Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.203
      1  1.203     enami /* $NetBSD: machdep.c,v 1.203 2000/03/27 06:41:02 enami Exp $ */
      2  1.110   thorpej 
      3  1.110   thorpej /*-
      4  1.169   thorpej  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
      5  1.110   thorpej  * All rights reserved.
      6  1.110   thorpej  *
      7  1.110   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.110   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.110   thorpej  * NASA Ames Research Center and by Chris G. Demetriou.
     10  1.110   thorpej  *
     11  1.110   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.110   thorpej  * modification, are permitted provided that the following conditions
     13  1.110   thorpej  * are met:
     14  1.110   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.110   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.110   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.110   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.110   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.110   thorpej  * 3. All advertising materials mentioning features or use of this software
     20  1.110   thorpej  *    must display the following acknowledgement:
     21  1.110   thorpej  *	This product includes software developed by the NetBSD
     22  1.110   thorpej  *	Foundation, Inc. and its contributors.
     23  1.110   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.110   thorpej  *    contributors may be used to endorse or promote products derived
     25  1.110   thorpej  *    from this software without specific prior written permission.
     26  1.110   thorpej  *
     27  1.110   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.110   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.110   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.110   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.110   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.110   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.110   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.110   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.110   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.110   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.110   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38  1.110   thorpej  */
     39    1.1       cgd 
     40    1.1       cgd /*
     41   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42    1.1       cgd  * All rights reserved.
     43    1.1       cgd  *
     44    1.1       cgd  * Author: Chris G. Demetriou
     45    1.1       cgd  *
     46    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     47    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     48    1.1       cgd  * notice and this permission notice appear in all copies of the
     49    1.1       cgd  * software, derivative works or modified versions, and any portions
     50    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     51    1.1       cgd  *
     52    1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53    1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55    1.1       cgd  *
     56    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     57    1.1       cgd  *
     58    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59    1.1       cgd  *  School of Computer Science
     60    1.1       cgd  *  Carnegie Mellon University
     61    1.1       cgd  *  Pittsburgh PA 15213-3890
     62    1.1       cgd  *
     63    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     64    1.1       cgd  * rights to redistribute these changes.
     65    1.1       cgd  */
     66   1.74       cgd 
     67  1.129  jonathan #include "opt_ddb.h"
     68  1.147   thorpej #include "opt_multiprocessor.h"
     69  1.123   thorpej #include "opt_dec_3000_300.h"
     70  1.123   thorpej #include "opt_dec_3000_500.h"
     71  1.127   thorpej #include "opt_compat_osf1.h"
     72  1.141   thorpej #include "opt_compat_netbsd.h"
     73  1.129  jonathan #include "opt_inet.h"
     74  1.129  jonathan #include "opt_atalk.h"
     75  1.131  jonathan #include "opt_ccitt.h"
     76  1.131  jonathan #include "opt_iso.h"
     77  1.132  jonathan #include "opt_ns.h"
     78  1.133  jonathan #include "opt_natm.h"
     79  1.112   thorpej 
     80   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     81   1.75       cgd 
     82  1.203     enami __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.203 2000/03/27 06:41:02 enami Exp $");
     83    1.1       cgd 
     84    1.1       cgd #include <sys/param.h>
     85    1.1       cgd #include <sys/systm.h>
     86    1.1       cgd #include <sys/signalvar.h>
     87    1.1       cgd #include <sys/kernel.h>
     88    1.1       cgd #include <sys/map.h>
     89    1.1       cgd #include <sys/proc.h>
     90    1.1       cgd #include <sys/buf.h>
     91    1.1       cgd #include <sys/reboot.h>
     92   1.28       cgd #include <sys/device.h>
     93    1.1       cgd #include <sys/file.h>
     94    1.1       cgd #include <sys/malloc.h>
     95    1.1       cgd #include <sys/mbuf.h>
     96  1.110   thorpej #include <sys/mman.h>
     97    1.1       cgd #include <sys/msgbuf.h>
     98    1.1       cgd #include <sys/ioctl.h>
     99    1.1       cgd #include <sys/tty.h>
    100    1.1       cgd #include <sys/user.h>
    101    1.1       cgd #include <sys/exec.h>
    102    1.1       cgd #include <sys/exec_ecoff.h>
    103   1.91    mjacob #include <vm/vm.h>
    104    1.1       cgd #include <sys/sysctl.h>
    105   1.43       cgd #include <sys/core.h>
    106   1.43       cgd #include <sys/kcore.h>
    107   1.43       cgd #include <machine/kcore.h>
    108    1.1       cgd 
    109    1.1       cgd #include <sys/mount.h>
    110    1.1       cgd #include <sys/syscallargs.h>
    111    1.1       cgd 
    112    1.1       cgd #include <vm/vm_kern.h>
    113    1.1       cgd 
    114  1.112   thorpej #include <uvm/uvm_extern.h>
    115  1.112   thorpej 
    116    1.1       cgd #include <dev/cons.h>
    117    1.1       cgd 
    118   1.81   thorpej #include <machine/autoconf.h>
    119    1.1       cgd #include <machine/cpu.h>
    120    1.1       cgd #include <machine/reg.h>
    121    1.1       cgd #include <machine/rpb.h>
    122    1.1       cgd #include <machine/prom.h>
    123   1.73       cgd #include <machine/conf.h>
    124  1.172      ross #include <machine/ieeefp.h>
    125  1.148   thorpej 
    126   1.49       cgd #include <net/netisr.h>
    127   1.33       cgd #include <net/if.h>
    128   1.49       cgd 
    129   1.49       cgd #ifdef INET
    130  1.120      ross #include <net/route.h>
    131   1.33       cgd #include <netinet/in.h>
    132   1.72       cgd #include <netinet/ip_var.h>
    133   1.72       cgd #include "arp.h"
    134   1.72       cgd #if NARP > 0
    135   1.67        is #include <netinet/if_inarp.h>
    136   1.72       cgd #endif
    137   1.49       cgd #endif
    138  1.176    itojun #ifdef INET6
    139  1.176    itojun # ifndef INET
    140  1.176    itojun #  include <netinet/in.h>
    141  1.176    itojun # endif
    142  1.193      shin #include <netinet/ip6.h>
    143  1.176    itojun #include <netinet6/ip6_var.h>
    144  1.176    itojun #endif
    145   1.49       cgd #ifdef NS
    146   1.49       cgd #include <netns/ns_var.h>
    147   1.49       cgd #endif
    148   1.49       cgd #ifdef ISO
    149   1.49       cgd #include <netiso/iso.h>
    150   1.49       cgd #include <netiso/clnp.h>
    151   1.49       cgd #endif
    152   1.55       cgd #ifdef CCITT
    153   1.55       cgd #include <netccitt/x25.h>
    154   1.55       cgd #include <netccitt/pk.h>
    155   1.55       cgd #include <netccitt/pk_extern.h>
    156   1.55       cgd #endif
    157   1.55       cgd #ifdef NATM
    158   1.55       cgd #include <netnatm/natm.h>
    159   1.55       cgd #endif
    160   1.70  christos #ifdef NETATALK
    161   1.70  christos #include <netatalk/at_extern.h>
    162   1.70  christos #endif
    163   1.49       cgd #include "ppp.h"
    164   1.49       cgd #if NPPP > 0
    165   1.49       cgd #include <net/ppp_defs.h>
    166   1.49       cgd #include <net/if_ppp.h>
    167   1.49       cgd #endif
    168    1.1       cgd 
    169   1.81   thorpej #ifdef DDB
    170   1.81   thorpej #include <machine/db_machdep.h>
    171   1.81   thorpej #include <ddb/db_access.h>
    172   1.81   thorpej #include <ddb/db_sym.h>
    173   1.81   thorpej #include <ddb/db_extern.h>
    174   1.81   thorpej #include <ddb/db_interface.h>
    175   1.81   thorpej #endif
    176   1.81   thorpej 
    177  1.155      ross #include <machine/alpha.h>
    178  1.155      ross #include <machine/intrcnt.h>
    179  1.155      ross 
    180  1.143      matt #include "com.h"
    181  1.143      matt #if NCOM > 0
    182  1.143      matt extern void comsoft __P((void));
    183  1.143      matt #endif
    184  1.200   thorpej #include "zsc_ioasic.h"
    185  1.200   thorpej #if NZSC_IOASIC > 0
    186  1.200   thorpej extern void zs_ioasic_softintr __P((void));
    187  1.200   thorpej #endif
    188  1.143      matt 
    189  1.112   thorpej vm_map_t exec_map = NULL;
    190  1.112   thorpej vm_map_t mb_map = NULL;
    191  1.112   thorpej vm_map_t phys_map = NULL;
    192    1.1       cgd 
    193   1.86       leo caddr_t msgbufaddr;
    194   1.86       leo 
    195    1.1       cgd int	maxmem;			/* max memory per process */
    196    1.7       cgd 
    197    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    198    1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    199    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    200    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    201    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    202    1.1       cgd 
    203    1.1       cgd int	cputype;		/* system type, from the RPB */
    204    1.1       cgd 
    205    1.1       cgd /*
    206    1.1       cgd  * XXX We need an address to which we can assign things so that they
    207    1.1       cgd  * won't be optimized away because we didn't use the value.
    208    1.1       cgd  */
    209    1.1       cgd u_int32_t no_optimize;
    210    1.1       cgd 
    211    1.1       cgd /* the following is used externally (sysctl_hw) */
    212   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    213   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    214   1.29       cgd char	cpu_model[128];
    215    1.1       cgd 
    216    1.1       cgd struct	user *proc0paddr;
    217    1.1       cgd 
    218    1.1       cgd /* Number of machine cycles per microsecond */
    219    1.1       cgd u_int64_t	cycles_per_usec;
    220    1.1       cgd 
    221    1.7       cgd /* number of cpus in the box.  really! */
    222    1.7       cgd int		ncpus;
    223    1.7       cgd 
    224  1.198   thorpej #if !defined(MULTIPROCESSOR)
    225  1.198   thorpej /* A single machine check info structure for single CPU configurations. */
    226  1.198   thorpej struct mchkinfo mchkinfo_store;
    227  1.198   thorpej #endif
    228  1.134    mjacob 
    229  1.102       cgd struct bootinfo_kernel bootinfo;
    230   1.81   thorpej 
    231  1.123   thorpej /* For built-in TCDS */
    232  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    233  1.123   thorpej u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    234  1.123   thorpej #endif
    235  1.123   thorpej 
    236   1.89    mjacob struct platform platform;
    237   1.89    mjacob 
    238  1.100   thorpej u_int32_t vm_phys_size = _VM_PHYS_SIZE;
    239   1.90    mjacob 
    240   1.81   thorpej #ifdef DDB
    241   1.81   thorpej /* start and end of kernel symbol table */
    242   1.81   thorpej void	*ksym_start, *ksym_end;
    243   1.81   thorpej #endif
    244   1.81   thorpej 
    245   1.30       cgd /* for cpu_sysctl() */
    246   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    247   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    248   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    249   1.30       cgd 
    250  1.110   thorpej /*
    251  1.110   thorpej  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    252  1.110   thorpej  * XXX it should also be larger than it is, because not all of the mddt
    253  1.110   thorpej  * XXX clusters end up being used for VM.
