 	if (p == fpcurproc)
   1750    1.1       cgd 		fpcurproc = NULL;
   1751    1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1752    1.1       cgd 	    sizeof(struct fpreg));
   1753    1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1754  1.141   thorpej 
   1755  1.141   thorpej 	/* Restore signal stack. */
   1756  1.141   thorpej 	if (ksc.sc_onstack & SS_ONSTACK)
   1757  1.141   thorpej 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1758  1.141   thorpej 	else
   1759  1.141   thorpej 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1760  1.141   thorpej 
   1761  1.141   thorpej 	/* Restore signal mask. */
   1762  1.141   thorpej 	(void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
   1763    1.1       cgd 
   1764    1.1       cgd #ifdef DEBUG
   1765    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1766   1.46  christos 		printf("sigreturn(%d): returns\n", p->p_pid);
   1767    1.1       cgd #endif
   1768    1.1       cgd 	return (EJUSTRETURN);
   1769    1.1       cgd }
   1770    1.1       cgd 
   1771    1.1       cgd /*
   1772    1.1       cgd  * machine dependent system variables.
   1773    1.1       cgd  */
   1774   1.33       cgd int
   1775    1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1776    1.1       cgd 	int *name;
   1777    1.1       cgd 	u_int namelen;
   1778    1.1       cgd 	void *oldp;
   1779    1.1       cgd 	size_t *oldlenp;
   1780    1.1       cgd 	void *newp;
   1781    1.1       cgd 	size_t newlen;
   1782    1.1       cgd 	struct proc *p;
   1783    1.1       cgd {
   1784    1.1       cgd 	dev_t consdev;
   1785    1.1       cgd 
   1786    1.1       cgd 	/* all sysctl names at this level are terminal */
   1787    1.1       cgd 	if (namelen != 1)
   1788    1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1789    1.1       cgd 
   1790    1.1       cgd 	switch (name[0]) {
   1791    1.1       cgd 	case CPU_CONSDEV:
   1792    1.1       cgd 		if (cn_tab != NULL)
   1793    1.1       cgd 			consdev = cn_tab->cn_dev;
   1794    1.1       cgd 		else
   1795    1.1       cgd 			consdev = NODEV;
   1796    1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1797    1.1       cgd 			sizeof consdev));
   1798   1.30       cgd 
   1799   1.30       cgd 	case CPU_ROOT_DEVICE:
   1800   1.64   thorpej 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1801   1.64   thorpej 		    root_device->dv_xname));
   1802   1.36       cgd 
   1803   1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1804   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1805   1.36       cgd 		    &alpha_unaligned_print));
   1806   1.36       cgd 
   1807   1.36       cgd 	case CPU_UNALIGNED_FIX:
   1808   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1809   1.36       cgd 		    &alpha_unaligned_fix));
   1810   1.36       cgd 
   1811   1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1812   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1813   1.36       cgd 		    &alpha_unaligned_sigbus));
   1814   1.61       cgd 
   1815   1.61       cgd 	case CPU_BOOTED_KERNEL:
   1816  1.102       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1817  1.102       cgd 		    bootinfo.booted_kernel));
   1818   1.30       cgd 
   1819    1.1       cgd 	default:
   1820    1.1       cgd 		return (EOPNOTSUPP);
   1821    1.1       cgd 	}
   1822    1.1       cgd 	/* NOTREACHED */
   1823    1.1       cgd }
   1824    1.1       cgd 
   1825    1.1       cgd /*
   1826    1.1       cgd  * Set registers on exec.
   1827    1.1       cgd  */
   1828    1.1       cgd void
   1829   1.85   mycroft setregs(p, pack, stack)
   1830    1.1       cgd 	register struct proc *p;
   1831    1.5  christos 	struct exec_package *pack;
   1832    1.1       cgd 	u_long stack;
   1833    1.1       cgd {
   1834    1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1835   1.56       cgd #ifdef DEBUG
   1836    1.1       cgd 	int i;
   1837   1.56       cgd #endif
   1838   1.43       cgd 
   1839   1.43       cgd #ifdef DEBUG
   1840   1.43       cgd 	/*
   1841   1.43       cgd 	 * Crash and dump, if the user requested it.
