machdep.c revision 1.221 1 1.221 jdolecek /* $NetBSD: machdep.c,v 1.221 2000/09/24 12:32:32 jdolecek Exp $ */
2 1.110 thorpej
3 1.110 thorpej /*-
4 1.211 thorpej * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 1.110 thorpej * All rights reserved.
6 1.110 thorpej *
7 1.110 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.110 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.110 thorpej * NASA Ames Research Center and by Chris G. Demetriou.
10 1.110 thorpej *
11 1.110 thorpej * Redistribution and use in source and binary forms, with or without
12 1.110 thorpej * modification, are permitted provided that the following conditions
13 1.110 thorpej * are met:
14 1.110 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.110 thorpej * notice, this list of conditions and the following disclaimer.
16 1.110 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.110 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.110 thorpej * documentation and/or other materials provided with the distribution.
19 1.110 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.110 thorpej * must display the following acknowledgement:
21 1.110 thorpej * This product includes software developed by the NetBSD
22 1.110 thorpej * Foundation, Inc. and its contributors.
23 1.110 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.110 thorpej * contributors may be used to endorse or promote products derived
25 1.110 thorpej * from this software without specific prior written permission.
26 1.110 thorpej *
27 1.110 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.110 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.110 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.110 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.110 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.110 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.110 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.110 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.110 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.110 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.110 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.110 thorpej */
39 1.1 cgd
40 1.1 cgd /*
41 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 1.1 cgd * All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Author: Chris G. Demetriou
45 1.1 cgd *
46 1.1 cgd * Permission to use, copy, modify and distribute this software and
47 1.1 cgd * its documentation is hereby granted, provided that both the copyright
48 1.1 cgd * notice and this permission notice appear in all copies of the
49 1.1 cgd * software, derivative works or modified versions, and any portions
50 1.1 cgd * thereof, and that both notices appear in supporting documentation.
51 1.1 cgd *
52 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 1.1 cgd *
56 1.1 cgd * Carnegie Mellon requests users of this software to return to
57 1.1 cgd *
58 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 1.1 cgd * School of Computer Science
60 1.1 cgd * Carnegie Mellon University
61 1.1 cgd * Pittsburgh PA 15213-3890
62 1.1 cgd *
63 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
64 1.1 cgd * rights to redistribute these changes.
65 1.1 cgd */
66 1.74 cgd
67 1.129 jonathan #include "opt_ddb.h"
68 1.147 thorpej #include "opt_multiprocessor.h"
69 1.123 thorpej #include "opt_dec_3000_300.h"
70 1.123 thorpej #include "opt_dec_3000_500.h"
71 1.127 thorpej #include "opt_compat_osf1.h"
72 1.141 thorpej #include "opt_compat_netbsd.h"
73 1.112 thorpej
74 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
75 1.75 cgd
76 1.221 jdolecek __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.221 2000/09/24 12:32:32 jdolecek Exp $");
77 1.1 cgd
78 1.1 cgd #include <sys/param.h>
79 1.1 cgd #include <sys/systm.h>
80 1.1 cgd #include <sys/signalvar.h>
81 1.1 cgd #include <sys/kernel.h>
82 1.1 cgd #include <sys/map.h>
83 1.1 cgd #include <sys/proc.h>
84 1.207 thorpej #include <sys/sched.h>
85 1.1 cgd #include <sys/buf.h>
86 1.1 cgd #include <sys/reboot.h>
87 1.28 cgd #include <sys/device.h>
88 1.1 cgd #include <sys/file.h>
89 1.1 cgd #include <sys/malloc.h>
90 1.1 cgd #include <sys/mbuf.h>
91 1.110 thorpej #include <sys/mman.h>
92 1.1 cgd #include <sys/msgbuf.h>
93 1.1 cgd #include <sys/ioctl.h>
94 1.1 cgd #include <sys/tty.h>
95 1.1 cgd #include <sys/user.h>
96 1.1 cgd #include <sys/exec.h>
97 1.1 cgd #include <sys/exec_ecoff.h>
98 1.43 cgd #include <sys/core.h>
99 1.43 cgd #include <sys/kcore.h>
100 1.43 cgd #include <machine/kcore.h>
101 1.1 cgd
102 1.1 cgd #include <sys/mount.h>
103 1.1 cgd #include <sys/syscallargs.h>
104 1.1 cgd
105 1.112 thorpej #include <uvm/uvm_extern.h>
106 1.217 mrg #include <sys/sysctl.h>
107 1.112 thorpej
108 1.1 cgd #include <dev/cons.h>
109 1.1 cgd
110 1.81 thorpej #include <machine/autoconf.h>
111 1.1 cgd #include <machine/cpu.h>
112 1.1 cgd #include <machine/reg.h>
113 1.1 cgd #include <machine/rpb.h>
114 1.1 cgd #include <machine/prom.h>
115 1.73 cgd #include <machine/conf.h>
116 1.172 ross #include <machine/ieeefp.h>
117 1.148 thorpej
118 1.81 thorpej #ifdef DDB
119 1.81 thorpej #include <machine/db_machdep.h>
120 1.81 thorpej #include <ddb/db_access.h>
121 1.81 thorpej #include <ddb/db_sym.h>
122 1.81 thorpej #include <ddb/db_extern.h>
123 1.81 thorpej #include <ddb/db_interface.h>
124 1.81 thorpej #endif
125 1.81 thorpej
126 1.155 ross #include <machine/alpha.h>
127 1.143 matt
128 1.112 thorpej vm_map_t exec_map = NULL;
129 1.112 thorpej vm_map_t mb_map = NULL;
130 1.112 thorpej vm_map_t phys_map = NULL;
131 1.1 cgd
132 1.86 leo caddr_t msgbufaddr;
133 1.86 leo
134 1.1 cgd int maxmem; /* max memory per process */
135 1.7 cgd
136 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
137 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
138 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
139 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
140 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
141 1.1 cgd
142 1.1 cgd int cputype; /* system type, from the RPB */
143 1.210 thorpej
144 1.210 thorpej int bootdev_debug = 0; /* patchable, or from DDB */
145 1.1 cgd
146 1.1 cgd /*
147 1.1 cgd * XXX We need an address to which we can assign things so that they
148 1.1 cgd * won't be optimized away because we didn't use the value.
149 1.1 cgd */
150 1.1 cgd u_int32_t no_optimize;
151 1.1 cgd
152 1.1 cgd /* the following is used externally (sysctl_hw) */
153 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
154 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
155 1.29 cgd char cpu_model[128];
156 1.1 cgd
157 1.1 cgd struct user *proc0paddr;
158 1.1 cgd
159 1.1 cgd /* Number of machine cycles per microsecond */
160 1.1 cgd u_int64_t cycles_per_usec;
161 1.1 cgd
162 1.7 cgd /* number of cpus in the box. really! */
163 1.7 cgd int ncpus;
164 1.7 cgd
165 1.102 cgd struct bootinfo_kernel bootinfo;
166 1.81 thorpej
167 1.123 thorpej /* For built-in TCDS */
168 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
169 1.123 thorpej u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
170 1.123 thorpej #endif
171 1.123 thorpej
172 1.89 mjacob struct platform platform;
173 1.89 mjacob
174 1.81 thorpej #ifdef DDB
175 1.81 thorpej /* start and end of kernel symbol table */
176 1.81 thorpej void *ksym_start, *ksym_end;
177 1.81 thorpej #endif
178 1.81 thorpej
179 1.30 cgd /* for cpu_sysctl() */
180 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
181 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
182 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
183 1.30 cgd
184 1.110 thorpej /*
185 1.110 thorpej * XXX This should be dynamically sized, but we have the chicken-egg problem!
186 1.110 thorpej * XXX it should also be larger than it is, because not all of the mddt
187 1.110 thorpej * XXX clusters end up being used for VM.
188 1.110 thorpej */
189 1.110 thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
190 1.110 thorpej int mem_cluster_cnt;
191 1.110 thorpej
192 1.55 cgd int cpu_dump __P((void));
193 1.55 cgd int cpu_dumpsize __P((void));
194 1.110 thorpej u_long cpu_dump_mempagecnt __P((void));
195 1.55 cgd void dumpsys __P((void));
196 1.55 cgd void identifycpu __P((void));
197 1.55 cgd void printregs __P((struct reg *));
198 1.33 cgd
199 1.55 cgd void
200 1.102 cgd alpha_init(pfn, ptb, bim, bip, biv)
201 1.1 cgd u_long pfn; /* first free PFN number */
202 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
203 1.81 thorpej u_long bim; /* bootinfo magic */
204 1.81 thorpej u_long bip; /* bootinfo pointer */
205 1.102 cgd u_long biv; /* bootinfo version */
206 1.1 cgd {
207 1.95 thorpej extern char kernel_text[], _end[];
208 1.1 cgd struct mddt *mddtp;
209 1.110 thorpej struct mddt_cluster *memc;
210 1.7 cgd int i, mddtweird;
211 1.110 thorpej struct vm_physseg *vps;
212 1.140 thorpej vaddr_t kernstart, kernend;
213 1.140 thorpej paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
214 1.140 thorpej vsize_t size;
215 1.211 thorpej cpuid_t cpu_id;
216 1.211 thorpej struct cpu_info *ci;
217 1.1 cgd char *p;
218 1.95 thorpej caddr_t v;
219 1.209 thorpej const char *bootinfo_msg;
220 1.209 thorpej const struct cpuinit *c;
221 1.106 cgd
222 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
223 1.1 cgd
224 1.1 cgd /*
225 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
226 1.1 cgd * Make sure the instruction and data streams are consistent.
227 1.1 cgd */
228 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
229 1.32 cgd alpha_pal_wrfen(0);
230 1.37 cgd ALPHA_TBIA();
231 1.32 cgd alpha_pal_imb();
232 1.1 cgd
233 1.211 thorpej cpu_id = cpu_number();
234 1.211 thorpej
235 1.189 thorpej #if defined(MULTIPROCESSOR)
236 1.189 thorpej /*
237 1.189 thorpej * Set our SysValue to the address of our cpu_info structure.
238 1.189 thorpej * Secondary processors do this in their spinup trampoline.
239 1.189 thorpej */
240 1.211 thorpej alpha_pal_wrval((u_long)&cpu_info[cpu_id]);
241 1.189 thorpej #endif
242 1.189 thorpej
243 1.211 thorpej ci = curcpu();
244 1.211 thorpej ci->ci_cpuid = cpu_id;
245 1.211 thorpej
246 1.1 cgd /*
247 1.106 cgd * Get critical system information (if possible, from the
248 1.106 cgd * information provided by the boot program).