    254  1.110   thorpej  */
    255  1.110   thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    256  1.110   thorpej int	mem_cluster_cnt;
    257  1.110   thorpej 
    258   1.55       cgd int	cpu_dump __P((void));
    259   1.55       cgd int	cpu_dumpsize __P((void));
    260  1.110   thorpej u_long	cpu_dump_mempagecnt __P((void));
    261   1.55       cgd void	dumpsys __P((void));
    262   1.55       cgd void	identifycpu __P((void));
    263   1.55       cgd void	netintr __P((void));
    264   1.55       cgd void	printregs __P((struct reg *));
    265   1.33       cgd 
    266   1.55       cgd void
    267  1.102       cgd alpha_init(pfn, ptb, bim, bip, biv)
    268    1.1       cgd 	u_long pfn;		/* first free PFN number */
    269    1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    270   1.81   thorpej 	u_long bim;		/* bootinfo magic */
    271   1.81   thorpej 	u_long bip;		/* bootinfo pointer */
    272  1.102       cgd 	u_long biv;		/* bootinfo version */
    273    1.1       cgd {
    274   1.95   thorpej 	extern char kernel_text[], _end[];
    275    1.1       cgd 	struct mddt *mddtp;
    276  1.110   thorpej 	struct mddt_cluster *memc;
    277    1.7       cgd 	int i, mddtweird;
    278  1.110   thorpej 	struct vm_physseg *vps;
    279  1.140   thorpej 	vaddr_t kernstart, kernend;
    280  1.140   thorpej 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    281  1.140   thorpej 	vsize_t size;
    282    1.1       cgd 	char *p;
    283   1.95   thorpej 	caddr_t v;
    284  1.106       cgd 	char *bootinfo_msg;
    285  1.106       cgd 
    286  1.106       cgd 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    287    1.1       cgd 
    288    1.1       cgd 	/*
    289   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    290    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    291    1.1       cgd 	 */
    292   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    293   1.32       cgd 	alpha_pal_wrfen(0);
    294   1.37       cgd 	ALPHA_TBIA();
    295   1.32       cgd 	alpha_pal_imb();
    296    1.1       cgd 
    297  1.189   thorpej #if defined(MULTIPROCESSOR)
    298  1.189   thorpej 	/*
    299  1.189   thorpej 	 * Set our SysValue to the address of our cpu_info structure.
    300  1.189   thorpej 	 * Secondary processors do this in their spinup trampoline.
    301  1.189   thorpej 	 */
    302  1.189   thorpej 	alpha_pal_wrval((u_long)&cpu_info[alpha_pal_whami()]);
    303  1.189   thorpej #endif
    304  1.189   thorpej 
    305    1.1       cgd 	/*
    306  1.106       cgd 	 * Get critical system information (if possible, from the
    307  1.106       cgd 	 * information provided by the boot program).
    308   1.81   thorpej 	 */
    309  1.106       cgd 	bootinfo_msg = NULL;
    310   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    311  1.102       cgd 		if (biv == 0) {		/* backward compat */
    312  1.102       cgd 			biv = *(u_long *)bip;
    313  1.102       cgd 			bip += 8;
    314  1.102       cgd 		}
    315  1.102       cgd 		switch (biv) {
    316  1.102       cgd 		case 1: {
    317  1.102       cgd 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    318  1.102       cgd 
    319  1.102       cgd 			bootinfo.ssym = v1p->ssym;
    320  1.102       cgd 			bootinfo.esym = v1p->esym;
    321  1.106       cgd 			/* hwrpb may not be provided by boot block in v1 */
    322  1.106       cgd 			if (v1p->hwrpb != NULL) {
    323  1.106       cgd 				bootinfo.hwrpb_phys =
    324  1.106       cgd 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    325  1.106       cgd 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    326  1.106       cgd 			} else {
    327  1.106       cgd 				bootinfo.hwrpb_phys =
    328  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    329  1.106       cgd 				bootinfo.hwrpb_size =
    330  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    331  1.106       cgd 			}
    332  1.102       cgd 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    333  1.102       cgd 			    min(sizeof v1p->boot_flags,
    334  1.102       cgd 			      sizeof bootinfo.boot_flags));
    335  1.102       cgd 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    336  1.102       cgd 			    min(sizeof v1p->booted_kernel,
    337  1.102       cgd 			      sizeof bootinfo.booted_kernel));
    338  1.106       cgd 			/* booted dev not provided in bootinfo */
    339  1.106       cgd 			init_prom_interface((struct rpb *)
    340  1.106       cgd 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    341  1.102       cgd                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    342  1.102       cgd 			    sizeof bootinfo.booted_dev);
    343   1.81   thorpej 			break;
    344  1.102       cgd 		}
    345   1.81   thorpej 		default:
    346  1.106       cgd 			bootinfo_msg = "unknown bootinfo version";
    347  1.102       cgd 			goto nobootinfo;
    348   1.81   thorpej 		}
    349  1.102       cgd 	} else {
    350  1.106       cgd 		bootinfo_msg = "boot program did not pass bootinfo";
    351  1.102       cgd nobootinfo:
    352  1.102       cgd 		bootinfo.ssym = (u_long)_end;
    353  1.102       cgd 		bootinfo.esym = (u_long)_end;
    354  1.106       cgd 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    355  1.106       cgd 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    356  1.106       cgd 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    357  1.102       cgd 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    358  1.102       cgd 		    sizeof bootinfo.boot_flags);
    359  1.102       cgd 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    360  1.102       cgd 		    sizeof bootinfo.booted_kernel);
    361  1.102       cgd 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    362  1.102       cgd 		    sizeof bootinfo.booted_dev);
    363  1.102       cgd 	}
    364  1.102       cgd 
    365   1.81   thorpej 	/*
    366  1.106       cgd 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    367  1.106       cgd 	 * lots of things.
    368  1.106       cgd 	 */
    369  1.106       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    370  1.123   thorpej 
    371  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    372  1.123   thorpej 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    373  1.123   thorpej 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    374  1.123   thorpej 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    375  1.123   thorpej 		    sizeof(dec_3000_scsiid));
    376  1.123   thorpej 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    377  1.123   thorpej 		    sizeof(dec_3000_scsifast));
    378  1.123   thorpej 	}
    379  1.123   thorpej #endif
    380  1.106       cgd 
    381  1.106       cgd 	/*
    382  1.106       cgd 	 * Remember how many cycles there are per microsecond,
    383  1.106       cgd 	 * so that we can use delay().  Round up, for safety.
    384  1.106       cgd 	 */
    385  1.106       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    386  1.106       cgd 
    387  1.106       cgd 	/*
    388  1.106       cgd 	 * Initalize the (temporary) bootstrap console interface, so
    389  1.106       cgd 	 * we can use printf until the VM system starts being setup.
    390  1.106       cgd 	 * The real console is initialized before then.
    391  1.106       cgd 	 */
    392  1.106       cgd 	init_bootstrap_console();
    393  1.106       cgd 
    394  1.106       cgd 	/* OUTPUT NOW ALLOWED */
    395  1.106       cgd 
    396  1.106       cgd 	/* delayed from above */
    397  1.106       cgd 	if (bootinfo_msg)
    398  1.106       cgd 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    399  1.106       cgd 		    bootinfo_msg, bim, bip, biv);
    400  1.106       cgd 
    401  1.147   thorpej 	/* Initialize the trap vectors on the primary processor. */
    402  1.147   thorpej 	trap_init();
    403    1.1       cgd 
    404    1.1       cgd 	/*
    405  1.106       cgd 	 * Find out what hardware we're on, and do basic initialization.
    406  1.106       cgd 	 */
    407  1.106       cgd 	cputype = hwrpb->rpb_type;
    408  1.167       cgd 	if (cputype < 0) {
    409  1.167       cgd 		/*
    410  1.167       cgd 		 * At least some white-box systems have SRM which
    411  1.167       cgd 		 * reports a systype that's the negative of their
    412  1.167       cgd 		 * blue-box counterpart.
    413  1.167       cgd 		 */
    414  1.167       cgd 		cputype = -cputype;
    415  1.167       cgd 	}
    416  1.106       cgd 	if (cputype >= ncpuinit) {
    417  1.106       cgd 		platform_not_supported();
    418  1.106       cgd 		/* NOTREACHED */
    419  1.106       cgd 	}
    420  1.106       cgd 	(*cpuinit[cputype].init)();
    421  1.106       cgd 	strcpy(cpu_model, platform.model);
    422  1.106       cgd 
    423  1.106       cgd 	/*
    424  1.199     soren 	 * Initalize the real console, so that the bootstrap console is
    425  1.106       cgd 	 * no longer necessary.
    426  1.106       cgd 	 */
    427  1.169   thorpej 	(*platform.cons_init)();
    428  1.106       cgd 
    429  1.106       cgd #ifdef DIAGNOSTIC
    430  1.106       cgd 	/* Paranoid sanity checking */
    431  1.106       cgd 
    432  1.199     soren 	/* We should always be running on the primary. */
    433  1.106       cgd 	assert(hwrpb->rpb_primary_cpu_id == alpha_pal_whami());
    434  1.106       cgd 
    435  1.116    mjacob 	/*
    436  1.116    mjacob 	 * On single-CPU systypes, the primary should always be CPU 0,
    437  1.116    mjacob 	 * except on Alpha 8200 systems where the CPU id is related
    438  1.116    mjacob 	 * to the VID, which is related to the Turbo Laser node id.
    439  1.116    mjacob 	 */
    440  1.106       cgd 	if (cputype != ST_DEC_21000)
    441  1.106       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);
    442  1.106       cgd #endif
    443  1.106       cgd 
    444  1.106       cgd 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    445  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    446  1.106       cgd 	/*
    447  1.106       cgd 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    448  1.106       cgd 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    449  1.106       cgd 	 */
    450  1.106       cgd #endif
    451  1.106       cgd 
    452  1.106       cgd 	/*
    453  1.106       cgd 	 * find out this system's page size
    454   1.95   thorpej 	 */
    455   1.95   thorpej 	PAGE_SIZE = hwrpb->rpb_page_size;
    456   1.95   thorpej 	if (PAGE_SIZE != 8192)
    457   1.95   thorpej 		panic("page size %d != 8192?!", PAGE_SIZE);
    458   1.95   thorpej 
    459   1.95   thorpej 	/*
    460   1.95   thorpej 	 * Initialize PAGE_SIZE-dependent variables.
    461   1.95   thorpej 	 */
    462  1.112   thorpej 	uvm_setpagesize();
    463   1.95   thorpej 
    464   1.95   thorpej 	/*
    465  1.101       cgd 	 * Find the beginning and end of the kernel (and leave a
    466  1.101       cgd 	 * bit of space before the beginning for the bootstrap
    467  1.101       cgd 	 * stack).
    468   1.95   thorpej 	 */
    469  1.201    kleink 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
    470   1.95   thorpej #ifdef DDB
    471  1.102       cgd 	ksym_start = (void *)bootinfo.ssym;
    472  1.102       cgd 	ksym_end   = (void *)bootinfo.esym;
    473  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
    474  1.102       cgd #else
    475  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)_end);
    476   1.95   thorpej #endif
    477   1.95   thorpej 
    478  1.110   thorpej 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    479  1.110   thorpej 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    480  1.110   thorpej 
    481   1.95   thorpej 	/*
    482    1.1       cgd 	 * Find out how much memory is available, by looking at
    483    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    484    1.7       cgd 	 * its best to detect things things that have never been seen
    485    1.7       cgd 	 * before...