   1842   1.43       cgd 	 */
   1843   1.43       cgd 	if (boothowto & RB_DUMP)
   1844   1.43       cgd 		panic("crash requested by boot flags");
   1845   1.43       cgd #endif
   1846    1.1       cgd 
   1847    1.1       cgd #ifdef DEBUG
   1848   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1849    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1850    1.1       cgd #else
   1851   1.34       cgd 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1852    1.1       cgd #endif
   1853    1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1854  1.172      ross 	p->p_addr->u_pcb.pcb_fp.fpr_cr =  FPCR_INED
   1855  1.172      ross 					| FPCR_UNFD
   1856  1.172      ross 					| FPCR_UNDZ
   1857  1.172      ross 					| FPCR_DYN(FP_RN)
   1858  1.172      ross 					| FPCR_OVFD
   1859  1.172      ross 					| FPCR_DZED
   1860  1.172      ross 					| FPCR_INVD
   1861  1.172      ross 					| FPCR_DNZ;
   1862   1.35       cgd 	alpha_pal_wrusp(stack);
   1863   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1864   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1865   1.41       cgd 
   1866   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1867   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1868   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1869   1.63       cgd 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1870   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1871    1.1       cgd 
   1872   1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   1873    1.1       cgd 	if (fpcurproc == p)
   1874    1.1       cgd 		fpcurproc = NULL;
   1875    1.1       cgd }
   1876    1.1       cgd 
   1877    1.1       cgd void
   1878    1.1       cgd netintr()
   1879    1.1       cgd {
   1880   1.49       cgd 	int n, s;
   1881   1.49       cgd 
   1882   1.49       cgd 	s = splhigh();
   1883   1.49       cgd 	n = netisr;
   1884   1.49       cgd 	netisr = 0;
   1885   1.49       cgd 	splx(s);
   1886   1.49       cgd 
   1887   1.49       cgd #define	DONETISR(bit, fn)						\
   1888   1.49       cgd 	do {								\
   1889   1.49       cgd 		if (n & (1 << (bit)))					\
   1890   1.49       cgd 			fn;						\
   1891   1.49       cgd 	} while (0)
   1892   1.49       cgd 
   1893    1.1       cgd #ifdef INET
   1894   1.72       cgd #if NARP > 0
   1895   1.49       cgd 	DONETISR(NETISR_ARP, arpintr());
   1896   1.72       cgd #endif
   1897   1.49       cgd 	DONETISR(NETISR_IP, ipintr());
   1898   1.70  christos #endif
   1899   1.70  christos #ifdef NETATALK
   1900   1.70  christos 	DONETISR(NETISR_ATALK, atintr());
   1901    1.1       cgd #endif
   1902    1.1       cgd #ifdef NS
   1903   1.49       cgd 	DONETISR(NETISR_NS, nsintr());
   1904    1.1       cgd #endif
   1905    1.1       cgd #ifdef ISO
   1906   1.49       cgd 	DONETISR(NETISR_ISO, clnlintr());
   1907    1.1       cgd #endif
   1908    1.1       cgd #ifdef CCITT
   1909   1.49       cgd 	DONETISR(NETISR_CCITT, ccittintr());
   1910   1.49       cgd #endif
   1911   1.49       cgd #ifdef NATM
   1912   1.49       cgd 	DONETISR(NETISR_NATM, natmintr());
   1913    1.1       cgd #endif
   1914   1.49       cgd #if NPPP > 1
   1915   1.49       cgd 	DONETISR(NETISR_PPP, pppintr());
   1916    1.8       cgd #endif
   1917   1.49       cgd 
   1918   1.49       cgd #undef DONETISR
   1919    1.1       cgd }
   1920    1.1       cgd 
   1921    1.1       cgd void
   1922    1.1       cgd do_sir()
   1923    1.1       cgd {
   1924   1.58       cgd 	u_int64_t n;
   1925    1.1       cgd 
   1926   1.59       cgd 	do {
   1927   1.60       cgd 		(void)splhigh();
   1928   1.58       cgd 		n = ssir;
   1929   1.58       cgd 		ssir = 0;
   1930   1.60       cgd 		splsoft();		/* don't recurse through spl0() */
   1931  1.112   thorpej 
   1932  1.112   thorpej #define	COUNT_SOFT	uvmexp.softs++
   1933  1.112   thorpej 
   1934   1.59       cgd #define	DO_SIR(bit, fn)							\
   1935   1.59       cgd 		do {							\
   1936   1.60       cgd 			if (n & (bit)) {				\
   1937  1.112   thorpej 				COUNT_SOFT;				\
   1938   1.59       cgd 				fn;					\
   1939   1.59       cgd 			}						\
   1940   1.59       cgd 		} while (0)
   1941   1.59       cgd 
   1942   1.60       cgd 		DO_SIR(SIR_NET, netintr());
   1943   1.60       cgd 		DO_SIR(SIR_CLOCK, softclock());
   1944  1.143      matt #if NCOM > 0
   1945  1.143      matt 		DO_SIR(SIR_SERIAL, comsoft());
   1946  1.143      matt #endif
   1947   1.60       cgd 
   1948  1.112   thorpej #undef COUNT_SOFT
   1949   1.60       cgd #undef DO_SIR
   1950   1.59       cgd 	} while (ssir != 0);
   1951    1.1       cgd }
   1952    1.1       cgd 
   1953    1.1       cgd int
   1954    1.1       cgd spl0()
   1955    1.1       cgd {
   1956    1.1       cgd 
   1957   1.59       cgd 	if (ssir)
   1958   1.59       cgd 		do_sir();		/* it lowers the IPL itself */
   1959    1.1       cgd 
   1960   1.32       cgd 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   1961    1.1       cgd }
   1962    1.1       cgd 
   1963    1.1       cgd /*
   1964    1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1965    1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1966   1.52       cgd  * into queues, Remrunqueue removes them from queues.  The running process is
   1967   1.52       cgd  * on no queue, other processes are on a queue related to p->p_priority,
   1968   1.52       cgd  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1969   1.52       cgd  * available queues.