249 1.81 thorpej */
250 1.106 cgd bootinfo_msg = NULL;
251 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
252 1.102 cgd if (biv == 0) { /* backward compat */
253 1.102 cgd biv = *(u_long *)bip;
254 1.102 cgd bip += 8;
255 1.102 cgd }
256 1.102 cgd switch (biv) {
257 1.102 cgd case 1: {
258 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
259 1.102 cgd
260 1.102 cgd bootinfo.ssym = v1p->ssym;
261 1.102 cgd bootinfo.esym = v1p->esym;
262 1.106 cgd /* hwrpb may not be provided by boot block in v1 */
263 1.106 cgd if (v1p->hwrpb != NULL) {
264 1.106 cgd bootinfo.hwrpb_phys =
265 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys;
266 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize;
267 1.106 cgd } else {
268 1.106 cgd bootinfo.hwrpb_phys =
269 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys;
270 1.106 cgd bootinfo.hwrpb_size =
271 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size;
272 1.106 cgd }
273 1.102 cgd bcopy(v1p->boot_flags, bootinfo.boot_flags,
274 1.102 cgd min(sizeof v1p->boot_flags,
275 1.102 cgd sizeof bootinfo.boot_flags));
276 1.102 cgd bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
277 1.102 cgd min(sizeof v1p->booted_kernel,
278 1.102 cgd sizeof bootinfo.booted_kernel));
279 1.106 cgd /* booted dev not provided in bootinfo */
280 1.106 cgd init_prom_interface((struct rpb *)
281 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
282 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
283 1.102 cgd sizeof bootinfo.booted_dev);
284 1.81 thorpej break;
285 1.102 cgd }
286 1.81 thorpej default:
287 1.106 cgd bootinfo_msg = "unknown bootinfo version";
288 1.102 cgd goto nobootinfo;
289 1.81 thorpej }
290 1.102 cgd } else {
291 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo";
292 1.102 cgd nobootinfo:
293 1.102 cgd bootinfo.ssym = (u_long)_end;
294 1.102 cgd bootinfo.esym = (u_long)_end;
295 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
296 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
297 1.106 cgd init_prom_interface((struct rpb *)HWRPB_ADDR);
298 1.102 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
299 1.102 cgd sizeof bootinfo.boot_flags);
300 1.102 cgd prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
301 1.102 cgd sizeof bootinfo.booted_kernel);
302 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
303 1.102 cgd sizeof bootinfo.booted_dev);
304 1.102 cgd }
305 1.102 cgd
306 1.81 thorpej /*
307 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for
308 1.106 cgd * lots of things.
309 1.106 cgd */
310 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
311 1.123 thorpej
312 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
313 1.123 thorpej if (hwrpb->rpb_type == ST_DEC_3000_300 ||
314 1.123 thorpej hwrpb->rpb_type == ST_DEC_3000_500) {
315 1.123 thorpej prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
316 1.123 thorpej sizeof(dec_3000_scsiid));
317 1.123 thorpej prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
318 1.123 thorpej sizeof(dec_3000_scsifast));
319 1.123 thorpej }
320 1.123 thorpej #endif
321 1.106 cgd
322 1.106 cgd /*
323 1.106 cgd * Remember how many cycles there are per microsecond,
324 1.106 cgd * so that we can use delay(). Round up, for safety.
325 1.106 cgd */
326 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
327 1.106 cgd
328 1.106 cgd /*
329 1.106 cgd * Initalize the (temporary) bootstrap console interface, so
330 1.106 cgd * we can use printf until the VM system starts being setup.
331 1.106 cgd * The real console is initialized before then.
332 1.106 cgd */
333 1.106 cgd init_bootstrap_console();
334 1.106 cgd
335 1.106 cgd /* OUTPUT NOW ALLOWED */
336 1.106 cgd
337 1.106 cgd /* delayed from above */
338 1.106 cgd if (bootinfo_msg)
339 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
340 1.106 cgd bootinfo_msg, bim, bip, biv);
341 1.106 cgd
342 1.147 thorpej /* Initialize the trap vectors on the primary processor. */
343 1.147 thorpej trap_init();
344 1.1 cgd
345 1.1 cgd /*
346 1.106 cgd * Find out what hardware we're on, and do basic initialization.
347 1.106 cgd */
348 1.106 cgd cputype = hwrpb->rpb_type;
349 1.167 cgd if (cputype < 0) {
350 1.167 cgd /*
351 1.167 cgd * At least some white-box systems have SRM which
352 1.167 cgd * reports a systype that's the negative of their
353 1.167 cgd * blue-box counterpart.
354 1.167 cgd */
355 1.167 cgd cputype = -cputype;
356 1.167 cgd }
357 1.209 thorpej c = platform_lookup(cputype);
358 1.209 thorpej if (c == NULL) {
359 1.106 cgd platform_not_supported();
360 1.106 cgd /* NOTREACHED */
361 1.106 cgd }
362 1.209 thorpej (*c->init)();
363 1.106 cgd strcpy(cpu_model, platform.model);
364 1.106 cgd
365 1.106 cgd /*
366 1.199 soren * Initalize the real console, so that the bootstrap console is
367 1.106 cgd * no longer necessary.
368 1.106 cgd */
369 1.169 thorpej (*platform.cons_init)();
370 1.106 cgd
371 1.106 cgd #ifdef DIAGNOSTIC
372 1.106 cgd /* Paranoid sanity checking */
373 1.106 cgd
374 1.199 soren /* We should always be running on the primary. */
375 1.211 thorpej assert(hwrpb->rpb_primary_cpu_id == cpu_id);
376 1.106 cgd
377 1.116 mjacob /*
378 1.116 mjacob * On single-CPU systypes, the primary should always be CPU 0,
379 1.116 mjacob * except on Alpha 8200 systems where the CPU id is related
380 1.116 mjacob * to the VID, which is related to the Turbo Laser node id.
381 1.116 mjacob */
382 1.106 cgd if (cputype != ST_DEC_21000)
383 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0);
384 1.106 cgd #endif
385 1.106 cgd
386 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */
387 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
388 1.106 cgd /*
389 1.106 cgd * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
390 1.106 cgd * XXX pmap_uses_prom_console() evaluates to non-zero.)
391 1.106 cgd */
392 1.106 cgd #endif
393 1.106 cgd
394 1.106 cgd /*
395 1.106 cgd * find out this system's page size
396 1.95 thorpej */
397 1.95 thorpej PAGE_SIZE = hwrpb->rpb_page_size;
398 1.95 thorpej if (PAGE_SIZE != 8192)
399 1.95 thorpej panic("page size %d != 8192?!", PAGE_SIZE);
400 1.95 thorpej
401 1.95 thorpej /*
402 1.95 thorpej * Initialize PAGE_SIZE-dependent variables.
403 1.95 thorpej */
404 1.112 thorpej uvm_setpagesize();
405 1.95 thorpej
406 1.95 thorpej /*
407 1.101 cgd * Find the beginning and end of the kernel (and leave a
408 1.101 cgd * bit of space before the beginning for the bootstrap
409 1.101 cgd * stack).
410 1.95 thorpej */
411 1.201 kleink kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
412 1.95 thorpej #ifdef DDB
413 1.102 cgd ksym_start = (void *)bootinfo.ssym;
414 1.102 cgd ksym_end = (void *)bootinfo.esym;
415 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
416 1.102 cgd #else
417 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)_end);
418 1.95 thorpej #endif
419 1.95 thorpej
420 1.110 thorpej kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
421 1.110 thorpej kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
422 1.110 thorpej
423 1.95 thorpej /*
424 1.1 cgd * Find out how much memory is available, by looking at
425 1.7 cgd * the memory cluster descriptors. This also tries to do
426 1.7 cgd * its best to detect things things that have never been seen
427 1.7 cgd * before...
428 1.1 cgd */
429 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
430 1.7 cgd
431 1.110 thorpej /* MDDT SANITY CHECKING */
432 1.7 cgd mddtweird = 0;
433 1.110 thorpej if (mddtp->mddt_cluster_cnt < 2) {
434 1.7 cgd mddtweird = 1;
435 1.160 thorpej printf("WARNING: weird number of mem clusters: %lu\n",
436 1.110 thorpej mddtp->mddt_cluster_cnt);
437 1.7 cgd }
438 1.7 cgd
439 1.110 thorpej #if 0
440 1.110 thorpej printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
441 1.110 thorpej #endif
442 1.110 thorpej
443 1.110 thorpej for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
444 1.110 thorpej memc = &mddtp->mddt_clusters[i];
445 1.110 thorpej #if 0
446 1.110 thorpej printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
447 1.110 thorpej memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
448 1.110 thorpej #endif
449 1.110 thorpej totalphysmem += memc->mddt_pg_cnt;
450 1.110 thorpej if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
451 1.110 thorpej mem_clusters[mem_cluster_cnt].start =
452 1.110 thorpej ptoa(memc->mddt_pfn);
453 1.110 thorpej mem_clusters[mem_cluster_cnt].size =
454 1.110 thorpej ptoa(memc->mddt_pg_cnt);
455 1.110 thorpej if (memc->mddt_usage & MDDT_mbz ||
456 1.110 thorpej memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
457 1.110 thorpej memc->mddt_usage & MDDT_PALCODE)
458 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
459 1.110 thorpej PROT_READ;
460 1.110 thorpej else
461 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
462 1.110 thorpej PROT_READ | PROT_WRITE | PROT_EXEC;
463 1.110 thorpej mem_cluster_cnt++;
464 1.110 thorpej }
465 1.110 thorpej
466 1.110 thorpej if (memc->mddt_usage & MDDT_mbz) {
467 1.7 cgd mddtweird = 1;
468 1.110 thorpej printf("WARNING: mem cluster %d has weird "
469 1.110 thorpej "usage 0x%lx\n", i, memc->mddt_usage);
470 1.110 thorpej unknownmem += memc->mddt_pg_cnt;
471 1.110 thorpej continue;
472 1.7 cgd }
473 1.110 thorpej if (memc->mddt_usage & MDDT_NONVOLATILE) {
474 1.110 thorpej /* XXX should handle these... */
475 1.110 thorpej printf("WARNING: skipping non-volatile mem "
476 1.110 thorpej "cluster %d\n", i);
477 1.110 thorpej unusedmem += memc->mddt_pg_cnt;
478 1.110 thorpej continue;
479 1.110 thorpej }
480 1.110 thorpej if (memc->mddt_usage & MDDT_PALCODE) {
481 1.110 thorpej resvmem += memc->mddt_pg_cnt;
482 1.110 thorpej continue;
483 1.110 thorpej }
484 1.110 thorpej
485 1.110 thorpej /*
486 1.110 thorpej * We have a memory cluster available for system
487 1.110 thorpej * software use. We must determine if this cluster
488 1.110 thorpej * holds the kernel.
489 1.110 thorpej */
490 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
491 1.110 thorpej /*
492 1.110 thorpej * XXX If the kernel uses the PROM console, we only use the
493 1.110 thorpej * XXX memory after the kernel in the first system segment,
494 1.110 thorpej * XXX to avoid clobbering prom mapping, data, etc.