    486    1.1       cgd 	 */
    487    1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    488    1.7       cgd 
    489  1.110   thorpej 	/* MDDT SANITY CHECKING */
    490    1.7       cgd 	mddtweird = 0;
    491  1.110   thorpej 	if (mddtp->mddt_cluster_cnt < 2) {
    492    1.7       cgd 		mddtweird = 1;
    493  1.160   thorpej 		printf("WARNING: weird number of mem clusters: %lu\n",
    494  1.110   thorpej 		    mddtp->mddt_cluster_cnt);
    495    1.7       cgd 	}
    496    1.7       cgd 
    497  1.110   thorpej #if 0
    498  1.110   thorpej 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    499  1.110   thorpej #endif
    500  1.110   thorpej 
    501  1.110   thorpej 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    502  1.110   thorpej 		memc = &mddtp->mddt_clusters[i];
    503  1.110   thorpej #if 0
    504  1.110   thorpej 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    505  1.110   thorpej 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    506  1.110   thorpej #endif
    507  1.110   thorpej 		totalphysmem += memc->mddt_pg_cnt;
    508  1.110   thorpej 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    509  1.110   thorpej 			mem_clusters[mem_cluster_cnt].start =
    510  1.110   thorpej 			    ptoa(memc->mddt_pfn);
    511  1.110   thorpej 			mem_clusters[mem_cluster_cnt].size =
    512  1.110   thorpej 			    ptoa(memc->mddt_pg_cnt);
    513  1.110   thorpej 			if (memc->mddt_usage & MDDT_mbz ||
    514  1.110   thorpej 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    515  1.110   thorpej 			    memc->mddt_usage & MDDT_PALCODE)
    516  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    517  1.110   thorpej 				    PROT_READ;
    518  1.110   thorpej 			else
    519  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    520  1.110   thorpej 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    521  1.110   thorpej 			mem_cluster_cnt++;
    522  1.110   thorpej 		}
    523  1.110   thorpej 
    524  1.110   thorpej 		if (memc->mddt_usage & MDDT_mbz) {
    525    1.7       cgd 			mddtweird = 1;
    526  1.110   thorpej 			printf("WARNING: mem cluster %d has weird "
    527  1.110   thorpej 			    "usage 0x%lx\n", i, memc->mddt_usage);
    528  1.110   thorpej 			unknownmem += memc->mddt_pg_cnt;
    529  1.110   thorpej 			continue;
    530    1.7       cgd 		}
    531  1.110   thorpej 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    532  1.110   thorpej 			/* XXX should handle these... */
    533  1.110   thorpej 			printf("WARNING: skipping non-volatile mem "
    534  1.110   thorpej 			    "cluster %d\n", i);
    535  1.110   thorpej 			unusedmem += memc->mddt_pg_cnt;
    536  1.110   thorpej 			continue;
    537  1.110   thorpej 		}
    538  1.110   thorpej 		if (memc->mddt_usage & MDDT_PALCODE) {
    539  1.110   thorpej 			resvmem += memc->mddt_pg_cnt;
    540  1.110   thorpej 			continue;
    541  1.110   thorpej 		}
    542  1.110   thorpej 
    543  1.110   thorpej 		/*
    544  1.110   thorpej 		 * We have a memory cluster available for system
    545  1.110   thorpej 		 * software use.  We must determine if this cluster
    546  1.110   thorpej 		 * holds the kernel.
    547  1.110   thorpej 		 */
    548  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    549  1.110   thorpej 		/*
    550  1.110   thorpej 		 * XXX If the kernel uses the PROM console, we only use the
    551  1.110   thorpej 		 * XXX memory after the kernel in the first system segment,
    552  1.110   thorpej 		 * XXX to avoid clobbering prom mapping, data, etc.
    553  1.110   thorpej 		 */
    554  1.110   thorpej 	    if (!pmap_uses_prom_console() || physmem == 0) {
    555  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    556  1.110   thorpej 		physmem += memc->mddt_pg_cnt;
    557  1.110   thorpej 		pfn0 = memc->mddt_pfn;
    558  1.110   thorpej 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    559  1.110   thorpej 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    560  1.110   thorpej 			/*
    561  1.110   thorpej 			 * Must compute the location of the kernel
    562  1.110   thorpej 			 * within the segment.
    563  1.110   thorpej 			 */
    564  1.110   thorpej #if 0
    565  1.110   thorpej 			printf("Cluster %d contains kernel\n", i);
    566  1.110   thorpej #endif
    567  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    568  1.110   thorpej 		    if (!pmap_uses_prom_console()) {
    569  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    570  1.110   thorpej 			if (pfn0 < kernstartpfn) {
    571  1.110   thorpej 				/*
    572  1.110   thorpej 				 * There is a chunk before the kernel.
    573  1.110   thorpej 				 */
    574  1.110   thorpej #if 0
    575  1.110   thorpej 				printf("Loading chunk before kernel: "
    576  1.110   thorpej 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    577  1.110   thorpej #endif
    578  1.112   thorpej 				uvm_page_physload(pfn0, kernstartpfn,
    579  1.135   thorpej 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    580  1.110   thorpej 			}
    581  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    582  1.110   thorpej 		    }
    583  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    584  1.110   thorpej 			if (kernendpfn < pfn1) {
    585  1.110   thorpej 				/*
    586  1.110   thorpej 				 * There is a chunk after the kernel.
    587  1.110   thorpej 				 */
    588  1.110   thorpej #if 0
    589  1.110   thorpej 				printf("Loading chunk after kernel: "
    590  1.110   thorpej 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    591  1.110   thorpej #endif
    592  1.112   thorpej 				uvm_page_physload(kernendpfn, pfn1,
    593  1.135   thorpej 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    594  1.110   thorpej 			}
    595  1.110   thorpej 		} else {
    596  1.110   thorpej 			/*
    597  1.110   thorpej 			 * Just load this cluster as one chunk.
    598  1.110   thorpej 			 */
    599  1.110   thorpej #if 0
    600  1.110   thorpej 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    601  1.110   thorpej 			    pfn0, pfn1);
    602  1.110   thorpej #endif
    603  1.135   thorpej 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    604  1.135   thorpej 			    VM_FREELIST_DEFAULT);
    605    1.7       cgd 		}
    606  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    607  1.110   thorpej 	    }
    608  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    609    1.7       cgd 	}
    610    1.7       cgd 
    611  1.110   thorpej 	/*
    612  1.110   thorpej 	 * Dump out the MDDT if it looks odd...
    613  1.110   thorpej 	 */
    614    1.7       cgd 	if (mddtweird) {
    615   1.46  christos 		printf("\n");
    616   1.46  christos 		printf("complete memory cluster information:\n");
    617    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    618   1.46  christos 			printf("mddt %d:\n", i);
    619   1.46  christos 			printf("\tpfn %lx\n",
    620    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    621   1.46  christos 			printf("\tcnt %lx\n",
    622    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    623   1.46  christos 			printf("\ttest %lx\n",
    624    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    625   1.46  christos 			printf("\tbva %lx\n",
    626    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    627   1.46  christos 			printf("\tbpa %lx\n",
    628    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    629   1.46  christos 			printf("\tbcksum %lx\n",
    630    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    631   1.46  christos 			printf("\tusage %lx\n",
    632    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    633    1.2       cgd 		}
    634   1.46  christos 		printf("\n");
    635    1.2       cgd 	}
    636    1.2       cgd 
    637    1.7       cgd 	if (totalphysmem == 0)
    638    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    639    1.1       cgd 	maxmem = physmem;
    640    1.7       cgd #if 0
    641   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    642   1.46  christos 	printf("physmem = %d\n", physmem);
    643   1.46  christos 	printf("resvmem = %d\n", resvmem);
    644   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    645   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    646    1.7       cgd #endif
    647   1.90    mjacob 
    648   1.90    mjacob 	/*
    649   1.90    mjacob 	 * Adjust some parameters if the amount of physmem
    650   1.90    mjacob 	 * available would cause us to croak. This is completely
    651   1.90    mjacob 	 * eyeballed and isn't meant to be the final answer.
    652   1.90    mjacob 	 * vm_phys_size is probably the only one to really worry
    653   1.90    mjacob 	 * about.
    654   1.90    mjacob  	 *
    655   1.90    mjacob 	 * It's for booting a GENERIC kernel on a large memory platform.
    656   1.90    mjacob 	 */
    657  1.194   thorpej 	if (physmem >= atop(128 * 1024 * 1024))
    658   1.93    mjacob 		vm_phys_size <<= 2;
    659    1.7       cgd 
    660    1.1       cgd 	/*
    661    1.1       cgd 	 * Initialize error message buffer (at end of core).
    662    1.1       cgd 	 */
    663  1.110   thorpej 	{
    664  1.203     enami 		vsize_t sz = (vsize_t)round_page((vaddr_t)MSGBUFSIZE);
    665  1.203     enami 		vsize_t reqsz = sz;
    666  1.110   thorpej 
    667  1.110   thorpej 		vps = &vm_physmem[vm_nphysseg - 1];
    668  1.110   thorpej 
    669  1.110   thorpej 		/* shrink so that it'll fit in the last segment */
    670  1.110   thorpej 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    671  1.110   thorpej 			sz = ptoa(vps->avail_end - vps->avail_start);
    672  1.110   thorpej 
    673  1.110   thorpej 		vps->end -= atop(sz);
    674  1.110   thorpej 		vps->avail_end -= atop(sz);
    675  1.110   thorpej 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    676  1.110   thorpej 		initmsgbuf(msgbufaddr, sz);
    677  1.110   thorpej 
    678  1.110   thorpej 		/* Remove the last segment if it now has no pages. */
    679  1.110   thorpej 		if (vps->start == vps->end)
    680  1.110   thorpej 			vm_nphysseg--;
    681  1.110   thorpej 
    682  1.110   thorpej 		/* warn if the message buffer had to be shrunk */
    683  1.203     enami 		if (sz != reqsz)
    684  1.203     enami 			printf("WARNING: %ld bytes not available for msgbuf "
    685  1.203     enami 			    "in last cluster (%ld used)\n", reqsz, sz);
    686  1.110   thorpej 
    687  1.110   thorpej 	}
    688    1.1       cgd 
    689    1.1       cgd 	/*
    690   1.95   thorpej 	 * Init mapping for u page(s) for proc 0
    691    1.1       cgd 	 */
    692  1.110   thorpej 	proc0.p_addr = proc0paddr =
    693  1.110   thorpej 	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
    694    1.1       cgd 
    695    1.1       cgd 	/*
    696   1.95   thorpej 	 * Allocate space for system data structures.  These data structures
    697   1.95   thorpej 	 * are allocated here instead of cpu_startup() because physical
    698   1.95   thorpej 	 * memory is directly addressable.  We don't have to map these into
    699   1.95   thorpej 	 * virtual address space.
    700   1.95   thorpej 	 */
    701  1.198   thorpej 	size = (vsize_t)allocsys(NULL, NULL);
    702  1.110   thorpej 	v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
    703  1.198   thorpej 	if ((allocsys(v, NULL) - v) != size)
    704   1.95   thorpej 		panic("alpha_init: table size inconsistency");
    705    1.1       cgd 
    706    1.1       cgd 	/*
    707    1.1       cgd 	 * Initialize the virtual memory system, and set the
    708    1.1       cgd 	 * page table base register in proc 0's PCB.
    709    1.1       cgd 	 */
    710  1.110   thorpej 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    711  1.144   thorpej 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    712    1.1       cgd 
    713    1.1       cgd 	/*
    714    1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    715    1.3       cgd 	 * address.
    716    1.3       cgd 	 */
    717    1.3       cgd 	proc0.p_md.md_pcbpaddr =
    718  1.140   thorpej 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
    719    1.3       cgd 
    720    1.3       cgd 	/*
    721    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    722    1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    723    1.3       cgd 	 */
    724   1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    725    1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    726   1.81   thorpej 	proc0.p_md.md_tf =
    727   1.81   thorpej 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    728  1.189   thorpej 
    729  1.189   thorpej #if defined(MULTIPROCESSOR)
    730  1.189   thorpej 	/*
    731  1.189   thorpej 	 * Initialize the primary CPU's idle PCB to proc0's, until
    732  1.189   thorpej 	 * autoconfiguration runs (it will get its own idle PCB there).
    733  1.189   thorpej 	 */
    734  1.189   thorpej 	curcpu()->ci_idle_pcb = &proc0paddr->u_pcb;
    735  1.189   thorpej 	curcpu()->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
    736  1.189   thorpej #endif
    737    1.1       cgd 
    738    1.1       cgd 	/*
    739   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    740    1.8       cgd 	 */
    741    1.1       cgd 
    742    1.8       cgd 	boothowto = RB_SINGLE;
    743    1.1       cgd #ifdef KADB
    744    1.1       cgd 	boothowto |= RB_KDB;
    745    1.1       cgd #endif
    746  1.102       cgd 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    747   1.26       cgd 		/*
    748   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    749   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    750   1.26       cgd 		 * says that we shouldn't.
