Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.221
      1  1.221  jdolecek /* $NetBSD: machdep.c,v 1.221 2000/09/24 12:32:32 jdolecek Exp $ */
      2  1.110   thorpej 
      3  1.110   thorpej /*-
      4  1.211   thorpej  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      5  1.110   thorpej  * All rights reserved.
      6  1.110   thorpej  *
      7  1.110   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.110   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.110   thorpej  * NASA Ames Research Center and by Chris G. Demetriou.
     10  1.110   thorpej  *
     11  1.110   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.110   thorpej  * modification, are permitted provided that the following conditions
     13  1.110   thorpej  * are met:
     14  1.110   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.110   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.110   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.110   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.110   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.110   thorpej  * 3. All advertising materials mentioning features or use of this software
     20  1.110   thorpej  *    must display the following acknowledgement:
     21  1.110   thorpej  *	This product includes software developed by the NetBSD
     22  1.110   thorpej  *	Foundation, Inc. and its contributors.
     23  1.110   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.110   thorpej  *    contributors may be used to endorse or promote products derived
     25  1.110   thorpej  *    from this software without specific prior written permission.
     26  1.110   thorpej  *
     27  1.110   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.110   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.110   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.110   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.110   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.110   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.110   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.110   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.110   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.110   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.110   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38  1.110   thorpej  */
     39    1.1       cgd 
     40    1.1       cgd /*
     41   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42    1.1       cgd  * All rights reserved.
     43    1.1       cgd  *
     44    1.1       cgd  * Author: Chris G. Demetriou
     45    1.1       cgd  *
     46    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     47    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     48    1.1       cgd  * notice and this permission notice appear in all copies of the
     49    1.1       cgd  * software, derivative works or modified versions, and any portions
     50    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     51    1.1       cgd  *
     52    1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53    1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55    1.1       cgd  *
     56    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     57    1.1       cgd  *
     58    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59    1.1       cgd  *  School of Computer Science
     60    1.1       cgd  *  Carnegie Mellon University
     61    1.1       cgd  *  Pittsburgh PA 15213-3890
     62    1.1       cgd  *
     63    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     64    1.1       cgd  * rights to redistribute these changes.
     65    1.1       cgd  */
     66   1.74       cgd 
     67  1.129  jonathan #include "opt_ddb.h"
     68  1.147   thorpej #include "opt_multiprocessor.h"
     69  1.123   thorpej #include "opt_dec_3000_300.h"
     70  1.123   thorpej #include "opt_dec_3000_500.h"
     71  1.127   thorpej #include "opt_compat_osf1.h"
     72  1.141   thorpej #include "opt_compat_netbsd.h"
     73  1.112   thorpej 
     74   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     75   1.75       cgd 
     76  1.221  jdolecek __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.221 2000/09/24 12:32:32 jdolecek Exp $");
     77    1.1       cgd 
     78    1.1       cgd #include <sys/param.h>
     79    1.1       cgd #include <sys/systm.h>
     80    1.1       cgd #include <sys/signalvar.h>
     81    1.1       cgd #include <sys/kernel.h>
     82    1.1       cgd #include <sys/map.h>
     83    1.1       cgd #include <sys/proc.h>
     84  1.207   thorpej #include <sys/sched.h>
     85    1.1       cgd #include <sys/buf.h>
     86    1.1       cgd #include <sys/reboot.h>
     87   1.28       cgd #include <sys/device.h>
     88    1.1       cgd #include <sys/file.h>
     89    1.1       cgd #include <sys/malloc.h>
     90    1.1       cgd #include <sys/mbuf.h>
     91  1.110   thorpej #include <sys/mman.h>
     92    1.1       cgd #include <sys/msgbuf.h>
     93    1.1       cgd #include <sys/ioctl.h>
     94    1.1       cgd #include <sys/tty.h>
     95    1.1       cgd #include <sys/user.h>
     96    1.1       cgd #include <sys/exec.h>
     97    1.1       cgd #include <sys/exec_ecoff.h>
     98   1.43       cgd #include <sys/core.h>
     99   1.43       cgd #include <sys/kcore.h>
    100   1.43       cgd #include <machine/kcore.h>
    101    1.1       cgd 
    102    1.1       cgd #include <sys/mount.h>
    103    1.1       cgd #include <sys/syscallargs.h>
    104    1.1       cgd 
    105  1.112   thorpej #include <uvm/uvm_extern.h>
    106  1.217       mrg #include <sys/sysctl.h>
    107  1.112   thorpej 
    108    1.1       cgd #include <dev/cons.h>
    109    1.1       cgd 
    110   1.81   thorpej #include <machine/autoconf.h>
    111    1.1       cgd #include <machine/cpu.h>
    112    1.1       cgd #include <machine/reg.h>
    113    1.1       cgd #include <machine/rpb.h>
    114    1.1       cgd #include <machine/prom.h>
    115   1.73       cgd #include <machine/conf.h>
    116  1.172      ross #include <machine/ieeefp.h>
    117  1.148   thorpej 
    118   1.81   thorpej #ifdef DDB
    119   1.81   thorpej #include <machine/db_machdep.h>
    120   1.81   thorpej #include <ddb/db_access.h>
    121   1.81   thorpej #include <ddb/db_sym.h>
    122   1.81   thorpej #include <ddb/db_extern.h>
    123   1.81   thorpej #include <ddb/db_interface.h>
    124   1.81   thorpej #endif
    125   1.81   thorpej 
    126  1.155      ross #include <machine/alpha.h>
    127  1.143      matt 
    128  1.112   thorpej vm_map_t exec_map = NULL;
    129  1.112   thorpej vm_map_t mb_map = NULL;
    130  1.112   thorpej vm_map_t phys_map = NULL;
    131    1.1       cgd 
    132   1.86       leo caddr_t msgbufaddr;
    133   1.86       leo 
    134    1.1       cgd int	maxmem;			/* max memory per process */
    135    1.7       cgd 
    136    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    137    1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    138    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    139    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    140    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    141    1.1       cgd 
    142    1.1       cgd int	cputype;		/* system type, from the RPB */
    143  1.210   thorpej 
    144  1.210   thorpej int	bootdev_debug = 0;	/* patchable, or from DDB */
    145    1.1       cgd 
    146    1.1       cgd /*
    147    1.1       cgd  * XXX We need an address to which we can assign things so that they
    148    1.1       cgd  * won't be optimized away because we didn't use the value.
    149    1.1       cgd  */
    150    1.1       cgd u_int32_t no_optimize;
    151    1.1       cgd 
    152    1.1       cgd /* the following is used externally (sysctl_hw) */
    153   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    154   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    155   1.29       cgd char	cpu_model[128];
    156    1.1       cgd 
    157    1.1       cgd struct	user *proc0paddr;
    158    1.1       cgd 
    159    1.1       cgd /* Number of machine cycles per microsecond */
    160    1.1       cgd u_int64_t	cycles_per_usec;
    161    1.1       cgd 
    162    1.7       cgd /* number of cpus in the box.  really! */
    163    1.7       cgd int		ncpus;
    164    1.7       cgd 
    165  1.102       cgd struct bootinfo_kernel bootinfo;
    166   1.81   thorpej 
    167  1.123   thorpej /* For built-in TCDS */
    168  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    169  1.123   thorpej u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    170  1.123   thorpej #endif
    171  1.123   thorpej 
    172   1.89    mjacob struct platform platform;
    173   1.89    mjacob 
    174   1.81   thorpej #ifdef DDB
    175   1.81   thorpej /* start and end of kernel symbol table */
    176   1.81   thorpej void	*ksym_start, *ksym_end;
    177   1.81   thorpej #endif
    178   1.81   thorpej 
    179   1.30       cgd /* for cpu_sysctl() */
    180   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    181   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    182   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    183   1.30       cgd 
    184  1.110   thorpej /*
    185  1.110   thorpej  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    186  1.110   thorpej  * XXX it should also be larger than it is, because not all of the mddt
    187  1.110   thorpej  * XXX clusters end up being used for VM.
    188  1.110   thorpej  */
    189  1.110   thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    190  1.110   thorpej int	mem_cluster_cnt;
    191  1.110   thorpej 
    192   1.55       cgd int	cpu_dump __P((void));
    193   1.55       cgd int	cpu_dumpsize __P((void));
    194  1.110   thorpej u_long	cpu_dump_mempagecnt __P((void));
    195   1.55       cgd void	dumpsys __P((void));
    196   1.55       cgd void	identifycpu __P((void));
    197   1.55       cgd void	printregs __P((struct reg *));
    198   1.33       cgd 
    199   1.55       cgd void
    200  1.102       cgd alpha_init(pfn, ptb, bim, bip, biv)
    201    1.1       cgd 	u_long pfn;		/* first free PFN number */
    202    1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    203   1.81   thorpej 	u_long bim;		/* bootinfo magic */
    204   1.81   thorpej 	u_long bip;		/* bootinfo pointer */
    205  1.102       cgd 	u_long biv;		/* bootinfo version */
    206    1.1       cgd {
    207   1.95   thorpej 	extern char kernel_text[], _end[];
    208    1.1       cgd 	struct mddt *mddtp;
    209  1.110   thorpej 	struct mddt_cluster *memc;
    210    1.7       cgd 	int i, mddtweird;
    211  1.110   thorpej 	struct vm_physseg *vps;
    212  1.140   thorpej 	vaddr_t kernstart, kernend;
    213  1.140   thorpej 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    214  1.140   thorpej 	vsize_t size;
    215  1.211   thorpej 	cpuid_t cpu_id;
    216  1.211   thorpej 	struct cpu_info *ci;
    217    1.1       cgd 	char *p;
    218   1.95   thorpej 	caddr_t v;
    219  1.209   thorpej 	const char *bootinfo_msg;
    220  1.209   thorpej 	const struct cpuinit *c;
    221  1.106       cgd 
    222  1.106       cgd 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    223    1.1       cgd 
    224    1.1       cgd 	/*
    225   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    226    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    227    1.1       cgd 	 */
    228   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    229   1.32       cgd 	alpha_pal_wrfen(0);
    230   1.37       cgd 	ALPHA_TBIA();
    231   1.32       cgd 	alpha_pal_imb();
    232    1.1       cgd 
    233  1.211   thorpej 	cpu_id = cpu_number();
    234  1.211   thorpej 
    235  1.189   thorpej #if defined(MULTIPROCESSOR)
    236  1.189   thorpej 	/*
    237  1.189   thorpej 	 * Set our SysValue to the address of our cpu_info structure.
    238  1.189   thorpej 	 * Secondary processors do this in their spinup trampoline.
    239  1.189   thorpej 	 */
    240  1.211   thorpej 	alpha_pal_wrval((u_long)&cpu_info[cpu_id]);
    241  1.189   thorpej #endif
    242  1.189   thorpej 
    243  1.211   thorpej 	ci = curcpu();
    244  1.211   thorpej 	ci->ci_cpuid = cpu_id;
    245  1.211   thorpej 
    246    1.1       cgd 	/*
    247  1.106       cgd 	 * Get critical system information (if possible, from the
    248  1.106       cgd 	 * information provided by the boot program).