495 1.110 thorpej */
496 1.110 thorpej if (!pmap_uses_prom_console() || physmem == 0) {
497 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
498 1.110 thorpej physmem += memc->mddt_pg_cnt;
499 1.110 thorpej pfn0 = memc->mddt_pfn;
500 1.110 thorpej pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
501 1.110 thorpej if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
502 1.110 thorpej /*
503 1.110 thorpej * Must compute the location of the kernel
504 1.110 thorpej * within the segment.
505 1.110 thorpej */
506 1.110 thorpej #if 0
507 1.110 thorpej printf("Cluster %d contains kernel\n", i);
508 1.110 thorpej #endif
509 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
510 1.110 thorpej if (!pmap_uses_prom_console()) {
511 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
512 1.110 thorpej if (pfn0 < kernstartpfn) {
513 1.110 thorpej /*
514 1.110 thorpej * There is a chunk before the kernel.
515 1.110 thorpej */
516 1.110 thorpej #if 0
517 1.110 thorpej printf("Loading chunk before kernel: "
518 1.110 thorpej "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
519 1.110 thorpej #endif
520 1.112 thorpej uvm_page_physload(pfn0, kernstartpfn,
521 1.135 thorpej pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
522 1.110 thorpej }
523 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
524 1.110 thorpej }
525 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
526 1.110 thorpej if (kernendpfn < pfn1) {
527 1.110 thorpej /*
528 1.110 thorpej * There is a chunk after the kernel.
529 1.110 thorpej */
530 1.110 thorpej #if 0
531 1.110 thorpej printf("Loading chunk after kernel: "
532 1.110 thorpej "0x%lx / 0x%lx\n", kernendpfn, pfn1);
533 1.110 thorpej #endif
534 1.112 thorpej uvm_page_physload(kernendpfn, pfn1,
535 1.135 thorpej kernendpfn, pfn1, VM_FREELIST_DEFAULT);
536 1.110 thorpej }
537 1.110 thorpej } else {
538 1.110 thorpej /*
539 1.110 thorpej * Just load this cluster as one chunk.
540 1.110 thorpej */
541 1.110 thorpej #if 0
542 1.110 thorpej printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
543 1.110 thorpej pfn0, pfn1);
544 1.110 thorpej #endif
545 1.135 thorpej uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
546 1.135 thorpej VM_FREELIST_DEFAULT);
547 1.7 cgd }
548 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
549 1.110 thorpej }
550 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
551 1.7 cgd }
552 1.7 cgd
553 1.110 thorpej /*
554 1.110 thorpej * Dump out the MDDT if it looks odd...
555 1.110 thorpej */
556 1.7 cgd if (mddtweird) {
557 1.46 christos printf("\n");
558 1.46 christos printf("complete memory cluster information:\n");
559 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
560 1.46 christos printf("mddt %d:\n", i);
561 1.46 christos printf("\tpfn %lx\n",
562 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
563 1.46 christos printf("\tcnt %lx\n",
564 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
565 1.46 christos printf("\ttest %lx\n",
566 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
567 1.46 christos printf("\tbva %lx\n",
568 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
569 1.46 christos printf("\tbpa %lx\n",
570 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
571 1.46 christos printf("\tbcksum %lx\n",
572 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
573 1.46 christos printf("\tusage %lx\n",
574 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
575 1.2 cgd }
576 1.46 christos printf("\n");
577 1.2 cgd }
578 1.2 cgd
579 1.7 cgd if (totalphysmem == 0)
580 1.1 cgd panic("can't happen: system seems to have no memory!");
581 1.1 cgd maxmem = physmem;
582 1.7 cgd #if 0
583 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
584 1.46 christos printf("physmem = %d\n", physmem);
585 1.46 christos printf("resvmem = %d\n", resvmem);
586 1.46 christos printf("unusedmem = %d\n", unusedmem);
587 1.46 christos printf("unknownmem = %d\n", unknownmem);
588 1.7 cgd #endif
589 1.7 cgd
590 1.1 cgd /*
591 1.1 cgd * Initialize error message buffer (at end of core).
592 1.1 cgd */
593 1.110 thorpej {
594 1.204 enami vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
595 1.203 enami vsize_t reqsz = sz;
596 1.110 thorpej
597 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
598 1.110 thorpej
599 1.110 thorpej /* shrink so that it'll fit in the last segment */
600 1.110 thorpej if ((vps->avail_end - vps->avail_start) < atop(sz))
601 1.110 thorpej sz = ptoa(vps->avail_end - vps->avail_start);
602 1.110 thorpej
603 1.110 thorpej vps->end -= atop(sz);
604 1.110 thorpej vps->avail_end -= atop(sz);
605 1.110 thorpej msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
606 1.110 thorpej initmsgbuf(msgbufaddr, sz);
607 1.110 thorpej
608 1.110 thorpej /* Remove the last segment if it now has no pages. */
609 1.110 thorpej if (vps->start == vps->end)
610 1.110 thorpej vm_nphysseg--;
611 1.110 thorpej
612 1.110 thorpej /* warn if the message buffer had to be shrunk */
613 1.203 enami if (sz != reqsz)
614 1.203 enami printf("WARNING: %ld bytes not available for msgbuf "
615 1.203 enami "in last cluster (%ld used)\n", reqsz, sz);
616 1.110 thorpej
617 1.110 thorpej }
618 1.1 cgd
619 1.1 cgd /*
620 1.95 thorpej * Init mapping for u page(s) for proc 0
621 1.1 cgd */
622 1.110 thorpej proc0.p_addr = proc0paddr =
623 1.110 thorpej (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
624 1.1 cgd
625 1.1 cgd /*
626 1.95 thorpej * Allocate space for system data structures. These data structures
627 1.95 thorpej * are allocated here instead of cpu_startup() because physical
628 1.95 thorpej * memory is directly addressable. We don't have to map these into
629 1.95 thorpej * virtual address space.
630 1.95 thorpej */
631 1.198 thorpej size = (vsize_t)allocsys(NULL, NULL);
632 1.110 thorpej v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
633 1.198 thorpej if ((allocsys(v, NULL) - v) != size)
634 1.95 thorpej panic("alpha_init: table size inconsistency");
635 1.1 cgd
636 1.1 cgd /*
637 1.1 cgd * Initialize the virtual memory system, and set the
638 1.1 cgd * page table base register in proc 0's PCB.
639 1.1 cgd */
640 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
641 1.144 thorpej hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
642 1.1 cgd
643 1.1 cgd /*
644 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
645 1.3 cgd * address.
646 1.3 cgd */
647 1.3 cgd proc0.p_md.md_pcbpaddr =
648 1.140 thorpej (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
649 1.3 cgd
650 1.3 cgd /*
651 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
652 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
653 1.3 cgd */
654 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
655 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
656 1.81 thorpej proc0.p_md.md_tf =
657 1.81 thorpej (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
658 1.189 thorpej
659 1.189 thorpej /*
660 1.208 thorpej * Initialize the primary CPU's idle PCB to proc0's. In a
661 1.208 thorpej * MULTIPROCESSOR configuration, each CPU will later get
662 1.208 thorpej * its own idle PCB when autoconfiguration runs.
663 1.189 thorpej */
664 1.211 thorpej ci->ci_idle_pcb = &proc0paddr->u_pcb;
665 1.211 thorpej ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
666 1.208 thorpej
667 1.208 thorpej /* Indicate that proc0 has a CPU. */
668 1.211 thorpej proc0.p_cpu = ci;
669 1.1 cgd
670 1.1 cgd /*
671 1.25 cgd * Look at arguments passed to us and compute boothowto.
672 1.8 cgd */
673 1.1 cgd
674 1.8 cgd boothowto = RB_SINGLE;
675 1.1 cgd #ifdef KADB
676 1.1 cgd boothowto |= RB_KDB;
677 1.1 cgd #endif
678 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
679 1.26 cgd /*
680 1.26 cgd * Note that we'd really like to differentiate case here,
681 1.26 cgd * but the Alpha AXP Architecture Reference Manual
682 1.26 cgd * says that we shouldn't.
683 1.26 cgd */
684 1.8 cgd switch (*p) {
685 1.26 cgd case 'a': /* autoboot */
686 1.26 cgd case 'A':
687 1.26 cgd boothowto &= ~RB_SINGLE;
688 1.21 cgd break;
689 1.21 cgd
690 1.43 cgd #ifdef DEBUG
691 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
692 1.43 cgd case 'C':
693 1.43 cgd boothowto |= RB_DUMP;
694 1.43 cgd break;
695 1.43 cgd #endif
696 1.43 cgd
697 1.81 thorpej #if defined(KGDB) || defined(DDB)
698 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
699 1.81 thorpej case 'D':
700 1.81 thorpej boothowto |= RB_KDB;
701 1.81 thorpej break;
702 1.81 thorpej #endif
703 1.81 thorpej
704 1.36 cgd case 'h': /* always halt, never reboot */
705 1.36 cgd case 'H':
706 1.36 cgd boothowto |= RB_HALT;
707 1.8 cgd break;
708 1.8 cgd
709 1.21 cgd #if 0
710 1.8 cgd case 'm': /* mini root present in memory */
711 1.26 cgd case 'M':
712 1.8 cgd boothowto |= RB_MINIROOT;
713 1.8 cgd break;
714 1.21 cgd #endif
715 1.36 cgd
716 1.36 cgd case 'n': /* askname */
717 1.36 cgd case 'N':
718 1.36 cgd boothowto |= RB_ASKNAME;
719 1.65 cgd break;
720 1.65 cgd
721 1.65 cgd case 's': /* single-user (default, supported for sanity) */
722 1.65 cgd case 'S':
723 1.65 cgd boothowto |= RB_SINGLE;
724 1.221 jdolecek break;
725 1.221 jdolecek
726 1.221 jdolecek case 'q': /* quiet boot */
727 1.221 jdolecek case 'Q':
728 1.221 jdolecek boothowto |= AB_QUIET;
729 1.221 jdolecek break;
730 1.221 jdolecek
731 1.221 jdolecek case 'v': /* verbose boot */
732 1.221 jdolecek case 'V':
733 1.221 jdolecek boothowto |= AB_VERBOSE;
734 1.119 thorpej break;
735 1.119 thorpej
736 1.119 thorpej case '-':
737 1.119 thorpej /*
738 1.119 thorpej * Just ignore this. It's not required, but it's
739 1.119 thorpej * common for it to be passed regardless.
740 1.119 thorpej */
741 1.65 cgd break;
742 1.65 cgd
743 1.65 cgd default:
744 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
745 1.36 cgd break;
746 1.1 cgd }
747 1.1 cgd }
748 1.1 cgd
749 1.136 mjacob
750 1.136 mjacob /*
751 1.136 mjacob * Figure out the number of cpus in the box, from RPB fields.
752 1.136 mjacob * Really. We mean it.
753 1.136 mjacob */
754 1.136 mjacob for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
755 1.136 mjacob struct pcs *pcsp;
756 1.136 mjacob
757 1.144 thorpej pcsp = LOCATE_PCS(hwrpb, i);
758 1.136 mjacob if ((pcsp->pcs_flags & PCS_PP) != 0)
759 1.136 mjacob ncpus++;
760 1.136 mjacob }
761 1.136 mjacob
762 1.7 cgd /*
763 1.106 cgd * Initialize debuggers, and break into them if appropriate.