    751   1.26       cgd 		 */
    752    1.8       cgd 		switch (*p) {
    753   1.26       cgd 		case 'a': /* autoboot */
    754   1.26       cgd 		case 'A':
    755   1.26       cgd 			boothowto &= ~RB_SINGLE;
    756   1.21       cgd 			break;
    757   1.21       cgd 
    758   1.43       cgd #ifdef DEBUG
    759   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    760   1.43       cgd 		case 'C':
    761   1.43       cgd 			boothowto |= RB_DUMP;
    762   1.43       cgd 			break;
    763   1.43       cgd #endif
    764   1.43       cgd 
    765   1.81   thorpej #if defined(KGDB) || defined(DDB)
    766   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    767   1.81   thorpej 		case 'D':
    768   1.81   thorpej 			boothowto |= RB_KDB;
    769   1.81   thorpej 			break;
    770   1.81   thorpej #endif
    771   1.81   thorpej 
    772   1.36       cgd 		case 'h': /* always halt, never reboot */
    773   1.36       cgd 		case 'H':
    774   1.36       cgd 			boothowto |= RB_HALT;
    775    1.8       cgd 			break;
    776    1.8       cgd 
    777   1.21       cgd #if 0
    778    1.8       cgd 		case 'm': /* mini root present in memory */
    779   1.26       cgd 		case 'M':
    780    1.8       cgd 			boothowto |= RB_MINIROOT;
    781    1.8       cgd 			break;
    782   1.21       cgd #endif
    783   1.36       cgd 
    784   1.36       cgd 		case 'n': /* askname */
    785   1.36       cgd 		case 'N':
    786   1.36       cgd 			boothowto |= RB_ASKNAME;
    787   1.65       cgd 			break;
    788   1.65       cgd 
    789   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    790   1.65       cgd 		case 'S':
    791   1.65       cgd 			boothowto |= RB_SINGLE;
    792  1.119   thorpej 			break;
    793  1.119   thorpej 
    794  1.119   thorpej 		case '-':
    795  1.119   thorpej 			/*
    796  1.119   thorpej 			 * Just ignore this.  It's not required, but it's
    797  1.119   thorpej 			 * common for it to be passed regardless.
    798  1.119   thorpej 			 */
    799   1.65       cgd 			break;
    800   1.65       cgd 
    801   1.65       cgd 		default:
    802   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    803   1.36       cgd 			break;
    804    1.1       cgd 		}
    805    1.1       cgd 	}
    806    1.1       cgd 
    807  1.136    mjacob 
    808  1.136    mjacob 	/*
    809  1.136    mjacob 	 * Figure out the number of cpus in the box, from RPB fields.
    810  1.136    mjacob 	 * Really.  We mean it.
    811  1.136    mjacob 	 */
    812  1.136    mjacob 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    813  1.136    mjacob 		struct pcs *pcsp;
    814  1.136    mjacob 
    815  1.144   thorpej 		pcsp = LOCATE_PCS(hwrpb, i);
    816  1.136    mjacob 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    817  1.136    mjacob 			ncpus++;
    818  1.136    mjacob 	}
    819  1.136    mjacob 
    820    1.7       cgd 	/*
    821  1.106       cgd 	 * Initialize debuggers, and break into them if appropriate.
    822  1.106       cgd 	 */
    823  1.106       cgd #ifdef DDB
    824  1.106       cgd 	db_machine_init();
    825  1.159    mjacob 	ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    826  1.159    mjacob 	    ksym_start, ksym_end);
    827  1.106       cgd 	if (boothowto & RB_KDB)
    828  1.106       cgd 		Debugger();
    829  1.106       cgd #endif
    830  1.106       cgd #ifdef KGDB
    831  1.106       cgd 	if (boothowto & RB_KDB)
    832  1.106       cgd 		kgdb_connect(0);
    833  1.106       cgd #endif
    834  1.106       cgd 	/*
    835  1.106       cgd 	 * Figure out our clock frequency, from RPB fields.
    836  1.106       cgd 	 */
    837  1.106       cgd 	hz = hwrpb->rpb_intr_freq >> 12;
    838  1.106       cgd 	if (!(60 <= hz && hz <= 10240)) {
    839  1.106       cgd 		hz = 1024;
    840  1.106       cgd #ifdef DIAGNOSTIC
    841  1.106       cgd 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    842  1.106       cgd 			hwrpb->rpb_intr_freq, hz);
    843  1.106       cgd #endif
    844  1.106       cgd 	}
    845   1.95   thorpej }
    846   1.95   thorpej 
    847   1.18       cgd void
    848    1.1       cgd consinit()
    849    1.1       cgd {
    850   1.81   thorpej 
    851  1.106       cgd 	/*
    852  1.106       cgd 	 * Everything related to console initialization is done
    853  1.106       cgd 	 * in alpha_init().
    854  1.106       cgd 	 */
    855  1.106       cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    856  1.106       cgd 	printf("consinit: %susing prom console\n",
    857  1.106       cgd 	    pmap_uses_prom_console() ? "" : "not ");
    858   1.81   thorpej #endif
    859    1.1       cgd }
    860  1.118   thorpej 
    861  1.118   thorpej #include "pckbc.h"
    862  1.118   thorpej #include "pckbd.h"
    863  1.118   thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
    864  1.118   thorpej 
    865  1.187   thorpej #include <dev/ic/pckbcvar.h>
    866  1.118   thorpej 
    867  1.118   thorpej /*
    868  1.118   thorpej  * This is called by the pbkbc driver if no pckbd is configured.
    869  1.118   thorpej  * On the i386, it is used to glue in the old, deprecated console
    870  1.118   thorpej  * code.  On the Alpha, it does nothing.
    871  1.118   thorpej  */
    872  1.118   thorpej int
    873  1.118   thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
    874  1.118   thorpej 	pckbc_tag_t kbctag;
    875  1.118   thorpej 	pckbc_slot_t kbcslot;
    876  1.118   thorpej {
    877  1.118   thorpej 
    878  1.118   thorpej 	return (ENXIO);
    879  1.118   thorpej }
    880  1.118   thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
    881    1.1       cgd 
    882   1.18       cgd void
    883    1.1       cgd cpu_startup()
    884    1.1       cgd {
    885    1.1       cgd 	register unsigned i;
    886    1.1       cgd 	int base, residual;
    887  1.140   thorpej 	vaddr_t minaddr, maxaddr;
    888  1.140   thorpej 	vsize_t size;
    889  1.173     lukem 	char pbuf[9];
    890   1.40       cgd #if defined(DEBUG)
    891    1.1       cgd 	extern int pmapdebug;
    892    1.1       cgd 	int opmapdebug = pmapdebug;
    893    1.1       cgd 
    894    1.1       cgd 	pmapdebug = 0;
    895    1.1       cgd #endif
    896    1.1       cgd 
    897    1.1       cgd 	/*
    898    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    899    1.1       cgd 	 */
    900   1.46  christos 	printf(version);
    901    1.1       cgd 	identifycpu();
    902  1.185   thorpej 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
    903  1.173     lukem 	printf("total memory = %s\n", pbuf);
    904  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    905  1.173     lukem 	printf("(%s reserved for PROM, ", pbuf);
    906  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    907  1.173     lukem 	printf("%s used by NetBSD)\n", pbuf);
    908  1.173     lukem 	if (unusedmem) {
    909  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
    910  1.173     lukem 		printf("WARNING: unused memory = %s\n", pbuf);
    911  1.173     lukem 	}
    912  1.173     lukem 	if (unknownmem) {
    913  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
    914  1.173     lukem 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    915  1.173     lukem 	}
    916    1.1       cgd 
    917    1.1       cgd 	/*
    918    1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    919    1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    920    1.1       cgd 	 * and usually occupy more virtual memory than physical.
    921    1.1       cgd 	 */
    922    1.1       cgd 	size = MAXBSIZE * nbuf;
    923  1.140   thorpej 	if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
    924  1.112   thorpej 		    NULL, UVM_UNKNOWN_OFFSET,
    925  1.112   thorpej 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
    926  1.112   thorpej 				UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
    927  1.112   thorpej 		panic("startup: cannot allocate VM for buffers");
    928    1.1       cgd 	base = bufpages / nbuf;
    929    1.1       cgd 	residual = bufpages % nbuf;
    930    1.1       cgd 	for (i = 0; i < nbuf; i++) {
    931  1.140   thorpej 		vsize_t curbufsize;
    932  1.140   thorpej 		vaddr_t curbuf;
    933  1.112   thorpej 		struct vm_page *pg;
    934  1.112   thorpej 
    935  1.112   thorpej 		/*
    936  1.112   thorpej 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
    937  1.112   thorpej 		 * that MAXBSIZE space, we allocate and map (base+1) pages
    938  1.112   thorpej 		 * for the first "residual" buffers, and then we allocate
    939  1.112   thorpej 		 * "base" pages for the rest.
    940  1.112   thorpej 		 */
    941  1.140   thorpej 		curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
    942  1.188     ragge 		curbufsize = NBPG * ((i < residual) ? (base+1) : base);
    943  1.112   thorpej 
    944  1.112   thorpej 		while (curbufsize) {
    945  1.168       chs 			pg = uvm_pagealloc(NULL, 0, NULL, 0);
    946  1.112   thorpej 			if (pg == NULL)
    947  1.112   thorpej 				panic("cpu_startup: not enough memory for "
    948  1.112   thorpej 				    "buffer cache");
    949  1.182       chs 			pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
    950  1.182       chs 					VM_PROT_READ|VM_PROT_WRITE);
    951  1.112   thorpej 			curbuf += PAGE_SIZE;
    952  1.112   thorpej 			curbufsize -= PAGE_SIZE;
    953  1.112   thorpej 		}
    954    1.1       cgd 	}
    955    1.1       cgd 	/*
    956    1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    957    1.1       cgd 	 * limits the number of processes exec'ing at any time.
    958    1.1       cgd 	 */
    959  1.112   thorpej 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    960  1.175   thorpej 				   16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
    961    1.1       cgd 
    962    1.1       cgd 	/*
    963    1.1       cgd 	 * Allocate a submap for physio
    964    1.1       cgd 	 */
    965  1.112   thorpej 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    966  1.175   thorpej 				   VM_PHYS_SIZE, 0, FALSE, NULL);
    967    1.1       cgd 
    968    1.1       cgd 	/*
    969  1.164   thorpej 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    970  1.164   thorpej 	 * are allocated via the pool allocator, and we use K0SEG to
    971  1.164   thorpej 	 * map those pages.
    972    1.1       cgd 	 */
    973    1.1       cgd 
    974   1.40       cgd #if defined(DEBUG)
    975    1.1       cgd 	pmapdebug = opmapdebug;
    976    1.1       cgd #endif
    977  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
    978  1.173     lukem 	printf("avail memory = %s\n", pbuf);
    979  1.139   thorpej #if 0
    980  1.139   thorpej 	{
    981  1.139   thorpej 		extern u_long pmap_pages_stolen;
    982  1.173     lukem 
    983  1.173     lukem 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
    984  1.173     lukem 		printf("stolen memory for VM structures = %s\n", pbuf);
    985  1.139   thorpej 	}
    986  1.112   thorpej #endif
    987  1.188     ragge 	format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
    988  1.173     lukem 	printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
    989    1.1       cgd 
    990    1.1       cgd 	/*
    991    1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
    992    1.1       cgd 	 */
    993    1.1       cgd 	bufinit();
    994  1.151   thorpej 
    995  1.151   thorpej 	/*
    996  1.151   thorpej 	 * Set up the HWPCB so that it's safe to configure secondary
    997  1.151   thorpej 	 * CPUs.
    998  1.151   thorpej 	 */
    999  1.151   thorpej 	hwrpb_primary_init();
   1000  1.104   thorpej }
   1001  1.104   thorpej 
   1002  1.104   thorpej /*
   1003  1.104   thorpej  * Retrieve the platform name from the DSR.
   1004  1.104   thorpej  */
   1005  1.104   thorpej const char *
   1006  1.104   thorpej alpha_dsr_sysname()
   1007  1.104   thorpej {
   1008  1.104   thorpej 	struct dsrdb *dsr;
   1009  1.104   thorpej 	const char *sysname;
   1010  1.104   thorpej 
   1011  1.104   thorpej 	/*
   1012  1.104   thorpej 	 * DSR does not exist on early HWRPB versions.