    249   1.81   thorpej 	 */
    250  1.106       cgd 	bootinfo_msg = NULL;
    251   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    252  1.102       cgd 		if (biv == 0) {		/* backward compat */
    253  1.102       cgd 			biv = *(u_long *)bip;
    254  1.102       cgd 			bip += 8;
    255  1.102       cgd 		}
    256  1.102       cgd 		switch (biv) {
    257  1.102       cgd 		case 1: {
    258  1.102       cgd 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    259  1.102       cgd 
    260  1.102       cgd 			bootinfo.ssym = v1p->ssym;
    261  1.102       cgd 			bootinfo.esym = v1p->esym;
    262  1.106       cgd 			/* hwrpb may not be provided by boot block in v1 */
    263  1.106       cgd 			if (v1p->hwrpb != NULL) {
    264  1.106       cgd 				bootinfo.hwrpb_phys =
    265  1.106       cgd 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    266  1.106       cgd 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    267  1.106       cgd 			} else {
    268  1.106       cgd 				bootinfo.hwrpb_phys =
    269  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    270  1.106       cgd 				bootinfo.hwrpb_size =
    271  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    272  1.106       cgd 			}
    273  1.102       cgd 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    274  1.102       cgd 			    min(sizeof v1p->boot_flags,
    275  1.102       cgd 			      sizeof bootinfo.boot_flags));
    276  1.102       cgd 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    277  1.102       cgd 			    min(sizeof v1p->booted_kernel,
    278  1.102       cgd 			      sizeof bootinfo.booted_kernel));
    279  1.106       cgd 			/* booted dev not provided in bootinfo */
    280  1.106       cgd 			init_prom_interface((struct rpb *)
    281  1.106       cgd 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    282  1.102       cgd                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    283  1.102       cgd 			    sizeof bootinfo.booted_dev);
    284   1.81   thorpej 			break;
    285  1.102       cgd 		}
    286   1.81   thorpej 		default:
    287  1.106       cgd 			bootinfo_msg = "unknown bootinfo version";
    288  1.102       cgd 			goto nobootinfo;
    289   1.81   thorpej 		}
    290  1.102       cgd 	} else {
    291  1.106       cgd 		bootinfo_msg = "boot program did not pass bootinfo";
    292  1.102       cgd nobootinfo:
    293  1.102       cgd 		bootinfo.ssym = (u_long)_end;
    294  1.102       cgd 		bootinfo.esym = (u_long)_end;
    295  1.106       cgd 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    296  1.106       cgd 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    297  1.106       cgd 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    298  1.102       cgd 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    299  1.102       cgd 		    sizeof bootinfo.boot_flags);
    300  1.102       cgd 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    301  1.102       cgd 		    sizeof bootinfo.booted_kernel);
    302  1.102       cgd 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    303  1.102       cgd 		    sizeof bootinfo.booted_dev);
    304  1.102       cgd 	}
    305  1.102       cgd 
    306   1.81   thorpej 	/*
    307  1.106       cgd 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    308  1.106       cgd 	 * lots of things.
    309  1.106       cgd 	 */
    310  1.106       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    311  1.123   thorpej 
    312  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    313  1.123   thorpej 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    314  1.123   thorpej 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    315  1.123   thorpej 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    316  1.123   thorpej 		    sizeof(dec_3000_scsiid));
    317  1.123   thorpej 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    318  1.123   thorpej 		    sizeof(dec_3000_scsifast));
    319  1.123   thorpej 	}
    320  1.123   thorpej #endif
    321  1.106       cgd 
    322  1.106       cgd 	/*
    323  1.106       cgd 	 * Remember how many cycles there are per microsecond,
    324  1.106       cgd 	 * so that we can use delay().  Round up, for safety.
    325  1.106       cgd 	 */
    326  1.106       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    327  1.106       cgd 
    328  1.106       cgd 	/*
    329  1.106       cgd 	 * Initalize the (temporary) bootstrap console interface, so
    330  1.106       cgd 	 * we can use printf until the VM system starts being setup.
    331  1.106       cgd 	 * The real console is initialized before then.
    332  1.106       cgd 	 */
    333  1.106       cgd 	init_bootstrap_console();
    334  1.106       cgd 
    335  1.106       cgd 	/* OUTPUT NOW ALLOWED */
    336  1.106       cgd 
    337  1.106       cgd 	/* delayed from above */
    338  1.106       cgd 	if (bootinfo_msg)
    339  1.106       cgd 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    340  1.106       cgd 		    bootinfo_msg, bim, bip, biv);
    341  1.106       cgd 
    342  1.147   thorpej 	/* Initialize the trap vectors on the primary processor. */
    343  1.147   thorpej 	trap_init();
    344    1.1       cgd 
    345    1.1       cgd 	/*
    346  1.106       cgd 	 * Find out what hardware we're on, and do basic initialization.
    347  1.106       cgd 	 */
    348  1.106       cgd 	cputype = hwrpb->rpb_type;
    349  1.167       cgd 	if (cputype < 0) {
    350  1.167       cgd 		/*
    351  1.167       cgd 		 * At least some white-box systems have SRM which
    352  1.167       cgd 		 * reports a systype that's the negative of their
    353  1.167       cgd 		 * blue-box counterpart.
    354  1.167       cgd 		 */
    355  1.167       cgd 		cputype = -cputype;
    356  1.167       cgd 	}
    357  1.209   thorpej 	c = platform_lookup(cputype);
    358  1.209   thorpej 	if (c == NULL) {
    359  1.106       cgd 		platform_not_supported();
    360  1.106       cgd 		/* NOTREACHED */
    361  1.106       cgd 	}
    362  1.209   thorpej 	(*c->init)();
    363  1.106       cgd 	strcpy(cpu_model, platform.model);
    364  1.106       cgd 
    365  1.106       cgd 	/*
    366  1.199     soren 	 * Initalize the real console, so that the bootstrap console is
    367  1.106       cgd 	 * no longer necessary.
    368  1.106       cgd 	 */
    369  1.169   thorpej 	(*platform.cons_init)();
    370  1.106       cgd 
    371  1.106       cgd #ifdef DIAGNOSTIC
    372  1.106       cgd 	/* Paranoid sanity checking */
    373  1.106       cgd 
    374  1.199     soren 	/* We should always be running on the primary. */
    375  1.211   thorpej 	assert(hwrpb->rpb_primary_cpu_id == cpu_id);
    376  1.106       cgd 
    377  1.116    mjacob 	/*
    378  1.116    mjacob 	 * On single-CPU systypes, the primary should always be CPU 0,
    379  1.116    mjacob 	 * except on Alpha 8200 systems where the CPU id is related
    380  1.116    mjacob 	 * to the VID, which is related to the Turbo Laser node id.
    381  1.116    mjacob 	 */
    382  1.106       cgd 	if (cputype != ST_DEC_21000)
    383  1.106       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);
    384  1.106       cgd #endif
    385  1.106       cgd 
    386  1.106       cgd 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    387  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    388  1.106       cgd 	/*
    389  1.106       cgd 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    390  1.106       cgd 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    391  1.106       cgd 	 */
    392  1.106       cgd #endif
    393  1.106       cgd 
    394  1.106       cgd 	/*
    395  1.106       cgd 	 * find out this system's page size
    396   1.95   thorpej 	 */
    397   1.95   thorpej 	PAGE_SIZE = hwrpb->rpb_page_size;
    398   1.95   thorpej 	if (PAGE_SIZE != 8192)
    399   1.95   thorpej 		panic("page size %d != 8192?!", PAGE_SIZE);
    400   1.95   thorpej 
    401   1.95   thorpej 	/*
    402   1.95   thorpej 	 * Initialize PAGE_SIZE-dependent variables.
    403   1.95   thorpej 	 */
    404  1.112   thorpej 	uvm_setpagesize();
    405   1.95   thorpej 
    406   1.95   thorpej 	/*
    407  1.101       cgd 	 * Find the beginning and end of the kernel (and leave a
    408  1.101       cgd 	 * bit of space before the beginning for the bootstrap
    409  1.101       cgd 	 * stack).
    410   1.95   thorpej 	 */
    411  1.201    kleink 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
    412   1.95   thorpej #ifdef DDB
    413  1.102       cgd 	ksym_start = (void *)bootinfo.ssym;
    414  1.102       cgd 	ksym_end   = (void *)bootinfo.esym;
    415  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
    416  1.102       cgd #else
    417  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)_end);
    418   1.95   thorpej #endif
    419   1.95   thorpej 
    420  1.110   thorpej 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    421  1.110   thorpej 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    422  1.110   thorpej 
    423   1.95   thorpej 	/*
    424    1.1       cgd 	 * Find out how much memory is available, by looking at
    425    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    426    1.7       cgd 	 * its best to detect things things that have never been seen
    427    1.7       cgd 	 * before...
    428    1.1       cgd 	 */
    429    1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    430    1.7       cgd 
    431  1.110   thorpej 	/* MDDT SANITY CHECKING */
    432    1.7       cgd 	mddtweird = 0;
    433  1.110   thorpej 	if (mddtp->mddt_cluster_cnt < 2) {
    434    1.7       cgd 		mddtweird = 1;
    435  1.160   thorpej 		printf("WARNING: weird number of mem clusters: %lu\n",
    436  1.110   thorpej 		    mddtp->mddt_cluster_cnt);
    437    1.7       cgd 	}
    438    1.7       cgd 
    439  1.110   thorpej #if 0
    440  1.110   thorpej 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    441  1.110   thorpej #endif
    442  1.110   thorpej 
    443  1.110   thorpej 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    444  1.110   thorpej 		memc = &mddtp->mddt_clusters[i];
    445  1.110   thorpej #if 0
    446  1.110   thorpej 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    447  1.110   thorpej 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    448  1.110   thorpej #endif
    449  1.110   thorpej 		totalphysmem += memc->mddt_pg_cnt;
    450  1.110   thorpej 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    451  1.110   thorpej 			mem_clusters[mem_cluster_cnt].start =
    452  1.110   thorpej 			    ptoa(memc->mddt_pfn);
    453  1.110   thorpej 			mem_clusters[mem_cluster_cnt].size =
    454  1.110   thorpej 			    ptoa(memc->mddt_pg_cnt);
    455  1.110   thorpej 			if (memc->mddt_usage & MDDT_mbz ||
    456  1.110   thorpej 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    457  1.110   thorpej 			    memc->mddt_usage & MDDT_PALCODE)
    458  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    459  1.110   thorpej 				    PROT_READ;
    460  1.110   thorpej 			else
    461  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    462  1.110   thorpej 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    463  1.110   thorpej 			mem_cluster_cnt++;
    464  1.110   thorpej 		}
    465  1.110   thorpej 
    466  1.110   thorpej 		if (memc->mddt_usage & MDDT_mbz) {
    467    1.7       cgd 			mddtweird = 1;
    468  1.110   thorpej 			printf("WARNING: mem cluster %d has weird "
    469  1.110   thorpej 			    "usage 0x%lx\n", i, memc->mddt_usage);
    470  1.110   thorpej 			unknownmem += memc->mddt_pg_cnt;
    471  1.110   thorpej 			continue;
    472    1.7       cgd 		}
    473  1.110   thorpej 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    474  1.110   thorpej 			/* XXX should handle these... */
    475  1.110   thorpej 			printf("WARNING: skipping non-volatile mem "
    476  1.110   thorpej 			    "cluster %d\n", i);
    477  1.110   thorpej 			unusedmem += memc->mddt_pg_cnt;
    478  1.110   thorpej 			continue;
    479  1.110   thorpej 		}
    480  1.110   thorpej 		if (memc->mddt_usage & MDDT_PALCODE) {
    481  1.110   thorpej 			resvmem += memc->mddt_pg_cnt;
    482  1.110   thorpej 			continue;
    483  1.110   thorpej 		}
    484  1.110   thorpej 
    485  1.110   thorpej 		/*
    486  1.110   thorpej 		 * We have a memory cluster available for system
    487  1.110   thorpej 		 * software use.  We must determine if this cluster
    488  1.110   thorpej 		 * holds the kernel.
    489  1.110   thorpej 		 */
    490  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    491  1.110   thorpej 		/*
    492  1.110   thorpej 		 * XXX If the kernel uses the PROM console, we only use the
    493  1.110   thorpej 		 * XXX memory after the kernel in the first system segment,
    494  1.110   thorpej 		 * XXX to avoid clobbering prom mapping, data, etc.
