machdep.c revision 1.216 1 1.216 thorpej /* $NetBSD: machdep.c,v 1.216 2000/06/28 02:02:26 thorpej Exp $ */
2 1.110 thorpej
3 1.110 thorpej /*-
4 1.211 thorpej * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 1.110 thorpej * All rights reserved.
6 1.110 thorpej *
7 1.110 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.110 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.110 thorpej * NASA Ames Research Center and by Chris G. Demetriou.
10 1.110 thorpej *
11 1.110 thorpej * Redistribution and use in source and binary forms, with or without
12 1.110 thorpej * modification, are permitted provided that the following conditions
13 1.110 thorpej * are met:
14 1.110 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.110 thorpej * notice, this list of conditions and the following disclaimer.
16 1.110 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.110 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.110 thorpej * documentation and/or other materials provided with the distribution.
19 1.110 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.110 thorpej * must display the following acknowledgement:
21 1.110 thorpej * This product includes software developed by the NetBSD
22 1.110 thorpej * Foundation, Inc. and its contributors.
23 1.110 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.110 thorpej * contributors may be used to endorse or promote products derived
25 1.110 thorpej * from this software without specific prior written permission.
26 1.110 thorpej *
27 1.110 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.110 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.110 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.110 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.110 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.110 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.110 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.110 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.110 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.110 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.110 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.110 thorpej */
39 1.1 cgd
40 1.1 cgd /*
41 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 1.1 cgd * All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Author: Chris G. Demetriou
45 1.1 cgd *
46 1.1 cgd * Permission to use, copy, modify and distribute this software and
47 1.1 cgd * its documentation is hereby granted, provided that both the copyright
48 1.1 cgd * notice and this permission notice appear in all copies of the
49 1.1 cgd * software, derivative works or modified versions, and any portions
50 1.1 cgd * thereof, and that both notices appear in supporting documentation.
51 1.1 cgd *
52 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 1.1 cgd *
56 1.1 cgd * Carnegie Mellon requests users of this software to return to
57 1.1 cgd *
58 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 1.1 cgd * School of Computer Science
60 1.1 cgd * Carnegie Mellon University
61 1.1 cgd * Pittsburgh PA 15213-3890
62 1.1 cgd *
63 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
64 1.1 cgd * rights to redistribute these changes.
65 1.1 cgd */
66 1.74 cgd
67 1.129 jonathan #include "opt_ddb.h"
68 1.147 thorpej #include "opt_multiprocessor.h"
69 1.123 thorpej #include "opt_dec_3000_300.h"
70 1.123 thorpej #include "opt_dec_3000_500.h"
71 1.127 thorpej #include "opt_compat_osf1.h"
72 1.141 thorpej #include "opt_compat_netbsd.h"
73 1.112 thorpej
74 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
75 1.75 cgd
76 1.216 thorpej __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.216 2000/06/28 02:02:26 thorpej Exp $");
77 1.1 cgd
78 1.1 cgd #include <sys/param.h>
79 1.1 cgd #include <sys/systm.h>
80 1.1 cgd #include <sys/signalvar.h>
81 1.1 cgd #include <sys/kernel.h>
82 1.1 cgd #include <sys/map.h>
83 1.1 cgd #include <sys/proc.h>
84 1.207 thorpej #include <sys/sched.h>
85 1.1 cgd #include <sys/buf.h>
86 1.1 cgd #include <sys/reboot.h>
87 1.28 cgd #include <sys/device.h>
88 1.1 cgd #include <sys/file.h>
89 1.1 cgd #include <sys/malloc.h>
90 1.1 cgd #include <sys/mbuf.h>
91 1.110 thorpej #include <sys/mman.h>
92 1.1 cgd #include <sys/msgbuf.h>
93 1.1 cgd #include <sys/ioctl.h>
94 1.1 cgd #include <sys/tty.h>
95 1.1 cgd #include <sys/user.h>
96 1.1 cgd #include <sys/exec.h>
97 1.1 cgd #include <sys/exec_ecoff.h>
98 1.91 mjacob #include <vm/vm.h>
99 1.1 cgd #include <sys/sysctl.h>
100 1.43 cgd #include <sys/core.h>
101 1.43 cgd #include <sys/kcore.h>
102 1.43 cgd #include <machine/kcore.h>
103 1.1 cgd
104 1.1 cgd #include <sys/mount.h>
105 1.1 cgd #include <sys/syscallargs.h>
106 1.1 cgd
107 1.112 thorpej #include <uvm/uvm_extern.h>
108 1.112 thorpej
109 1.1 cgd #include <dev/cons.h>
110 1.1 cgd
111 1.81 thorpej #include <machine/autoconf.h>
112 1.1 cgd #include <machine/cpu.h>
113 1.1 cgd #include <machine/reg.h>
114 1.1 cgd #include <machine/rpb.h>
115 1.1 cgd #include <machine/prom.h>
116 1.73 cgd #include <machine/conf.h>
117 1.172 ross #include <machine/ieeefp.h>
118 1.148 thorpej
119 1.81 thorpej #ifdef DDB
120 1.81 thorpej #include <machine/db_machdep.h>
121 1.81 thorpej #include <ddb/db_access.h>
122 1.81 thorpej #include <ddb/db_sym.h>
123 1.81 thorpej #include <ddb/db_extern.h>
124 1.81 thorpej #include <ddb/db_interface.h>
125 1.81 thorpej #endif
126 1.81 thorpej
127 1.155 ross #include <machine/alpha.h>
128 1.143 matt
129 1.112 thorpej vm_map_t exec_map = NULL;
130 1.112 thorpej vm_map_t mb_map = NULL;
131 1.112 thorpej vm_map_t phys_map = NULL;
132 1.1 cgd
133 1.86 leo caddr_t msgbufaddr;
134 1.86 leo
135 1.1 cgd int maxmem; /* max memory per process */
136 1.7 cgd
137 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
138 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
139 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
140 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
141 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
142 1.1 cgd
143 1.1 cgd int cputype; /* system type, from the RPB */
144 1.210 thorpej
145 1.210 thorpej int bootdev_debug = 0; /* patchable, or from DDB */
146 1.1 cgd
147 1.1 cgd /*
148 1.1 cgd * XXX We need an address to which we can assign things so that they
149 1.1 cgd * won't be optimized away because we didn't use the value.
150 1.1 cgd */
151 1.1 cgd u_int32_t no_optimize;
152 1.1 cgd
153 1.1 cgd /* the following is used externally (sysctl_hw) */
154 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
155 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
156 1.29 cgd char cpu_model[128];
157 1.1 cgd
158 1.1 cgd struct user *proc0paddr;
159 1.1 cgd
160 1.1 cgd /* Number of machine cycles per microsecond */
161 1.1 cgd u_int64_t cycles_per_usec;
162 1.1 cgd
163 1.7 cgd /* number of cpus in the box. really! */
164 1.7 cgd int ncpus;
165 1.7 cgd
166 1.102 cgd struct bootinfo_kernel bootinfo;
167 1.81 thorpej
168 1.123 thorpej /* For built-in TCDS */
169 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
170 1.123 thorpej u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
171 1.123 thorpej #endif
172 1.123 thorpej
173 1.89 mjacob struct platform platform;
174 1.89 mjacob
175 1.81 thorpej #ifdef DDB
176 1.81 thorpej /* start and end of kernel symbol table */
177 1.81 thorpej void *ksym_start, *ksym_end;
178 1.81 thorpej #endif
179 1.81 thorpej
180 1.30 cgd /* for cpu_sysctl() */
181 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
182 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
183 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
184 1.30 cgd
185 1.110 thorpej /*
186 1.110 thorpej * XXX This should be dynamically sized, but we have the chicken-egg problem!
187 1.110 thorpej * XXX it should also be larger than it is, because not all of the mddt
188 1.110 thorpej * XXX clusters end up being used for VM.
189 1.110 thorpej */
190 1.110 thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
191 1.110 thorpej int mem_cluster_cnt;
192 1.110 thorpej
193 1.55 cgd int cpu_dump __P((void));
194 1.55 cgd int cpu_dumpsize __P((void));
195 1.110 thorpej u_long cpu_dump_mempagecnt __P((void));
196 1.55 cgd void dumpsys __P((void));
197 1.55 cgd void identifycpu __P((void));
198 1.55 cgd void printregs __P((struct reg *));
199 1.33 cgd
200 1.55 cgd void
201 1.102 cgd alpha_init(pfn, ptb, bim, bip, biv)
202 1.1 cgd u_long pfn; /* first free PFN number */
203 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
204 1.81 thorpej u_long bim; /* bootinfo magic */
205 1.81 thorpej u_long bip; /* bootinfo pointer */
206 1.102 cgd u_long biv; /* bootinfo version */
207 1.1 cgd {
208 1.95 thorpej extern char kernel_text[], _end[];
209 1.1 cgd struct mddt *mddtp;
210 1.110 thorpej struct mddt_cluster *memc;
211 1.7 cgd int i, mddtweird;
212 1.110 thorpej struct vm_physseg *vps;
213 1.140 thorpej vaddr_t kernstart, kernend;
214 1.140 thorpej paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
215 1.140 thorpej vsize_t size;
216 1.211 thorpej cpuid_t cpu_id;
217 1.211 thorpej struct cpu_info *ci;
218 1.1 cgd char *p;
219 1.95 thorpej caddr_t v;
220 1.209 thorpej const char *bootinfo_msg;
221 1.209 thorpej const struct cpuinit *c;
222 1.106 cgd
223 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
224 1.1 cgd
225 1.1 cgd /*
226 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
227 1.1 cgd * Make sure the instruction and data streams are consistent.
228 1.1 cgd */
229 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
230 1.32 cgd alpha_pal_wrfen(0);
231 1.37 cgd ALPHA_TBIA();
232 1.32 cgd alpha_pal_imb();
233 1.1 cgd
234 1.211 thorpej cpu_id = cpu_number();
235 1.211 thorpej
236 1.189 thorpej #if defined(MULTIPROCESSOR)
237 1.189 thorpej /*
238 1.189 thorpej * Set our SysValue to the address of our cpu_info structure.
239 1.189 thorpej * Secondary processors do this in their spinup trampoline.
240 1.189 thorpej */
241 1.211 thorpej alpha_pal_wrval((u_long)&cpu_info[cpu_id]);
242 1.189 thorpej #endif
243 1.189 thorpej
244 1.211 thorpej ci = curcpu();
245 1.211 thorpej ci->ci_cpuid = cpu_id;
246 1.211 thorpej
247 1.1 cgd /*
248 1.106 cgd * Get critical system information (if possible, from the
249 1.106 cgd * information provided by the boot program).