   1013  1.104   thorpej 	 */
   1014  1.104   thorpej 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
   1015  1.104   thorpej 		return (NULL);
   1016  1.104   thorpej 
   1017  1.104   thorpej 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
   1018  1.104   thorpej 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
   1019  1.104   thorpej 	    sizeof(u_int64_t)));
   1020  1.104   thorpej 	return (sysname);
   1021  1.104   thorpej }
   1022  1.104   thorpej 
   1023  1.104   thorpej /*
   1024  1.104   thorpej  * Lookup the system specified system variation in the provided table,
   1025  1.104   thorpej  * returning the model string on match.
   1026  1.104   thorpej  */
   1027  1.104   thorpej const char *
   1028  1.104   thorpej alpha_variation_name(variation, avtp)
   1029  1.104   thorpej 	u_int64_t variation;
   1030  1.104   thorpej 	const struct alpha_variation_table *avtp;
   1031  1.104   thorpej {
   1032  1.104   thorpej 	int i;
   1033  1.104   thorpej 
   1034  1.104   thorpej 	for (i = 0; avtp[i].avt_model != NULL; i++)
   1035  1.104   thorpej 		if (avtp[i].avt_variation == variation)
   1036  1.104   thorpej 			return (avtp[i].avt_model);
   1037  1.104   thorpej 	return (NULL);
   1038  1.104   thorpej }
   1039  1.104   thorpej 
   1040  1.104   thorpej /*
   1041  1.104   thorpej  * Generate a default platform name based for unknown system variations.
   1042  1.104   thorpej  */
   1043  1.104   thorpej const char *
   1044  1.104   thorpej alpha_unknown_sysname()
   1045  1.104   thorpej {
   1046  1.105   thorpej 	static char s[128];		/* safe size */
   1047  1.104   thorpej 
   1048  1.105   thorpej 	sprintf(s, "%s family, unknown model variation 0x%lx",
   1049  1.105   thorpej 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1050  1.104   thorpej 	return ((const char *)s);
   1051    1.1       cgd }
   1052    1.1       cgd 
   1053   1.33       cgd void
   1054    1.1       cgd identifycpu()
   1055    1.1       cgd {
   1056  1.177      ross 	char *s;
   1057    1.1       cgd 
   1058    1.7       cgd 	/*
   1059    1.7       cgd 	 * print out CPU identification information.
   1060    1.7       cgd 	 */
   1061  1.177      ross 	printf("%s", cpu_model);
   1062  1.177      ross 	for(s = cpu_model; *s; ++s)
   1063  1.177      ross 		if(strncasecmp(s, "MHz", 3) == 0)
   1064  1.177      ross 			goto skipMHz;
   1065  1.177      ross 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
   1066  1.177      ross skipMHz:
   1067  1.177      ross 	printf("\n");
   1068   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
   1069    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1070    1.7       cgd #if 0
   1071    1.7       cgd 	/* this isn't defined for any systems that we run on? */
   1072   1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
   1073    1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1074    1.7       cgd 
   1075    1.7       cgd 	/* and these aren't particularly useful! */
   1076   1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
   1077    1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1078    1.7       cgd #endif
   1079    1.1       cgd }
   1080    1.1       cgd 
   1081    1.1       cgd int	waittime = -1;
   1082    1.7       cgd struct pcb dumppcb;
   1083    1.1       cgd 
   1084   1.18       cgd void
   1085   1.68       gwr cpu_reboot(howto, bootstr)
   1086    1.1       cgd 	int howto;
   1087   1.39       mrg 	char *bootstr;
   1088    1.1       cgd {
   1089  1.148   thorpej #if defined(MULTIPROCESSOR)
   1090  1.150   thorpej #if 0 /* XXX See below. */
   1091  1.148   thorpej 	u_long cpu_id;
   1092  1.150   thorpej #endif
   1093  1.148   thorpej #endif
   1094  1.148   thorpej 
   1095  1.148   thorpej #if defined(MULTIPROCESSOR)
   1096  1.148   thorpej 	/* We must be running on the primary CPU. */
   1097  1.148   thorpej 	if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
   1098  1.148   thorpej 		panic("cpu_reboot: not on primary CPU!");
   1099  1.148   thorpej #endif
   1100    1.1       cgd 
   1101    1.1       cgd 	/* If system is cold, just halt. */
   1102    1.1       cgd 	if (cold) {
   1103    1.1       cgd 		howto |= RB_HALT;
   1104    1.1       cgd 		goto haltsys;
   1105    1.1       cgd 	}
   1106    1.1       cgd 
   1107   1.36       cgd 	/* If "always halt" was specified as a boot flag, obey. */
   1108   1.36       cgd 	if ((boothowto & RB_HALT) != 0)
   1109   1.36       cgd 		howto |= RB_HALT;
   1110   1.36       cgd 
   1111    1.7       cgd 	boothowto = howto;
   1112    1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
   1113    1.1       cgd 		waittime = 0;
   1114    1.7       cgd 		vfs_shutdown();
   1115    1.1       cgd 		/*
   1116    1.1       cgd 		 * If we've been adjusting the clock, the todr
   1117    1.1       cgd 		 * will be out of synch; adjust it now.
   1118    1.1       cgd 		 */
   1119    1.1       cgd 		resettodr();
   1120    1.1       cgd 	}
   1121    1.1       cgd 
   1122    1.1       cgd 	/* Disable interrupts. */
   1123    1.1       cgd 	splhigh();
   1124    1.1       cgd 
   1125    1.7       cgd 	/* If rebooting and a dump is requested do it. */
   1126   1.42       cgd #if 0
   1127   1.42       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1128   1.42       cgd #else
   1129   1.42       cgd 	if (howto & RB_DUMP)
   1130   1.42       cgd #endif
   1131    1.1       cgd 		dumpsys();
   1132    1.6       cgd 
   1133   1.12       cgd haltsys:
   1134   1.12       cgd 
   1135    1.6       cgd 	/* run any shutdown hooks */
   1136    1.6       cgd 	doshutdownhooks();
   1137  1.148   thorpej 
   1138  1.148   thorpej #if defined(MULTIPROCESSOR)
   1139  1.149   thorpej #if 0 /* XXX doesn't work when called from here?! */
   1140  1.148   thorpej 	/* Kill off any secondary CPUs. */
   1141  1.148   thorpej 	for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
   1142  1.148   thorpej 		if (cpu_id == hwrpb->rpb_primary_cpu_id ||
   1143  1.161   thorpej 		    cpu_info[cpu_id].ci_softc == NULL)
   1144  1.148   thorpej 			continue;
   1145  1.148   thorpej 		cpu_halt_secondary(cpu_id);
   1146  1.148   thorpej 	}
   1147  1.149   thorpej #endif
   1148  1.148   thorpej #endif
   1149    1.1       cgd 
   1150    1.7       cgd #ifdef BOOTKEY
   1151   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1152  1.117  drochner 	cnpollc(1);	/* for proper keyboard command handling */
   1153    1.7       cgd 	cngetc();
   1154  1.117  drochner 	cnpollc(0);
   1155   1.46  christos 	printf("\n");
   1156    1.7       cgd #endif
   1157    1.7       cgd 
   1158  1.124   thorpej 	/* Finally, powerdown/halt/reboot the system. */
   1159  1.184      sato 	if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
   1160  1.124   thorpej 	    platform.powerdown != NULL) {
   1161  1.124   thorpej 		(*platform.powerdown)();
   1162  1.124   thorpej 		printf("WARNING: powerdown failed!\n");
   1163  1.124   thorpej 	}
   1164   1.46  christos 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
   1165    1.1       cgd 	prom_halt(howto & RB_HALT);
   1166    1.1       cgd 	/*NOTREACHED*/
   1167    1.1       cgd }
   1168    1.1       cgd 
   1169    1.7       cgd /*
   1170    1.7       cgd  * These variables are needed by /sbin/savecore
   1171    1.7       cgd  */
   1172    1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
   1173    1.7       cgd int 	dumpsize = 0;		/* pages */
   1174    1.7       cgd long	dumplo = 0; 		/* blocks */
   1175    1.7       cgd 
   1176    1.7       cgd /*
   1177   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1178   1.43       cgd  */
   1179   1.43       cgd int
   1180   1.43       cgd cpu_dumpsize()
   1181   1.43       cgd {
   1182   1.43       cgd 	int size;
   1183   1.43       cgd 
   1184  1.108       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1185  1.110   thorpej 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1186   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
   1187   1.43       cgd 		return -1;
   1188   1.43       cgd 
   1189   1.43       cgd 	return (1);
   1190   1.43       cgd }
   1191   1.43       cgd 
   1192   1.43       cgd /*
   1193  1.110   thorpej  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1194  1.110   thorpej  */
   1195  1.110   thorpej u_long
   1196  1.110   thorpej cpu_dump_mempagecnt()
   1197  1.110   thorpej {
   1198  1.110   thorpej 	u_long i, n;
   1199  1.110   thorpej 
   1200  1.110   thorpej 	n = 0;
   1201  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++)
   1202  1.110   thorpej 		n += atop(mem_clusters[i].size);
   1203  1.110   thorpej 	return (n);
   1204  1.110   thorpej }
   1205  1.110   thorpej 
   1206  1.110   thorpej /*
   1207   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
   1208   1.43       cgd  */
   1209   1.43       cgd int
   1210   1.43       cgd cpu_dump()
   1211   1.43       cgd {
   1212   1.43       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1213  1.107       cgd 	char buf[dbtob(1)];
   1214  1.107       cgd 	kcore_seg_t *segp;
   1215  1.107       cgd 	cpu_kcore_hdr_t *cpuhdrp;
   1216  1.107       cgd 	phys_ram_seg_t *memsegp;
   1217  1.110   thorpej 	int i;
   1218   1.43       cgd 
   1219  1.107       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1220   1.43       cgd 
   1221  1.107       cgd 	bzero(buf, sizeof buf);
   1222   1.43       cgd 	segp = (kcore_seg_t *)buf;
   1223  1.107       cgd 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1224  1.107       cgd 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1225  1.107       cgd 	    ALIGN(sizeof(*cpuhdrp))];
   1226   1.43       cgd 
   1227   1.43       cgd 	/*
   1228   1.43       cgd 	 * Generate a segment header.
   1229   1.43       cgd 	 */
   1230   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1231   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1232   1.43       cgd 
   1233   1.43       cgd 	/*
   1234  1.107       cgd 	 * Add the machine-dependent header info.
   1235   1.43       cgd 	 */
   1236  1.140   thorpej 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1237   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
   1238  1.110   thorpej 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1239  1.107       cgd 
   1240  1.107       cgd 	/*
   1241  1.107       cgd 	 * Fill in the memory segment descriptors.
   1242  1.107       cgd 	 */
   1243  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1244  1.110   thorpej 		memsegp[i].start = mem_clusters[i].start;
   1245  1.110   thorpej 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1246  1.110   thorpej 	}
   1247   1.43       cgd 
   1248   1.43       cgd 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1249   1.43       cgd }
   1250   1.43       cgd 
   1251   1.43       cgd /*
   1252   1.68       gwr  * This is called by main to set dumplo and dumpsize.
   1253  1.188     ragge  * Dumps always skip the first NBPG of disk space
   1254    1.7       cgd  * in case there might be a disk label stored there.
   1255    1.7       cgd  * If there is extra space, put dump at the end to
   1256    1.7       cgd  * reduce the chance that swapping trashes it.