    495  1.110   thorpej 		 */
    496  1.110   thorpej 	    if (!pmap_uses_prom_console() || physmem == 0) {
    497  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    498  1.110   thorpej 		physmem += memc->mddt_pg_cnt;
    499  1.110   thorpej 		pfn0 = memc->mddt_pfn;
    500  1.110   thorpej 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    501  1.110   thorpej 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    502  1.110   thorpej 			/*
    503  1.110   thorpej 			 * Must compute the location of the kernel
    504  1.110   thorpej 			 * within the segment.
    505  1.110   thorpej 			 */
    506  1.110   thorpej #if 0
    507  1.110   thorpej 			printf("Cluster %d contains kernel\n", i);
    508  1.110   thorpej #endif
    509  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    510  1.110   thorpej 		    if (!pmap_uses_prom_console()) {
    511  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    512  1.110   thorpej 			if (pfn0 < kernstartpfn) {
    513  1.110   thorpej 				/*
    514  1.110   thorpej 				 * There is a chunk before the kernel.
    515  1.110   thorpej 				 */
    516  1.110   thorpej #if 0
    517  1.110   thorpej 				printf("Loading chunk before kernel: "
    518  1.110   thorpej 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    519  1.110   thorpej #endif
    520  1.112   thorpej 				uvm_page_physload(pfn0, kernstartpfn,
    521  1.135   thorpej 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    522  1.110   thorpej 			}
    523  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    524  1.110   thorpej 		    }
    525  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    526  1.110   thorpej 			if (kernendpfn < pfn1) {
    527  1.110   thorpej 				/*
    528  1.110   thorpej 				 * There is a chunk after the kernel.
    529  1.110   thorpej 				 */
    530  1.110   thorpej #if 0
    531  1.110   thorpej 				printf("Loading chunk after kernel: "
    532  1.110   thorpej 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    533  1.110   thorpej #endif
    534  1.112   thorpej 				uvm_page_physload(kernendpfn, pfn1,
    535  1.135   thorpej 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    536  1.110   thorpej 			}
    537  1.110   thorpej 		} else {
    538  1.110   thorpej 			/*
    539  1.110   thorpej 			 * Just load this cluster as one chunk.
    540  1.110   thorpej 			 */
    541  1.110   thorpej #if 0
    542  1.110   thorpej 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    543  1.110   thorpej 			    pfn0, pfn1);
    544  1.110   thorpej #endif
    545  1.135   thorpej 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    546  1.135   thorpej 			    VM_FREELIST_DEFAULT);
    547    1.7       cgd 		}
    548  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    549  1.110   thorpej 	    }
    550  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    551    1.7       cgd 	}
    552    1.7       cgd 
    553  1.110   thorpej 	/*
    554  1.110   thorpej 	 * Dump out the MDDT if it looks odd...
    555  1.110   thorpej 	 */
    556    1.7       cgd 	if (mddtweird) {
    557   1.46  christos 		printf("\n");
    558   1.46  christos 		printf("complete memory cluster information:\n");
    559    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    560   1.46  christos 			printf("mddt %d:\n", i);
    561   1.46  christos 			printf("\tpfn %lx\n",
    562    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    563   1.46  christos 			printf("\tcnt %lx\n",
    564    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    565   1.46  christos 			printf("\ttest %lx\n",
    566    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    567   1.46  christos 			printf("\tbva %lx\n",
    568    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    569   1.46  christos 			printf("\tbpa %lx\n",
    570    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    571   1.46  christos 			printf("\tbcksum %lx\n",
    572    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    573   1.46  christos 			printf("\tusage %lx\n",
    574    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    575    1.2       cgd 		}
    576   1.46  christos 		printf("\n");
    577    1.2       cgd 	}
    578    1.2       cgd 
    579    1.7       cgd 	if (totalphysmem == 0)
    580    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    581    1.1       cgd 	maxmem = physmem;
    582    1.7       cgd #if 0
    583   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    584   1.46  christos 	printf("physmem = %d\n", physmem);
    585   1.46  christos 	printf("resvmem = %d\n", resvmem);
    586   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    587   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    588    1.7       cgd #endif
    589    1.7       cgd 
    590    1.1       cgd 	/*
    591    1.1       cgd 	 * Initialize error message buffer (at end of core).
    592    1.1       cgd 	 */
    593  1.110   thorpej 	{
    594  1.204     enami 		vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
    595  1.203     enami 		vsize_t reqsz = sz;
    596  1.110   thorpej 
    597  1.110   thorpej 		vps = &vm_physmem[vm_nphysseg - 1];
    598  1.110   thorpej 
    599  1.110   thorpej 		/* shrink so that it'll fit in the last segment */
    600  1.110   thorpej 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    601  1.110   thorpej 			sz = ptoa(vps->avail_end - vps->avail_start);
    602  1.110   thorpej 
    603  1.110   thorpej 		vps->end -= atop(sz);
    604  1.110   thorpej 		vps->avail_end -= atop(sz);
    605  1.110   thorpej 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    606  1.110   thorpej 		initmsgbuf(msgbufaddr, sz);
    607  1.110   thorpej 
    608  1.110   thorpej 		/* Remove the last segment if it now has no pages. */
    609  1.110   thorpej 		if (vps->start == vps->end)
    610  1.110   thorpej 			vm_nphysseg--;
    611  1.110   thorpej 
    612  1.110   thorpej 		/* warn if the message buffer had to be shrunk */
    613  1.203     enami 		if (sz != reqsz)
    614  1.203     enami 			printf("WARNING: %ld bytes not available for msgbuf "
    615  1.203     enami 			    "in last cluster (%ld used)\n", reqsz, sz);
    616  1.110   thorpej 
    617  1.110   thorpej 	}
    618    1.1       cgd 
    619    1.1       cgd 	/*
    620   1.95   thorpej 	 * Init mapping for u page(s) for proc 0
    621    1.1       cgd 	 */
    622  1.110   thorpej 	proc0.p_addr = proc0paddr =
    623  1.110   thorpej 	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
    624    1.1       cgd 
    625    1.1       cgd 	/*
    626   1.95   thorpej 	 * Allocate space for system data structures.  These data structures
    627   1.95   thorpej 	 * are allocated here instead of cpu_startup() because physical
    628   1.95   thorpej 	 * memory is directly addressable.  We don't have to map these into
    629   1.95   thorpej 	 * virtual address space.
    630   1.95   thorpej 	 */
    631  1.198   thorpej 	size = (vsize_t)allocsys(NULL, NULL);
    632  1.110   thorpej 	v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
    633  1.198   thorpej 	if ((allocsys(v, NULL) - v) != size)
    634   1.95   thorpej 		panic("alpha_init: table size inconsistency");
    635    1.1       cgd 
    636    1.1       cgd 	/*
    637    1.1       cgd 	 * Initialize the virtual memory system, and set the
    638    1.1       cgd 	 * page table base register in proc 0's PCB.
    639    1.1       cgd 	 */
    640  1.110   thorpej 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    641  1.144   thorpej 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    642    1.1       cgd 
    643    1.1       cgd 	/*
    644    1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    645    1.3       cgd 	 * address.
    646    1.3       cgd 	 */
    647    1.3       cgd 	proc0.p_md.md_pcbpaddr =
    648  1.140   thorpej 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
    649    1.3       cgd 
    650    1.3       cgd 	/*
    651    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    652    1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    653    1.3       cgd 	 */
    654   1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    655    1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    656   1.81   thorpej 	proc0.p_md.md_tf =
    657   1.81   thorpej 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    658  1.189   thorpej 
    659  1.189   thorpej 	/*
    660  1.208   thorpej 	 * Initialize the primary CPU's idle PCB to proc0's.  In a
    661  1.208   thorpej 	 * MULTIPROCESSOR configuration, each CPU will later get
    662  1.208   thorpej 	 * its own idle PCB when autoconfiguration runs.
    663  1.189   thorpej 	 */
    664  1.211   thorpej 	ci->ci_idle_pcb = &proc0paddr->u_pcb;
    665  1.211   thorpej 	ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
    666  1.208   thorpej 
    667  1.208   thorpej 	/* Indicate that proc0 has a CPU. */
    668  1.211   thorpej 	proc0.p_cpu = ci;
    669    1.1       cgd 
    670    1.1       cgd 	/*
    671   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    672    1.8       cgd 	 */
    673    1.1       cgd 
    674    1.8       cgd 	boothowto = RB_SINGLE;
    675    1.1       cgd #ifdef KADB
    676    1.1       cgd 	boothowto |= RB_KDB;
    677    1.1       cgd #endif
    678  1.102       cgd 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    679   1.26       cgd 		/*
    680   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    681   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    682   1.26       cgd 		 * says that we shouldn't.
    683   1.26       cgd 		 */
    684    1.8       cgd 		switch (*p) {
    685   1.26       cgd 		case 'a': /* autoboot */
    686   1.26       cgd 		case 'A':
    687   1.26       cgd 			boothowto &= ~RB_SINGLE;
    688   1.21       cgd 			break;
    689   1.21       cgd 
    690   1.43       cgd #ifdef DEBUG
    691   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    692   1.43       cgd 		case 'C':
    693   1.43       cgd 			boothowto |= RB_DUMP;
    694   1.43       cgd 			break;
    695   1.43       cgd #endif
    696   1.43       cgd 
    697   1.81   thorpej #if defined(KGDB) || defined(DDB)
    698   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    699   1.81   thorpej 		case 'D':
    700   1.81   thorpej 			boothowto |= RB_KDB;
    701   1.81   thorpej 			break;
    702   1.81   thorpej #endif
    703   1.81   thorpej 
    704   1.36       cgd 		case 'h': /* always halt, never reboot */
    705   1.36       cgd 		case 'H':
    706   1.36       cgd 			boothowto |= RB_HALT;
    707    1.8       cgd 			break;
    708    1.8       cgd 
    709   1.21       cgd #if 0
    710    1.8       cgd 		case 'm': /* mini root present in memory */
    711   1.26       cgd 		case 'M':
    712    1.8       cgd 			boothowto |= RB_MINIROOT;
    713    1.8       cgd 			break;
    714   1.21       cgd #endif
    715   1.36       cgd 
    716   1.36       cgd 		case 'n': /* askname */
    717   1.36       cgd 		case 'N':
    718   1.36       cgd 			boothowto |= RB_ASKNAME;
    719   1.65       cgd 			break;
    720   1.65       cgd 
    721   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    722   1.65       cgd 		case 'S':
    723   1.65       cgd 			boothowto |= RB_SINGLE;
    724  1.221  jdolecek 			break;
    725  1.221  jdolecek 
    726  1.221  jdolecek 		case 'q': /* quiet boot */
    727  1.221  jdolecek 		case 'Q':
    728  1.221  jdolecek 			boothowto |= AB_QUIET;
    729  1.221  jdolecek 			break;
    730  1.221  jdolecek 
    731  1.221  jdolecek 		case 'v': /* verbose boot */
    732  1.221  jdolecek 		case 'V':
    733  1.221  jdolecek 			boothowto |= AB_VERBOSE;
    734  1.119   thorpej 			break;
    735  1.119   thorpej 
    736  1.119   thorpej 		case '-':
    737  1.119   thorpej 			/*
    738  1.119   thorpej 			 * Just ignore this.  It's not required, but it's
    739  1.119   thorpej 			 * common for it to be passed regardless.
    740  1.119   thorpej 			 */
    741   1.65       cgd 			break;
    742   1.65       cgd 
    743   1.65       cgd 		default:
    744   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    745   1.36       cgd 			break;
    746    1.1       cgd 		}
    747    1.1       cgd 	}
    748    1.1       cgd 
    749  1.136    mjacob 
    750  1.136    mjacob 	/*
    751  1.136    mjacob 	 * Figure out the number of cpus in the box, from RPB fields.
    752  1.136    mjacob 	 * Really.  We mean it.