250 1.81 thorpej */
251 1.106 cgd bootinfo_msg = NULL;
252 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
253 1.102 cgd if (biv == 0) { /* backward compat */
254 1.102 cgd biv = *(u_long *)bip;
255 1.102 cgd bip += 8;
256 1.102 cgd }
257 1.102 cgd switch (biv) {
258 1.102 cgd case 1: {
259 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
260 1.102 cgd
261 1.102 cgd bootinfo.ssym = v1p->ssym;
262 1.102 cgd bootinfo.esym = v1p->esym;
263 1.106 cgd /* hwrpb may not be provided by boot block in v1 */
264 1.106 cgd if (v1p->hwrpb != NULL) {
265 1.106 cgd bootinfo.hwrpb_phys =
266 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys;
267 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize;
268 1.106 cgd } else {
269 1.106 cgd bootinfo.hwrpb_phys =
270 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys;
271 1.106 cgd bootinfo.hwrpb_size =
272 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size;
273 1.106 cgd }
274 1.102 cgd bcopy(v1p->boot_flags, bootinfo.boot_flags,
275 1.102 cgd min(sizeof v1p->boot_flags,
276 1.102 cgd sizeof bootinfo.boot_flags));
277 1.102 cgd bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
278 1.102 cgd min(sizeof v1p->booted_kernel,
279 1.102 cgd sizeof bootinfo.booted_kernel));
280 1.106 cgd /* booted dev not provided in bootinfo */
281 1.106 cgd init_prom_interface((struct rpb *)
282 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
283 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
284 1.102 cgd sizeof bootinfo.booted_dev);
285 1.81 thorpej break;
286 1.102 cgd }
287 1.81 thorpej default:
288 1.106 cgd bootinfo_msg = "unknown bootinfo version";
289 1.102 cgd goto nobootinfo;
290 1.81 thorpej }
291 1.102 cgd } else {
292 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo";
293 1.102 cgd nobootinfo:
294 1.102 cgd bootinfo.ssym = (u_long)_end;
295 1.102 cgd bootinfo.esym = (u_long)_end;
296 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
297 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
298 1.106 cgd init_prom_interface((struct rpb *)HWRPB_ADDR);
299 1.102 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
300 1.102 cgd sizeof bootinfo.boot_flags);
301 1.102 cgd prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
302 1.102 cgd sizeof bootinfo.booted_kernel);
303 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
304 1.102 cgd sizeof bootinfo.booted_dev);
305 1.102 cgd }
306 1.102 cgd
307 1.81 thorpej /*
308 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for
309 1.106 cgd * lots of things.
310 1.106 cgd */
311 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
312 1.123 thorpej
313 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
314 1.123 thorpej if (hwrpb->rpb_type == ST_DEC_3000_300 ||
315 1.123 thorpej hwrpb->rpb_type == ST_DEC_3000_500) {
316 1.123 thorpej prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
317 1.123 thorpej sizeof(dec_3000_scsiid));
318 1.123 thorpej prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
319 1.123 thorpej sizeof(dec_3000_scsifast));
320 1.123 thorpej }
321 1.123 thorpej #endif
322 1.106 cgd
323 1.106 cgd /*
324 1.106 cgd * Remember how many cycles there are per microsecond,
325 1.106 cgd * so that we can use delay(). Round up, for safety.
326 1.106 cgd */
327 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
328 1.106 cgd
329 1.106 cgd /*
330 1.106 cgd * Initalize the (temporary) bootstrap console interface, so
331 1.106 cgd * we can use printf until the VM system starts being setup.
332 1.106 cgd * The real console is initialized before then.
333 1.106 cgd */
334 1.106 cgd init_bootstrap_console();
335 1.106 cgd
336 1.106 cgd /* OUTPUT NOW ALLOWED */
337 1.106 cgd
338 1.106 cgd /* delayed from above */
339 1.106 cgd if (bootinfo_msg)
340 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
341 1.106 cgd bootinfo_msg, bim, bip, biv);
342 1.106 cgd
343 1.147 thorpej /* Initialize the trap vectors on the primary processor. */
344 1.147 thorpej trap_init();
345 1.1 cgd
346 1.1 cgd /*
347 1.106 cgd * Find out what hardware we're on, and do basic initialization.
348 1.106 cgd */
349 1.106 cgd cputype = hwrpb->rpb_type;
350 1.167 cgd if (cputype < 0) {
351 1.167 cgd /*
352 1.167 cgd * At least some white-box systems have SRM which
353 1.167 cgd * reports a systype that's the negative of their
354 1.167 cgd * blue-box counterpart.
355 1.167 cgd */
356 1.167 cgd cputype = -cputype;
357 1.167 cgd }
358 1.209 thorpej c = platform_lookup(cputype);
359 1.209 thorpej if (c == NULL) {
360 1.106 cgd platform_not_supported();
361 1.106 cgd /* NOTREACHED */
362 1.106 cgd }
363 1.209 thorpej (*c->init)();
364 1.106 cgd strcpy(cpu_model, platform.model);
365 1.106 cgd
366 1.106 cgd /*
367 1.199 soren * Initalize the real console, so that the bootstrap console is
368 1.106 cgd * no longer necessary.
369 1.106 cgd */
370 1.169 thorpej (*platform.cons_init)();
371 1.106 cgd
372 1.106 cgd #ifdef DIAGNOSTIC
373 1.106 cgd /* Paranoid sanity checking */
374 1.106 cgd
375 1.199 soren /* We should always be running on the primary. */
376 1.211 thorpej assert(hwrpb->rpb_primary_cpu_id == cpu_id);
377 1.106 cgd
378 1.116 mjacob /*
379 1.116 mjacob * On single-CPU systypes, the primary should always be CPU 0,
380 1.116 mjacob * except on Alpha 8200 systems where the CPU id is related
381 1.116 mjacob * to the VID, which is related to the Turbo Laser node id.
382 1.116 mjacob */
383 1.106 cgd if (cputype != ST_DEC_21000)
384 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0);
385 1.106 cgd #endif
386 1.106 cgd
387 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */
388 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
389 1.106 cgd /*
390 1.106 cgd * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
391 1.106 cgd * XXX pmap_uses_prom_console() evaluates to non-zero.)
392 1.106 cgd */
393 1.106 cgd #endif
394 1.106 cgd
395 1.106 cgd /*
396 1.106 cgd * find out this system's page size
397 1.95 thorpej */
398 1.95 thorpej PAGE_SIZE = hwrpb->rpb_page_size;
399 1.95 thorpej if (PAGE_SIZE != 8192)
400 1.95 thorpej panic("page size %d != 8192?!", PAGE_SIZE);
401 1.95 thorpej
402 1.95 thorpej /*
403 1.95 thorpej * Initialize PAGE_SIZE-dependent variables.
404 1.95 thorpej */
405 1.112 thorpej uvm_setpagesize();
406 1.95 thorpej
407 1.95 thorpej /*
408 1.101 cgd * Find the beginning and end of the kernel (and leave a
409 1.101 cgd * bit of space before the beginning for the bootstrap
410 1.101 cgd * stack).
411 1.95 thorpej */
412 1.201 kleink kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
413 1.95 thorpej #ifdef DDB
414 1.102 cgd ksym_start = (void *)bootinfo.ssym;
415 1.102 cgd ksym_end = (void *)bootinfo.esym;
416 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
417 1.102 cgd #else
418 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)_end);
419 1.95 thorpej #endif
420 1.95 thorpej
421 1.110 thorpej kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
422 1.110 thorpej kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
423 1.110 thorpej
424 1.95 thorpej /*
425 1.1 cgd * Find out how much memory is available, by looking at
426 1.7 cgd * the memory cluster descriptors. This also tries to do
427 1.7 cgd * its best to detect things things that have never been seen
428 1.7 cgd * before...
429 1.1 cgd */
430 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
431 1.7 cgd
432 1.110 thorpej /* MDDT SANITY CHECKING */
433 1.7 cgd mddtweird = 0;
434 1.110 thorpej if (mddtp->mddt_cluster_cnt < 2) {
435 1.7 cgd mddtweird = 1;
436 1.160 thorpej printf("WARNING: weird number of mem clusters: %lu\n",
437 1.110 thorpej mddtp->mddt_cluster_cnt);
438 1.7 cgd }
439 1.7 cgd
440 1.110 thorpej #if 0
441 1.110 thorpej printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
442 1.110 thorpej #endif
443 1.110 thorpej
444 1.110 thorpej for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
445 1.110 thorpej memc = &mddtp->mddt_clusters[i];
446 1.110 thorpej #if 0
447 1.110 thorpej printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
448 1.110 thorpej memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
449 1.110 thorpej #endif
450 1.110 thorpej totalphysmem += memc->mddt_pg_cnt;
451 1.110 thorpej if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
452 1.110 thorpej mem_clusters[mem_cluster_cnt].start =
453 1.110 thorpej ptoa(memc->mddt_pfn);
454 1.110 thorpej mem_clusters[mem_cluster_cnt].size =
455 1.110 thorpej ptoa(memc->mddt_pg_cnt);
456 1.110 thorpej if (memc->mddt_usage & MDDT_mbz ||
457 1.110 thorpej memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
458 1.110 thorpej memc->mddt_usage & MDDT_PALCODE)
459 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
460 1.110 thorpej PROT_READ;
461 1.110 thorpej else
462 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
463 1.110 thorpej PROT_READ | PROT_WRITE | PROT_EXEC;
464 1.110 thorpej mem_cluster_cnt++;
465 1.110 thorpej }
466 1.110 thorpej
467 1.110 thorpej if (memc->mddt_usage & MDDT_mbz) {
468 1.7 cgd mddtweird = 1;
469 1.110 thorpej printf("WARNING: mem cluster %d has weird "
470 1.110 thorpej "usage 0x%lx\n", i, memc->mddt_usage);
471 1.110 thorpej unknownmem += memc->mddt_pg_cnt;
472 1.110 thorpej continue;
473 1.7 cgd }
474 1.110 thorpej if (memc->mddt_usage & MDDT_NONVOLATILE) {
475 1.110 thorpej /* XXX should handle these... */
476 1.110 thorpej printf("WARNING: skipping non-volatile mem "
477 1.110 thorpej "cluster %d\n", i);
478 1.110 thorpej unusedmem += memc->mddt_pg_cnt;
479 1.110 thorpej continue;
480 1.110 thorpej }
481 1.110 thorpej if (memc->mddt_usage & MDDT_PALCODE) {
482 1.110 thorpej resvmem += memc->mddt_pg_cnt;
483 1.110 thorpej continue;
484 1.110 thorpej }
485 1.110 thorpej
486 1.110 thorpej /*
487 1.110 thorpej * We have a memory cluster available for system
488 1.110 thorpej * software use. We must determine if this cluster
489 1.110 thorpej * holds the kernel.