   1970    1.1       cgd  */
   1971    1.1       cgd /*
   1972    1.1       cgd  * setrunqueue(p)
   1973    1.1       cgd  *	proc *p;
   1974    1.1       cgd  *
   1975    1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1976    1.1       cgd  */
   1977    1.1       cgd 
   1978    1.1       cgd void
   1979    1.1       cgd setrunqueue(p)
   1980    1.1       cgd 	struct proc *p;
   1981    1.1       cgd {
   1982    1.1       cgd 	int bit;
   1983    1.1       cgd 
   1984    1.1       cgd 	/* firewall: p->p_back must be NULL */
   1985    1.1       cgd 	if (p->p_back != NULL)
   1986    1.1       cgd 		panic("setrunqueue");
   1987    1.1       cgd 
   1988    1.1       cgd 	bit = p->p_priority >> 2;
   1989    1.1       cgd 	whichqs |= (1 << bit);
   1990    1.1       cgd 	p->p_forw = (struct proc *)&qs[bit];
   1991    1.1       cgd 	p->p_back = qs[bit].ph_rlink;
   1992    1.1       cgd 	p->p_back->p_forw = p;
   1993    1.1       cgd 	qs[bit].ph_rlink = p;
   1994    1.1       cgd }
   1995    1.1       cgd 
   1996    1.1       cgd /*
   1997   1.52       cgd  * remrunqueue(p)
   1998    1.1       cgd  *
   1999    1.1       cgd  * Call should be made at splclock().
   2000    1.1       cgd  */
   2001    1.1       cgd void
   2002   1.52       cgd remrunqueue(p)
   2003    1.1       cgd 	struct proc *p;
   2004    1.1       cgd {
   2005    1.1       cgd 	int bit;
   2006    1.1       cgd 
   2007    1.1       cgd 	bit = p->p_priority >> 2;
   2008    1.1       cgd 	if ((whichqs & (1 << bit)) == 0)
   2009   1.52       cgd 		panic("remrunqueue");
   2010    1.1       cgd 
   2011    1.1       cgd 	p->p_back->p_forw = p->p_forw;
   2012    1.1       cgd 	p->p_forw->p_back = p->p_back;
   2013    1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   2014    1.1       cgd 
   2015    1.1       cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   2016    1.1       cgd 		whichqs &= ~(1 << bit);
   2017    1.1       cgd }
   2018    1.1       cgd 
   2019    1.1       cgd /*
   2020    1.1       cgd  * Return the best possible estimate of the time in the timeval
   2021    1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   2022    1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   2023    1.1       cgd  * previous call.
   2024    1.1       cgd  */
   2025    1.1       cgd void
   2026    1.1       cgd microtime(tvp)
   2027    1.1       cgd 	register struct timeval *tvp;
   2028    1.1       cgd {
   2029    1.1       cgd 	int s = splclock();
   2030    1.1       cgd 	static struct timeval lasttime;
   2031    1.1       cgd 
   2032    1.1       cgd 	*tvp = time;
   2033    1.1       cgd #ifdef notdef
   2034    1.1       cgd 	tvp->tv_usec += clkread();
   2035    1.1       cgd 	while (tvp->tv_usec > 1000000) {
   2036    1.1       cgd 		tvp->tv_sec++;
   2037    1.1       cgd 		tvp->tv_usec -= 1000000;
   2038    1.1       cgd 	}
   2039    1.1       cgd #endif
   2040    1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   2041    1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   2042    1.1       cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   2043    1.1       cgd 		tvp->tv_sec++;
   2044    1.1       cgd 		tvp->tv_usec -= 1000000;
   2045    1.1       cgd 	}
   2046    1.1       cgd 	lasttime = *tvp;
   2047    1.1       cgd 	splx(s);
   2048   1.15       cgd }
   2049   1.15       cgd 
   2050   1.15       cgd /*
   2051   1.15       cgd  * Wait "n" microseconds.