    753  1.136    mjacob 	 */
    754  1.136    mjacob 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    755  1.136    mjacob 		struct pcs *pcsp;
    756  1.136    mjacob 
    757  1.144   thorpej 		pcsp = LOCATE_PCS(hwrpb, i);
    758  1.136    mjacob 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    759  1.136    mjacob 			ncpus++;
    760  1.136    mjacob 	}
    761  1.136    mjacob 
    762    1.7       cgd 	/*
    763  1.106       cgd 	 * Initialize debuggers, and break into them if appropriate.
    764  1.106       cgd 	 */
    765  1.106       cgd #ifdef DDB
    766  1.106       cgd 	db_machine_init();
    767  1.159    mjacob 	ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    768  1.159    mjacob 	    ksym_start, ksym_end);
    769  1.106       cgd 	if (boothowto & RB_KDB)
    770  1.106       cgd 		Debugger();
    771  1.106       cgd #endif
    772  1.106       cgd #ifdef KGDB
    773  1.106       cgd 	if (boothowto & RB_KDB)
    774  1.106       cgd 		kgdb_connect(0);
    775  1.106       cgd #endif
    776  1.106       cgd 	/*
    777  1.106       cgd 	 * Figure out our clock frequency, from RPB fields.
    778  1.106       cgd 	 */
    779  1.106       cgd 	hz = hwrpb->rpb_intr_freq >> 12;
    780  1.106       cgd 	if (!(60 <= hz && hz <= 10240)) {
    781  1.106       cgd 		hz = 1024;
    782  1.106       cgd #ifdef DIAGNOSTIC
    783  1.106       cgd 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    784  1.106       cgd 			hwrpb->rpb_intr_freq, hz);
    785  1.106       cgd #endif
    786  1.106       cgd 	}
    787   1.95   thorpej }
    788   1.95   thorpej 
    789   1.18       cgd void
    790    1.1       cgd consinit()
    791    1.1       cgd {
    792   1.81   thorpej 
    793  1.106       cgd 	/*
    794  1.106       cgd 	 * Everything related to console initialization is done
    795  1.106       cgd 	 * in alpha_init().
    796  1.106       cgd 	 */
    797  1.106       cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    798  1.106       cgd 	printf("consinit: %susing prom console\n",
    799  1.106       cgd 	    pmap_uses_prom_console() ? "" : "not ");
    800   1.81   thorpej #endif
    801    1.1       cgd }
    802  1.118   thorpej 
    803  1.118   thorpej #include "pckbc.h"
    804  1.118   thorpej #include "pckbd.h"
    805  1.118   thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
    806  1.118   thorpej 
    807  1.187   thorpej #include <dev/ic/pckbcvar.h>
    808  1.118   thorpej 
    809  1.118   thorpej /*
    810  1.118   thorpej  * This is called by the pbkbc driver if no pckbd is configured.
    811  1.118   thorpej  * On the i386, it is used to glue in the old, deprecated console
    812  1.118   thorpej  * code.  On the Alpha, it does nothing.
    813  1.118   thorpej  */
    814  1.118   thorpej int
    815  1.118   thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
    816  1.118   thorpej 	pckbc_tag_t kbctag;
    817  1.118   thorpej 	pckbc_slot_t kbcslot;
    818  1.118   thorpej {
    819  1.118   thorpej 
    820  1.118   thorpej 	return (ENXIO);
    821  1.118   thorpej }
    822  1.118   thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
    823    1.1       cgd 
    824   1.18       cgd void
    825    1.1       cgd cpu_startup()
    826    1.1       cgd {
    827    1.1       cgd 	register unsigned i;
    828    1.1       cgd 	int base, residual;
    829  1.140   thorpej 	vaddr_t minaddr, maxaddr;
    830  1.140   thorpej 	vsize_t size;
    831  1.173     lukem 	char pbuf[9];
    832   1.40       cgd #if defined(DEBUG)
    833    1.1       cgd 	extern int pmapdebug;
    834    1.1       cgd 	int opmapdebug = pmapdebug;
    835    1.1       cgd 
    836    1.1       cgd 	pmapdebug = 0;
    837    1.1       cgd #endif
    838    1.1       cgd 
    839    1.1       cgd 	/*
    840    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    841    1.1       cgd 	 */
    842   1.46  christos 	printf(version);
    843    1.1       cgd 	identifycpu();
    844  1.185   thorpej 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
    845  1.173     lukem 	printf("total memory = %s\n", pbuf);
    846  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    847  1.173     lukem 	printf("(%s reserved for PROM, ", pbuf);
    848  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    849  1.173     lukem 	printf("%s used by NetBSD)\n", pbuf);
    850  1.173     lukem 	if (unusedmem) {
    851  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
    852  1.173     lukem 		printf("WARNING: unused memory = %s\n", pbuf);
    853  1.173     lukem 	}
    854  1.173     lukem 	if (unknownmem) {
    855  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
    856  1.173     lukem 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    857  1.173     lukem 	}
    858    1.1       cgd 
    859    1.1       cgd 	/*
    860    1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    861    1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    862    1.1       cgd 	 * and usually occupy more virtual memory than physical.
    863    1.1       cgd 	 */
    864    1.1       cgd 	size = MAXBSIZE * nbuf;
    865  1.140   thorpej 	if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
    866  1.220   thorpej 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    867  1.112   thorpej 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
    868  1.112   thorpej 				UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
    869  1.112   thorpej 		panic("startup: cannot allocate VM for buffers");
    870    1.1       cgd 	base = bufpages / nbuf;
    871    1.1       cgd 	residual = bufpages % nbuf;
    872    1.1       cgd 	for (i = 0; i < nbuf; i++) {
    873  1.140   thorpej 		vsize_t curbufsize;
    874  1.140   thorpej 		vaddr_t curbuf;
    875  1.112   thorpej 		struct vm_page *pg;
    876  1.112   thorpej 
    877  1.112   thorpej 		/*
    878  1.112   thorpej 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
    879  1.112   thorpej 		 * that MAXBSIZE space, we allocate and map (base+1) pages
    880  1.112   thorpej 		 * for the first "residual" buffers, and then we allocate
    881  1.112   thorpej 		 * "base" pages for the rest.
    882  1.112   thorpej 		 */
    883  1.140   thorpej 		curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
    884  1.188     ragge 		curbufsize = NBPG * ((i < residual) ? (base+1) : base);
    885  1.112   thorpej 
    886  1.112   thorpej 		while (curbufsize) {
    887  1.168       chs 			pg = uvm_pagealloc(NULL, 0, NULL, 0);
    888  1.112   thorpej 			if (pg == NULL)
    889  1.112   thorpej 				panic("cpu_startup: not enough memory for "
    890  1.112   thorpej 				    "buffer cache");
    891  1.182       chs 			pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
    892  1.182       chs 					VM_PROT_READ|VM_PROT_WRITE);
    893  1.112   thorpej 			curbuf += PAGE_SIZE;
    894  1.112   thorpej 			curbufsize -= PAGE_SIZE;
    895  1.112   thorpej 		}
    896    1.1       cgd 	}
    897    1.1       cgd 	/*
    898    1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    899    1.1       cgd 	 * limits the number of processes exec'ing at any time.
    900    1.1       cgd 	 */
    901  1.112   thorpej 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    902  1.175   thorpej 				   16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
    903    1.1       cgd 
    904    1.1       cgd 	/*
    905    1.1       cgd 	 * Allocate a submap for physio
    906    1.1       cgd 	 */
    907  1.112   thorpej 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    908  1.175   thorpej 				   VM_PHYS_SIZE, 0, FALSE, NULL);
    909    1.1       cgd 
    910    1.1       cgd 	/*
    911  1.164   thorpej 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    912  1.164   thorpej 	 * are allocated via the pool allocator, and we use K0SEG to
    913  1.164   thorpej 	 * map those pages.
    914    1.1       cgd 	 */
    915    1.1       cgd 
    916   1.40       cgd #if defined(DEBUG)
    917    1.1       cgd 	pmapdebug = opmapdebug;
    918    1.1       cgd #endif
    919  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
    920  1.173     lukem 	printf("avail memory = %s\n", pbuf);
    921  1.139   thorpej #if 0
    922  1.139   thorpej 	{
    923  1.139   thorpej 		extern u_long pmap_pages_stolen;
    924  1.173     lukem 
    925  1.173     lukem 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
    926  1.173     lukem 		printf("stolen memory for VM structures = %s\n", pbuf);
    927  1.139   thorpej 	}
    928  1.112   thorpej #endif
    929  1.188     ragge 	format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
    930  1.173     lukem 	printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
    931    1.1       cgd 
    932    1.1       cgd 	/*
    933    1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
    934    1.1       cgd 	 */
    935    1.1       cgd 	bufinit();
    936  1.151   thorpej 
    937  1.151   thorpej 	/*
    938  1.151   thorpej 	 * Set up the HWPCB so that it's safe to configure secondary
    939  1.151   thorpej 	 * CPUs.
    940  1.151   thorpej 	 */
    941  1.151   thorpej 	hwrpb_primary_init();
    942  1.104   thorpej }
    943  1.104   thorpej 
    944  1.104   thorpej /*
    945  1.104   thorpej  * Retrieve the platform name from the DSR.
    946  1.104   thorpej  */
    947  1.104   thorpej const char *
    948  1.104   thorpej alpha_dsr_sysname()
    949  1.104   thorpej {
    950  1.104   thorpej 	struct dsrdb *dsr;
    951  1.104   thorpej 	const char *sysname;
    952  1.104   thorpej 
    953  1.104   thorpej 	/*
    954  1.104   thorpej 	 * DSR does not exist on early HWRPB versions.
    955  1.104   thorpej 	 */
    956  1.104   thorpej 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
    957  1.104   thorpej 		return (NULL);
    958  1.104   thorpej 
    959  1.104   thorpej 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
    960  1.104   thorpej 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
    961  1.104   thorpej 	    sizeof(u_int64_t)));
    962  1.104   thorpej 	return (sysname);
    963  1.104   thorpej }
    964  1.104   thorpej 
    965  1.104   thorpej /*
    966  1.104   thorpej  * Lookup the system specified system variation in the provided table,
    967  1.104   thorpej  * returning the model string on match.
    968  1.104   thorpej  */
    969  1.104   thorpej const char *
    970  1.104   thorpej alpha_variation_name(variation, avtp)
    971  1.104   thorpej 	u_int64_t variation;
    972  1.104   thorpej 	const struct alpha_variation_table *avtp;
    973  1.104   thorpej {
    974  1.104   thorpej 	int i;
    975  1.104   thorpej 
    976  1.104   thorpej 	for (i = 0; avtp[i].avt_model != NULL; i++)
    977  1.104   thorpej 		if (avtp[i].avt_variation == variation)
    978  1.104   thorpej 			return (avtp[i].avt_model);
    979  1.104   thorpej 	return (NULL);
    980  1.104   thorpej }
    981  1.104   thorpej 
    982  1.104   thorpej /*
    983  1.104   thorpej  * Generate a default platform name based for unknown system variations.
    984  1.104   thorpej  */
    985  1.104   thorpej const char *
    986  1.104   thorpej alpha_unknown_sysname()
    987  1.104   thorpej {
    988  1.105   thorpej 	static char s[128];		/* safe size */
    989  1.104   thorpej 
    990  1.105   thorpej 	sprintf(s, "%s family, unknown model variation 0x%lx",
    991  1.105   thorpej 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
    992  1.104   thorpej 	return ((const char *)s);
    993    1.1       cgd }
    994    1.1       cgd 
    995   1.33       cgd void
    996    1.1       cgd identifycpu()
    997    1.1       cgd {
    998  1.177      ross 	char *s;
    999  1.218   thorpej 	int i;
   1000    1.1       cgd 
   1001    1.7       cgd 	/*
   1002    1.7       cgd 	 * print out CPU identification information.