490 1.110 thorpej */
491 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
492 1.110 thorpej /*
493 1.110 thorpej * XXX If the kernel uses the PROM console, we only use the
494 1.110 thorpej * XXX memory after the kernel in the first system segment,
495 1.110 thorpej * XXX to avoid clobbering prom mapping, data, etc.
496 1.110 thorpej */
497 1.110 thorpej if (!pmap_uses_prom_console() || physmem == 0) {
498 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
499 1.110 thorpej physmem += memc->mddt_pg_cnt;
500 1.110 thorpej pfn0 = memc->mddt_pfn;
501 1.110 thorpej pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
502 1.110 thorpej if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
503 1.110 thorpej /*
504 1.110 thorpej * Must compute the location of the kernel
505 1.110 thorpej * within the segment.
506 1.110 thorpej */
507 1.110 thorpej #if 0
508 1.110 thorpej printf("Cluster %d contains kernel\n", i);
509 1.110 thorpej #endif
510 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
511 1.110 thorpej if (!pmap_uses_prom_console()) {
512 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
513 1.110 thorpej if (pfn0 < kernstartpfn) {
514 1.110 thorpej /*
515 1.110 thorpej * There is a chunk before the kernel.
516 1.110 thorpej */
517 1.110 thorpej #if 0
518 1.110 thorpej printf("Loading chunk before kernel: "
519 1.110 thorpej "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
520 1.110 thorpej #endif
521 1.112 thorpej uvm_page_physload(pfn0, kernstartpfn,
522 1.135 thorpej pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
523 1.110 thorpej }
524 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
525 1.110 thorpej }
526 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
527 1.110 thorpej if (kernendpfn < pfn1) {
528 1.110 thorpej /*
529 1.110 thorpej * There is a chunk after the kernel.
530 1.110 thorpej */
531 1.110 thorpej #if 0
532 1.110 thorpej printf("Loading chunk after kernel: "
533 1.110 thorpej "0x%lx / 0x%lx\n", kernendpfn, pfn1);
534 1.110 thorpej #endif
535 1.112 thorpej uvm_page_physload(kernendpfn, pfn1,
536 1.135 thorpej kernendpfn, pfn1, VM_FREELIST_DEFAULT);
537 1.110 thorpej }
538 1.110 thorpej } else {
539 1.110 thorpej /*
540 1.110 thorpej * Just load this cluster as one chunk.
541 1.110 thorpej */
542 1.110 thorpej #if 0
543 1.110 thorpej printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
544 1.110 thorpej pfn0, pfn1);
545 1.110 thorpej #endif
546 1.135 thorpej uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
547 1.135 thorpej VM_FREELIST_DEFAULT);
548 1.7 cgd }
549 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
550 1.110 thorpej }
551 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
552 1.7 cgd }
553 1.7 cgd
554 1.110 thorpej /*
555 1.110 thorpej * Dump out the MDDT if it looks odd...
556 1.110 thorpej */
557 1.7 cgd if (mddtweird) {
558 1.46 christos printf("\n");
559 1.46 christos printf("complete memory cluster information:\n");
560 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
561 1.46 christos printf("mddt %d:\n", i);
562 1.46 christos printf("\tpfn %lx\n",
563 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
564 1.46 christos printf("\tcnt %lx\n",
565 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
566 1.46 christos printf("\ttest %lx\n",
567 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
568 1.46 christos printf("\tbva %lx\n",
569 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
570 1.46 christos printf("\tbpa %lx\n",
571 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
572 1.46 christos printf("\tbcksum %lx\n",
573 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
574 1.46 christos printf("\tusage %lx\n",
575 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
576 1.2 cgd }
577 1.46 christos printf("\n");
578 1.2 cgd }
579 1.2 cgd
580 1.7 cgd if (totalphysmem == 0)
581 1.1 cgd panic("can't happen: system seems to have no memory!");
582 1.1 cgd maxmem = physmem;
583 1.7 cgd #if 0
584 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
585 1.46 christos printf("physmem = %d\n", physmem);
586 1.46 christos printf("resvmem = %d\n", resvmem);
587 1.46 christos printf("unusedmem = %d\n", unusedmem);
588 1.46 christos printf("unknownmem = %d\n", unknownmem);
589 1.7 cgd #endif
590 1.7 cgd
591 1.1 cgd /*
592 1.1 cgd * Initialize error message buffer (at end of core).
593 1.1 cgd */
594 1.110 thorpej {
595 1.204 enami vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
596 1.203 enami vsize_t reqsz = sz;
597 1.110 thorpej
598 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
599 1.110 thorpej
600 1.110 thorpej /* shrink so that it'll fit in the last segment */
601 1.110 thorpej if ((vps->avail_end - vps->avail_start) < atop(sz))
602 1.110 thorpej sz = ptoa(vps->avail_end - vps->avail_start);
603 1.110 thorpej
604 1.110 thorpej vps->end -= atop(sz);
605 1.110 thorpej vps->avail_end -= atop(sz);
606 1.110 thorpej msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
607 1.110 thorpej initmsgbuf(msgbufaddr, sz);
608 1.110 thorpej
609 1.110 thorpej /* Remove the last segment if it now has no pages. */
610 1.110 thorpej if (vps->start == vps->end)
611 1.110 thorpej vm_nphysseg--;
612 1.110 thorpej
613 1.110 thorpej /* warn if the message buffer had to be shrunk */
614 1.203 enami if (sz != reqsz)
615 1.203 enami printf("WARNING: %ld bytes not available for msgbuf "
616 1.203 enami "in last cluster (%ld used)\n", reqsz, sz);
617 1.110 thorpej
618 1.110 thorpej }
619 1.1 cgd
620 1.1 cgd /*
621 1.95 thorpej * Init mapping for u page(s) for proc 0
622 1.1 cgd */
623 1.110 thorpej proc0.p_addr = proc0paddr =
624 1.110 thorpej (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
625 1.1 cgd
626 1.1 cgd /*
627 1.95 thorpej * Allocate space for system data structures. These data structures
628 1.95 thorpej * are allocated here instead of cpu_startup() because physical
629 1.95 thorpej * memory is directly addressable. We don't have to map these into
630 1.95 thorpej * virtual address space.
631 1.95 thorpej */
632 1.198 thorpej size = (vsize_t)allocsys(NULL, NULL);
633 1.110 thorpej v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
634 1.198 thorpej if ((allocsys(v, NULL) - v) != size)
635 1.95 thorpej panic("alpha_init: table size inconsistency");
636 1.1 cgd
637 1.1 cgd /*
638 1.1 cgd * Initialize the virtual memory system, and set the
639 1.1 cgd * page table base register in proc 0's PCB.
640 1.1 cgd */
641 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
642 1.144 thorpej hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
643 1.1 cgd
644 1.1 cgd /*
645 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
646 1.3 cgd * address.
647 1.3 cgd */
648 1.3 cgd proc0.p_md.md_pcbpaddr =
649 1.140 thorpej (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
650 1.3 cgd
651 1.3 cgd /*
652 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
653 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
654 1.3 cgd */
655 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
656 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
657 1.81 thorpej proc0.p_md.md_tf =
658 1.81 thorpej (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
659 1.189 thorpej
660 1.189 thorpej /*
661 1.208 thorpej * Initialize the primary CPU's idle PCB to proc0's. In a
662 1.208 thorpej * MULTIPROCESSOR configuration, each CPU will later get
663 1.208 thorpej * its own idle PCB when autoconfiguration runs.
664 1.189 thorpej */
665 1.211 thorpej ci->ci_idle_pcb = &proc0paddr->u_pcb;
666 1.211 thorpej ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
667 1.208 thorpej
668 1.208 thorpej /* Indicate that proc0 has a CPU. */
669 1.211 thorpej proc0.p_cpu = ci;
670 1.1 cgd
671 1.1 cgd /*
672 1.25 cgd * Look at arguments passed to us and compute boothowto.
673 1.8 cgd */
674 1.1 cgd
675 1.8 cgd boothowto = RB_SINGLE;
676 1.1 cgd #ifdef KADB
677 1.1 cgd boothowto |= RB_KDB;
678 1.1 cgd #endif
679 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
680 1.26 cgd /*
681 1.26 cgd * Note that we'd really like to differentiate case here,
682 1.26 cgd * but the Alpha AXP Architecture Reference Manual
683 1.26 cgd * says that we shouldn't.
684 1.26 cgd */
685 1.8 cgd switch (*p) {
686 1.26 cgd case 'a': /* autoboot */
687 1.26 cgd case 'A':
688 1.26 cgd boothowto &= ~RB_SINGLE;
689 1.21 cgd break;
690 1.21 cgd
691 1.43 cgd #ifdef DEBUG
692 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
693 1.43 cgd case 'C':
694 1.43 cgd boothowto |= RB_DUMP;
695 1.43 cgd break;
696 1.43 cgd #endif
697 1.43 cgd
698 1.81 thorpej #if defined(KGDB) || defined(DDB)
699 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
700 1.81 thorpej case 'D':
701 1.81 thorpej boothowto |= RB_KDB;
702 1.81 thorpej break;
703 1.81 thorpej #endif
704 1.81 thorpej
705 1.36 cgd case 'h': /* always halt, never reboot */
706 1.36 cgd case 'H':
707 1.36 cgd boothowto |= RB_HALT;
708 1.8 cgd break;
709 1.8 cgd
710 1.21 cgd #if 0
711 1.8 cgd case 'm': /* mini root present in memory */
712 1.26 cgd case 'M':
713 1.8 cgd boothowto |= RB_MINIROOT;
714 1.8 cgd break;
715 1.21 cgd #endif
716 1.36 cgd
717 1.36 cgd case 'n': /* askname */
718 1.36 cgd case 'N':
719 1.36 cgd boothowto |= RB_ASKNAME;
720 1.65 cgd break;
721 1.65 cgd
722 1.65 cgd case 's': /* single-user (default, supported for sanity) */
723 1.65 cgd case 'S':
724 1.65 cgd boothowto |= RB_SINGLE;
725 1.119 thorpej break;
726 1.119 thorpej
727 1.119 thorpej case '-':
728 1.119 thorpej /*
729 1.119 thorpej * Just ignore this. It's not required, but it's
730 1.119 thorpej * common for it to be passed regardless.
731 1.119 thorpej */
732 1.65 cgd break;
733 1.65 cgd
734 1.65 cgd default:
735 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
736 1.36 cgd break;
737 1.1 cgd }
738 1.1 cgd }
739 1.1 cgd
740 1.136 mjacob
741 1.136 mjacob /*
742 1.136 mjacob * Figure out the number of cpus in the box, from RPB fields.