764 1.106 cgd */
765 1.106 cgd #ifdef DDB
766 1.106 cgd db_machine_init();
767 1.159 mjacob ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
768 1.159 mjacob ksym_start, ksym_end);
769 1.106 cgd if (boothowto & RB_KDB)
770 1.106 cgd Debugger();
771 1.106 cgd #endif
772 1.106 cgd #ifdef KGDB
773 1.106 cgd if (boothowto & RB_KDB)
774 1.106 cgd kgdb_connect(0);
775 1.106 cgd #endif
776 1.106 cgd /*
777 1.106 cgd * Figure out our clock frequency, from RPB fields.
778 1.106 cgd */
779 1.106 cgd hz = hwrpb->rpb_intr_freq >> 12;
780 1.106 cgd if (!(60 <= hz && hz <= 10240)) {
781 1.106 cgd hz = 1024;
782 1.106 cgd #ifdef DIAGNOSTIC
783 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
784 1.106 cgd hwrpb->rpb_intr_freq, hz);
785 1.106 cgd #endif
786 1.106 cgd }
787 1.95 thorpej }
788 1.95 thorpej
789 1.18 cgd void
790 1.1 cgd consinit()
791 1.1 cgd {
792 1.81 thorpej
793 1.106 cgd /*
794 1.106 cgd * Everything related to console initialization is done
795 1.106 cgd * in alpha_init().
796 1.106 cgd */
797 1.106 cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
798 1.106 cgd printf("consinit: %susing prom console\n",
799 1.106 cgd pmap_uses_prom_console() ? "" : "not ");
800 1.81 thorpej #endif
801 1.1 cgd }
802 1.118 thorpej
803 1.118 thorpej #include "pckbc.h"
804 1.118 thorpej #include "pckbd.h"
805 1.118 thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
806 1.118 thorpej
807 1.187 thorpej #include <dev/ic/pckbcvar.h>
808 1.118 thorpej
809 1.118 thorpej /*
810 1.118 thorpej * This is called by the pbkbc driver if no pckbd is configured.
811 1.118 thorpej * On the i386, it is used to glue in the old, deprecated console
812 1.118 thorpej * code. On the Alpha, it does nothing.
813 1.118 thorpej */
814 1.118 thorpej int
815 1.118 thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
816 1.118 thorpej pckbc_tag_t kbctag;
817 1.118 thorpej pckbc_slot_t kbcslot;
818 1.118 thorpej {
819 1.118 thorpej
820 1.118 thorpej return (ENXIO);
821 1.118 thorpej }
822 1.118 thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
823 1.1 cgd
824 1.18 cgd void
825 1.1 cgd cpu_startup()
826 1.1 cgd {
827 1.1 cgd register unsigned i;
828 1.1 cgd int base, residual;
829 1.140 thorpej vaddr_t minaddr, maxaddr;
830 1.140 thorpej vsize_t size;
831 1.173 lukem char pbuf[9];
832 1.40 cgd #if defined(DEBUG)
833 1.1 cgd extern int pmapdebug;
834 1.1 cgd int opmapdebug = pmapdebug;
835 1.1 cgd
836 1.1 cgd pmapdebug = 0;
837 1.1 cgd #endif
838 1.1 cgd
839 1.1 cgd /*
840 1.1 cgd * Good {morning,afternoon,evening,night}.
841 1.1 cgd */
842 1.46 christos printf(version);
843 1.1 cgd identifycpu();
844 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
845 1.173 lukem printf("total memory = %s\n", pbuf);
846 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
847 1.173 lukem printf("(%s reserved for PROM, ", pbuf);
848 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
849 1.173 lukem printf("%s used by NetBSD)\n", pbuf);
850 1.173 lukem if (unusedmem) {
851 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
852 1.173 lukem printf("WARNING: unused memory = %s\n", pbuf);
853 1.173 lukem }
854 1.173 lukem if (unknownmem) {
855 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
856 1.173 lukem printf("WARNING: %s of memory with unknown purpose\n", pbuf);
857 1.173 lukem }
858 1.1 cgd
859 1.1 cgd /*
860 1.1 cgd * Allocate virtual address space for file I/O buffers.
861 1.1 cgd * Note they are different than the array of headers, 'buf',
862 1.1 cgd * and usually occupy more virtual memory than physical.
863 1.1 cgd */
864 1.1 cgd size = MAXBSIZE * nbuf;
865 1.140 thorpej if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
866 1.220 thorpej NULL, UVM_UNKNOWN_OFFSET, 0,
867 1.112 thorpej UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
868 1.112 thorpej UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
869 1.112 thorpej panic("startup: cannot allocate VM for buffers");
870 1.1 cgd base = bufpages / nbuf;
871 1.1 cgd residual = bufpages % nbuf;
872 1.1 cgd for (i = 0; i < nbuf; i++) {
873 1.140 thorpej vsize_t curbufsize;
874 1.140 thorpej vaddr_t curbuf;
875 1.112 thorpej struct vm_page *pg;
876 1.112 thorpej
877 1.112 thorpej /*
878 1.112 thorpej * Each buffer has MAXBSIZE bytes of VM space allocated. Of
879 1.112 thorpej * that MAXBSIZE space, we allocate and map (base+1) pages
880 1.112 thorpej * for the first "residual" buffers, and then we allocate
881 1.112 thorpej * "base" pages for the rest.
882 1.112 thorpej */
883 1.140 thorpej curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
884 1.188 ragge curbufsize = NBPG * ((i < residual) ? (base+1) : base);
885 1.112 thorpej
886 1.112 thorpej while (curbufsize) {
887 1.168 chs pg = uvm_pagealloc(NULL, 0, NULL, 0);
888 1.112 thorpej if (pg == NULL)
889 1.112 thorpej panic("cpu_startup: not enough memory for "
890 1.112 thorpej "buffer cache");
891 1.182 chs pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
892 1.182 chs VM_PROT_READ|VM_PROT_WRITE);
893 1.112 thorpej curbuf += PAGE_SIZE;
894 1.112 thorpej curbufsize -= PAGE_SIZE;
895 1.112 thorpej }
896 1.1 cgd }
897 1.1 cgd /*
898 1.1 cgd * Allocate a submap for exec arguments. This map effectively
899 1.1 cgd * limits the number of processes exec'ing at any time.
900 1.1 cgd */
901 1.112 thorpej exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
902 1.175 thorpej 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
903 1.1 cgd
904 1.1 cgd /*
905 1.1 cgd * Allocate a submap for physio
906 1.1 cgd */
907 1.112 thorpej phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
908 1.175 thorpej VM_PHYS_SIZE, 0, FALSE, NULL);
909 1.1 cgd
910 1.1 cgd /*
911 1.164 thorpej * No need to allocate an mbuf cluster submap. Mbuf clusters
912 1.164 thorpej * are allocated via the pool allocator, and we use K0SEG to
913 1.164 thorpej * map those pages.
914 1.1 cgd */
915 1.1 cgd
916 1.40 cgd #if defined(DEBUG)
917 1.1 cgd pmapdebug = opmapdebug;
918 1.1 cgd #endif
919 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
920 1.173 lukem printf("avail memory = %s\n", pbuf);
921 1.139 thorpej #if 0
922 1.139 thorpej {
923 1.139 thorpej extern u_long pmap_pages_stolen;
924 1.173 lukem
925 1.173 lukem format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
926 1.173 lukem printf("stolen memory for VM structures = %s\n", pbuf);
927 1.139 thorpej }
928 1.112 thorpej #endif
929 1.188 ragge format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
930 1.173 lukem printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
931 1.1 cgd
932 1.1 cgd /*
933 1.1 cgd * Set up buffers, so they can be used to read disk labels.
934 1.1 cgd */
935 1.1 cgd bufinit();
936 1.151 thorpej
937 1.151 thorpej /*
938 1.151 thorpej * Set up the HWPCB so that it's safe to configure secondary
939 1.151 thorpej * CPUs.
940 1.151 thorpej */
941 1.151 thorpej hwrpb_primary_init();
942 1.104 thorpej }
943 1.104 thorpej
944 1.104 thorpej /*
945 1.104 thorpej * Retrieve the platform name from the DSR.
946 1.104 thorpej */
947 1.104 thorpej const char *
948 1.104 thorpej alpha_dsr_sysname()
949 1.104 thorpej {
950 1.104 thorpej struct dsrdb *dsr;
951 1.104 thorpej const char *sysname;
952 1.104 thorpej
953 1.104 thorpej /*
954 1.104 thorpej * DSR does not exist on early HWRPB versions.
955 1.104 thorpej */
956 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
957 1.104 thorpej return (NULL);
958 1.104 thorpej
959 1.104 thorpej dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
960 1.104 thorpej sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
961 1.104 thorpej sizeof(u_int64_t)));
962 1.104 thorpej return (sysname);
963 1.104 thorpej }
964 1.104 thorpej
965 1.104 thorpej /*
966 1.104 thorpej * Lookup the system specified system variation in the provided table,
967 1.104 thorpej * returning the model string on match.
968 1.104 thorpej */
969 1.104 thorpej const char *
970 1.104 thorpej alpha_variation_name(variation, avtp)
971 1.104 thorpej u_int64_t variation;
972 1.104 thorpej const struct alpha_variation_table *avtp;
973 1.104 thorpej {
974 1.104 thorpej int i;
975 1.104 thorpej
976 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++)
977 1.104 thorpej if (avtp[i].avt_variation == variation)
978 1.104 thorpej return (avtp[i].avt_model);
979 1.104 thorpej return (NULL);
980 1.104 thorpej }
981 1.104 thorpej
982 1.104 thorpej /*
983 1.104 thorpej * Generate a default platform name based for unknown system variations.
984 1.104 thorpej */
985 1.104 thorpej const char *
986 1.104 thorpej alpha_unknown_sysname()
987 1.104 thorpej {
988 1.105 thorpej static char s[128]; /* safe size */
989 1.104 thorpej
990 1.105 thorpej sprintf(s, "%s family, unknown model variation 0x%lx",
991 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK);
992 1.104 thorpej return ((const char *)s);
993 1.1 cgd }
994 1.1 cgd
995 1.33 cgd void
996 1.1 cgd identifycpu()
997 1.1 cgd {
998 1.177 ross char *s;
999 1.218 thorpej int i;
1000 1.1 cgd
1001 1.7 cgd /*
1002 1.7 cgd * print out CPU identification information.