   1003    1.7       cgd 	 */
   1004  1.177      ross 	printf("%s", cpu_model);
   1005  1.177      ross 	for(s = cpu_model; *s; ++s)
   1006  1.177      ross 		if(strncasecmp(s, "MHz", 3) == 0)
   1007  1.177      ross 			goto skipMHz;
   1008  1.177      ross 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
   1009  1.177      ross skipMHz:
   1010  1.218   thorpej 	printf(", s/n ");
   1011  1.218   thorpej 	for (i = 0; i < 10; i++)
   1012  1.218   thorpej 		printf("%c", hwrpb->rpb_ssn[i]);
   1013  1.177      ross 	printf("\n");
   1014   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
   1015    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1016    1.7       cgd #if 0
   1017    1.7       cgd 	/* this isn't defined for any systems that we run on? */
   1018   1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
   1019    1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1020    1.7       cgd 
   1021    1.7       cgd 	/* and these aren't particularly useful! */
   1022   1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
   1023    1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1024    1.7       cgd #endif
   1025    1.1       cgd }
   1026    1.1       cgd 
   1027    1.1       cgd int	waittime = -1;
   1028    1.7       cgd struct pcb dumppcb;
   1029    1.1       cgd 
   1030   1.18       cgd void
   1031   1.68       gwr cpu_reboot(howto, bootstr)
   1032    1.1       cgd 	int howto;
   1033   1.39       mrg 	char *bootstr;
   1034    1.1       cgd {
   1035  1.148   thorpej #if defined(MULTIPROCESSOR)
   1036  1.150   thorpej #if 0 /* XXX See below. */
   1037  1.148   thorpej 	u_long cpu_id;
   1038  1.150   thorpej #endif
   1039  1.148   thorpej #endif
   1040  1.148   thorpej 
   1041  1.148   thorpej #if defined(MULTIPROCESSOR)
   1042  1.148   thorpej 	/* We must be running on the primary CPU. */
   1043  1.148   thorpej 	if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
   1044  1.148   thorpej 		panic("cpu_reboot: not on primary CPU!");
   1045  1.148   thorpej #endif
   1046    1.1       cgd 
   1047    1.1       cgd 	/* If system is cold, just halt. */
   1048    1.1       cgd 	if (cold) {
   1049    1.1       cgd 		howto |= RB_HALT;
   1050    1.1       cgd 		goto haltsys;
   1051    1.1       cgd 	}
   1052    1.1       cgd 
   1053   1.36       cgd 	/* If "always halt" was specified as a boot flag, obey. */
   1054   1.36       cgd 	if ((boothowto & RB_HALT) != 0)
   1055   1.36       cgd 		howto |= RB_HALT;
   1056   1.36       cgd 
   1057    1.7       cgd 	boothowto = howto;
   1058    1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
   1059    1.1       cgd 		waittime = 0;
   1060    1.7       cgd 		vfs_shutdown();
   1061    1.1       cgd 		/*
   1062    1.1       cgd 		 * If we've been adjusting the clock, the todr
   1063    1.1       cgd 		 * will be out of synch; adjust it now.
   1064    1.1       cgd 		 */
   1065    1.1       cgd 		resettodr();
   1066    1.1       cgd 	}
   1067    1.1       cgd 
   1068    1.1       cgd 	/* Disable interrupts. */
   1069    1.1       cgd 	splhigh();
   1070    1.1       cgd 
   1071    1.7       cgd 	/* If rebooting and a dump is requested do it. */
   1072   1.42       cgd #if 0
   1073   1.42       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1074   1.42       cgd #else
   1075   1.42       cgd 	if (howto & RB_DUMP)
   1076   1.42       cgd #endif
   1077    1.1       cgd 		dumpsys();
   1078    1.6       cgd 
   1079   1.12       cgd haltsys:
   1080   1.12       cgd 
   1081    1.6       cgd 	/* run any shutdown hooks */
   1082    1.6       cgd 	doshutdownhooks();
   1083  1.148   thorpej 
   1084  1.148   thorpej #if defined(MULTIPROCESSOR)
   1085  1.149   thorpej #if 0 /* XXX doesn't work when called from here?! */
   1086  1.148   thorpej 	/* Kill off any secondary CPUs. */
   1087  1.148   thorpej 	for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
   1088  1.148   thorpej 		if (cpu_id == hwrpb->rpb_primary_cpu_id ||
   1089  1.161   thorpej 		    cpu_info[cpu_id].ci_softc == NULL)
   1090  1.148   thorpej 			continue;
   1091  1.148   thorpej 		cpu_halt_secondary(cpu_id);
   1092  1.148   thorpej 	}
   1093  1.149   thorpej #endif
   1094  1.148   thorpej #endif
   1095    1.1       cgd 
   1096    1.7       cgd #ifdef BOOTKEY
   1097   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1098  1.117  drochner 	cnpollc(1);	/* for proper keyboard command handling */
   1099    1.7       cgd 	cngetc();
   1100  1.117  drochner 	cnpollc(0);
   1101   1.46  christos 	printf("\n");
   1102    1.7       cgd #endif
   1103    1.7       cgd 
   1104  1.124   thorpej 	/* Finally, powerdown/halt/reboot the system. */
   1105  1.184      sato 	if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
   1106  1.124   thorpej 	    platform.powerdown != NULL) {
   1107  1.124   thorpej 		(*platform.powerdown)();
   1108  1.124   thorpej 		printf("WARNING: powerdown failed!\n");
   1109  1.124   thorpej 	}
   1110   1.46  christos 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
   1111    1.1       cgd 	prom_halt(howto & RB_HALT);
   1112    1.1       cgd 	/*NOTREACHED*/
   1113    1.1       cgd }
   1114    1.1       cgd 
   1115    1.7       cgd /*
   1116    1.7       cgd  * These variables are needed by /sbin/savecore
   1117    1.7       cgd  */
   1118    1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
   1119    1.7       cgd int 	dumpsize = 0;		/* pages */
   1120    1.7       cgd long	dumplo = 0; 		/* blocks */
   1121    1.7       cgd 
   1122    1.7       cgd /*
   1123   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1124   1.43       cgd  */
   1125   1.43       cgd int
   1126   1.43       cgd cpu_dumpsize()
   1127   1.43       cgd {
   1128   1.43       cgd 	int size;
   1129   1.43       cgd 
   1130  1.108       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1131  1.110   thorpej 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1132   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
   1133   1.43       cgd 		return -1;
   1134   1.43       cgd 
   1135   1.43       cgd 	return (1);
   1136   1.43       cgd }
   1137   1.43       cgd 
   1138   1.43       cgd /*
   1139  1.110   thorpej  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1140  1.110   thorpej  */
   1141  1.110   thorpej u_long
   1142  1.110   thorpej cpu_dump_mempagecnt()
   1143  1.110   thorpej {
   1144  1.110   thorpej 	u_long i, n;
   1145  1.110   thorpej 
   1146  1.110   thorpej 	n = 0;
   1147  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++)
   1148  1.110   thorpej 		n += atop(mem_clusters[i].size);
   1149  1.110   thorpej 	return (n);
   1150  1.110   thorpej }
   1151  1.110   thorpej 
   1152  1.110   thorpej /*
   1153   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
   1154   1.43       cgd  */
   1155   1.43       cgd int
   1156   1.43       cgd cpu_dump()
   1157   1.43       cgd {
   1158   1.43       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1159  1.107       cgd 	char buf[dbtob(1)];
   1160  1.107       cgd 	kcore_seg_t *segp;
   1161  1.107       cgd 	cpu_kcore_hdr_t *cpuhdrp;
   1162  1.107       cgd 	phys_ram_seg_t *memsegp;
   1163  1.110   thorpej 	int i;
   1164   1.43       cgd 
   1165  1.107       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1166   1.43       cgd 
   1167  1.107       cgd 	bzero(buf, sizeof buf);
   1168   1.43       cgd 	segp = (kcore_seg_t *)buf;
   1169  1.107       cgd 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1170  1.107       cgd 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1171  1.107       cgd 	    ALIGN(sizeof(*cpuhdrp))];
   1172   1.43       cgd 
   1173   1.43       cgd 	/*
   1174   1.43       cgd 	 * Generate a segment header.
   1175   1.43       cgd 	 */
   1176   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1177   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1178   1.43       cgd 
   1179   1.43       cgd 	/*
   1180  1.107       cgd 	 * Add the machine-dependent header info.
   1181   1.43       cgd 	 */
   1182  1.140   thorpej 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1183   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
   1184  1.110   thorpej 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1185  1.107       cgd 
   1186  1.107       cgd 	/*
   1187  1.107       cgd 	 * Fill in the memory segment descriptors.
   1188  1.107       cgd 	 */
   1189  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1190  1.110   thorpej 		memsegp[i].start = mem_clusters[i].start;
   1191  1.110   thorpej 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1192  1.110   thorpej 	}
   1193   1.43       cgd 
   1194   1.43       cgd 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1195   1.43       cgd }
   1196   1.43       cgd 
   1197   1.43       cgd /*
   1198   1.68       gwr  * This is called by main to set dumplo and dumpsize.
   1199  1.188     ragge  * Dumps always skip the first NBPG of disk space
   1200    1.7       cgd  * in case there might be a disk label stored there.
   1201    1.7       cgd  * If there is extra space, put dump at the end to
   1202    1.7       cgd  * reduce the chance that swapping trashes it.
   1203    1.7       cgd  */
   1204    1.7       cgd void
   1205   1.68       gwr cpu_dumpconf()
   1206    1.7       cgd {
   1207   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
   1208    1.7       cgd 	int maj;
   1209    1.7       cgd 
   1210    1.7       cgd 	if (dumpdev == NODEV)
   1211   1.43       cgd 		goto bad;
   1212    1.7       cgd 	maj = major(dumpdev);
   1213    1.7       cgd 	if (maj < 0 || maj >= nblkdev)
   1214    1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1215    1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
   1216   1.43       cgd 		goto bad;
   1217    1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1218    1.7       cgd 	if (nblks <= ctod(1))
   1219   1.43       cgd 		goto bad;
   1220   1.43       cgd 
   1221   1.43       cgd 	dumpblks = cpu_dumpsize();
   1222   1.43       cgd 	if (dumpblks < 0)
   1223   1.43       cgd 		goto bad;
   1224  1.110   thorpej 	dumpblks += ctod(cpu_dump_mempagecnt());
   1225   1.43       cgd 
   1226   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1227   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1228   1.43       cgd 		goto bad;
   1229   1.43       cgd 
   1230   1.43       cgd 	/* Put dump at end of partition */
   1231   1.43       cgd 	dumplo = nblks - dumpblks;
   1232    1.7       cgd 
   1233   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1234  1.110   thorpej 	dumpsize = cpu_dump_mempagecnt();
   1235   1.43       cgd 	return;
   1236    1.7       cgd 
   1237   1.43       cgd bad:
   1238   1.43       cgd 	dumpsize = 0;
   1239   1.43       cgd 	return;
   1240    1.7       cgd }
   1241    1.7       cgd 
   1242    1.7       cgd /*
   1243   1.42       cgd  * Dump the kernel's image to the swap partition.
   1244    1.7       cgd  */
   1245   1.42       cgd #define	BYTES_PER_DUMP	NBPG
   1246   1.42       cgd 
   1247    1.7       cgd void
   1248    1.7       cgd dumpsys()
   1249    1.7       cgd {
   1250  1.110   thorpej 	u_long totalbytesleft, bytes, i, n, memcl;
   1251  1.110   thorpej 	u_long maddr;
   1252  1.110   thorpej 	int psize;
   1253   1.42       cgd 	daddr_t blkno;
   1254   1.42       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1255   1.42       cgd 	int error;
   1256   1.42       cgd 
   1257   1.42       cgd 	/* Save registers. */
   1258   1.42       cgd 	savectx(&dumppcb);
   1259    1.7       cgd 
   1260    1.7       cgd 	if (dumpdev == NODEV)
   1261    1.7       cgd 		return;
   1262   1.42       cgd 
   1263   1.42       cgd 	/*
   1264   1.42       cgd 	 * For dumps during autoconfiguration,
   1265   1.42       cgd 	 * if dump device has already configured...