743 1.136 mjacob * Really. We mean it.
744 1.136 mjacob */
745 1.136 mjacob for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
746 1.136 mjacob struct pcs *pcsp;
747 1.136 mjacob
748 1.144 thorpej pcsp = LOCATE_PCS(hwrpb, i);
749 1.136 mjacob if ((pcsp->pcs_flags & PCS_PP) != 0)
750 1.136 mjacob ncpus++;
751 1.136 mjacob }
752 1.136 mjacob
753 1.7 cgd /*
754 1.106 cgd * Initialize debuggers, and break into them if appropriate.
755 1.106 cgd */
756 1.106 cgd #ifdef DDB
757 1.106 cgd db_machine_init();
758 1.159 mjacob ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
759 1.159 mjacob ksym_start, ksym_end);
760 1.106 cgd if (boothowto & RB_KDB)
761 1.106 cgd Debugger();
762 1.106 cgd #endif
763 1.106 cgd #ifdef KGDB
764 1.106 cgd if (boothowto & RB_KDB)
765 1.106 cgd kgdb_connect(0);
766 1.106 cgd #endif
767 1.106 cgd /*
768 1.106 cgd * Figure out our clock frequency, from RPB fields.
769 1.106 cgd */
770 1.106 cgd hz = hwrpb->rpb_intr_freq >> 12;
771 1.106 cgd if (!(60 <= hz && hz <= 10240)) {
772 1.106 cgd hz = 1024;
773 1.106 cgd #ifdef DIAGNOSTIC
774 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
775 1.106 cgd hwrpb->rpb_intr_freq, hz);
776 1.106 cgd #endif
777 1.106 cgd }
778 1.95 thorpej }
779 1.95 thorpej
780 1.18 cgd void
781 1.1 cgd consinit()
782 1.1 cgd {
783 1.81 thorpej
784 1.106 cgd /*
785 1.106 cgd * Everything related to console initialization is done
786 1.106 cgd * in alpha_init().
787 1.106 cgd */
788 1.106 cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
789 1.106 cgd printf("consinit: %susing prom console\n",
790 1.106 cgd pmap_uses_prom_console() ? "" : "not ");
791 1.81 thorpej #endif
792 1.1 cgd }
793 1.118 thorpej
794 1.118 thorpej #include "pckbc.h"
795 1.118 thorpej #include "pckbd.h"
796 1.118 thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
797 1.118 thorpej
798 1.187 thorpej #include <dev/ic/pckbcvar.h>
799 1.118 thorpej
800 1.118 thorpej /*
801 1.118 thorpej * This is called by the pbkbc driver if no pckbd is configured.
802 1.118 thorpej * On the i386, it is used to glue in the old, deprecated console
803 1.118 thorpej * code. On the Alpha, it does nothing.
804 1.118 thorpej */
805 1.118 thorpej int
806 1.118 thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
807 1.118 thorpej pckbc_tag_t kbctag;
808 1.118 thorpej pckbc_slot_t kbcslot;
809 1.118 thorpej {
810 1.118 thorpej
811 1.118 thorpej return (ENXIO);
812 1.118 thorpej }
813 1.118 thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
814 1.1 cgd
815 1.18 cgd void
816 1.1 cgd cpu_startup()
817 1.1 cgd {
818 1.1 cgd register unsigned i;
819 1.1 cgd int base, residual;
820 1.140 thorpej vaddr_t minaddr, maxaddr;
821 1.140 thorpej vsize_t size;
822 1.173 lukem char pbuf[9];
823 1.40 cgd #if defined(DEBUG)
824 1.1 cgd extern int pmapdebug;
825 1.1 cgd int opmapdebug = pmapdebug;
826 1.1 cgd
827 1.1 cgd pmapdebug = 0;
828 1.1 cgd #endif
829 1.1 cgd
830 1.1 cgd /*
831 1.1 cgd * Good {morning,afternoon,evening,night}.
832 1.1 cgd */
833 1.46 christos printf(version);
834 1.1 cgd identifycpu();
835 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
836 1.173 lukem printf("total memory = %s\n", pbuf);
837 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
838 1.173 lukem printf("(%s reserved for PROM, ", pbuf);
839 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
840 1.173 lukem printf("%s used by NetBSD)\n", pbuf);
841 1.173 lukem if (unusedmem) {
842 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
843 1.173 lukem printf("WARNING: unused memory = %s\n", pbuf);
844 1.173 lukem }
845 1.173 lukem if (unknownmem) {
846 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
847 1.173 lukem printf("WARNING: %s of memory with unknown purpose\n", pbuf);
848 1.173 lukem }
849 1.1 cgd
850 1.1 cgd /*
851 1.1 cgd * Allocate virtual address space for file I/O buffers.
852 1.1 cgd * Note they are different than the array of headers, 'buf',
853 1.1 cgd * and usually occupy more virtual memory than physical.
854 1.1 cgd */
855 1.1 cgd size = MAXBSIZE * nbuf;
856 1.140 thorpej if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
857 1.112 thorpej NULL, UVM_UNKNOWN_OFFSET,
858 1.112 thorpej UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
859 1.112 thorpej UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
860 1.112 thorpej panic("startup: cannot allocate VM for buffers");
861 1.1 cgd base = bufpages / nbuf;
862 1.1 cgd residual = bufpages % nbuf;
863 1.1 cgd for (i = 0; i < nbuf; i++) {
864 1.140 thorpej vsize_t curbufsize;
865 1.140 thorpej vaddr_t curbuf;
866 1.112 thorpej struct vm_page *pg;
867 1.112 thorpej
868 1.112 thorpej /*
869 1.112 thorpej * Each buffer has MAXBSIZE bytes of VM space allocated. Of
870 1.112 thorpej * that MAXBSIZE space, we allocate and map (base+1) pages
871 1.112 thorpej * for the first "residual" buffers, and then we allocate
872 1.112 thorpej * "base" pages for the rest.
873 1.112 thorpej */
874 1.140 thorpej curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
875 1.188 ragge curbufsize = NBPG * ((i < residual) ? (base+1) : base);
876 1.112 thorpej
877 1.112 thorpej while (curbufsize) {
878 1.168 chs pg = uvm_pagealloc(NULL, 0, NULL, 0);
879 1.112 thorpej if (pg == NULL)
880 1.112 thorpej panic("cpu_startup: not enough memory for "
881 1.112 thorpej "buffer cache");
882 1.182 chs pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
883 1.182 chs VM_PROT_READ|VM_PROT_WRITE);
884 1.112 thorpej curbuf += PAGE_SIZE;
885 1.112 thorpej curbufsize -= PAGE_SIZE;
886 1.112 thorpej }
887 1.1 cgd }
888 1.1 cgd /*
889 1.1 cgd * Allocate a submap for exec arguments. This map effectively
890 1.1 cgd * limits the number of processes exec'ing at any time.
891 1.1 cgd */
892 1.112 thorpej exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
893 1.175 thorpej 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
894 1.1 cgd
895 1.1 cgd /*
896 1.1 cgd * Allocate a submap for physio
897 1.1 cgd */
898 1.112 thorpej phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
899 1.175 thorpej VM_PHYS_SIZE, 0, FALSE, NULL);
900 1.1 cgd
901 1.1 cgd /*
902 1.164 thorpej * No need to allocate an mbuf cluster submap. Mbuf clusters
903 1.164 thorpej * are allocated via the pool allocator, and we use K0SEG to
904 1.164 thorpej * map those pages.
905 1.1 cgd */
906 1.1 cgd
907 1.40 cgd #if defined(DEBUG)
908 1.1 cgd pmapdebug = opmapdebug;
909 1.1 cgd #endif
910 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
911 1.173 lukem printf("avail memory = %s\n", pbuf);
912 1.139 thorpej #if 0
913 1.139 thorpej {
914 1.139 thorpej extern u_long pmap_pages_stolen;
915 1.173 lukem
916 1.173 lukem format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
917 1.173 lukem printf("stolen memory for VM structures = %s\n", pbuf);
918 1.139 thorpej }
919 1.112 thorpej #endif
920 1.188 ragge format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
921 1.173 lukem printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
922 1.1 cgd
923 1.1 cgd /*
924 1.1 cgd * Set up buffers, so they can be used to read disk labels.
925 1.1 cgd */
926 1.1 cgd bufinit();
927 1.151 thorpej
928 1.151 thorpej /*
929 1.151 thorpej * Set up the HWPCB so that it's safe to configure secondary
930 1.151 thorpej * CPUs.
931 1.151 thorpej */
932 1.151 thorpej hwrpb_primary_init();
933 1.104 thorpej }
934 1.104 thorpej
935 1.104 thorpej /*
936 1.104 thorpej * Retrieve the platform name from the DSR.
937 1.104 thorpej */
938 1.104 thorpej const char *
939 1.104 thorpej alpha_dsr_sysname()
940 1.104 thorpej {
941 1.104 thorpej struct dsrdb *dsr;
942 1.104 thorpej const char *sysname;
943 1.104 thorpej
944 1.104 thorpej /*
945 1.104 thorpej * DSR does not exist on early HWRPB versions.
946 1.104 thorpej */
947 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
948 1.104 thorpej return (NULL);
949 1.104 thorpej
950 1.104 thorpej dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
951 1.104 thorpej sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
952 1.104 thorpej sizeof(u_int64_t)));
953 1.104 thorpej return (sysname);
954 1.104 thorpej }
955 1.104 thorpej
956 1.104 thorpej /*
957 1.104 thorpej * Lookup the system specified system variation in the provided table,
958 1.104 thorpej * returning the model string on match.
959 1.104 thorpej */
960 1.104 thorpej const char *
961 1.104 thorpej alpha_variation_name(variation, avtp)
962 1.104 thorpej u_int64_t variation;
963 1.104 thorpej const struct alpha_variation_table *avtp;
964 1.104 thorpej {
965 1.104 thorpej int i;
966 1.104 thorpej
967 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++)
968 1.104 thorpej if (avtp[i].avt_variation == variation)
969 1.104 thorpej return (avtp[i].avt_model);
970 1.104 thorpej return (NULL);
971 1.104 thorpej }
972 1.104 thorpej
973 1.104 thorpej /*
974 1.104 thorpej * Generate a default platform name based for unknown system variations.
975 1.104 thorpej */
976 1.104 thorpej const char *
977 1.104 thorpej alpha_unknown_sysname()
978 1.104 thorpej {
979 1.105 thorpej static char s[128]; /* safe size */
980 1.104 thorpej
981 1.105 thorpej sprintf(s, "%s family, unknown model variation 0x%lx",
982 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK);
983 1.104 thorpej return ((const char *)s);
984 1.1 cgd }
985 1.1 cgd
986 1.33 cgd void
987 1.1 cgd identifycpu()
988 1.1 cgd {
989 1.177 ross char *s;
990 1.1 cgd
991 1.7 cgd /*
992 1.7 cgd * print out CPU identification information.