   1257    1.7       cgd  */
   1258    1.7       cgd void
   1259   1.68       gwr cpu_dumpconf()
   1260    1.7       cgd {
   1261   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
   1262    1.7       cgd 	int maj;
   1263    1.7       cgd 
   1264    1.7       cgd 	if (dumpdev == NODEV)
   1265   1.43       cgd 		goto bad;
   1266    1.7       cgd 	maj = major(dumpdev);
   1267    1.7       cgd 	if (maj < 0 || maj >= nblkdev)
   1268    1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1269    1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
   1270   1.43       cgd 		goto bad;
   1271    1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1272    1.7       cgd 	if (nblks <= ctod(1))
   1273   1.43       cgd 		goto bad;
   1274   1.43       cgd 
   1275   1.43       cgd 	dumpblks = cpu_dumpsize();
   1276   1.43       cgd 	if (dumpblks < 0)
   1277   1.43       cgd 		goto bad;
   1278  1.110   thorpej 	dumpblks += ctod(cpu_dump_mempagecnt());
   1279   1.43       cgd 
   1280   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1281   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1282   1.43       cgd 		goto bad;
   1283   1.43       cgd 
   1284   1.43       cgd 	/* Put dump at end of partition */
   1285   1.43       cgd 	dumplo = nblks - dumpblks;
   1286    1.7       cgd 
   1287   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1288  1.110   thorpej 	dumpsize = cpu_dump_mempagecnt();
   1289   1.43       cgd 	return;
   1290    1.7       cgd 
   1291   1.43       cgd bad:
   1292   1.43       cgd 	dumpsize = 0;
   1293   1.43       cgd 	return;
   1294    1.7       cgd }
   1295    1.7       cgd 
   1296    1.7       cgd /*
   1297   1.42       cgd  * Dump the kernel's image to the swap partition.
   1298    1.7       cgd  */
   1299   1.42       cgd #define	BYTES_PER_DUMP	NBPG
   1300   1.42       cgd 
   1301    1.7       cgd void
   1302    1.7       cgd dumpsys()
   1303    1.7       cgd {
   1304  1.110   thorpej 	u_long totalbytesleft, bytes, i, n, memcl;
   1305  1.110   thorpej 	u_long maddr;
   1306  1.110   thorpej 	int psize;
   1307   1.42       cgd 	daddr_t blkno;
   1308   1.42       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1309   1.42       cgd 	int error;
   1310   1.42       cgd 
   1311   1.42       cgd 	/* Save registers. */
   1312   1.42       cgd 	savectx(&dumppcb);
   1313    1.7       cgd 
   1314  1.111   thorpej 	msgbufenabled = 0;	/* don't record dump msgs in msgbuf */
   1315    1.7       cgd 	if (dumpdev == NODEV)
   1316    1.7       cgd 		return;
   1317   1.42       cgd 
   1318   1.42       cgd 	/*
   1319   1.42       cgd 	 * For dumps during autoconfiguration,
   1320   1.42       cgd 	 * if dump device has already configured...
   1321   1.42       cgd 	 */
   1322   1.42       cgd 	if (dumpsize == 0)
   1323   1.68       gwr 		cpu_dumpconf();
   1324   1.47       cgd 	if (dumplo <= 0) {
   1325   1.97   mycroft 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1326   1.97   mycroft 		    minor(dumpdev));
   1327   1.42       cgd 		return;
   1328   1.43       cgd 	}
   1329   1.97   mycroft 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1330   1.97   mycroft 	    minor(dumpdev), dumplo);
   1331    1.7       cgd 
   1332   1.42       cgd 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1333   1.46  christos 	printf("dump ");
   1334   1.42       cgd 	if (psize == -1) {
   1335   1.46  christos 		printf("area unavailable\n");
   1336   1.42       cgd 		return;
   1337   1.42       cgd 	}
   1338   1.42       cgd 
   1339   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1340   1.42       cgd 
   1341   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1342   1.43       cgd 		goto err;
   1343   1.43       cgd 
   1344  1.110   thorpej 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1345   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1346   1.42       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1347   1.42       cgd 	error = 0;
   1348   1.42       cgd 
   1349  1.110   thorpej 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1350  1.110   thorpej 		maddr = mem_clusters[memcl].start;
   1351  1.110   thorpej 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1352  1.110   thorpej 
   1353  1.110   thorpej 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1354  1.110   thorpej 
   1355  1.110   thorpej 			/* Print out how many MBs we to go. */
   1356  1.110   thorpej 			if ((totalbytesleft % (1024*1024)) == 0)
   1357  1.160   thorpej 				printf("%ld ", totalbytesleft / (1024 * 1024));
   1358  1.110   thorpej 
   1359  1.110   thorpej 			/* Limit size for next transfer. */
   1360  1.110   thorpej 			n = bytes - i;
   1361  1.110   thorpej 			if (n > BYTES_PER_DUMP)
   1362  1.110   thorpej 				n =  BYTES_PER_DUMP;
   1363  1.110   thorpej 
   1364  1.110   thorpej 			error = (*dump)(dumpdev, blkno,
   1365  1.110   thorpej 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1366  1.110   thorpej 			if (error)
   1367  1.110   thorpej 				goto err;
   1368  1.110   thorpej 			maddr += n;
   1369  1.110   thorpej 			blkno += btodb(n);			/* XXX? */
   1370   1.42       cgd 
   1371  1.110   thorpej 			/* XXX should look for keystrokes, to cancel. */
   1372  1.110   thorpej 		}
   1373   1.42       cgd 	}
   1374   1.42       cgd 
   1375   1.43       cgd err:
   1376   1.42       cgd 	switch (error) {
   1377    1.7       cgd 
   1378    1.7       cgd 	case ENXIO:
   1379   1.46  christos 		printf("device bad\n");
   1380    1.7       cgd 		break;
   1381    1.7       cgd 
   1382    1.7       cgd 	case EFAULT:
   1383   1.46  christos 		printf("device not ready\n");
   1384    1.7       cgd 		break;
   1385    1.7       cgd 
   1386    1.7       cgd 	case EINVAL:
   1387   1.46  christos 		printf("area improper\n");
   1388    1.7       cgd 		break;
   1389    1.7       cgd 
   1390    1.7       cgd 	case EIO:
   1391   1.46  christos 		printf("i/o error\n");
   1392    1.7       cgd 		break;
   1393    1.7       cgd 
   1394    1.7       cgd 	case EINTR:
   1395   1.46  christos 		printf("aborted from console\n");
   1396    1.7       cgd 		break;
   1397    1.7       cgd 
   1398   1.42       cgd 	case 0:
   1399   1.46  christos 		printf("succeeded\n");
   1400   1.42       cgd 		break;
   1401   1.42       cgd 
   1402    1.7       cgd 	default:
   1403   1.46  christos 		printf("error %d\n", error);
   1404    1.7       cgd 		break;
   1405    1.7       cgd 	}
   1406   1.46  christos 	printf("\n\n");
   1407    1.7       cgd 	delay(1000);
   1408    1.7       cgd }
   1409    1.7       cgd 
   1410    1.1       cgd void
   1411    1.1       cgd frametoreg(framep, regp)
   1412    1.1       cgd 	struct trapframe *framep;
   1413    1.1       cgd 	struct reg *regp;
   1414    1.1       cgd {
   1415    1.1       cgd 
   1416    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1417    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1418    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1419    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1420    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1421    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1422    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1423    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1424    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1425    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1426    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1427    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1428    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1429    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1430    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1431    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1432   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1433   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1434   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1435    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1436    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1437    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1438    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1439    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1440    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1441    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1442    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1443    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1444    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1445   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1446   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1447    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1448    1.1       cgd }
   1449    1.1       cgd 
   1450    1.1       cgd void
   1451    1.1       cgd regtoframe(regp, framep)
   1452    1.1       cgd 	struct reg *regp;
   1453    1.1       cgd 	struct trapframe *framep;
   1454    1.1       cgd {
   1455    1.1       cgd 
   1456    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1457    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1458    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1459    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1460    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1461    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1462    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1463    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1464    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1465    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1466    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1467    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1468    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1469    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1470    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1471    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1472   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1473   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1474   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1475    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1476    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1477    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1478    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1479    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1480    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1481    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1482    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1483    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1484    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1485   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1486   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1487    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1488    1.1       cgd }
   1489    1.1       cgd 
   1490    1.1       cgd void
   1491    1.1       cgd printregs(regp)
   1492    1.1       cgd 	struct reg *regp;
   1493    1.1       cgd {
   1494    1.1       cgd 	int i;
   1495    1.1       cgd 
   1496    1.1       cgd 	for (i = 0; i < 32; i++)
   1497   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1498    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1499    1.1       cgd }
   1500    1.1       cgd 
   1501    1.1       cgd void
   1502    1.1       cgd regdump(framep)
   1503    1.1       cgd 	struct trapframe *framep;
   1504    1.1       cgd {
   1505    1.1       cgd 	struct reg reg;
   1506    1.1       cgd 
   1507    1.1       cgd 	frametoreg(framep, &reg);
   1508   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1509   1.35       cgd 
   1510   1.46  christos 	printf("REGISTERS:\n");
   1511    1.1       cgd 	printregs(&reg);
   1512    1.1       cgd }
   1513    1.1       cgd 
   1514    1.1       cgd #ifdef DEBUG
   1515    1.1       cgd int sigdebug = 0;
   1516    1.1       cgd int sigpid = 0;
   1517    1.1       cgd #define	SDB_FOLLOW	0x01
   1518    1.1       cgd #define	SDB_KSTACK	0x02
   1519    1.1       cgd #endif
   1520    1.1       cgd 
   1521    1.1       cgd /*
   1522    1.1       cgd  * Send an interrupt to process.
   1523    1.1       cgd  */
   1524    1.1       cgd void
   1525    1.1       cgd sendsig(catcher, sig, mask, code)
   1526    1.1       cgd 	sig_t catcher;
   1527  1.141   thorpej 	int sig;
   1528  1.141   thorpej 	sigset_t *mask;
   1529    1.1       cgd 	u_long code;
   1530    1.1       cgd {
   1531    1.1       cgd 	struct proc *p = curproc;
   1532    1.1       cgd 	struct sigcontext *scp, ksc;
   1533    1.1       cgd 	struct trapframe *frame;
   1534    1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1535  1.141   thorpej 	int onstack, fsize, rndfsize;
   1536    1.1       cgd 
   1537    1.1       cgd 	frame = p->p_md.md_tf;
   1538  1.141   thorpej 
   1539  1.141   thorpej 	/* Do we need to jump onto the signal stack? */
   1540  1.141   thorpej 	onstack =
   1541  1.141   thorpej 	    (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1542  1.141   thorpej 	    (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
   1543  1.141   thorpej 
   1544  1.141   thorpej 	/* Allocate space for the signal handler context. */
   1545  1.141   thorpej 	fsize = sizeof(ksc);
   1546    1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1547  1.141   thorpej 
   1548  1.141   thorpej 	if (onstack)
   1549  1.121    kleink 		scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
   1550  1.142   mycroft 						     psp->ps_sigstk.ss_size);
   1551  1.141   thorpej 	else
   1552  1.142   mycroft 		scp = (struct sigcontext *)(alpha_pal_rdusp());
   1553  1.142   mycroft 	scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
   1554  1.141   thorpej 
   1555    1.1       cgd #ifdef DEBUG
   1556    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1557   1.46  christos 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1558  1.141   thorpej 		    sig, &onstack, scp);
   1559  1.125      ross #endif
   1560    1.1       cgd 
   1561  1.141   thorpej 	/* Build stack frame for signal trampoline. */
   1562   1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1563   1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1564    1.1       cgd 
   1565  1.141   thorpej 	/* Save register context. */
   1566    1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1567    1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1568   1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1569    1.1       cgd 
   1570    1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1571    1.1       cgd 	if (p == fpcurproc) {
   1572   1.32       cgd 		alpha_pal_wrfen(1);
   1573    1.1       cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1574   1.32       cgd 		alpha_pal_wrfen(0);
   1575    1.1       cgd 		fpcurproc = NULL;
   1576    1.1       cgd 	}
   1577    1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1578    1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1579    1.1       cgd 	    sizeof(struct fpreg));
   1580    1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1581    1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1582    1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1583    1.1       cgd 
   1584  1.141   thorpej 	/* Save signal stack. */
   1585  1.141   thorpej 	ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1586  1.141   thorpej 
   1587  1.141   thorpej 	/* Save signal mask. */
   1588  1.141   thorpej 	ksc.sc_mask = *mask;
   1589  1.141   thorpej 
   1590  1.141   thorpej #ifdef COMPAT_13
   1591  1.141   thorpej 	/*
   1592  1.141   thorpej 	 * XXX We always have to save an old style signal mask because
   1593  1.141   thorpej 	 * XXX we might be delivering a signal to a process which will
   1594  1.141   thorpej 	 * XXX escape from the signal in a non-standard way and invoke
   1595  1.141   thorpej 	 * XXX sigreturn() directly.