1003 1.7 cgd */
1004 1.177 ross printf("%s", cpu_model);
1005 1.177 ross for(s = cpu_model; *s; ++s)
1006 1.177 ross if(strncasecmp(s, "MHz", 3) == 0)
1007 1.177 ross goto skipMHz;
1008 1.177 ross printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1009 1.177 ross skipMHz:
1010 1.218 thorpej printf(", s/n ");
1011 1.218 thorpej for (i = 0; i < 10; i++)
1012 1.218 thorpej printf("%c", hwrpb->rpb_ssn[i]);
1013 1.177 ross printf("\n");
1014 1.46 christos printf("%ld byte page size, %d processor%s.\n",
1015 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1016 1.7 cgd #if 0
1017 1.7 cgd /* this isn't defined for any systems that we run on? */
1018 1.46 christos printf("serial number 0x%lx 0x%lx\n",
1019 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1020 1.7 cgd
1021 1.7 cgd /* and these aren't particularly useful! */
1022 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
1023 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1024 1.7 cgd #endif
1025 1.1 cgd }
1026 1.1 cgd
1027 1.1 cgd int waittime = -1;
1028 1.7 cgd struct pcb dumppcb;
1029 1.1 cgd
1030 1.18 cgd void
1031 1.68 gwr cpu_reboot(howto, bootstr)
1032 1.1 cgd int howto;
1033 1.39 mrg char *bootstr;
1034 1.1 cgd {
1035 1.148 thorpej #if defined(MULTIPROCESSOR)
1036 1.150 thorpej #if 0 /* XXX See below. */
1037 1.148 thorpej u_long cpu_id;
1038 1.150 thorpej #endif
1039 1.148 thorpej #endif
1040 1.148 thorpej
1041 1.148 thorpej #if defined(MULTIPROCESSOR)
1042 1.148 thorpej /* We must be running on the primary CPU. */
1043 1.148 thorpej if (alpha_pal_whami() != hwrpb->rpb_primary_cpu_id)
1044 1.148 thorpej panic("cpu_reboot: not on primary CPU!");
1045 1.148 thorpej #endif
1046 1.1 cgd
1047 1.1 cgd /* If system is cold, just halt. */
1048 1.1 cgd if (cold) {
1049 1.1 cgd howto |= RB_HALT;
1050 1.1 cgd goto haltsys;
1051 1.1 cgd }
1052 1.1 cgd
1053 1.36 cgd /* If "always halt" was specified as a boot flag, obey. */
1054 1.36 cgd if ((boothowto & RB_HALT) != 0)
1055 1.36 cgd howto |= RB_HALT;
1056 1.36 cgd
1057 1.7 cgd boothowto = howto;
1058 1.7 cgd if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
1059 1.1 cgd waittime = 0;
1060 1.7 cgd vfs_shutdown();
1061 1.1 cgd /*
1062 1.1 cgd * If we've been adjusting the clock, the todr
1063 1.1 cgd * will be out of synch; adjust it now.
1064 1.1 cgd */
1065 1.1 cgd resettodr();
1066 1.1 cgd }
1067 1.1 cgd
1068 1.1 cgd /* Disable interrupts. */
1069 1.1 cgd splhigh();
1070 1.1 cgd
1071 1.7 cgd /* If rebooting and a dump is requested do it. */
1072 1.42 cgd #if 0
1073 1.42 cgd if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1074 1.42 cgd #else
1075 1.42 cgd if (howto & RB_DUMP)
1076 1.42 cgd #endif
1077 1.1 cgd dumpsys();
1078 1.6 cgd
1079 1.12 cgd haltsys:
1080 1.12 cgd
1081 1.6 cgd /* run any shutdown hooks */
1082 1.6 cgd doshutdownhooks();
1083 1.148 thorpej
1084 1.148 thorpej #if defined(MULTIPROCESSOR)
1085 1.149 thorpej #if 0 /* XXX doesn't work when called from here?! */
1086 1.148 thorpej /* Kill off any secondary CPUs. */
1087 1.148 thorpej for (cpu_id = 0; cpu_id < hwrpb->rpb_pcs_cnt; cpu_id++) {
1088 1.148 thorpej if (cpu_id == hwrpb->rpb_primary_cpu_id ||
1089 1.161 thorpej cpu_info[cpu_id].ci_softc == NULL)
1090 1.148 thorpej continue;
1091 1.148 thorpej cpu_halt_secondary(cpu_id);
1092 1.148 thorpej }
1093 1.149 thorpej #endif
1094 1.148 thorpej #endif
1095 1.1 cgd
1096 1.7 cgd #ifdef BOOTKEY
1097 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1098 1.117 drochner cnpollc(1); /* for proper keyboard command handling */
1099 1.7 cgd cngetc();
1100 1.117 drochner cnpollc(0);
1101 1.46 christos printf("\n");
1102 1.7 cgd #endif
1103 1.7 cgd
1104 1.124 thorpej /* Finally, powerdown/halt/reboot the system. */
1105 1.184 sato if ((howto & RB_POWERDOWN) == RB_POWERDOWN &&
1106 1.124 thorpej platform.powerdown != NULL) {
1107 1.124 thorpej (*platform.powerdown)();
1108 1.124 thorpej printf("WARNING: powerdown failed!\n");
1109 1.124 thorpej }
1110 1.46 christos printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
1111 1.1 cgd prom_halt(howto & RB_HALT);
1112 1.1 cgd /*NOTREACHED*/
1113 1.1 cgd }
1114 1.1 cgd
1115 1.7 cgd /*
1116 1.7 cgd * These variables are needed by /sbin/savecore
1117 1.7 cgd */
1118 1.7 cgd u_long dumpmag = 0x8fca0101; /* magic number */
1119 1.7 cgd int dumpsize = 0; /* pages */
1120 1.7 cgd long dumplo = 0; /* blocks */
1121 1.7 cgd
1122 1.7 cgd /*
1123 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1124 1.43 cgd */
1125 1.43 cgd int
1126 1.43 cgd cpu_dumpsize()
1127 1.43 cgd {
1128 1.43 cgd int size;
1129 1.43 cgd
1130 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1131 1.110 thorpej ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1132 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
1133 1.43 cgd return -1;
1134 1.43 cgd
1135 1.43 cgd return (1);
1136 1.43 cgd }
1137 1.43 cgd
1138 1.43 cgd /*
1139 1.110 thorpej * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1140 1.110 thorpej */
1141 1.110 thorpej u_long
1142 1.110 thorpej cpu_dump_mempagecnt()
1143 1.110 thorpej {
1144 1.110 thorpej u_long i, n;
1145 1.110 thorpej
1146 1.110 thorpej n = 0;
1147 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++)
1148 1.110 thorpej n += atop(mem_clusters[i].size);
1149 1.110 thorpej return (n);
1150 1.110 thorpej }
1151 1.110 thorpej
1152 1.110 thorpej /*
1153 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
1154 1.43 cgd */
1155 1.43 cgd int
1156 1.43 cgd cpu_dump()
1157 1.43 cgd {
1158 1.43 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1159 1.107 cgd char buf[dbtob(1)];
1160 1.107 cgd kcore_seg_t *segp;
1161 1.107 cgd cpu_kcore_hdr_t *cpuhdrp;
1162 1.107 cgd phys_ram_seg_t *memsegp;
1163 1.110 thorpej int i;
1164 1.43 cgd
1165 1.107 cgd dump = bdevsw[major(dumpdev)].d_dump;
1166 1.43 cgd
1167 1.107 cgd bzero(buf, sizeof buf);
1168 1.43 cgd segp = (kcore_seg_t *)buf;
1169 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1170 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1171 1.107 cgd ALIGN(sizeof(*cpuhdrp))];
1172 1.43 cgd
1173 1.43 cgd /*
1174 1.43 cgd * Generate a segment header.
1175 1.43 cgd */
1176 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1177 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1178 1.43 cgd
1179 1.43 cgd /*
1180 1.107 cgd * Add the machine-dependent header info.
1181 1.43 cgd */
1182 1.140 thorpej cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1183 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
1184 1.110 thorpej cpuhdrp->nmemsegs = mem_cluster_cnt;
1185 1.107 cgd
1186 1.107 cgd /*
1187 1.107 cgd * Fill in the memory segment descriptors.
1188 1.107 cgd */
1189 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1190 1.110 thorpej memsegp[i].start = mem_clusters[i].start;
1191 1.110 thorpej memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1192 1.110 thorpej }
1193 1.43 cgd
1194 1.43 cgd return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1195 1.43 cgd }
1196 1.43 cgd
1197 1.43 cgd /*
1198 1.68 gwr * This is called by main to set dumplo and dumpsize.
1199 1.188 ragge * Dumps always skip the first NBPG of disk space
1200 1.7 cgd * in case there might be a disk label stored there.
1201 1.7 cgd * If there is extra space, put dump at the end to
1202 1.7 cgd * reduce the chance that swapping trashes it.
1203 1.7 cgd */
1204 1.7 cgd void
1205 1.68 gwr cpu_dumpconf()
1206 1.7 cgd {
1207 1.43 cgd int nblks, dumpblks; /* size of dump area */
1208 1.7 cgd int maj;
1209 1.7 cgd
1210 1.7 cgd if (dumpdev == NODEV)
1211 1.43 cgd goto bad;
1212 1.7 cgd maj = major(dumpdev);
1213 1.7 cgd if (maj < 0 || maj >= nblkdev)
1214 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1215 1.7 cgd if (bdevsw[maj].d_psize == NULL)
1216 1.43 cgd goto bad;
1217 1.7 cgd nblks = (*bdevsw[maj].d_psize)(dumpdev);
1218 1.7 cgd if (nblks <= ctod(1))
1219 1.43 cgd goto bad;
1220 1.43 cgd
1221 1.43 cgd dumpblks = cpu_dumpsize();
1222 1.43 cgd if (dumpblks < 0)
1223 1.43 cgd goto bad;
1224 1.110 thorpej dumpblks += ctod(cpu_dump_mempagecnt());
1225 1.43 cgd
1226 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
1227 1.43 cgd if (dumpblks > (nblks - ctod(1)))
1228 1.43 cgd goto bad;
1229 1.43 cgd
1230 1.43 cgd /* Put dump at end of partition */
1231 1.43 cgd dumplo = nblks - dumpblks;
1232 1.7 cgd
1233 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1234 1.110 thorpej dumpsize = cpu_dump_mempagecnt();
1235 1.43 cgd return;
1236 1.7 cgd
1237 1.43 cgd bad:
1238 1.43 cgd dumpsize = 0;
1239 1.43 cgd return;
1240 1.7 cgd }
1241 1.7 cgd
1242 1.7 cgd /*
1243 1.42 cgd * Dump the kernel's image to the swap partition.
1244 1.7 cgd */
1245 1.42 cgd #define BYTES_PER_DUMP NBPG
1246 1.42 cgd
1247 1.7 cgd void
1248 1.7 cgd dumpsys()
1249 1.7 cgd {
1250 1.110 thorpej u_long totalbytesleft, bytes, i, n, memcl;
1251 1.110 thorpej u_long maddr;
1252 1.110 thorpej int psize;
1253 1.42 cgd daddr_t blkno;
1254 1.42 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1255 1.42 cgd int error;
1256 1.42 cgd
1257 1.42 cgd /* Save registers. */
1258 1.42 cgd savectx(&dumppcb);
1259 1.7 cgd
1260 1.7 cgd if (dumpdev == NODEV)
1261 1.7 cgd return;
1262 1.42 cgd
1263 1.42 cgd /*
1264 1.42 cgd * For dumps during autoconfiguration,
1265 1.42 cgd * if dump device has already configured...