993 1.7 cgd */
994 1.177 ross printf("%s", cpu_model);
995 1.177 ross for(s = cpu_model; *s; ++s)
996 1.177 ross if(strncasecmp(s, "MHz", 3) == 0)
997 1.177 ross goto skipMHz;
998 1.177 ross printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
999 1.177 ross skipMHz:
1000 1.177 ross printf("\n");
1001 1.46 christos printf("%ld byte page size, %d processor%s.\n",
1002 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1003 1.7 cgd #if 0
1004 1.7 cgd /* this isn't defined for any systems that we run on? */
1005 1.46 christos printf("serial number 0x%lx 0x%lx\n",
1006 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1007 1.7 cgd
1008 1.7 cgd /* and these aren't particularly useful! */
1009 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
1010 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1011 1.7 cgd #endif
1012 1.1 cgd }
1013 1.1 cgd
1014 1.1 cgd int waittime = -1;
1015 1.7 cgd struct pcb dumppcb;
1016 1.1 cgd
1017 1.18 cgd void
1018 1.68 gwr cpu_reboot(howto, bootstr)
1019 1.1 cgd int howto;
1020 1.39 mrg char *bootstr;
1021 1.1 cgd {
1022 1.148 thorpej #if defined(MULTIPROCESSOR)
1023 1.150 thorpej #if 0 /* XXX See below. */
1024 1.148 thorpej u_long cpu_id;
1025 1.150 thorpej #endif
1026 1.148 thorpej #endif
1027 1.148 thorpej
1028 1.148 thorpej #if defined(MULTIPROCESSOR)
1029 1.148 thorpej /* We must be running on the primary CPU. */
1030 1.148 thorpej if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1031 1.148 thorpej panic("cpu_reboot: not on primary CPU!");
1032 1.148 thorpej #endif
1033 1.1 cgd
1034 1.1 cgd /* If system is cold, just halt. */
1035 1.1 cgd if (cold) {
1036 1.1 cgd howto |= RB_HALT;
1037 1.1 cgd goto haltsys;
1038 1.1 cgd }
1039 1.1 cgd
1040 1.36 cgd /* If "always halt" was specified as a boot flag, obey. */
1041 1.36 cgd if ((boothowto & RB_HALT) != 0)
1042 1.36 cgd howto |= RB_HALT;
1043 1.36 cgd
1044 1.7 cgd boothowto = howto;
1045 1.7 cgd if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1046 1.1 cgd waittime = 0;
1047 1.7 cgd vfs_shutdown();
1048 1.1 cgd /*
1049 1.1 cgd * If we've been adjusting the clock, the todr
1050 1.1 cgd * will be out of synch; adjust it now.
1051 1.1 cgd */
1052 1.1 cgd resettodr();
1053 1.1 cgd }
1054 1.1 cgd
1055 1.1 cgd /* Disable interrupts. */
1056 1.1 cgd splhigh();
1057 1.1 cgd
1058 1.7 cgd /* If rebooting and a dump is requested do it. */
1059 1.42 cgd #if 0
1060 1.42 cgd if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1061 1.42 cgd #else
1062 1.42 cgd if (howto & RB_DUMP)
1063 1.42 cgd #endif
1064 1.1 cgd dumpsys();
1065 1.6 cgd
1066 1.12 cgd haltsys:
1067 1.12 cgd
1068 1.6 cgd /* run any shutdown hooks */
1069 1.6 cgd doshutdownhooks();
1070 1.148 thorpej
1071 1.148 thorpej #if defined(MULTIPROCESSOR)
1072 1.149 thorpej #if 0 /* XXX doesn't work when called from here?! */
1073 1.148 thorpej /* Kill off any secondary CPUs. */
1074 1.148 thorpej for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1075 1.148 thorpej if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1076 1.161 thorpej cpu_info[cpu_id].ci_softc == NULL)
1077 1.148 thorpej continue;
1078 1.148 thorpej cpu_halt_secondary(cpu_id);
1079 1.148 thorpej }
1080 1.149 thorpej #endif
1081 1.148 thorpej #endif
1082 1.1 cgd
1083 1.7 cgd #ifdef BOOTKEY
1084 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1085 1.117 drochner cnpollc(1); /* for proper keyboard command handling */
1086 1.7 cgd cngetc();
1087 1.117 drochner cnpollc(0);
1088 1.46 christos printf("\n");
1089 1.7 cgd #endif
1090 1.7 cgd
1091 1.124 thorpej /* Finally, powerdown/halt/reboot the system. */
1092 1.184 sato if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
1093 1.124 thorpej platform.powerdown != NULL) {
1094 1.124 thorpej (*platform.powerdown)();
1095 1.124 thorpej printf("WARNING: powerdown failed!\n");
1096 1.124 thorpej }
1097 1.46 christos printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1098 1.1 cgd prom_halt(howto & RB_HALT);
1099 1.1 cgd /*NOTREACHED*/
1100 1.1 cgd }
1101 1.1 cgd
1102 1.7 cgd /*
1103 1.7 cgd * These variables are needed by /sbin/savecore
1104 1.7 cgd */
1105 1.7 cgd u_long dumpmag = 0x8fca0101; /* magic number */
1106 1.7 cgd int dumpsize = 0; /* pages */
1107 1.7 cgd long dumplo = 0; /* blocks */
1108 1.7 cgd
1109 1.7 cgd /*
1110 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1111 1.43 cgd */
1112 1.43 cgd int
1113 1.43 cgd cpu_dumpsize()
1114 1.43 cgd {
1115 1.43 cgd int size;
1116 1.43 cgd
1117 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1118 1.110 thorpej ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1119 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
1120 1.43 cgd return -1;
1121 1.43 cgd
1122 1.43 cgd return (1);
1123 1.43 cgd }
1124 1.43 cgd
1125 1.43 cgd /*
1126 1.110 thorpej * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1127 1.110 thorpej */
1128 1.110 thorpej u_long
1129 1.110 thorpej cpu_dump_mempagecnt()
1130 1.110 thorpej {
1131 1.110 thorpej u_long i, n;
1132 1.110 thorpej
1133 1.110 thorpej n = 0;
1134 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++)
1135 1.110 thorpej n += atop(mem_clusters[i].size);
1136 1.110 thorpej return (n);
1137 1.110 thorpej }
1138 1.110 thorpej
1139 1.110 thorpej /*
1140 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
1141 1.43 cgd */
1142 1.43 cgd int
1143 1.43 cgd cpu_dump()
1144 1.43 cgd {
1145 1.43 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1146 1.107 cgd char buf[dbtob(1)];
1147 1.107 cgd kcore_seg_t *segp;
1148 1.107 cgd cpu_kcore_hdr_t *cpuhdrp;
1149 1.107 cgd phys_ram_seg_t *memsegp;
1150 1.110 thorpej int i;
1151 1.43 cgd
1152 1.107 cgd dump = bdevsw[major(dumpdev)].d_dump;
1153 1.43 cgd
1154 1.107 cgd bzero(buf, sizeof buf);
1155 1.43 cgd segp = (kcore_seg_t *)buf;
1156 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1157 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1158 1.107 cgd ALIGN(sizeof(*cpuhdrp))];
1159 1.43 cgd
1160 1.43 cgd /*
1161 1.43 cgd * Generate a segment header.
1162 1.43 cgd */
1163 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1164 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1165 1.43 cgd
1166 1.43 cgd /*
1167 1.107 cgd * Add the machine-dependent header info.
1168 1.43 cgd */
1169 1.140 thorpej cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1170 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
1171 1.110 thorpej cpuhdrp->nmemsegs = mem_cluster_cnt;
1172 1.107 cgd
1173 1.107 cgd /*
1174 1.107 cgd * Fill in the memory segment descriptors.
1175 1.107 cgd */
1176 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1177 1.110 thorpej memsegp[i].start = mem_clusters[i].start;
1178 1.110 thorpej memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1179 1.110 thorpej }
1180 1.43 cgd
1181 1.43 cgd return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1182 1.43 cgd }
1183 1.43 cgd
1184 1.43 cgd /*
1185 1.68 gwr * This is called by main to set dumplo and dumpsize.
1186 1.188 ragge * Dumps always skip the first NBPG of disk space
1187 1.7 cgd * in case there might be a disk label stored there.
1188 1.7 cgd * If there is extra space, put dump at the end to
1189 1.7 cgd * reduce the chance that swapping trashes it.
1190 1.7 cgd */
1191 1.7 cgd void
1192 1.68 gwr cpu_dumpconf()
1193 1.7 cgd {
1194 1.43 cgd int nblks, dumpblks; /* size of dump area */
1195 1.7 cgd int maj;
1196 1.7 cgd
1197 1.7 cgd if (dumpdev == NODEV)
1198 1.43 cgd goto bad;
1199 1.7 cgd maj = major(dumpdev);
1200 1.7 cgd if (maj < 0 || maj >= nblkdev)
1201 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1202 1.7 cgd if (bdevsw[maj].d_psize == NULL)
1203 1.43 cgd goto bad;
1204 1.7 cgd nblks = (*bdevsw[maj].d_psize)(dumpdev);
1205 1.7 cgd if (nblks <= ctod(1))
1206 1.43 cgd goto bad;
1207 1.43 cgd
1208 1.43 cgd dumpblks = cpu_dumpsize();
1209 1.43 cgd if (dumpblks < 0)
1210 1.43 cgd goto bad;
1211 1.110 thorpej dumpblks += ctod(cpu_dump_mempagecnt());
1212 1.43 cgd
1213 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
1214 1.43 cgd if (dumpblks > (nblks - ctod(1)))
1215 1.43 cgd goto bad;
1216 1.43 cgd
1217 1.43 cgd /* Put dump at end of partition */
1218 1.43 cgd dumplo = nblks - dumpblks;
1219 1.7 cgd
1220 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1221 1.110 thorpej dumpsize = cpu_dump_mempagecnt();
1222 1.43 cgd return;
1223 1.7 cgd
1224 1.43 cgd bad:
1225 1.43 cgd dumpsize = 0;
1226 1.43 cgd return;
1227 1.7 cgd }
1228 1.7 cgd
1229 1.7 cgd /*
1230 1.42 cgd * Dump the kernel's image to the swap partition.