   2052   1.15       cgd  */
   2053   1.32       cgd void
   2054   1.15       cgd delay(n)
   2055   1.32       cgd 	unsigned long n;
   2056   1.15       cgd {
   2057   1.15       cgd 	long N = cycles_per_usec * (n);
   2058   1.15       cgd 
   2059   1.15       cgd 	while (N > 0)				/* XXX */
   2060   1.15       cgd 		N -= 3;				/* XXX */
   2061    1.1       cgd }
   2062    1.1       cgd 
   2063    1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   2064   1.55       cgd void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   2065   1.85   mycroft 	    u_long));
   2066   1.55       cgd 
   2067    1.1       cgd void
   2068   1.85   mycroft cpu_exec_ecoff_setregs(p, epp, stack)
   2069    1.1       cgd 	struct proc *p;
   2070   1.19       cgd 	struct exec_package *epp;
   2071    1.5  christos 	u_long stack;
   2072    1.1       cgd {
   2073   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2074    1.1       cgd 
   2075   1.85   mycroft 	setregs(p, epp, stack);
   2076   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   2077    1.1       cgd }
   2078    1.1       cgd 
   2079    1.1       cgd /*
   2080    1.1       cgd  * cpu_exec_ecoff_hook():
   2081    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   2082    1.1       cgd  *
   2083    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2084    1.1       cgd  *
   2085    1.1       cgd  */
   2086    1.1       cgd int
   2087   1.19       cgd cpu_exec_ecoff_hook(p, epp)
   2088    1.1       cgd 	struct proc *p;
   2089    1.1       cgd 	struct exec_package *epp;
   2090    1.1       cgd {
   2091   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2092    1.5  christos 	extern struct emul emul_netbsd;
   2093  1.171       cgd 	int error;
   2094  1.171       cgd 	extern int osf1_exec_ecoff_hook(struct proc *p,
   2095  1.171       cgd 					struct exec_package *epp);
   2096    1.1       cgd 
   2097   1.19       cgd 	switch (execp->f.f_magic) {
   2098    1.5  christos #ifdef COMPAT_OSF1
   2099    1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   2100  1.171       cgd 		error = osf1_exec_ecoff_hook(p, epp);
   2101    1.1       cgd 		break;
   2102    1.5  christos #endif
   2103    1.1       cgd 
   2104    1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   2105    1.5  christos 		epp->ep_emul = &emul_netbsd;
   2106  1.171       cgd 		error = 0;
   2107    1.1       cgd 		break;
   2108    1.1       cgd 
   2109    1.1       cgd 	default:
   2110  1.171       cgd 		error = ENOEXEC;
   2111    1.1       cgd 	}
   2112  1.171       cgd 	return (error);
   2113    1.1       cgd }
   2114    1.1       cgd #endif
   2115  1.110   thorpej 
   2116  1.110   thorpej int
   2117  1.110   thorpej alpha_pa_access(pa)
   2118  1.110   thorpej 	u_long pa;
   2119  1.110   thorpej {
   2120  1.110   thorpej 	int i;
   2121  1.110   thorpej 
   2122  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   2123  1.110   thorpej 		if (pa < mem_clusters[i].start)
   2124  1.110   thorpej 			continue;
   2125  1.110   thorpej 		if ((pa - mem_clusters[i].start) >=
   2126  1.110   thorpej 		    (mem_clusters[i].size & ~PAGE_MASK))
   2127  1.110   thorpej 			continue;
   2128  1.110   thorpej 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2129  1.110   thorpej 	}
   2130  1.110   thorpej 	return (PROT_NONE);
   2131  1.110   thorpej }
   2132   1.50       cgd 
   2133   1.50       cgd /* XXX XXX BEGIN XXX XXX */
   2134  1.140   thorpej paddr_t alpha_XXX_dmamap_or;					/* XXX */
   2135   1.50       cgd 								/* XXX */
   2136  1.140   thorpej paddr_t								/* XXX */
   2137   1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   2138  1.140   thorpej 	vaddr_t v;						/* XXX */
   2139   1.50       cgd {								/* XXX */
   2140   1.50       cgd 								/* XXX */
   2141   1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2142   1.50       cgd }								/* XXX */
   2143   1.50       cgd /* XXX XXX END XXX XXX */
   2144  1.138      ross 
   2145  1.138      ross struct mchkinfo *
   2146  1.138      ross cpu_mchkinfo()
   2147  1.138      ross {
   2148  1.138      ross 	if (mchkinfo_all_cpus == NULL)
   2149  1.138      ross 		return &startup_info;
   2150  1.138      ross 	return mchkinfo_all_cpus + alpha_pal_whami();
   2151  1.138      ross }
   2152