1266 1.42 cgd */
1267 1.42 cgd if (dumpsize == 0)
1268 1.68 gwr cpu_dumpconf();
1269 1.47 cgd if (dumplo <= 0) {
1270 1.97 mycroft printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1271 1.97 mycroft minor(dumpdev));
1272 1.42 cgd return;
1273 1.43 cgd }
1274 1.97 mycroft printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1275 1.97 mycroft minor(dumpdev), dumplo);
1276 1.7 cgd
1277 1.42 cgd psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1278 1.46 christos printf("dump ");
1279 1.42 cgd if (psize == -1) {
1280 1.46 christos printf("area unavailable\n");
1281 1.42 cgd return;
1282 1.42 cgd }
1283 1.42 cgd
1284 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1285 1.42 cgd
1286 1.43 cgd if ((error = cpu_dump()) != 0)
1287 1.43 cgd goto err;
1288 1.43 cgd
1289 1.110 thorpej totalbytesleft = ptoa(cpu_dump_mempagecnt());
1290 1.43 cgd blkno = dumplo + cpu_dumpsize();
1291 1.42 cgd dump = bdevsw[major(dumpdev)].d_dump;
1292 1.42 cgd error = 0;
1293 1.42 cgd
1294 1.110 thorpej for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1295 1.110 thorpej maddr = mem_clusters[memcl].start;
1296 1.110 thorpej bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1297 1.110 thorpej
1298 1.110 thorpej for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1299 1.110 thorpej
1300 1.110 thorpej /* Print out how many MBs we to go. */
1301 1.110 thorpej if ((totalbytesleft % (1024*1024)) == 0)
1302 1.160 thorpej printf("%ld ", totalbytesleft / (1024 * 1024));
1303 1.110 thorpej
1304 1.110 thorpej /* Limit size for next transfer. */
1305 1.110 thorpej n = bytes - i;
1306 1.110 thorpej if (n > BYTES_PER_DUMP)
1307 1.110 thorpej n = BYTES_PER_DUMP;
1308 1.110 thorpej
1309 1.110 thorpej error = (*dump)(dumpdev, blkno,
1310 1.110 thorpej (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1311 1.110 thorpej if (error)
1312 1.110 thorpej goto err;
1313 1.110 thorpej maddr += n;
1314 1.110 thorpej blkno += btodb(n); /* XXX? */
1315 1.42 cgd
1316 1.110 thorpej /* XXX should look for keystrokes, to cancel. */
1317 1.110 thorpej }
1318 1.42 cgd }
1319 1.42 cgd
1320 1.43 cgd err:
1321 1.42 cgd switch (error) {
1322 1.7 cgd
1323 1.7 cgd case ENXIO:
1324 1.46 christos printf("device bad\n");
1325 1.7 cgd break;
1326 1.7 cgd
1327 1.7 cgd case EFAULT:
1328 1.46 christos printf("device not ready\n");
1329 1.7 cgd break;
1330 1.7 cgd
1331 1.7 cgd case EINVAL:
1332 1.46 christos printf("area improper\n");
1333 1.7 cgd break;
1334 1.7 cgd
1335 1.7 cgd case EIO:
1336 1.46 christos printf("i/o error\n");
1337 1.7 cgd break;
1338 1.7 cgd
1339 1.7 cgd case EINTR:
1340 1.46 christos printf("aborted from console\n");
1341 1.7 cgd break;
1342 1.7 cgd
1343 1.42 cgd case 0:
1344 1.46 christos printf("succeeded\n");
1345 1.42 cgd break;
1346 1.42 cgd
1347 1.7 cgd default:
1348 1.46 christos printf("error %d\n", error);
1349 1.7 cgd break;
1350 1.7 cgd }
1351 1.46 christos printf("\n\n");
1352 1.7 cgd delay(1000);
1353 1.7 cgd }
1354 1.7 cgd
1355 1.1 cgd void
1356 1.1 cgd frametoreg(framep, regp)
1357 1.1 cgd struct trapframe *framep;
1358 1.1 cgd struct reg *regp;
1359 1.1 cgd {
1360 1.1 cgd
1361 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1362 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1363 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1364 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1365 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1366 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1367 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1368 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1369 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1370 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1371 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1372 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1373 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1374 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1375 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1376 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1377 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1378 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1379 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1380 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1381 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1382 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1383 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1384 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1385 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1386 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1387 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1388 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1389 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1390 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1391 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1392 1.1 cgd regp->r_regs[R_ZERO] = 0;
1393 1.1 cgd }
1394 1.1 cgd
1395 1.1 cgd void
1396 1.1 cgd regtoframe(regp, framep)
1397 1.1 cgd struct reg *regp;
1398 1.1 cgd struct trapframe *framep;
1399 1.1 cgd {
1400 1.1 cgd
1401 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1402 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1403 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1404 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1405 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1406 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1407 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1408 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1409 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1410 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1411 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1412 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1413 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1414 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1415 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1416 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1417 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1418 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1419 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1420 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1421 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1422 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1423 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1424 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1425 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1426 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1427 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1428 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1429 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1430 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1431 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1432 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1433 1.1 cgd }
1434 1.1 cgd
1435 1.1 cgd void
1436 1.1 cgd printregs(regp)
1437 1.1 cgd struct reg *regp;
1438 1.1 cgd {
1439 1.1 cgd int i;
1440 1.1 cgd
1441 1.1 cgd for (i = 0; i < 32; i++)
1442 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1443 1.1 cgd i & 1 ? "\n" : "\t");
1444 1.1 cgd }
1445 1.1 cgd
1446 1.1 cgd void
1447 1.1 cgd regdump(framep)
1448 1.1 cgd struct trapframe *framep;
1449 1.1 cgd {
1450 1.1 cgd struct reg reg;
1451 1.1 cgd
1452 1.1 cgd frametoreg(framep, ®);
1453 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1454 1.35 cgd
1455 1.46 christos printf("REGISTERS:\n");
1456 1.1 cgd printregs(®);
1457 1.1 cgd }
1458 1.1 cgd
1459 1.1 cgd #ifdef DEBUG
1460 1.1 cgd int sigdebug = 0;
1461 1.1 cgd int sigpid = 0;
1462 1.1 cgd #define SDB_FOLLOW 0x01
1463 1.1 cgd #define SDB_KSTACK 0x02
1464 1.1 cgd #endif
1465 1.1 cgd
1466 1.1 cgd /*
1467 1.1 cgd * Send an interrupt to process.
1468 1.1 cgd */
1469 1.1 cgd void
1470 1.1 cgd sendsig(catcher, sig, mask, code)
1471 1.1 cgd sig_t catcher;
1472 1.141 thorpej int sig;
1473 1.141 thorpej sigset_t *mask;
1474 1.1 cgd u_long code;
1475 1.1 cgd {
1476 1.1 cgd struct proc *p = curproc;
1477 1.1 cgd struct sigcontext *scp, ksc;
1478 1.1 cgd struct trapframe *frame;
1479 1.1 cgd struct sigacts *psp = p->p_sigacts;
1480 1.141 thorpej int onstack, fsize, rndfsize;
1481 1.1 cgd
1482 1.1 cgd frame = p->p_md.md_tf;
1483 1.141 thorpej
1484 1.141 thorpej /* Do we need to jump onto the signal stack? */
1485 1.141 thorpej onstack =
1486 1.141 thorpej (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1487 1.141 thorpej (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
1488 1.141 thorpej
1489 1.141 thorpej /* Allocate space for the signal handler context. */
1490 1.141 thorpej fsize = sizeof(ksc);
1491 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1492 1.141 thorpej
1493 1.141 thorpej if (onstack)
1494 1.121 kleink scp = (struct sigcontext *)((caddr_t)psp->ps_sigstk.ss_sp +
1495 1.142 mycroft psp->ps_sigstk.ss_size);
1496 1.141 thorpej else
1497 1.142 mycroft scp = (struct sigcontext *)(alpha_pal_rdusp());
1498 1.142 mycroft scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1499 1.141 thorpej
1500 1.1 cgd #ifdef DEBUG
1501 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1502 1.46 christos printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1503 1.141 thorpej sig, &onstack, scp);
1504 1.125 ross #endif
1505 1.1 cgd
1506 1.141 thorpej /* Build stack frame for signal trampoline. */
1507 1.34 cgd ksc.sc_pc = frame->tf_regs[FRAME_PC];
1508 1.34 cgd ksc.sc_ps = frame->tf_regs[FRAME_PS];
1509 1.1 cgd
1510 1.141 thorpej /* Save register context. */
1511 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1512 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1513 1.35 cgd ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1514 1.1 cgd
1515 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1516 1.219 thorpej if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1517 1.219 thorpej synchronize_fpstate(p, 1);
1518 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1519 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1520 1.1 cgd sizeof(struct fpreg));
1521 1.1 cgd ksc.sc_fp_control = 0; /* XXX ? */
1522 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1523 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1524 1.1 cgd
1525 1.141 thorpej /* Save signal stack. */
1526 1.141 thorpej ksc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1527 1.141 thorpej
1528 1.141 thorpej /* Save signal mask. */
1529 1.141 thorpej ksc.sc_mask = *mask;
1530 1.141 thorpej
1531 1.141 thorpej #ifdef COMPAT_13
1532 1.141 thorpej /*
1533 1.141 thorpej * XXX We always have to save an old style signal mask because
1534 1.141 thorpej * XXX we might be delivering a signal to a process which will
1535 1.141 thorpej * XXX escape from the signal in a non-standard way and invoke
1536 1.141 thorpej * XXX sigreturn() directly.
1537 1.141 thorpej */
1538 1.141 thorpej {
1539 1.141 thorpej /* Note: it's a long in the stack frame. */
1540 1.141 thorpej sigset13_t mask13;
1541 1.141 thorpej
1542 1.141 thorpej native_sigset_to_sigset13(mask, &mask13);
1543 1.141 thorpej ksc.__sc_mask13 = mask13;
1544 1.141 thorpej }
1545 1.141 thorpej #endif
1546 1.1 cgd
1547 1.1 cgd #ifdef COMPAT_OSF1
1548 1.1 cgd /*
1549 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1550 1.1 cgd */
1551 1.1 cgd #endif
1552 1.1 cgd
1553 1.141 thorpej if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1554 1.141 thorpej /*
1555 1.141 thorpej * Process has trashed its stack; give it an illegal
1556 1.141 thorpej * instruction to halt it in its tracks.