1231 1.7 cgd */
1232 1.42 cgd #define BYTES_PER_DUMP NBPG
1233 1.42 cgd
1234 1.7 cgd void
1235 1.7 cgd dumpsys()
1236 1.7 cgd {
1237 1.110 thorpej u_long totalbytesleft, bytes, i, n, memcl;
1238 1.110 thorpej u_long maddr;
1239 1.110 thorpej int psize;
1240 1.42 cgd daddr_t blkno;
1241 1.42 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1242 1.42 cgd int error;
1243 1.42 cgd
1244 1.42 cgd /* Save registers. */
1245 1.42 cgd savectx(&dumppcb);
1246 1.7 cgd
1247 1.7 cgd if (dumpdev == NODEV)
1248 1.7 cgd return;
1249 1.42 cgd
1250 1.42 cgd /*
1251 1.42 cgd * For dumps during autoconfiguration,
1252 1.42 cgd * if dump device has already configured...
1253 1.42 cgd */
1254 1.42 cgd if (dumpsize == 0)
1255 1.68 gwr cpu_dumpconf();
1256 1.47 cgd if (dumplo <= 0) {
1257 1.97 mycroft printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1258 1.97 mycroft minor(dumpdev));
1259 1.42 cgd return;
1260 1.43 cgd }
1261 1.97 mycroft printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1262 1.97 mycroft minor(dumpdev), dumplo);
1263 1.7 cgd
1264 1.42 cgd psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1265 1.46 christos printf("dump ");
1266 1.42 cgd if (psize == -1) {
1267 1.46 christos printf("area unavailable\n");
1268 1.42 cgd return;
1269 1.42 cgd }
1270 1.42 cgd
1271 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1272 1.42 cgd
1273 1.43 cgd if ((error = cpu_dump()) != 0)
1274 1.43 cgd goto err;
1275 1.43 cgd
1276 1.110 thorpej totalbytesleft = ptoa(cpu_dump_mempagecnt());
1277 1.43 cgd blkno = dumplo + cpu_dumpsize();
1278 1.42 cgd dump = bdevsw[major(dumpdev)].d_dump;
1279 1.42 cgd error = 0;
1280 1.42 cgd
1281 1.110 thorpej for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1282 1.110 thorpej maddr = mem_clusters[memcl].start;
1283 1.110 thorpej bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1284 1.110 thorpej
1285 1.110 thorpej for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1286 1.110 thorpej
1287 1.110 thorpej /* Print out how many MBs we to go. */
1288 1.110 thorpej if ((totalbytesleft % (1024*1024)) == 0)
1289 1.160 thorpej printf("%ld ", totalbytesleft / (1024 * 1024));
1290 1.110 thorpej
1291 1.110 thorpej /* Limit size for next transfer. */
1292 1.110 thorpej n = bytes - i;
1293 1.110 thorpej if (n > BYTES_PER_DUMP)
1294 1.110 thorpej n = BYTES_PER_DUMP;
1295 1.110 thorpej
1296 1.110 thorpej error = (*dump)(dumpdev, blkno,
1297 1.110 thorpej (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1298 1.110 thorpej if (error)
1299 1.110 thorpej goto err;
1300 1.110 thorpej maddr += n;
1301 1.110 thorpej blkno += btodb(n); /* XXX? */
1302 1.42 cgd
1303 1.110 thorpej /* XXX should look for keystrokes, to cancel. */
1304 1.110 thorpej }
1305 1.42 cgd }
1306 1.42 cgd
1307 1.43 cgd err:
1308 1.42 cgd switch (error) {
1309 1.7 cgd
1310 1.7 cgd case ENXIO:
1311 1.46 christos printf("device bad\n");
1312 1.7 cgd break;
1313 1.7 cgd
1314 1.7 cgd case EFAULT:
1315 1.46 christos printf("device not ready\n");
1316 1.7 cgd break;
1317 1.7 cgd
1318 1.7 cgd case EINVAL:
1319 1.46 christos printf("area improper\n");
1320 1.7 cgd break;
1321 1.7 cgd
1322 1.7 cgd case EIO:
1323 1.46 christos printf("i/o error\n");
1324 1.7 cgd break;
1325 1.7 cgd
1326 1.7 cgd case EINTR:
1327 1.46 christos printf("aborted from console\n");
1328 1.7 cgd break;
1329 1.7 cgd
1330 1.42 cgd case 0:
1331 1.46 christos printf("succeeded\n");
1332 1.42 cgd break;
1333 1.42 cgd
1334 1.7 cgd default:
1335 1.46 christos printf("error %d\n", error);
1336 1.7 cgd break;
1337 1.7 cgd }
1338 1.46 christos printf("\n\n");
1339 1.7 cgd delay(1000);
1340 1.7 cgd }
1341 1.7 cgd
1342 1.1 cgd void
1343 1.1 cgd frametoreg(framep, regp)
1344 1.1 cgd struct trapframe *framep;
1345 1.1 cgd struct reg *regp;
1346 1.1 cgd {
1347 1.1 cgd
1348 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1349 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1350 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1351 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1352 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1353 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1354 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1355 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1356 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1357 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1358 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1359 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1360 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1361 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1362 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1363 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1364 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1365 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1366 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1367 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1368 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1369 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1370 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1371 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1372 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1373 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1374 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1375 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1376 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1377 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1378 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1379 1.1 cgd regp->r_regs[R_ZERO] = 0;
1380 1.1 cgd }
1381 1.1 cgd
1382 1.1 cgd void
1383 1.1 cgd regtoframe(regp, framep)
1384 1.1 cgd struct reg *regp;
1385 1.1 cgd struct trapframe *framep;
1386 1.1 cgd {
1387 1.1 cgd
1388 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1389 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1390 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1391 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1392 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1393 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1394 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1395 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1396 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1397 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1398 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1399 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1400 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1401 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1402 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1403 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1404 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1405 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1406 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1407 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1408 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1409 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1410 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1411 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1412 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1413 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1414 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1415 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1416 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1417 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1418 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1419 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1420 1.1 cgd }
1421 1.1 cgd
1422 1.1 cgd void
1423 1.1 cgd printregs(regp)
1424 1.1 cgd struct reg *regp;
1425 1.1 cgd {
1426 1.1 cgd int i;
1427 1.1 cgd
1428 1.1 cgd for (i = 0; i < 32; i++)
1429 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1430 1.1 cgd i & 1 ? "\n" : "\t");
1431 1.1 cgd }
1432 1.1 cgd
1433 1.1 cgd void
1434 1.1 cgd regdump(framep)
1435 1.1 cgd struct trapframe *framep;
1436 1.1 cgd {
1437 1.1 cgd struct reg reg;
1438 1.1 cgd
1439 1.1 cgd frametoreg(framep, ®);
1440 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1441 1.35 cgd
1442 1.46 christos printf("REGISTERS:\n");
1443 1.1 cgd printregs(®);
1444 1.1 cgd }
1445 1.1 cgd
1446 1.1 cgd #ifdef DEBUG
1447 1.1 cgd int sigdebug = 0;
1448 1.1 cgd int sigpid = 0;
1449 1.1 cgd #define SDB_FOLLOW 0x01
1450 1.1 cgd #define SDB_KSTACK 0x02
1451 1.1 cgd #endif
1452 1.1 cgd
1453 1.1 cgd /*
1454 1.1 cgd * Send an interrupt to process.
1455 1.1 cgd */
1456 1.1 cgd void
1457 1.1 cgd sendsig(catcher, sig, mask, code)
1458 1.1 cgd sig_t catcher;
1459 1.141 thorpej int sig;
1460 1.141 thorpej sigset_t *mask;
1461 1.1 cgd u_long code;
1462 1.1 cgd {
1463 1.1 cgd struct proc *p = curproc;
1464 1.1 cgd struct sigcontext *scp, ksc;
1465 1.1 cgd struct trapframe *frame;
1466 1.1 cgd struct sigacts *psp = p->p_sigacts;
1467 1.141 thorpej int onstack, fsize, rndfsize;
1468 1.1 cgd
1469 1.1 cgd frame = p->p_md.md_tf;
1470 1.141 thorpej
1471 1.141 thorpej /* Do we need to jump onto the signal stack? */
1472 1.141 thorpej onstack =
1473 1.141 thorpej (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1474 1.141 thorpej (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1475 1.141 thorpej
1476 1.141 thorpej /* Allocate space for the signal handler context. */
1477 1.141 thorpej fsize = sizeof(ksc);
1478 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1479 1.141 thorpej
1480 1.141 thorpej if (onstack)
1481 1.121 kleink scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1482 1.142 mycroft psp->ps_sigstk.ss_size);
1483 1.141 thorpej else
1484 1.142 mycroft scp = (struct sigcontext *)(alpha_pal_rdusp());
1485 1.142 mycroft scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1486 1.141 thorpej
1487 1.1 cgd #ifdef DEBUG
1488 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1489 1.46 christos printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1490 1.141 thorpej sig, &onstack, scp);
1491 1.125 ross #endif
1492 1.1 cgd
1493 1.141 thorpej /* Build stack frame for signal trampoline. */
1494 1.34 cgd ksc.sc_pc = frame->tf_regs[FRAME_PC];
1495 1.34 cgd ksc.sc_ps = frame->tf_regs[FRAME_PS];
1496 1.1 cgd
1497 1.141 thorpej /* Save register context. */
1498 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1499 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1500 1.35 cgd ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1501 1.1 cgd
1502 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1503 1.1 cgd if (p == fpcurproc) {
1504 1.32 cgd alpha_pal_wrfen(1);
1505 1.1 cgd savefpstate(&p->p_addr->u_pcb.pcb_fp);
1506 1.32 cgd alpha_pal_wrfen(0);
1507 1.1 cgd fpcurproc = NULL;
1508 1.1 cgd }
1509 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1510 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1511 1.1 cgd sizeof(struct fpreg));
1512 1.1 cgd ksc.sc_fp_control = 0; /* XXX ? */
1513 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1514 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1515 1.1 cgd
1516 1.141 thorpej /* Save signal stack. */
1517 1.141 thorpej ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1518 1.141 thorpej
1519 1.141 thorpej /* Save signal mask. */
1520 1.141 thorpej ksc.sc_mask = *mask;
1521 1.141 thorpej
1522 1.141 thorpej #ifdef COMPAT_13
1523 1.141 thorpej /*
1524 1.141 thorpej * XXX We always have to save an old style signal mask because
1525 1.141 thorpej * XXX we might be delivering a signal to a process which will
1526 1.141 thorpej * XXX escape from the signal in a non-standard way and invoke
1527 1.141 thorpej * XXX sigreturn() directly.