   1266   1.42       cgd 	 */
   1267   1.42       cgd 	if (dumpsize == 0)
   1268   1.68       gwr 		cpu_dumpconf();
   1269   1.47       cgd 	if (dumplo <= 0) {
   1270   1.97   mycroft 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1271   1.97   mycroft 		    minor(dumpdev));
   1272   1.42       cgd 		return;
   1273   1.43       cgd 	}
   1274   1.97   mycroft 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1275   1.97   mycroft 	    minor(dumpdev), dumplo);
   1276    1.7       cgd 
   1277   1.42       cgd 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1278   1.46  christos 	printf("dump ");
   1279   1.42       cgd 	if (psize == -1) {
   1280   1.46  christos 		printf("area unavailable\n");
   1281   1.42       cgd 		return;
   1282   1.42       cgd 	}
   1283   1.42       cgd 
   1284   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1285   1.42       cgd 
   1286   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1287   1.43       cgd 		goto err;
   1288   1.43       cgd 
   1289  1.110   thorpej 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1290   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1291   1.42       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1292   1.42       cgd 	error = 0;
   1293   1.42       cgd 
   1294  1.110   thorpej 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1295  1.110   thorpej 		maddr = mem_clusters[memcl].start;
   1296  1.110   thorpej 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1297  1.110   thorpej 
   1298  1.110   thorpej 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1299  1.110   thorpej 
   1300  1.110   thorpej 			/* Print out how many MBs we to go. */
   1301  1.110   thorpej 			if ((totalbytesleft % (1024*1024)) == 0)
   1302  1.160   thorpej 				printf("%ld ", totalbytesleft / (1024 * 1024));
   1303  1.110   thorpej 
   1304  1.110   thorpej 			/* Limit size for next transfer. */
   1305  1.110   thorpej 			n = bytes - i;
   1306  1.110   thorpej 			if (n > BYTES_PER_DUMP)
   1307  1.110   thorpej 				n =  BYTES_PER_DUMP;
   1308  1.110   thorpej 
   1309  1.110   thorpej 			error = (*dump)(dumpdev, blkno,
   1310  1.110   thorpej 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1311  1.110   thorpej 			if (error)
   1312  1.110   thorpej 				goto err;
   1313  1.110   thorpej 			maddr += n;
   1314  1.110   thorpej 			blkno += btodb(n);			/* XXX? */
   1315   1.42       cgd 
   1316  1.110   thorpej 			/* XXX should look for keystrokes, to cancel. */
   1317  1.110   thorpej 		}
   1318   1.42       cgd 	}
   1319   1.42       cgd 
   1320   1.43       cgd err:
   1321   1.42       cgd 	switch (error) {
   1322    1.7       cgd 
   1323    1.7       cgd 	case ENXIO:
   1324   1.46  christos 		printf("device bad\n");
   1325    1.7       cgd 		break;
   1326    1.7       cgd 
   1327    1.7       cgd 	case EFAULT:
   1328   1.46  christos 		printf("device not ready\n");
   1329    1.7       cgd 		break;
   1330    1.7       cgd 
   1331    1.7       cgd 	case EINVAL:
   1332   1.46  christos 		printf("area improper\n");
   1333    1.7       cgd 		break;
   1334    1.7       cgd 
   1335    1.7       cgd 	case EIO:
   1336   1.46  christos 		printf("i/o error\n");
   1337    1.7       cgd 		break;
   1338    1.7       cgd 
   1339    1.7       cgd 	case EINTR:
   1340   1.46  christos 		printf("aborted from console\n");
   1341    1.7       cgd 		break;
   1342    1.7       cgd 
   1343   1.42       cgd 	case 0:
   1344   1.46  christos 		printf("succeeded\n");
   1345   1.42       cgd 		break;
   1346   1.42       cgd 
   1347    1.7       cgd 	default:
   1348   1.46  christos 		printf("error %d\n", error);
   1349    1.7       cgd 		break;
   1350    1.7       cgd 	}
   1351   1.46  christos 	printf("\n\n");
   1352    1.7       cgd 	delay(1000);
   1353    1.7       cgd }
   1354    1.7       cgd 
   1355    1.1       cgd void
   1356    1.1       cgd frametoreg(framep, regp)
   1357    1.1       cgd 	struct trapframe *framep;
   1358    1.1       cgd 	struct reg *regp;
   1359    1.1       cgd {
   1360    1.1       cgd 
   1361    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1362    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1363    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1364    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1365    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1366    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1367    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1368    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1369    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1370    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1371    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1372    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1373    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1374    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1375    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1376    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1377   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1378   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1379   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1380    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1381    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1382    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1383    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1384    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1385    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1386    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1387    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1388    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1389    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1390   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1391   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1392    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1393    1.1       cgd }
   1394    1.1       cgd 
   1395    1.1       cgd void
   1396    1.1       cgd regtoframe(regp, framep)
   1397    1.1       cgd 	struct reg *regp;
   1398    1.1       cgd 	struct trapframe *framep;
   1399    1.1       cgd {
   1400    1.1       cgd 
   1401    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1402    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1403    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1404    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1405    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1406    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1407    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1408    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1409    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1410    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1411    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1412    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1413    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1414    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1415    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1416    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1417   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1418   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1419   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1420    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1421    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1422    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1423    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1424    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1425    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1426    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1427    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1428    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1429    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1430   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1431   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1432    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1433    1.1       cgd }
   1434    1.1       cgd 
   1435    1.1       cgd void
   1436    1.1       cgd printregs(regp)
   1437    1.1       cgd 	struct reg *regp;
   1438    1.1       cgd {
   1439    1.1       cgd 	int i;
   1440    1.1       cgd 
   1441    1.1       cgd 	for (i = 0; i < 32; i++)
   1442   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1443    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1444    1.1       cgd }
   1445    1.1       cgd 
   1446    1.1       cgd void
   1447    1.1       cgd regdump(framep)
   1448    1.1       cgd 	struct trapframe *framep;
   1449    1.1       cgd {
   1450    1.1       cgd 	struct reg reg;
   1451    1.1       cgd 
   1452    1.1       cgd 	frametoreg(framep, &reg);
   1453   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1454   1.35       cgd 
   1455   1.46  christos 	printf("REGISTERS:\n");
   1456    1.1       cgd 	printregs(&reg);
   1457    1.1       cgd }
   1458    1.1       cgd 
   1459    1.1       cgd #ifdef DEBUG
   1460    1.1       cgd int sigdebug = 0;
   1461    1.1       cgd int sigpid = 0;
   1462    1.1       cgd #define	SDB_FOLLOW	0x01
   1463    1.1       cgd #define	SDB_KSTACK	0x02
   1464    1.1       cgd #endif
   1465    1.1       cgd 
   1466    1.1       cgd /*
   1467    1.1       cgd  * Send an interrupt to process.
   1468    1.1       cgd  */
   1469    1.1       cgd void
   1470    1.1       cgd sendsig(catcher, sig, mask, code)
   1471    1.1       cgd 	sig_t catcher;
   1472  1.141   thorpej 	int sig;
   1473  1.141   thorpej 	sigset_t *mask;
   1474    1.1       cgd 	u_long code;
   1475    1.1       cgd {
   1476    1.1       cgd 	struct proc *p = curproc;
   1477    1.1       cgd 	struct sigcontext *scp, ksc;
   1478    1.1       cgd 	struct trapframe *frame;
   1479    1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1480  1.141   thorpej 	int onstack, fsize, rndfsize;
   1481    1.1       cgd 
   1482    1.1       cgd 	frame = p->p_md.md_tf;
   1483  1.141   thorpej 
   1484  1.141   thorpej 	/* Do we need to jump onto the signal stack? */
   1485  1.141   thorpej 	onstack =
   1486  1.141   thorpej 	    (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1487  1.141   thorpej 	    (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
   1488  1.141   thorpej 
   1489  1.141   thorpej 	/* Allocate space for the signal handler context. */
   1490  1.141   thorpej 	fsize = sizeof(ksc);
   1491    1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1492  1.141   thorpej 
   1493  1.141   thorpej 	if (onstack)
   1494  1.121    kleink 		scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
   1495  1.142   mycroft 						     psp->ps_sigstk.ss_size);
   1496  1.141   thorpej 	else
   1497  1.142   mycroft 		scp = (struct sigcontext *)(alpha_pal_rdusp());
   1498  1.142   mycroft 	scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
   1499  1.141   thorpej 
   1500    1.1       cgd #ifdef DEBUG
   1501    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1502   1.46  christos 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1503  1.141   thorpej 		    sig, &onstack, scp);
   1504  1.125      ross #endif
   1505    1.1       cgd 
   1506  1.141   thorpej 	/* Build stack frame for signal trampoline. */
   1507   1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1508   1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1509    1.1       cgd 
   1510  1.141   thorpej 	/* Save register context. */
   1511    1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1512    1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1513   1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1514    1.1       cgd 
   1515    1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1516  1.219   thorpej 	if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
   1517  1.219   thorpej 		synchronize_fpstate(p, 1);
   1518    1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1519    1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1520    1.1       cgd 	    sizeof(struct fpreg));
   1521    1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1522    1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1523    1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1524    1.1       cgd 
   1525  1.141   thorpej 	/* Save signal stack. */
   1526  1.141   thorpej 	ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1527  1.141   thorpej 
   1528  1.141   thorpej 	/* Save signal mask. */
   1529  1.141   thorpej 	ksc.sc_mask = *mask;
   1530  1.141   thorpej 
   1531  1.141   thorpej #ifdef COMPAT_13
   1532  1.141   thorpej 	/*
   1533  1.141   thorpej 	 * XXX We always have to save an old style signal mask because
   1534  1.141   thorpej 	 * XXX we might be delivering a signal to a process which will
   1535  1.141   thorpej 	 * XXX escape from the signal in a non-standard way and invoke
   1536  1.141   thorpej 	 * XXX sigreturn() directly.
   1537  1.141   thorpej 	 */
   1538  1.141   thorpej 	{
   1539  1.141   thorpej 		/* Note: it's a long in the stack frame. */
   1540  1.141   thorpej 		sigset13_t mask13;
   1541  1.141   thorpej 
   1542  1.141   thorpej 		native_sigset_to_sigset13(mask, &mask13);
   1543  1.141   thorpej 		ksc.__sc_mask13 = mask13;
   1544  1.141   thorpej 	}
   1545  1.141   thorpej #endif
   1546    1.1       cgd 
   1547    1.1       cgd #ifdef COMPAT_OSF1
   1548    1.1       cgd 	/*
   1549    1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1550    1.1       cgd 	 */
   1551    1.1       cgd #endif
   1552    1.1       cgd 
   1553  1.141   thorpej 	if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
   1554  1.141   thorpej 		/*
   1555  1.141   thorpej 		 * Process has trashed its stack; give it an illegal
   1556  1.141   thorpej 		 * instruction to halt it in its tracks.
   1557  1.141   thorpej 		 */
   1558  1.141   thorpej #ifdef DEBUG
   1559  1.141   thorpej 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1560  1.141   thorpej 			printf("sendsig(%d): copyout failed on sig %d\n",
   1561  1.141   thorpej 			    p->p_pid, sig);
   1562  1.141   thorpej #endif
   1563  1.141   thorpej 		sigexit(p, SIGILL);
   1564  1.141   thorpej 		/* NOTREACHED */
   1565  1.141   thorpej 	}
   1566    1.1       cgd #ifdef DEBUG
   1567    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1568   1.46  christos 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1569    1.1       cgd 		    scp, code);
   1570    1.1       cgd #endif
   1571    1.1       cgd 
   1572  1.141   thorpej 	/* Set up the registers to return to sigcode. */
   1573  1.142   mycroft 	frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
   1574   1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1575   1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1576   1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1577    1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1578   1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1579  1.142   mycroft 
   1580  1.142   mycroft 	/* Remember that we're now on the signal stack. */
   1581  1.142   mycroft 	if (onstack)
   1582  1.142   mycroft 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1583    1.1       cgd 
   1584    1.1       cgd #ifdef DEBUG
   1585    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1586   1.46  christos 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1587   1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1588    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1589   1.46  christos 		printf("sendsig(%d): sig %d returns\n",
   1590    1.1       cgd 		    p->p_pid, sig);
   1591    1.1       cgd #endif
   1592    1.1       cgd }
   1593    1.1       cgd 
   1594    1.1       cgd /*
   1595    1.1       cgd  * System call to cleanup state after a signal
   1596    1.1       cgd  * has been taken.  Reset signal mask and
   1597    1.1       cgd  * stack state from context left by sendsig (above).