1557 1.141 thorpej */
1558 1.141 thorpej #ifdef DEBUG
1559 1.141 thorpej if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1560 1.141 thorpej printf("sendsig(%d): copyout failed on sig %d\n",
1561 1.141 thorpej p->p_pid, sig);
1562 1.141 thorpej #endif
1563 1.141 thorpej sigexit(p, SIGILL);
1564 1.141 thorpej /* NOTREACHED */
1565 1.141 thorpej }
1566 1.1 cgd #ifdef DEBUG
1567 1.1 cgd if (sigdebug & SDB_FOLLOW)
1568 1.46 christos printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1569 1.1 cgd scp, code);
1570 1.1 cgd #endif
1571 1.1 cgd
1572 1.141 thorpej /* Set up the registers to return to sigcode. */
1573 1.142 mycroft frame->tf_regs[FRAME_PC] = (u_int64_t)psp->ps_sigcode;
1574 1.34 cgd frame->tf_regs[FRAME_A0] = sig;
1575 1.34 cgd frame->tf_regs[FRAME_A1] = code;
1576 1.34 cgd frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1577 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1578 1.35 cgd alpha_pal_wrusp((unsigned long)scp);
1579 1.142 mycroft
1580 1.142 mycroft /* Remember that we're now on the signal stack. */
1581 1.142 mycroft if (onstack)
1582 1.142 mycroft psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1583 1.1 cgd
1584 1.1 cgd #ifdef DEBUG
1585 1.1 cgd if (sigdebug & SDB_FOLLOW)
1586 1.46 christos printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1587 1.34 cgd frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1588 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1589 1.46 christos printf("sendsig(%d): sig %d returns\n",
1590 1.1 cgd p->p_pid, sig);
1591 1.1 cgd #endif
1592 1.1 cgd }
1593 1.1 cgd
1594 1.1 cgd /*
1595 1.1 cgd * System call to cleanup state after a signal
1596 1.1 cgd * has been taken. Reset signal mask and
1597 1.1 cgd * stack state from context left by sendsig (above).
1598 1.1 cgd * Return to previous pc and psl as specified by
1599 1.1 cgd * context left by sendsig. Check carefully to
1600 1.1 cgd * make sure that the user has not modified the
1601 1.180 simonb * psl to gain improper privileges or to cause
1602 1.1 cgd * a machine fault.
1603 1.1 cgd */
1604 1.1 cgd /* ARGSUSED */
1605 1.11 mycroft int
1606 1.141 thorpej sys___sigreturn14(p, v, retval)
1607 1.1 cgd struct proc *p;
1608 1.10 thorpej void *v;
1609 1.10 thorpej register_t *retval;
1610 1.10 thorpej {
1611 1.141 thorpej struct sys___sigreturn14_args /* {
1612 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1613 1.10 thorpej } */ *uap = v;
1614 1.1 cgd struct sigcontext *scp, ksc;
1615 1.1 cgd
1616 1.141 thorpej /*
1617 1.141 thorpej * The trampoline code hands us the context.
1618 1.141 thorpej * It is unsafe to keep track of it ourselves, in the event that a
1619 1.141 thorpej * program jumps out of a signal handler.
1620 1.141 thorpej */
1621 1.1 cgd scp = SCARG(uap, sigcntxp);
1622 1.1 cgd #ifdef DEBUG
1623 1.1 cgd if (sigdebug & SDB_FOLLOW)
1624 1.46 christos printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1625 1.1 cgd #endif
1626 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1627 1.1 cgd return (EINVAL);
1628 1.1 cgd
1629 1.141 thorpej if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1630 1.141 thorpej return (EFAULT);
1631 1.1 cgd
1632 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1633 1.1 cgd return (EINVAL);
1634 1.1 cgd
1635 1.141 thorpej /* Restore register context. */
1636 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1637 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PS] =
1638 1.32 cgd (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1639 1.1 cgd
1640 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1641 1.35 cgd alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1642 1.1 cgd
1643 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1644 1.219 thorpej if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1645 1.219 thorpej synchronize_fpstate(p, 0);
1646 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1647 1.1 cgd sizeof(struct fpreg));
1648 1.1 cgd /* XXX ksc.sc_fp_control ? */
1649 1.141 thorpej
1650 1.141 thorpej /* Restore signal stack. */
1651 1.141 thorpej if (ksc.sc_onstack & SS_ONSTACK)
1652 1.141 thorpej p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1653 1.141 thorpej else
1654 1.141 thorpej p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1655 1.141 thorpej
1656 1.141 thorpej /* Restore signal mask. */
1657 1.141 thorpej (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1658 1.1 cgd
1659 1.1 cgd #ifdef DEBUG
1660 1.1 cgd if (sigdebug & SDB_FOLLOW)
1661 1.46 christos printf("sigreturn(%d): returns\n", p->p_pid);
1662 1.1 cgd #endif
1663 1.1 cgd return (EJUSTRETURN);
1664 1.1 cgd }
1665 1.1 cgd
1666 1.1 cgd /*
1667 1.1 cgd * machine dependent system variables.
1668 1.1 cgd */
1669 1.33 cgd int
1670 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1671 1.1 cgd int *name;
1672 1.1 cgd u_int namelen;
1673 1.1 cgd void *oldp;
1674 1.1 cgd size_t *oldlenp;
1675 1.1 cgd void *newp;
1676 1.1 cgd size_t newlen;
1677 1.1 cgd struct proc *p;
1678 1.1 cgd {
1679 1.1 cgd dev_t consdev;
1680 1.1 cgd
1681 1.1 cgd /* all sysctl names at this level are terminal */
1682 1.1 cgd if (namelen != 1)
1683 1.1 cgd return (ENOTDIR); /* overloaded */
1684 1.1 cgd
1685 1.1 cgd switch (name[0]) {
1686 1.1 cgd case CPU_CONSDEV:
1687 1.1 cgd if (cn_tab != NULL)
1688 1.1 cgd consdev = cn_tab->cn_dev;
1689 1.1 cgd else
1690 1.1 cgd consdev = NODEV;
1691 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1692 1.1 cgd sizeof consdev));
1693 1.30 cgd
1694 1.30 cgd case CPU_ROOT_DEVICE:
1695 1.64 thorpej return (sysctl_rdstring(oldp, oldlenp, newp,
1696 1.64 thorpej root_device->dv_xname));
1697 1.36 cgd
1698 1.36 cgd case CPU_UNALIGNED_PRINT:
1699 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1700 1.36 cgd &alpha_unaligned_print));
1701 1.36 cgd
1702 1.36 cgd case CPU_UNALIGNED_FIX:
1703 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1704 1.36 cgd &alpha_unaligned_fix));
1705 1.36 cgd
1706 1.36 cgd case CPU_UNALIGNED_SIGBUS:
1707 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1708 1.36 cgd &alpha_unaligned_sigbus));
1709 1.61 cgd
1710 1.61 cgd case CPU_BOOTED_KERNEL:
1711 1.102 cgd return (sysctl_rdstring(oldp, oldlenp, newp,
1712 1.102 cgd bootinfo.booted_kernel));
1713 1.30 cgd
1714 1.1 cgd default:
1715 1.1 cgd return (EOPNOTSUPP);
1716 1.1 cgd }
1717 1.1 cgd /* NOTREACHED */
1718 1.1 cgd }
1719 1.1 cgd
1720 1.1 cgd /*
1721 1.1 cgd * Set registers on exec.
1722 1.1 cgd */
1723 1.1 cgd void
1724 1.85 mycroft setregs(p, pack, stack)
1725 1.1 cgd register struct proc *p;
1726 1.5 christos struct exec_package *pack;
1727 1.1 cgd u_long stack;
1728 1.1 cgd {
1729 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1730 1.56 cgd #ifdef DEBUG
1731 1.1 cgd int i;
1732 1.56 cgd #endif
1733 1.43 cgd
1734 1.43 cgd #ifdef DEBUG
1735 1.43 cgd /*
1736 1.43 cgd * Crash and dump, if the user requested it.
1737 1.43 cgd */
1738 1.43 cgd if (boothowto & RB_DUMP)
1739 1.43 cgd panic("crash requested by boot flags");
1740 1.43 cgd #endif
1741 1.1 cgd
1742 1.1 cgd #ifdef DEBUG
1743 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1744 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1745 1.1 cgd #else
1746 1.34 cgd bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1747 1.1 cgd #endif
1748 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1749 1.172 ross p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_INED
1750 1.172 ross | FPCR_UNFD
1751 1.172 ross | FPCR_UNDZ
1752 1.172 ross | FPCR_DYN(FP_RN)
1753 1.172 ross | FPCR_OVFD
1754 1.172 ross | FPCR_DZED
1755 1.172 ross | FPCR_INVD
1756 1.172 ross | FPCR_DNZ;
1757 1.35 cgd alpha_pal_wrusp(stack);
1758 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1759 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1760 1.41 cgd
1761 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1762 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1763 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1764 1.63 cgd tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1765 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1766 1.1 cgd
1767 1.33 cgd p->p_md.md_flags &= ~MDP_FPUSED;
1768 1.219 thorpej if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1769 1.219 thorpej synchronize_fpstate(p, 0);
1770 1.219 thorpej }
1771 1.219 thorpej
1772 1.219 thorpej /*
1773 1.219 thorpej * Release the FPU.
1774 1.219 thorpej */
1775 1.219 thorpej void
1776 1.219 thorpej release_fpu(int save)
1777 1.219 thorpej {
1778 1.219 thorpej struct proc *p;
1779 1.219 thorpej int s;
1780 1.219 thorpej
1781 1.219 thorpej s = splhigh();
1782 1.219 thorpej if ((p = fpcurproc) == NULL) {
1783 1.219 thorpej splx(s);
1784 1.219 thorpej return;
1785 1.219 thorpej }
1786 1.219 thorpej fpcurproc = NULL;
1787 1.219 thorpej splx(s);
1788 1.219 thorpej
1789 1.219 thorpej if (save) {
1790 1.219 thorpej alpha_pal_wrfen(1);
1791 1.219 thorpej savefpstate(&p->p_addr->u_pcb.pcb_fp);
1792 1.219 thorpej #if defined(MULTIPROCESSOR)
1793 1.219 thorpej alpha_mb();
1794 1.219 thorpej #endif
1795 1.219 thorpej alpha_pal_wrfen(0);
1796 1.219 thorpej }
1797 1.219 thorpej
1798 1.219 thorpej p->p_addr->u_pcb.pcb_fpcpu = NULL;
1799 1.219 thorpej #if defined(MULTIPROCESSOR)
1800 1.219 thorpej alpha_mb();
1801 1.219 thorpej #endif
1802 1.219 thorpej }
1803 1.219 thorpej
1804 1.219 thorpej /*
1805 1.219 thorpej * Synchronize FP state for this process.