1528 1.141 thorpej */
1529 1.141 thorpej {
1530 1.141 thorpej /* Note: it's a long in the stack frame. */
1531 1.141 thorpej sigset13_t mask13;
1532 1.141 thorpej
1533 1.141 thorpej native_sigset_to_sigset13(mask, &mask13);
1534 1.141 thorpej ksc.__sc_mask13 = mask13;
1535 1.141 thorpej }
1536 1.141 thorpej #endif
1537 1.1 cgd
1538 1.1 cgd #ifdef COMPAT_OSF1
1539 1.1 cgd /*
1540 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1541 1.1 cgd */
1542 1.1 cgd #endif
1543 1.1 cgd
1544 1.141 thorpej if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1545 1.141 thorpej /*
1546 1.141 thorpej * Process has trashed its stack; give it an illegal
1547 1.141 thorpej * instruction to halt it in its tracks.
1548 1.141 thorpej */
1549 1.141 thorpej #ifdef DEBUG
1550 1.141 thorpej if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1551 1.141 thorpej printf("sendsig(%d): copyout failed on sig %d\n",
1552 1.141 thorpej p->p_pid, sig);
1553 1.141 thorpej #endif
1554 1.141 thorpej sigexit(p, SIGILL);
1555 1.141 thorpej /* NOTREACHED */
1556 1.141 thorpej }
1557 1.1 cgd #ifdef DEBUG
1558 1.1 cgd if (sigdebug & SDB_FOLLOW)
1559 1.46 christos printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1560 1.1 cgd scp, code);
1561 1.1 cgd #endif
1562 1.1 cgd
1563 1.141 thorpej /* Set up the registers to return to sigcode. */
1564 1.142 mycroft frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1565 1.34 cgd frame->tf_regs[FRAME_A0] = sig;
1566 1.34 cgd frame->tf_regs[FRAME_A1] = code;
1567 1.34 cgd frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1568 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1569 1.35 cgd alpha_pal_wrusp((unsigned long)scp);
1570 1.142 mycroft
1571 1.142 mycroft /* Remember that we're now on the signal stack. */
1572 1.142 mycroft if (onstack)
1573 1.142 mycroft psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1574 1.1 cgd
1575 1.1 cgd #ifdef DEBUG
1576 1.1 cgd if (sigdebug & SDB_FOLLOW)
1577 1.46 christos printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1578 1.34 cgd frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1579 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1580 1.46 christos printf("sendsig(%d): sig %d returns\n",
1581 1.1 cgd p->p_pid, sig);
1582 1.1 cgd #endif
1583 1.1 cgd }
1584 1.1 cgd
1585 1.1 cgd /*
1586 1.1 cgd * System call to cleanup state after a signal
1587 1.1 cgd * has been taken. Reset signal mask and
1588 1.1 cgd * stack state from context left by sendsig (above).
1589 1.1 cgd * Return to previous pc and psl as specified by
1590 1.1 cgd * context left by sendsig. Check carefully to
1591 1.1 cgd * make sure that the user has not modified the
1592 1.180 simonb * psl to gain improper privileges or to cause
1593 1.1 cgd * a machine fault.
1594 1.1 cgd */
1595 1.1 cgd /* ARGSUSED */
1596 1.11 mycroft int
1597 1.141 thorpej sys___sigreturn14(p, v, retval)
1598 1.1 cgd struct proc *p;
1599 1.10 thorpej void *v;
1600 1.10 thorpej register_t *retval;
1601 1.10 thorpej {
1602 1.141 thorpej struct sys___sigreturn14_args /* {
1603 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1604 1.10 thorpej } */ *uap = v;
1605 1.1 cgd struct sigcontext *scp, ksc;
1606 1.1 cgd
1607 1.141 thorpej /*
1608 1.141 thorpej * The trampoline code hands us the context.
1609 1.141 thorpej * It is unsafe to keep track of it ourselves, in the event that a
1610 1.141 thorpej * program jumps out of a signal handler.
1611 1.141 thorpej */
1612 1.1 cgd scp = SCARG(uap, sigcntxp);
1613 1.1 cgd #ifdef DEBUG
1614 1.1 cgd if (sigdebug & SDB_FOLLOW)
1615 1.46 christos printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1616 1.1 cgd #endif
1617 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1618 1.1 cgd return (EINVAL);
1619 1.1 cgd
1620 1.141 thorpej if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1621 1.141 thorpej return (EFAULT);
1622 1.1 cgd
1623 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1624 1.1 cgd return (EINVAL);
1625 1.1 cgd
1626 1.141 thorpej /* Restore register context. */
1627 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1628 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PS] =
1629 1.32 cgd (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1630 1.1 cgd
1631 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1632 1.35 cgd alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1633 1.1 cgd
1634 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1635 1.1 cgd if (p == fpcurproc)
1636 1.1 cgd fpcurproc = NULL;
1637 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1638 1.1 cgd sizeof(struct fpreg));
1639 1.1 cgd /* XXX ksc.sc_fp_control ? */
1640 1.141 thorpej
1641 1.141 thorpej /* Restore signal stack. */
1642 1.141 thorpej if (ksc.sc_onstack & SS_ONSTACK)
1643 1.141 thorpej p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1644 1.141 thorpej else
1645 1.141 thorpej p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1646 1.141 thorpej
1647 1.141 thorpej /* Restore signal mask. */
1648 1.141 thorpej (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1649 1.1 cgd
1650 1.1 cgd #ifdef DEBUG
1651 1.1 cgd if (sigdebug & SDB_FOLLOW)
1652 1.46 christos printf("sigreturn(%d): returns\n", p->p_pid);
1653 1.1 cgd #endif
1654 1.1 cgd return (EJUSTRETURN);
1655 1.1 cgd }
1656 1.1 cgd
1657 1.1 cgd /*
1658 1.1 cgd * machine dependent system variables.
1659 1.1 cgd */
1660 1.33 cgd int
1661 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1662 1.1 cgd int *name;
1663 1.1 cgd u_int namelen;
1664 1.1 cgd void *oldp;
1665 1.1 cgd size_t *oldlenp;
1666 1.1 cgd void *newp;
1667 1.1 cgd size_t newlen;
1668 1.1 cgd struct proc *p;
1669 1.1 cgd {
1670 1.1 cgd dev_t consdev;
1671 1.1 cgd
1672 1.1 cgd /* all sysctl names at this level are terminal */
1673 1.1 cgd if (namelen != 1)
1674 1.1 cgd return (ENOTDIR); /* overloaded */
1675 1.1 cgd
1676 1.1 cgd switch (name[0]) {
1677 1.1 cgd case CPU_CONSDEV:
1678 1.1 cgd if (cn_tab != NULL)
1679 1.1 cgd consdev = cn_tab->cn_dev;
1680 1.1 cgd else
1681 1.1 cgd consdev = NODEV;
1682 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1683 1.1 cgd sizeof consdev));
1684 1.30 cgd
1685 1.30 cgd case CPU_ROOT_DEVICE:
1686 1.64 thorpej return (sysctl_rdstring(oldp, oldlenp, newp,
1687 1.64 thorpej root_device->dv_xname));
1688 1.36 cgd
1689 1.36 cgd case CPU_UNALIGNED_PRINT:
1690 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1691 1.36 cgd &alpha_unaligned_print));
1692 1.36 cgd
1693 1.36 cgd case CPU_UNALIGNED_FIX:
1694 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1695 1.36 cgd &alpha_unaligned_fix));
1696 1.36 cgd
1697 1.36 cgd case CPU_UNALIGNED_SIGBUS:
1698 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1699 1.36 cgd &alpha_unaligned_sigbus));
1700 1.61 cgd
1701 1.61 cgd case CPU_BOOTED_KERNEL:
1702 1.102 cgd return (sysctl_rdstring(oldp, oldlenp, newp,
1703 1.102 cgd bootinfo.booted_kernel));
1704 1.30 cgd
1705 1.1 cgd default:
1706 1.1 cgd return (EOPNOTSUPP);
1707 1.1 cgd }
1708 1.1 cgd /* NOTREACHED */
1709 1.1 cgd }
1710 1.1 cgd
1711 1.1 cgd /*
1712 1.1 cgd * Set registers on exec.
1713 1.1 cgd */
1714 1.1 cgd void
1715 1.85 mycroft setregs(p, pack, stack)
1716 1.1 cgd register struct proc *p;
1717 1.5 christos struct exec_package *pack;
1718 1.1 cgd u_long stack;
1719 1.1 cgd {
1720 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1721 1.56 cgd #ifdef DEBUG
1722 1.1 cgd int i;
1723 1.56 cgd #endif
1724 1.43 cgd
1725 1.43 cgd #ifdef DEBUG
1726 1.43 cgd /*
1727 1.43 cgd * Crash and dump, if the user requested it.
1728 1.43 cgd */
1729 1.43 cgd if (boothowto & RB_DUMP)
1730 1.43 cgd panic("crash requested by boot flags");
1731 1.43 cgd #endif
1732 1.1 cgd
1733 1.1 cgd #ifdef DEBUG
1734 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1735 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1736 1.1 cgd #else
1737 1.34 cgd bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1738 1.1 cgd #endif
1739 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1740 1.172 ross p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1741 1.172 ross | FPCR_UNFD
1742 1.172 ross | FPCR_UNDZ
1743 1.172 ross | FPCR_DYN(FP_RN)
1744 1.172 ross | FPCR_OVFD
1745 1.172 ross | FPCR_DZED
1746 1.172 ross | FPCR_INVD
1747 1.172 ross | FPCR_DNZ;
1748 1.35 cgd alpha_pal_wrusp(stack);
1749 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1750 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1751 1.41 cgd
1752 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1753 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1754 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1755 1.63 cgd tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1756 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1757 1.1 cgd
1758 1.33 cgd p->p_md.md_flags &= ~MDP_FPUSED;
1759 1.1 cgd if (fpcurproc == p)
1760 1.1 cgd fpcurproc = NULL;
1761 1.1 cgd }
1762 1.1 cgd
1763 1.214 cgd void
1764 1.1 cgd spl0()
1765 1.1 cgd {
1766 1.1 cgd
1767 1.178 thorpej if (ssir) {
1768 1.178 thorpej (void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
1769 1.211 thorpej softintr_dispatch();
1770 1.178 thorpej }
1771 1.1 cgd
1772 1.214 cgd (void) alpha_pal_swpipl(ALPHA_PSL_IPL_0);
1773 1.1 cgd }
1774 1.1 cgd
1775 1.1 cgd /*
1776 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
1777 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1778 1.52 cgd * into queues, Remrunqueue removes them from queues. The running process is
1779 1.52 cgd * on no queue, other processes are on a queue related to p->p_priority,
1780 1.52 cgd * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1781 1.52 cgd * available queues.