   1598    1.1       cgd  * Return to previous pc and psl as specified by
   1599    1.1       cgd  * context left by sendsig. Check carefully to
   1600    1.1       cgd  * make sure that the user has not modified the
   1601  1.180    simonb  * psl to gain improper privileges or to cause
   1602    1.1       cgd  * a machine fault.
   1603    1.1       cgd  */
   1604    1.1       cgd /* ARGSUSED */
   1605   1.11   mycroft int
   1606  1.141   thorpej sys___sigreturn14(p, v, retval)
   1607    1.1       cgd 	struct proc *p;
   1608   1.10   thorpej 	void *v;
   1609   1.10   thorpej 	register_t *retval;
   1610   1.10   thorpej {
   1611  1.141   thorpej 	struct sys___sigreturn14_args /* {
   1612    1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1613   1.10   thorpej 	} */ *uap = v;
   1614    1.1       cgd 	struct sigcontext *scp, ksc;
   1615    1.1       cgd 
   1616  1.141   thorpej 	/*
   1617  1.141   thorpej 	 * The trampoline code hands us the context.
   1618  1.141   thorpej 	 * It is unsafe to keep track of it ourselves, in the event that a
   1619  1.141   thorpej 	 * program jumps out of a signal handler.
   1620  1.141   thorpej 	 */
   1621    1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1622    1.1       cgd #ifdef DEBUG
   1623    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1624   1.46  christos 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1625    1.1       cgd #endif
   1626    1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1627    1.1       cgd 		return (EINVAL);
   1628    1.1       cgd 
   1629  1.141   thorpej 	if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
   1630  1.141   thorpej 		return (EFAULT);
   1631    1.1       cgd 
   1632    1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1633    1.1       cgd 		return (EINVAL);
   1634    1.1       cgd 
   1635  1.141   thorpej 	/* Restore register context. */
   1636   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1637   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1638   1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1639    1.1       cgd 
   1640    1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1641   1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1642    1.1       cgd 
   1643    1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1644  1.219   thorpej 	if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
   1645  1.219   thorpej 		synchronize_fpstate(p, 0);
   1646    1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1647    1.1       cgd 	    sizeof(struct fpreg));
   1648    1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1649  1.141   thorpej 
   1650  1.141   thorpej 	/* Restore signal stack. */
   1651  1.141   thorpej 	if (ksc.sc_onstack & SS_ONSTACK)
   1652  1.141   thorpej 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1653  1.141   thorpej 	else
   1654  1.141   thorpej 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1655  1.141   thorpej 
   1656  1.141   thorpej 	/* Restore signal mask. */
   1657  1.141   thorpej 	(void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
   1658    1.1       cgd 
   1659    1.1       cgd #ifdef DEBUG
   1660    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1661   1.46  christos 		printf("sigreturn(%d): returns\n", p->p_pid);
   1662    1.1       cgd #endif
   1663    1.1       cgd 	return (EJUSTRETURN);
   1664    1.1       cgd }
   1665    1.1       cgd 
   1666    1.1       cgd /*
   1667    1.1       cgd  * machine dependent system variables.
   1668    1.1       cgd  */
   1669   1.33       cgd int
   1670    1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1671    1.1       cgd 	int *name;
   1672    1.1       cgd 	u_int namelen;
   1673    1.1       cgd 	void *oldp;
   1674    1.1       cgd 	size_t *oldlenp;
   1675    1.1       cgd 	void *newp;
   1676    1.1       cgd 	size_t newlen;
   1677    1.1       cgd 	struct proc *p;
   1678    1.1       cgd {
   1679    1.1       cgd 	dev_t consdev;
   1680    1.1       cgd 
   1681    1.1       cgd 	/* all sysctl names at this level are terminal */
   1682    1.1       cgd 	if (namelen != 1)
   1683    1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1684    1.1       cgd 
   1685    1.1       cgd 	switch (name[0]) {
   1686    1.1       cgd 	case CPU_CONSDEV:
   1687    1.1       cgd 		if (cn_tab != NULL)
   1688    1.1       cgd 			consdev = cn_tab->cn_dev;
   1689    1.1       cgd 		else
   1690    1.1       cgd 			consdev = NODEV;
   1691    1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1692    1.1       cgd 			sizeof consdev));
   1693   1.30       cgd 
   1694   1.30       cgd 	case CPU_ROOT_DEVICE:
   1695   1.64   thorpej 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1696   1.64   thorpej 		    root_device->dv_xname));
   1697   1.36       cgd 
   1698   1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1699   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1700   1.36       cgd 		    &alpha_unaligned_print));
   1701   1.36       cgd 
   1702   1.36       cgd 	case CPU_UNALIGNED_FIX:
   1703   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1704   1.36       cgd 		    &alpha_unaligned_fix));
   1705   1.36       cgd 
   1706   1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1707   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1708   1.36       cgd 		    &alpha_unaligned_sigbus));
   1709   1.61       cgd 
   1710   1.61       cgd 	case CPU_BOOTED_KERNEL:
   1711  1.102       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1712  1.102       cgd 		    bootinfo.booted_kernel));
   1713   1.30       cgd 
   1714    1.1       cgd 	default:
   1715    1.1       cgd 		return (EOPNOTSUPP);
   1716    1.1       cgd 	}
   1717    1.1       cgd 	/* NOTREACHED */
   1718    1.1       cgd }
   1719    1.1       cgd 
   1720    1.1       cgd /*
   1721    1.1       cgd  * Set registers on exec.
   1722    1.1       cgd  */
   1723    1.1       cgd void
   1724   1.85   mycroft setregs(p, pack, stack)
   1725    1.1       cgd 	register struct proc *p;
   1726    1.5  christos 	struct exec_package *pack;
   1727    1.1       cgd 	u_long stack;
   1728    1.1       cgd {
   1729    1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1730   1.56       cgd #ifdef DEBUG
   1731    1.1       cgd 	int i;
   1732   1.56       cgd #endif
   1733   1.43       cgd 
   1734   1.43       cgd #ifdef DEBUG
   1735   1.43       cgd 	/*
   1736   1.43       cgd 	 * Crash and dump, if the user requested it.
   1737   1.43       cgd 	 */
   1738   1.43       cgd 	if (boothowto & RB_DUMP)
   1739   1.43       cgd 		panic("crash requested by boot flags");
   1740   1.43       cgd #endif
   1741    1.1       cgd 
   1742    1.1       cgd #ifdef DEBUG
   1743   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1744    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1745    1.1       cgd #else
   1746   1.34       cgd 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1747    1.1       cgd #endif
   1748    1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1749  1.172      ross 	p->p_addr->u_pcb.pcb_fp.fpr_cr =  FPCR_INED
   1750  1.172      ross 					| FPCR_UNFD
   1751  1.172      ross 					| FPCR_UNDZ
   1752  1.172      ross 					| FPCR_DYN(FP_RN)
   1753  1.172      ross 					| FPCR_OVFD
   1754  1.172      ross 					| FPCR_DZED
   1755  1.172      ross 					| FPCR_INVD
   1756  1.172      ross 					| FPCR_DNZ;
   1757   1.35       cgd 	alpha_pal_wrusp(stack);
   1758   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1759   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1760   1.41       cgd 
   1761   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1762   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1763   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1764   1.63       cgd 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1765   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1766    1.1       cgd 
   1767   1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   1768  1.219   thorpej 	if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
   1769  1.219   thorpej 		synchronize_fpstate(p, 0);
   1770  1.219   thorpej }
   1771  1.219   thorpej 
   1772  1.219   thorpej /*
   1773  1.219   thorpej  * Release the FPU.
   1774  1.219   thorpej  */
   1775  1.219   thorpej void
   1776  1.219   thorpej release_fpu(int save)
   1777  1.219   thorpej {
   1778  1.219   thorpej 	struct proc *p;
   1779  1.219   thorpej 	int s;
   1780  1.219   thorpej 
   1781  1.219   thorpej 	s = splhigh();
   1782  1.219   thorpej 	if ((p = fpcurproc) == NULL) {
   1783  1.219   thorpej 		splx(s);
   1784  1.219   thorpej 		return;
   1785  1.219   thorpej 	}
   1786  1.219   thorpej 	fpcurproc = NULL;
   1787  1.219   thorpej 	splx(s);
   1788  1.219   thorpej 
   1789  1.219   thorpej 	if (save) {
   1790  1.219   thorpej 		alpha_pal_wrfen(1);
   1791  1.219   thorpej 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1792  1.219   thorpej #if defined(MULTIPROCESSOR)
   1793  1.219   thorpej 		alpha_mb();
   1794  1.219   thorpej #endif
   1795  1.219   thorpej 		alpha_pal_wrfen(0);
   1796  1.219   thorpej 	}
   1797  1.219   thorpej 
   1798  1.219   thorpej 	p->p_addr->u_pcb.pcb_fpcpu = NULL;
   1799  1.219   thorpej #if defined(MULTIPROCESSOR)
   1800  1.219   thorpej 	alpha_mb();
   1801  1.219   thorpej #endif
   1802  1.219   thorpej }
   1803  1.219   thorpej 
   1804  1.219   thorpej /*
   1805  1.219   thorpej  * Synchronize FP state for this process.
   1806  1.219   thorpej  */
   1807  1.219   thorpej void
   1808  1.219   thorpej synchronize_fpstate(struct proc *p, int save)
   1809  1.219   thorpej {
   1810  1.219   thorpej 
   1811  1.219   thorpej 	if (p->p_addr->u_pcb.pcb_fpcpu == NULL) {
   1812  1.219   thorpej 		/* Already in-sync. */
   1813  1.219   thorpej 		return;
   1814  1.219   thorpej 	}
   1815  1.219   thorpej 
   1816  1.219   thorpej #if defined(MULTIPROCESSOR)
   1817  1.219   thorpej 	if (p->p_addr->u_pcb.pcb_fpcpu == curcpu()) {
   1818  1.219   thorpej 		KASSERT(fpcurproc == p);
   1819  1.219   thorpej 		release_fpu(save);
   1820  1.219   thorpej 	} else {
   1821  1.219   thorpej 		alpha_send_ipi(p->p_addr->u_pcb.pcb_fpcpu->ci_cpuid, save ?
   1822  1.219   thorpej 		    ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU);
   1823  1.219   thorpej 		do {
   1824  1.219   thorpej 			alpha_mb();
   1825  1.219   thorpej 		} while (p->p_addr->u_pcb.pcb_fpcpu != NULL);
   1826  1.219   thorpej 	}
   1827  1.219   thorpej #else
   1828  1.219   thorpej 	KASSERT(fpcurproc == p);
   1829  1.219   thorpej 	release_fpu(save);
   1830  1.219   thorpej #endif /* MULTIPROCESSOR */
   1831    1.1       cgd }
   1832    1.1       cgd 
   1833  1.214       cgd void
   1834    1.1       cgd spl0()
   1835    1.1       cgd {
   1836    1.1       cgd 
   1837  1.178   thorpej 	if (ssir) {
   1838  1.178   thorpej 		(void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
   1839  1.211   thorpej 		softintr_dispatch();
   1840  1.178   thorpej 	}
   1841    1.1       cgd 
   1842  1.214       cgd 	(void) alpha_pal_swpipl(ALPHA_PSL_IPL_0);
   1843    1.1       cgd }
   1844    1.1       cgd 
   1845    1.1       cgd /*
   1846    1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1847    1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1848   1.52       cgd  * into queues, Remrunqueue removes them from queues.  The running process is
   1849   1.52       cgd  * on no queue, other processes are on a queue related to p->p_priority,
   1850   1.52       cgd  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1851   1.52       cgd  * available queues.