   1596  1.141   thorpej 	 */
   1597  1.141   thorpej 	{
   1598  1.141   thorpej 		/* Note: it's a long in the stack frame. */
   1599  1.141   thorpej 		sigset13_t mask13;
   1600  1.141   thorpej 
   1601  1.141   thorpej 		native_sigset_to_sigset13(mask, &mask13);
   1602  1.141   thorpej 		ksc.__sc_mask13 = mask13;
   1603  1.141   thorpej 	}
   1604  1.141   thorpej #endif
   1605    1.1       cgd 
   1606    1.1       cgd #ifdef COMPAT_OSF1
   1607    1.1       cgd 	/*
   1608    1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1609    1.1       cgd 	 */
   1610    1.1       cgd #endif
   1611    1.1       cgd 
   1612  1.141   thorpej 	if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
   1613  1.141   thorpej 		/*
   1614  1.141   thorpej 		 * Process has trashed its stack; give it an illegal
   1615  1.141   thorpej 		 * instruction to halt it in its tracks.
   1616  1.141   thorpej 		 */
   1617  1.141   thorpej #ifdef DEBUG
   1618  1.141   thorpej 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1619  1.141   thorpej 			printf("sendsig(%d): copyout failed on sig %d\n",
   1620  1.141   thorpej 			    p->p_pid, sig);
   1621  1.141   thorpej #endif
   1622  1.141   thorpej 		sigexit(p, SIGILL);
   1623  1.141   thorpej 		/* NOTREACHED */
   1624  1.141   thorpej 	}
   1625    1.1       cgd #ifdef DEBUG
   1626    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1627   1.46  christos 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1628    1.1       cgd 		    scp, code);
   1629    1.1       cgd #endif
   1630    1.1       cgd 
   1631  1.141   thorpej 	/* Set up the registers to return to sigcode. */
   1632  1.142   mycroft 	frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
   1633   1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1634   1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1635   1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1636    1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1637   1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1638  1.142   mycroft 
   1639  1.142   mycroft 	/* Remember that we're now on the signal stack. */
   1640  1.142   mycroft 	if (onstack)
   1641  1.142   mycroft 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1642    1.1       cgd 
   1643    1.1       cgd #ifdef DEBUG
   1644    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1645   1.46  christos 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1646   1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1647    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1648   1.46  christos 		printf("sendsig(%d): sig %d returns\n",
   1649    1.1       cgd 		    p->p_pid, sig);
   1650    1.1       cgd #endif
   1651    1.1       cgd }
   1652    1.1       cgd 
   1653    1.1       cgd /*
   1654    1.1       cgd  * System call to cleanup state after a signal
   1655    1.1       cgd  * has been taken.  Reset signal mask and
   1656    1.1       cgd  * stack state from context left by sendsig (above).
   1657    1.1       cgd  * Return to previous pc and psl as specified by
   1658    1.1       cgd  * context left by sendsig. Check carefully to
   1659    1.1       cgd  * make sure that the user has not modified the
   1660  1.180    simonb  * psl to gain improper privileges or to cause
   1661    1.1       cgd  * a machine fault.
   1662    1.1       cgd  */
   1663    1.1       cgd /* ARGSUSED */
   1664   1.11   mycroft int
   1665  1.141   thorpej sys___sigreturn14(p, v, retval)
   1666    1.1       cgd 	struct proc *p;
   1667   1.10   thorpej 	void *v;
   1668   1.10   thorpej 	register_t *retval;
   1669   1.10   thorpej {
   1670  1.141   thorpej 	struct sys___sigreturn14_args /* {
   1671    1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1672   1.10   thorpej 	} */ *uap = v;
   1673    1.1       cgd 	struct sigcontext *scp, ksc;
   1674    1.1       cgd 
   1675  1.141   thorpej 	/*
   1676  1.141   thorpej 	 * The trampoline code hands us the context.
   1677  1.141   thorpej 	 * It is unsafe to keep track of it ourselves, in the event that a
   1678  1.141   thorpej 	 * program jumps out of a signal handler.
   1679  1.141   thorpej 	 */
   1680    1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1681    1.1       cgd #ifdef DEBUG
   1682    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1683   1.46  christos 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1684    1.1       cgd #endif
   1685    1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1686    1.1       cgd 		return (EINVAL);
   1687    1.1       cgd 
   1688  1.141   thorpej 	if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
   1689  1.141   thorpej 		return (EFAULT);
   1690    1.1       cgd 
   1691    1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1692    1.1       cgd 		return (EINVAL);
   1693    1.1       cgd 
   1694  1.141   thorpej 	/* Restore register context. */
   1695   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1696   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1697   1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1698    1.1       cgd 
   1699    1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1700   1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1701    1.1       cgd 
   1702    1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1703    1.1       cgd 	if (p == fpcurproc)
   1704    1.1       cgd 		fpcurproc = NULL;
   1705    1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1706    1.1       cgd 	    sizeof(struct fpreg));
   1707    1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1708  1.141   thorpej 
   1709  1.141   thorpej 	/* Restore signal stack. */
   1710  1.141   thorpej 	if (ksc.sc_onstack & SS_ONSTACK)
   1711  1.141   thorpej 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1712  1.141   thorpej 	else
   1713  1.141   thorpej 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1714  1.141   thorpej 
   1715  1.141   thorpej 	/* Restore signal mask. */
   1716  1.141   thorpej 	(void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
   1717    1.1       cgd 
   1718    1.1       cgd #ifdef DEBUG
   1719    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1720   1.46  christos 		printf("sigreturn(%d): returns\n", p->p_pid);
   1721    1.1       cgd #endif
   1722    1.1       cgd 	return (EJUSTRETURN);
   1723    1.1       cgd }
   1724    1.1       cgd 
   1725    1.1       cgd /*
   1726    1.1       cgd  * machine dependent system variables.
   1727    1.1       cgd  */
   1728   1.33       cgd int
   1729    1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1730    1.1       cgd 	int *name;
   1731    1.1       cgd 	u_int namelen;
   1732    1.1       cgd 	void *oldp;
   1733    1.1       cgd 	size_t *oldlenp;
   1734    1.1       cgd 	void *newp;
   1735    1.1       cgd 	size_t newlen;
   1736    1.1       cgd 	struct proc *p;
   1737    1.1       cgd {
   1738    1.1       cgd 	dev_t consdev;
   1739    1.1       cgd 
   1740    1.1       cgd 	/* all sysctl names at this level are terminal */
   1741    1.1       cgd 	if (namelen != 1)
   1742    1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1743    1.1       cgd 
   1744    1.1       cgd 	switch (name[0]) {
   1745    1.1       cgd 	case CPU_CONSDEV:
   1746    1.1       cgd 		if (cn_tab != NULL)
   1747    1.1       cgd 			consdev = cn_tab->cn_dev;
   1748    1.1       cgd 		else
   1749    1.1       cgd 			consdev = NODEV;
   1750    1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1751    1.1       cgd 			sizeof consdev));
   1752   1.30       cgd 
   1753   1.30       cgd 	case CPU_ROOT_DEVICE:
   1754   1.64   thorpej 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1755   1.64   thorpej 		    root_device->dv_xname));
   1756   1.36       cgd 
   1757   1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1758   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1759   1.36       cgd 		    &alpha_unaligned_print));
   1760   1.36       cgd 
   1761   1.36       cgd 	case CPU_UNALIGNED_FIX:
   1762   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1763   1.36       cgd 		    &alpha_unaligned_fix));
   1764   1.36       cgd 
   1765   1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1766   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1767   1.36       cgd 		    &alpha_unaligned_sigbus));
   1768   1.61       cgd 
   1769   1.61       cgd 	case CPU_BOOTED_KERNEL:
   1770  1.102       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1771  1.102       cgd 		    bootinfo.booted_kernel));
   1772   1.30       cgd 
   1773    1.1       cgd 	default:
   1774    1.1       cgd 		return (EOPNOTSUPP);
   1775    1.1       cgd 	}
   1776    1.1       cgd 	/* NOTREACHED */
   1777    1.1       cgd }
   1778    1.1       cgd 
   1779    1.1       cgd /*
   1780    1.1       cgd  * Set registers on exec.
   1781    1.1       cgd  */
   1782    1.1       cgd void
   1783   1.85   mycroft setregs(p, pack, stack)
   1784    1.1       cgd 	register struct proc *p;
   1785    1.5  christos 	struct exec_package *pack;
   1786    1.1       cgd 	u_long stack;
   1787    1.1       cgd {
   1788    1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1789   1.56       cgd #ifdef DEBUG
   1790    1.1       cgd 	int i;
   1791   1.56       cgd #endif
   1792   1.43       cgd 
   1793   1.43       cgd #ifdef DEBUG
   1794   1.43       cgd 	/*
   1795   1.43       cgd 	 * Crash and dump, if the user requested it.
   1796   1.43       cgd 	 */
   1797   1.43       cgd 	if (boothowto & RB_DUMP)
   1798   1.43       cgd 		panic("crash requested by boot flags");
   1799   1.43       cgd #endif
   1800    1.1       cgd 
   1801    1.1       cgd #ifdef DEBUG
   1802   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1803    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1804    1.1       cgd #else
   1805   1.34       cgd 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1806    1.1       cgd #endif
   1807    1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1808  1.172      ross 	p->p_addr->u_pcb.pcb_fp.fpr_cr =  FPCR_INED
   1809  1.172      ross 					| FPCR_UNFD
   1810  1.172      ross 					| FPCR_UNDZ
   1811  1.172      ross 					| FPCR_DYN(FP_RN)
   1812  1.172      ross 					| FPCR_OVFD
   1813  1.172      ross 					| FPCR_DZED
   1814  1.172      ross 					| FPCR_INVD
   1815  1.172      ross 					| FPCR_DNZ;
   1816   1.35       cgd 	alpha_pal_wrusp(stack);
   1817   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1818   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1819   1.41       cgd 
   1820   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1821   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1822   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1823   1.63       cgd 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1824   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1825    1.1       cgd 
   1826   1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   1827    1.1       cgd 	if (fpcurproc == p)
   1828    1.1       cgd 		fpcurproc = NULL;
   1829    1.1       cgd }
   1830    1.1       cgd 
   1831    1.1       cgd void
   1832    1.1       cgd netintr()
   1833    1.1       cgd {
   1834   1.49       cgd 	int n, s;
   1835   1.49       cgd 
   1836   1.49       cgd 	s = splhigh();
   1837   1.49       cgd 	n = netisr;
   1838   1.49       cgd 	netisr = 0;
   1839   1.49       cgd 	splx(s);
   1840   1.49       cgd 
   1841   1.49       cgd #define	DONETISR(bit, fn)						\
   1842   1.49       cgd 	do {								\
   1843   1.49       cgd 		if (n & (1 << (bit)))					\
   1844  1.196   thorpej 			fn();						\
   1845   1.49       cgd 	} while (0)
   1846   1.49       cgd 
   1847  1.195       erh #include <net/netisr_dispatch.h>
   1848   1.49       cgd 
   1849   1.49       cgd #undef DONETISR
   1850    1.1       cgd }
   1851    1.1       cgd 
   1852    1.1       cgd void
   1853    1.1       cgd do_sir()
   1854    1.1       cgd {
   1855   1.58       cgd 	u_int64_t n;
   1856    1.1       cgd 
   1857  1.178   thorpej 	while ((n = alpha_atomic_loadlatch_q(&ssir, 0)) != 0) {
   1858  1.112   thorpej #define	COUNT_SOFT	uvmexp.softs++
   1859  1.112   thorpej 
   1860   1.59       cgd #define	DO_SIR(bit, fn)							\
   1861   1.59       cgd 		do {							\
   1862   1.60       cgd 			if (n & (bit)) {				\
   1863  1.112   thorpej 				COUNT_SOFT;				\
   1864   1.59       cgd 				fn;					\
   1865   1.59       cgd 			}						\
   1866   1.59       cgd 		} while (0)
   1867   1.59       cgd 
   1868   1.60       cgd 		DO_SIR(SIR_NET, netintr());
   1869   1.60       cgd 		DO_SIR(SIR_CLOCK, softclock());
   1870  1.143      matt #if NCOM > 0
   1871  1.143      matt 		DO_SIR(SIR_SERIAL, comsoft());
   1872  1.200   thorpej #endif
   1873  1.200   thorpej #if NZSC_IOASIC > 0
   1874  1.200   thorpej 		DO_SIR(SIR_SERIAL, zs_ioasic_softintr());
   1875  1.143      matt #endif
   1876   1.60       cgd 
   1877  1.112   thorpej #undef COUNT_SOFT
   1878   1.60       cgd #undef DO_SIR
   1879  1.178   thorpej 	}
   1880    1.1       cgd }
   1881    1.1       cgd 
   1882    1.1       cgd int
   1883    1.1       cgd spl0()
   1884    1.1       cgd {
   1885    1.1       cgd 
   1886  1.178   thorpej 	if (ssir) {
   1887  1.178   thorpej 		(void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
   1888  1.178   thorpej 		do_sir();
   1889  1.178   thorpej 	}
   1890    1.1       cgd 
   1891   1.32       cgd 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   1892    1.1       cgd }
   1893    1.1       cgd 
   1894    1.1       cgd /*
   1895    1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1896    1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1897   1.52       cgd  * into queues, Remrunqueue removes them from queues.  The running process is
   1898   1.52       cgd  * on no queue, other processes are on a queue related to p->p_priority,
   1899   1.52       cgd  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1900   1.52       cgd  * available queues.