1782 1.1 cgd */
1783 1.1 cgd /*
1784 1.1 cgd * setrunqueue(p)
1785 1.1 cgd * proc *p;
1786 1.1 cgd *
1787 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
1788 1.1 cgd */
1789 1.1 cgd
1790 1.1 cgd void
1791 1.1 cgd setrunqueue(p)
1792 1.1 cgd struct proc *p;
1793 1.1 cgd {
1794 1.1 cgd int bit;
1795 1.1 cgd
1796 1.1 cgd /* firewall: p->p_back must be NULL */
1797 1.1 cgd if (p->p_back != NULL)
1798 1.1 cgd panic("setrunqueue");
1799 1.1 cgd
1800 1.1 cgd bit = p->p_priority >> 2;
1801 1.207 thorpej sched_whichqs |= (1 << bit);
1802 1.207 thorpej p->p_forw = (struct proc *)&sched_qs[bit];
1803 1.207 thorpej p->p_back = sched_qs[bit].ph_rlink;
1804 1.1 cgd p->p_back->p_forw = p;
1805 1.207 thorpej sched_qs[bit].ph_rlink = p;
1806 1.1 cgd }
1807 1.1 cgd
1808 1.1 cgd /*
1809 1.52 cgd * remrunqueue(p)
1810 1.1 cgd *
1811 1.1 cgd * Call should be made at splclock().
1812 1.1 cgd */
1813 1.1 cgd void
1814 1.52 cgd remrunqueue(p)
1815 1.1 cgd struct proc *p;
1816 1.1 cgd {
1817 1.1 cgd int bit;
1818 1.1 cgd
1819 1.1 cgd bit = p->p_priority >> 2;
1820 1.207 thorpej if ((sched_whichqs & (1 << bit)) == 0)
1821 1.52 cgd panic("remrunqueue");
1822 1.1 cgd
1823 1.1 cgd p->p_back->p_forw = p->p_forw;
1824 1.1 cgd p->p_forw->p_back = p->p_back;
1825 1.1 cgd p->p_back = NULL; /* for firewall checking. */
1826 1.1 cgd
1827 1.207 thorpej if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1828 1.207 thorpej sched_whichqs &= ~(1 << bit);
1829 1.1 cgd }
1830 1.1 cgd
1831 1.1 cgd /*
1832 1.1 cgd * Return the best possible estimate of the time in the timeval
1833 1.1 cgd * to which tvp points. Unfortunately, we can't read the hardware registers.
1834 1.1 cgd * We guarantee that the time will be greater than the value obtained by a
1835 1.1 cgd * previous call.
1836 1.1 cgd */
1837 1.1 cgd void
1838 1.1 cgd microtime(tvp)
1839 1.1 cgd register struct timeval *tvp;
1840 1.1 cgd {
1841 1.1 cgd int s = splclock();
1842 1.1 cgd static struct timeval lasttime;
1843 1.1 cgd
1844 1.1 cgd *tvp = time;
1845 1.1 cgd #ifdef notdef
1846 1.1 cgd tvp->tv_usec += clkread();
1847 1.190 msaitoh while (tvp->tv_usec >= 1000000) {
1848 1.1 cgd tvp->tv_sec++;
1849 1.1 cgd tvp->tv_usec -= 1000000;
1850 1.1 cgd }
1851 1.1 cgd #endif
1852 1.1 cgd if (tvp->tv_sec == lasttime.tv_sec &&
1853 1.1 cgd tvp->tv_usec <= lasttime.tv_usec &&
1854 1.190 msaitoh (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
1855 1.1 cgd tvp->tv_sec++;
1856 1.1 cgd tvp->tv_usec -= 1000000;
1857 1.1 cgd }
1858 1.1 cgd lasttime = *tvp;
1859 1.1 cgd splx(s);
1860 1.15 cgd }
1861 1.15 cgd
1862 1.15 cgd /*
1863 1.15 cgd * Wait "n" microseconds.
1864 1.15 cgd */
1865 1.32 cgd void
1866 1.15 cgd delay(n)
1867 1.32 cgd unsigned long n;
1868 1.15 cgd {
1869 1.216 thorpej unsigned long pcc0, pcc1, curcycle, cycles, usec;
1870 1.15 cgd
1871 1.216 thorpej if (n == 0)
1872 1.216 thorpej return;
1873 1.216 thorpej
1874 1.216 thorpej pcc0 = alpha_rpcc() & 0xffffffffUL;
1875 1.216 thorpej cycles = 0;
1876 1.216 thorpej usec = 0;
1877 1.216 thorpej
1878 1.216 thorpej while (usec <= n) {
1879 1.216 thorpej /*
1880 1.216 thorpej * Get the next CPU cycle count- assumes that we cannot
1881 1.216 thorpej * have had more than one 32 bit overflow.
1882 1.216 thorpej */
1883 1.216 thorpej pcc1 = alpha_rpcc() & 0xffffffffUL;
1884 1.216 thorpej if (pcc1 < pcc0)
1885 1.216 thorpej curcycle = (pcc1 + 0x100000000UL) - pcc0;
1886 1.216 thorpej else
1887 1.216 thorpej curcycle = pcc1 - pcc0;
1888 1.186 thorpej
1889 1.216 thorpej /*
1890 1.216 thorpej * We now have the number of processor cycles since we
1891 1.216 thorpej * last checked. Add the current cycle count to the
1892 1.216 thorpej * running total. If it's over cycles_per_usec, increment
1893 1.216 thorpej * the usec counter.
1894 1.216 thorpej */
1895 1.216 thorpej cycles += curcycle;
1896 1.216 thorpej while (cycles > cycles_per_usec) {
1897 1.216 thorpej usec++;
1898 1.216 thorpej cycles -= cycles_per_usec;
1899 1.216 thorpej }
1900 1.216 thorpej pcc0 = pcc1;
1901 1.216 thorpej }
1902 1.1 cgd }
1903 1.1 cgd
1904 1.8 cgd #if defined(COMPAT_OSF1) || 1 /* XXX */
1905 1.55 cgd void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1906 1.85 mycroft u_long));
1907 1.55 cgd
1908 1.1 cgd void
1909 1.85 mycroft cpu_exec_ecoff_setregs(p, epp, stack)
1910 1.1 cgd struct proc *p;
1911 1.19 cgd struct exec_package *epp;
1912 1.5 christos u_long stack;
1913 1.1 cgd {
1914 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1915 1.1 cgd
1916 1.85 mycroft setregs(p, epp, stack);
1917 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1918 1.1 cgd }
1919 1.1 cgd
1920 1.1 cgd /*
1921 1.1 cgd * cpu_exec_ecoff_hook():
1922 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1923 1.1 cgd *
1924 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1925 1.1 cgd *
1926 1.1 cgd */
1927 1.1 cgd int
1928 1.19 cgd cpu_exec_ecoff_hook(p, epp)
1929 1.1 cgd struct proc *p;
1930 1.1 cgd struct exec_package *epp;
1931 1.1 cgd {
1932 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1933 1.5 christos extern struct emul emul_netbsd;
1934 1.171 cgd int error;
1935 1.171 cgd extern int osf1_exec_ecoff_hook(struct proc *p,
1936 1.171 cgd struct exec_package *epp);
1937 1.1 cgd
1938 1.19 cgd switch (execp->f.f_magic) {
1939 1.5 christos #ifdef COMPAT_OSF1
1940 1.1 cgd case ECOFF_MAGIC_ALPHA:
1941 1.171 cgd error = osf1_exec_ecoff_hook(p, epp);
1942 1.1 cgd break;
1943 1.5 christos #endif
1944 1.1 cgd
1945 1.1 cgd case ECOFF_MAGIC_NETBSD_ALPHA:
1946 1.5 christos epp->ep_emul = &emul_netbsd;
1947 1.171 cgd error = 0;
1948 1.1 cgd break;
1949 1.1 cgd
1950 1.1 cgd default:
1951 1.171 cgd error = ENOEXEC;
1952 1.1 cgd }
1953 1.171 cgd return (error);
1954 1.1 cgd }
1955 1.1 cgd #endif
1956 1.110 thorpej
1957 1.110 thorpej int
1958 1.110 thorpej alpha_pa_access(pa)
1959 1.110 thorpej u_long pa;
1960 1.110 thorpej {
1961 1.110 thorpej int i;
1962 1.110 thorpej
1963 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1964 1.110 thorpej if (pa < mem_clusters[i].start)
1965 1.110 thorpej continue;
1966 1.110 thorpej if ((pa - mem_clusters[i].start) >=
1967 1.110 thorpej (mem_clusters[i].size & ~PAGE_MASK))
1968 1.110 thorpej continue;
1969 1.110 thorpej return (mem_clusters[i].size & PAGE_MASK); /* prot */
1970 1.110 thorpej }
1971 1.197 thorpej
1972 1.197 thorpej /*
1973 1.197 thorpej * Address is not a memory address. If we're secure, disallow
1974 1.197 thorpej * access. Otherwise, grant read/write.
1975 1.197 thorpej */
1976 1.197 thorpej if (securelevel > 0)
1977 1.197 thorpej return (PROT_NONE);
1978 1.197 thorpej else
1979 1.197 thorpej return (PROT_READ | PROT_WRITE);
1980 1.110 thorpej }
1981 1.50 cgd
1982 1.50 cgd /* XXX XXX BEGIN XXX XXX */
1983 1.140 thorpej paddr_t alpha_XXX_dmamap_or; /* XXX */
1984 1.50 cgd /* XXX */
1985 1.140 thorpej paddr_t /* XXX */
1986 1.50 cgd alpha_XXX_dmamap(v) /* XXX */
1987 1.140 thorpej vaddr_t v; /* XXX */
1988 1.50 cgd { /* XXX */
1989 1.50 cgd /* XXX */
1990 1.51 cgd return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1991 1.50 cgd } /* XXX */
1992 1.50 cgd /* XXX XXX END XXX XXX */
1993 1.177 ross
1994 1.177 ross char *
1995 1.177 ross dot_conv(x)
1996 1.177 ross unsigned long x;
1997 1.177 ross {
1998 1.177 ross int i;
1999 1.177 ross char *xc;
2000 1.177 ross static int next;
2001 1.177 ross static char space[2][20];
2002 1.177 ross
2003 1.177 ross xc = space[next ^= 1] + sizeof space[0];
2004 1.177 ross *--xc = '\0';
2005 1.177 ross for (i = 0;; ++i) {
2006 1.177 ross if (i && (i & 3) == 0)
2007 1.177 ross *--xc = '.';
2008 1.177 ross *--xc = "0123456789abcdef"[x & 0xf];
2009 1.177 ross x >>= 4;
2010 1.177 ross if (x == 0)
2011 1.177 ross break;
2012 1.177 ross }
2013 1.177 ross return xc;
2014 1.138 ross }
2015