   1852    1.1       cgd  */
   1853    1.1       cgd /*
   1854    1.1       cgd  * setrunqueue(p)
   1855    1.1       cgd  *	proc *p;
   1856    1.1       cgd  *
   1857    1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1858    1.1       cgd  */
   1859    1.1       cgd 
   1860    1.1       cgd void
   1861    1.1       cgd setrunqueue(p)
   1862    1.1       cgd 	struct proc *p;
   1863    1.1       cgd {
   1864    1.1       cgd 	int bit;
   1865    1.1       cgd 
   1866    1.1       cgd 	/* firewall: p->p_back must be NULL */
   1867    1.1       cgd 	if (p->p_back != NULL)
   1868    1.1       cgd 		panic("setrunqueue");
   1869    1.1       cgd 
   1870    1.1       cgd 	bit = p->p_priority >> 2;
   1871  1.207   thorpej 	sched_whichqs |= (1 << bit);
   1872  1.207   thorpej 	p->p_forw = (struct proc *)&sched_qs[bit];
   1873  1.207   thorpej 	p->p_back = sched_qs[bit].ph_rlink;
   1874    1.1       cgd 	p->p_back->p_forw = p;
   1875  1.207   thorpej 	sched_qs[bit].ph_rlink = p;
   1876    1.1       cgd }
   1877    1.1       cgd 
   1878    1.1       cgd /*
   1879   1.52       cgd  * remrunqueue(p)
   1880    1.1       cgd  *
   1881    1.1       cgd  * Call should be made at splclock().
   1882    1.1       cgd  */
   1883    1.1       cgd void
   1884   1.52       cgd remrunqueue(p)
   1885    1.1       cgd 	struct proc *p;
   1886    1.1       cgd {
   1887    1.1       cgd 	int bit;
   1888    1.1       cgd 
   1889    1.1       cgd 	bit = p->p_priority >> 2;
   1890  1.207   thorpej 	if ((sched_whichqs & (1 << bit)) == 0)
   1891   1.52       cgd 		panic("remrunqueue");
   1892    1.1       cgd 
   1893    1.1       cgd 	p->p_back->p_forw = p->p_forw;
   1894    1.1       cgd 	p->p_forw->p_back = p->p_back;
   1895    1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   1896    1.1       cgd 
   1897  1.207   thorpej 	if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
   1898  1.207   thorpej 		sched_whichqs &= ~(1 << bit);
   1899    1.1       cgd }
   1900    1.1       cgd 
   1901    1.1       cgd /*
   1902    1.1       cgd  * Return the best possible estimate of the time in the timeval
   1903    1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1904    1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   1905    1.1       cgd  * previous call.
   1906    1.1       cgd  */
   1907    1.1       cgd void
   1908    1.1       cgd microtime(tvp)
   1909    1.1       cgd 	register struct timeval *tvp;
   1910    1.1       cgd {
   1911    1.1       cgd 	int s = splclock();
   1912    1.1       cgd 	static struct timeval lasttime;
   1913    1.1       cgd 
   1914    1.1       cgd 	*tvp = time;
   1915    1.1       cgd #ifdef notdef
   1916    1.1       cgd 	tvp->tv_usec += clkread();
   1917  1.190   msaitoh 	while (tvp->tv_usec >= 1000000) {
   1918    1.1       cgd 		tvp->tv_sec++;
   1919    1.1       cgd 		tvp->tv_usec -= 1000000;
   1920    1.1       cgd 	}
   1921    1.1       cgd #endif
   1922    1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1923    1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1924  1.190   msaitoh 	    (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
   1925    1.1       cgd 		tvp->tv_sec++;
   1926    1.1       cgd 		tvp->tv_usec -= 1000000;
   1927    1.1       cgd 	}
   1928    1.1       cgd 	lasttime = *tvp;
   1929    1.1       cgd 	splx(s);
   1930   1.15       cgd }
   1931   1.15       cgd 
   1932   1.15       cgd /*
   1933   1.15       cgd  * Wait "n" microseconds.
   1934   1.15       cgd  */
   1935   1.32       cgd void
   1936   1.15       cgd delay(n)
   1937   1.32       cgd 	unsigned long n;
   1938   1.15       cgd {
   1939  1.216   thorpej 	unsigned long pcc0, pcc1, curcycle, cycles, usec;
   1940   1.15       cgd 
   1941  1.216   thorpej 	if (n == 0)
   1942  1.216   thorpej 		return;
   1943  1.216   thorpej 
   1944  1.216   thorpej 	pcc0 = alpha_rpcc() & 0xffffffffUL;
   1945  1.216   thorpej 	cycles = 0;
   1946  1.216   thorpej 	usec = 0;
   1947  1.216   thorpej 
   1948  1.216   thorpej 	while (usec <= n) {
   1949  1.216   thorpej 		/*
   1950  1.216   thorpej 		 * Get the next CPU cycle count- assumes that we cannot
   1951  1.216   thorpej 		 * have had more than one 32 bit overflow.
   1952  1.216   thorpej 		 */
   1953  1.216   thorpej 		pcc1 = alpha_rpcc() & 0xffffffffUL;
   1954  1.216   thorpej 		if (pcc1 < pcc0)
   1955  1.216   thorpej 			curcycle = (pcc1 + 0x100000000UL) - pcc0;
   1956  1.216   thorpej 		else
   1957  1.216   thorpej 			curcycle = pcc1 - pcc0;
   1958  1.186   thorpej 
   1959  1.216   thorpej 		/*
   1960  1.216   thorpej 		 * We now have the number of processor cycles since we
   1961  1.216   thorpej 		 * last checked. Add the current cycle count to the
   1962  1.216   thorpej 		 * running total. If it's over cycles_per_usec, increment
   1963  1.216   thorpej 		 * the usec counter.
   1964  1.216   thorpej 		 */
   1965  1.216   thorpej 		cycles += curcycle;
   1966  1.216   thorpej 		while (cycles > cycles_per_usec) {
   1967  1.216   thorpej 			usec++;
   1968  1.216   thorpej 			cycles -= cycles_per_usec;
   1969  1.216   thorpej 		}
   1970  1.216   thorpej 		pcc0 = pcc1;
   1971  1.216   thorpej 	}
   1972    1.1       cgd }
   1973    1.1       cgd 
   1974    1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   1975   1.55       cgd void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   1976   1.85   mycroft 	    u_long));
   1977   1.55       cgd 
   1978    1.1       cgd void
   1979   1.85   mycroft cpu_exec_ecoff_setregs(p, epp, stack)
   1980    1.1       cgd 	struct proc *p;
   1981   1.19       cgd 	struct exec_package *epp;
   1982    1.5  christos 	u_long stack;
   1983    1.1       cgd {
   1984   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1985    1.1       cgd 
   1986   1.85   mycroft 	setregs(p, epp, stack);
   1987   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1988    1.1       cgd }
   1989    1.1       cgd 
   1990    1.1       cgd /*
   1991    1.1       cgd  * cpu_exec_ecoff_hook():
   1992    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   1993    1.1       cgd  *
   1994    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1995    1.1       cgd  *
   1996    1.1       cgd  */
   1997    1.1       cgd int
   1998   1.19       cgd cpu_exec_ecoff_hook(p, epp)
   1999    1.1       cgd 	struct proc *p;
   2000    1.1       cgd 	struct exec_package *epp;
   2001    1.1       cgd {
   2002   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2003    1.5  christos 	extern struct emul emul_netbsd;
   2004  1.171       cgd 	int error;
   2005  1.171       cgd 	extern int osf1_exec_ecoff_hook(struct proc *p,
   2006  1.171       cgd 					struct exec_package *epp);
   2007    1.1       cgd 
   2008   1.19       cgd 	switch (execp->f.f_magic) {
   2009    1.5  christos #ifdef COMPAT_OSF1
   2010    1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   2011  1.171       cgd 		error = osf1_exec_ecoff_hook(p, epp);
   2012    1.1       cgd 		break;
   2013    1.5  christos #endif
   2014    1.1       cgd 
   2015    1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   2016    1.5  christos 		epp->ep_emul = &emul_netbsd;
   2017  1.171       cgd 		error = 0;
   2018    1.1       cgd 		break;
   2019    1.1       cgd 
   2020    1.1       cgd 	default:
   2021  1.171       cgd 		error = ENOEXEC;
   2022    1.1       cgd 	}
   2023  1.171       cgd 	return (error);
   2024    1.1       cgd }
   2025    1.1       cgd #endif
   2026  1.110   thorpej 
   2027  1.110   thorpej int
   2028  1.110   thorpej alpha_pa_access(pa)
   2029  1.110   thorpej 	u_long pa;
   2030  1.110   thorpej {
   2031  1.110   thorpej 	int i;
   2032  1.110   thorpej 
   2033  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   2034  1.110   thorpej 		if (pa < mem_clusters[i].start)
   2035  1.110   thorpej 			continue;
   2036  1.110   thorpej 		if ((pa - mem_clusters[i].start) >=
   2037  1.110   thorpej 		    (mem_clusters[i].size & ~PAGE_MASK))
   2038  1.110   thorpej 			continue;
   2039  1.110   thorpej 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2040  1.110   thorpej 	}
   2041  1.197   thorpej 
   2042  1.197   thorpej 	/*
   2043  1.197   thorpej 	 * Address is not a memory address.  If we're secure, disallow
   2044  1.197   thorpej 	 * access.  Otherwise, grant read/write.
   2045  1.197   thorpej 	 */
   2046  1.197   thorpej 	if (securelevel > 0)
   2047  1.197   thorpej 		return (PROT_NONE);
   2048  1.197   thorpej 	else
   2049  1.197   thorpej 		return (PROT_READ | PROT_WRITE);
   2050  1.110   thorpej }
   2051   1.50       cgd 
   2052   1.50       cgd /* XXX XXX BEGIN XXX XXX */
   2053  1.140   thorpej paddr_t alpha_XXX_dmamap_or;					/* XXX */
   2054   1.50       cgd 								/* XXX */
   2055  1.140   thorpej paddr_t								/* XXX */
   2056   1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   2057  1.140   thorpej 	vaddr_t v;						/* XXX */
   2058   1.50       cgd {								/* XXX */
   2059   1.50       cgd 								/* XXX */
   2060   1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2061   1.50       cgd }								/* XXX */
   2062   1.50       cgd /* XXX XXX END XXX XXX */
   2063  1.177      ross 
   2064  1.177      ross char *
   2065  1.177      ross dot_conv(x)
   2066  1.177      ross 	unsigned long x;
   2067  1.177      ross {
   2068  1.177      ross 	int i;
   2069  1.177      ross 	char *xc;
   2070  1.177      ross 	static int next;
   2071  1.177      ross 	static char space[2][20];
   2072  1.177      ross 
   2073  1.177      ross 	xc = space[next ^= 1] + sizeof space[0];
   2074  1.177      ross 	*--xc = '\0';
   2075  1.177      ross 	for (i = 0;; ++i) {
   2076  1.177      ross 		if (i && (i & 3) == 0)
   2077  1.177      ross 			*--xc = '.';
   2078  1.177      ross 		*--xc = "0123456789abcdef"[x & 0xf];
   2079  1.177      ross 		x >>= 4;
   2080  1.177      ross 		if (x == 0)
   2081  1.177      ross 			break;
   2082  1.177      ross 	}
   2083  1.177      ross 	return xc;
   2084  1.138      ross }
   2085