   1901    1.1       cgd  */
   1902    1.1       cgd /*
   1903    1.1       cgd  * setrunqueue(p)
   1904    1.1       cgd  *	proc *p;
   1905    1.1       cgd  *
   1906    1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1907    1.1       cgd  */
   1908    1.1       cgd 
   1909    1.1       cgd void
   1910    1.1       cgd setrunqueue(p)
   1911    1.1       cgd 	struct proc *p;
   1912    1.1       cgd {
   1913    1.1       cgd 	int bit;
   1914    1.1       cgd 
   1915    1.1       cgd 	/* firewall: p->p_back must be NULL */
   1916    1.1       cgd 	if (p->p_back != NULL)
   1917    1.1       cgd 		panic("setrunqueue");
   1918    1.1       cgd 
   1919    1.1       cgd 	bit = p->p_priority >> 2;
   1920    1.1       cgd 	whichqs |= (1 << bit);
   1921    1.1       cgd 	p->p_forw = (struct proc *)&qs[bit];
   1922    1.1       cgd 	p->p_back = qs[bit].ph_rlink;
   1923    1.1       cgd 	p->p_back->p_forw = p;
   1924    1.1       cgd 	qs[bit].ph_rlink = p;
   1925    1.1       cgd }
   1926    1.1       cgd 
   1927    1.1       cgd /*
   1928   1.52       cgd  * remrunqueue(p)
   1929    1.1       cgd  *
   1930    1.1       cgd  * Call should be made at splclock().
   1931    1.1       cgd  */
   1932    1.1       cgd void
   1933   1.52       cgd remrunqueue(p)
   1934    1.1       cgd 	struct proc *p;
   1935    1.1       cgd {
   1936    1.1       cgd 	int bit;
   1937    1.1       cgd 
   1938    1.1       cgd 	bit = p->p_priority >> 2;
   1939    1.1       cgd 	if ((whichqs & (1 << bit)) == 0)
   1940   1.52       cgd 		panic("remrunqueue");
   1941    1.1       cgd 
   1942    1.1       cgd 	p->p_back->p_forw = p->p_forw;
   1943    1.1       cgd 	p->p_forw->p_back = p->p_back;
   1944    1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   1945    1.1       cgd 
   1946    1.1       cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1947    1.1       cgd 		whichqs &= ~(1 << bit);
   1948    1.1       cgd }
   1949    1.1       cgd 
   1950    1.1       cgd /*
   1951    1.1       cgd  * Return the best possible estimate of the time in the timeval
   1952    1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1953    1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   1954    1.1       cgd  * previous call.
   1955    1.1       cgd  */
   1956    1.1       cgd void
   1957    1.1       cgd microtime(tvp)
   1958    1.1       cgd 	register struct timeval *tvp;
   1959    1.1       cgd {
   1960    1.1       cgd 	int s = splclock();
   1961    1.1       cgd 	static struct timeval lasttime;
   1962    1.1       cgd 
   1963    1.1       cgd 	*tvp = time;
   1964    1.1       cgd #ifdef notdef
   1965    1.1       cgd 	tvp->tv_usec += clkread();
   1966  1.190   msaitoh 	while (tvp->tv_usec >= 1000000) {
   1967    1.1       cgd 		tvp->tv_sec++;
   1968    1.1       cgd 		tvp->tv_usec -= 1000000;
   1969    1.1       cgd 	}
   1970    1.1       cgd #endif
   1971    1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1972    1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1973  1.190   msaitoh 	    (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
   1974    1.1       cgd 		tvp->tv_sec++;
   1975    1.1       cgd 		tvp->tv_usec -= 1000000;
   1976    1.1       cgd 	}
   1977    1.1       cgd 	lasttime = *tvp;
   1978    1.1       cgd 	splx(s);
   1979   1.15       cgd }
   1980   1.15       cgd 
   1981   1.15       cgd /*
   1982   1.15       cgd  * Wait "n" microseconds.
   1983   1.15       cgd  */
   1984   1.32       cgd void
   1985   1.15       cgd delay(n)
   1986   1.32       cgd 	unsigned long n;
   1987   1.15       cgd {
   1988   1.15       cgd 	long N = cycles_per_usec * (n);
   1989   1.15       cgd 
   1990  1.186   thorpej 	/*
   1991  1.186   thorpej 	 * XXX Should be written to use RPCC?
   1992  1.186   thorpej 	 */
   1993  1.186   thorpej 
   1994  1.186   thorpej 	__asm __volatile(
   1995  1.186   thorpej 		"# The 2 corresponds to the insn count\n"
   1996  1.186   thorpej 		"1:	subq	%2, %1, %0	\n"
   1997  1.186   thorpej 		"	bgt	%0, 1b"
   1998  1.186   thorpej 		: "=r" (N)
   1999  1.186   thorpej 		: "i" (2), "0" (N));
   2000    1.1       cgd }
   2001    1.1       cgd 
   2002    1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   2003   1.55       cgd void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   2004   1.85   mycroft 	    u_long));
   2005   1.55       cgd 
   2006    1.1       cgd void
   2007   1.85   mycroft cpu_exec_ecoff_setregs(p, epp, stack)
   2008    1.1       cgd 	struct proc *p;
   2009   1.19       cgd 	struct exec_package *epp;
   2010    1.5  christos 	u_long stack;
   2011    1.1       cgd {
   2012   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2013    1.1       cgd 
   2014   1.85   mycroft 	setregs(p, epp, stack);
   2015   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   2016    1.1       cgd }
   2017    1.1       cgd 
   2018    1.1       cgd /*
   2019    1.1       cgd  * cpu_exec_ecoff_hook():
   2020    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   2021    1.1       cgd  *
   2022    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2023    1.1       cgd  *
   2024    1.1       cgd  */
   2025    1.1       cgd int
   2026   1.19       cgd cpu_exec_ecoff_hook(p, epp)
   2027    1.1       cgd 	struct proc *p;
   2028    1.1       cgd 	struct exec_package *epp;
   2029    1.1       cgd {
   2030   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2031    1.5  christos 	extern struct emul emul_netbsd;
   2032  1.171       cgd 	int error;
   2033  1.171       cgd 	extern int osf1_exec_ecoff_hook(struct proc *p,
   2034  1.171       cgd 					struct exec_package *epp);
   2035    1.1       cgd 
   2036   1.19       cgd 	switch (execp->f.f_magic) {
   2037    1.5  christos #ifdef COMPAT_OSF1
   2038    1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   2039  1.171       cgd 		error = osf1_exec_ecoff_hook(p, epp);
   2040    1.1       cgd 		break;
   2041    1.5  christos #endif
   2042    1.1       cgd 
   2043    1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   2044    1.5  christos 		epp->ep_emul = &emul_netbsd;
   2045  1.171       cgd 		error = 0;
   2046    1.1       cgd 		break;
   2047    1.1       cgd 
   2048    1.1       cgd 	default:
   2049  1.171       cgd 		error = ENOEXEC;
   2050    1.1       cgd 	}
   2051  1.171       cgd 	return (error);
   2052    1.1       cgd }
   2053    1.1       cgd #endif
   2054  1.110   thorpej 
   2055  1.110   thorpej int
   2056  1.110   thorpej alpha_pa_access(pa)
   2057  1.110   thorpej 	u_long pa;
   2058  1.110   thorpej {
   2059  1.110   thorpej 	int i;
   2060  1.110   thorpej 
   2061  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   2062  1.110   thorpej 		if (pa < mem_clusters[i].start)
   2063  1.110   thorpej 			continue;
   2064  1.110   thorpej 		if ((pa - mem_clusters[i].start) >=
   2065  1.110   thorpej 		    (mem_clusters[i].size & ~PAGE_MASK))
   2066  1.110   thorpej 			continue;
   2067  1.110   thorpej 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2068  1.110   thorpej 	}
   2069  1.197   thorpej 
   2070  1.197   thorpej 	/*
   2071  1.197   thorpej 	 * Address is not a memory address.  If we're secure, disallow
   2072  1.197   thorpej 	 * access.  Otherwise, grant read/write.
   2073  1.197   thorpej 	 */
   2074  1.197   thorpej 	if (securelevel > 0)
   2075  1.197   thorpej 		return (PROT_NONE);
   2076  1.197   thorpej 	else
   2077  1.197   thorpej 		return (PROT_READ | PROT_WRITE);
   2078  1.110   thorpej }
   2079   1.50       cgd 
   2080   1.50       cgd /* XXX XXX BEGIN XXX XXX */
   2081  1.140   thorpej paddr_t alpha_XXX_dmamap_or;					/* XXX */
   2082   1.50       cgd 								/* XXX */
   2083  1.140   thorpej paddr_t								/* XXX */
   2084   1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   2085  1.140   thorpej 	vaddr_t v;						/* XXX */
   2086   1.50       cgd {								/* XXX */
   2087   1.50       cgd 								/* XXX */
   2088   1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2089   1.50       cgd }								/* XXX */
   2090   1.50       cgd /* XXX XXX END XXX XXX */
   2091  1.177      ross 
   2092  1.177      ross char *
   2093  1.177      ross dot_conv(x)
   2094  1.177      ross 	unsigned long x;
   2095  1.177      ross {
   2096  1.177      ross 	int i;
   2097  1.177      ross 	char *xc;
   2098  1.177      ross 	static int next;
   2099  1.177      ross 	static char space[2][20];
   2100  1.177      ross 
   2101  1.177      ross 	xc = space[next ^= 1] + sizeof space[0];
   2102  1.177      ross 	*--xc = '\0';
   2103  1.177      ross 	for (i = 0;; ++i) {
   2104  1.177      ross 		if (i && (i & 3) == 0)
   2105  1.177      ross 			*--xc = '.';
   2106  1.177      ross 		*--xc = "0123456789abcdef"[x & 0xf];
   2107  1.177      ross 		x >>= 4;
   2108  1.177      ross 		if (x == 0)
   2109  1.177      ross 			break;
   2110  1.177      ross 	}
   2111  1.177      ross 	return xc;
   2112  1.138      ross }
   2113