1806 1.219 thorpej */
1807 1.219 thorpej void
1808 1.219 thorpej synchronize_fpstate(struct proc *p, int save)
1809 1.219 thorpej {
1810 1.219 thorpej
1811 1.219 thorpej if (p->p_addr->u_pcb.pcb_fpcpu == NULL) {
1812 1.219 thorpej /* Already in-sync. */
1813 1.219 thorpej return;
1814 1.219 thorpej }
1815 1.219 thorpej
1816 1.219 thorpej #if defined(MULTIPROCESSOR)
1817 1.219 thorpej if (p->p_addr->u_pcb.pcb_fpcpu == curcpu()) {
1818 1.219 thorpej KASSERT(fpcurproc == p);
1819 1.219 thorpej release_fpu(save);
1820 1.219 thorpej } else {
1821 1.219 thorpej alpha_send_ipi(p->p_addr->u_pcb.pcb_fpcpu->ci_cpuid, save ?
1822 1.219 thorpej ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU);
1823 1.219 thorpej do {
1824 1.219 thorpej alpha_mb();
1825 1.219 thorpej } while (p->p_addr->u_pcb.pcb_fpcpu != NULL);
1826 1.219 thorpej }
1827 1.219 thorpej #else
1828 1.219 thorpej KASSERT(fpcurproc == p);
1829 1.219 thorpej release_fpu(save);
1830 1.219 thorpej #endif /* MULTIPROCESSOR */
1831 1.1 cgd }
1832 1.1 cgd
1833 1.214 cgd void
1834 1.1 cgd spl0()
1835 1.1 cgd {
1836 1.1 cgd
1837 1.178 thorpej if (ssir) {
1838 1.178 thorpej (void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
1839 1.211 thorpej softintr_dispatch();
1840 1.178 thorpej }
1841 1.1 cgd
1842 1.214 cgd (void) alpha_pal_swpipl(ALPHA_PSL_IPL_0);
1843 1.1 cgd }
1844 1.1 cgd
1845 1.1 cgd /*
1846 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
1847 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1848 1.52 cgd * into queues, Remrunqueue removes them from queues. The running process is
1849 1.52 cgd * on no queue, other processes are on a queue related to p->p_priority,
1850 1.52 cgd * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1851 1.52 cgd * available queues.
1852 1.1 cgd */
1853 1.1 cgd /*
1854 1.1 cgd * setrunqueue(p)
1855 1.1 cgd * proc *p;
1856 1.1 cgd *
1857 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
1858 1.1 cgd */
1859 1.1 cgd
1860 1.1 cgd void
1861 1.1 cgd setrunqueue(p)
1862 1.1 cgd struct proc *p;
1863 1.1 cgd {
1864 1.1 cgd int bit;
1865 1.1 cgd
1866 1.1 cgd /* firewall: p->p_back must be NULL */
1867 1.1 cgd if (p->p_back != NULL)
1868 1.1 cgd panic("setrunqueue");
1869 1.1 cgd
1870 1.1 cgd bit = p->p_priority >> 2;
1871 1.207 thorpej sched_whichqs |= (1 << bit);
1872 1.207 thorpej p->p_forw = (struct proc *)&sched_qs[bit];
1873 1.207 thorpej p->p_back = sched_qs[bit].ph_rlink;
1874 1.1 cgd p->p_back->p_forw = p;
1875 1.207 thorpej sched_qs[bit].ph_rlink = p;
1876 1.1 cgd }
1877 1.1 cgd
1878 1.1 cgd /*
1879 1.52 cgd * remrunqueue(p)
1880 1.1 cgd *
1881 1.1 cgd * Call should be made at splclock().
1882 1.1 cgd */
1883 1.1 cgd void
1884 1.52 cgd remrunqueue(p)
1885 1.1 cgd struct proc *p;
1886 1.1 cgd {
1887 1.1 cgd int bit;
1888 1.1 cgd
1889 1.1 cgd bit = p->p_priority >> 2;
1890 1.207 thorpej if ((sched_whichqs & (1 << bit)) == 0)
1891 1.52 cgd panic("remrunqueue");
1892 1.1 cgd
1893 1.1 cgd p->p_back->p_forw = p->p_forw;
1894 1.1 cgd p->p_forw->p_back = p->p_back;
1895 1.1 cgd p->p_back = NULL; /* for firewall checking. */
1896 1.1 cgd
1897 1.207 thorpej if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1898 1.207 thorpej sched_whichqs &= ~(1 << bit);
1899 1.1 cgd }
1900 1.1 cgd
1901 1.1 cgd /*
1902 1.1 cgd * Return the best possible estimate of the time in the timeval
1903 1.1 cgd * to which tvp points. Unfortunately, we can't read the hardware registers.
1904 1.1 cgd * We guarantee that the time will be greater than the value obtained by a
1905 1.1 cgd * previous call.
1906 1.1 cgd */
1907 1.1 cgd void
1908 1.1 cgd microtime(tvp)
1909 1.1 cgd register struct timeval *tvp;
1910 1.1 cgd {
1911 1.1 cgd int s = splclock();
1912 1.1 cgd static struct timeval lasttime;
1913 1.1 cgd
1914 1.1 cgd *tvp = time;
1915 1.1 cgd #ifdef notdef
1916 1.1 cgd tvp->tv_usec += clkread();
1917 1.190 msaitoh while (tvp->tv_usec >= 1000000) {
1918 1.1 cgd tvp->tv_sec++;
1919 1.1 cgd tvp->tv_usec -= 1000000;
1920 1.1 cgd }
1921 1.1 cgd #endif
1922 1.1 cgd if (tvp->tv_sec == lasttime.tv_sec &&
1923 1.1 cgd tvp->tv_usec <= lasttime.tv_usec &&
1924 1.190 msaitoh (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
1925 1.1 cgd tvp->tv_sec++;
1926 1.1 cgd tvp->tv_usec -= 1000000;
1927 1.1 cgd }
1928 1.1 cgd lasttime = *tvp;
1929 1.1 cgd splx(s);
1930 1.15 cgd }
1931 1.15 cgd
1932 1.15 cgd /*
1933 1.15 cgd * Wait "n" microseconds.
1934 1.15 cgd */
1935 1.32 cgd void
1936 1.15 cgd delay(n)
1937 1.32 cgd unsigned long n;
1938 1.15 cgd {
1939 1.216 thorpej unsigned long pcc0, pcc1, curcycle, cycles, usec;
1940 1.15 cgd
1941 1.216 thorpej if (n == 0)
1942 1.216 thorpej return;
1943 1.216 thorpej
1944 1.216 thorpej pcc0 = alpha_rpcc() & 0xffffffffUL;
1945 1.216 thorpej cycles = 0;
1946 1.216 thorpej usec = 0;
1947 1.216 thorpej
1948 1.216 thorpej while (usec <= n) {
1949 1.216 thorpej /*
1950 1.216 thorpej * Get the next CPU cycle count- assumes that we cannot
1951 1.216 thorpej * have had more than one 32 bit overflow.
1952 1.216 thorpej */
1953 1.216 thorpej pcc1 = alpha_rpcc() & 0xffffffffUL;
1954 1.216 thorpej if (pcc1 < pcc0)
1955 1.216 thorpej curcycle = (pcc1 + 0x100000000UL) - pcc0;
1956 1.216 thorpej else
1957 1.216 thorpej curcycle = pcc1 - pcc0;
1958 1.186 thorpej
1959 1.216 thorpej /*
1960 1.216 thorpej * We now have the number of processor cycles since we
1961 1.216 thorpej * last checked. Add the current cycle count to the
1962 1.216 thorpej * running total. If it's over cycles_per_usec, increment
1963 1.216 thorpej * the usec counter.
1964 1.216 thorpej */
1965 1.216 thorpej cycles += curcycle;
1966 1.216 thorpej while (cycles > cycles_per_usec) {
1967 1.216 thorpej usec++;
1968 1.216 thorpej cycles -= cycles_per_usec;
1969 1.216 thorpej }
1970 1.216 thorpej pcc0 = pcc1;
1971 1.216 thorpej }
1972 1.1 cgd }
1973 1.1 cgd
1974 1.8 cgd #if defined(COMPAT_OSF1) || 1 /* XXX */
1975 1.55 cgd void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1976 1.85 mycroft u_long));
1977 1.55 cgd
1978 1.1 cgd void
1979 1.85 mycroft cpu_exec_ecoff_setregs(p, epp, stack)
1980 1.1 cgd struct proc *p;
1981 1.19 cgd struct exec_package *epp;
1982 1.5 christos u_long stack;
1983 1.1 cgd {
1984 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1985 1.1 cgd
1986 1.85 mycroft setregs(p, epp, stack);
1987 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1988 1.1 cgd }
1989 1.1 cgd
1990 1.1 cgd /*
1991 1.1 cgd * cpu_exec_ecoff_hook():
1992 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1993 1.1 cgd *
1994 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1995 1.1 cgd *
1996 1.1 cgd */
1997 1.1 cgd int
1998 1.19 cgd cpu_exec_ecoff_hook(p, epp)
1999 1.1 cgd struct proc *p;
2000 1.1 cgd struct exec_package *epp;
2001 1.1 cgd {
2002 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2003 1.5 christos extern struct emul emul_netbsd;
2004 1.171 cgd int error;
2005 1.171 cgd extern int osf1_exec_ecoff_hook(struct proc *p,
2006 1.171 cgd struct exec_package *epp);
2007 1.1 cgd
2008 1.19 cgd switch (execp->f.f_magic) {
2009 1.5 christos #ifdef COMPAT_OSF1
2010 1.1 cgd case ECOFF_MAGIC_ALPHA:
2011 1.171 cgd error = osf1_exec_ecoff_hook(p, epp);
2012 1.1 cgd break;
2013 1.5 christos #endif
2014 1.1 cgd
2015 1.1 cgd case ECOFF_MAGIC_NETBSD_ALPHA:
2016 1.5 christos epp->ep_emul = &emul_netbsd;
2017 1.171 cgd error = 0;
2018 1.1 cgd break;
2019 1.1 cgd
2020 1.1 cgd default:
2021 1.171 cgd error = ENOEXEC;
2022 1.1 cgd }
2023 1.171 cgd return (error);
2024 1.1 cgd }
2025 1.1 cgd #endif
2026 1.110 thorpej
2027 1.110 thorpej int
2028 1.110 thorpej alpha_pa_access(pa)
2029 1.110 thorpej u_long pa;
2030 1.110 thorpej {
2031 1.110 thorpej int i;
2032 1.110 thorpej
2033 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
2034 1.110 thorpej if (pa < mem_clusters[i].start)
2035 1.110 thorpej continue;
2036 1.110 thorpej if ((pa - mem_clusters[i].start) >=
2037 1.110 thorpej (mem_clusters[i].size & ~PAGE_MASK))
2038 1.110 thorpej continue;
2039 1.110 thorpej return (mem_clusters[i].size & PAGE_MASK); /* prot */
2040 1.110 thorpej }
2041 1.197 thorpej
2042 1.197 thorpej /*
2043 1.197 thorpej * Address is not a memory address. If we're secure, disallow
2044 1.197 thorpej * access. Otherwise, grant read/write.
2045 1.197 thorpej */
2046 1.197 thorpej if (securelevel > 0)
2047 1.197 thorpej return (PROT_NONE);
2048 1.197 thorpej else
2049 1.197 thorpej return (PROT_READ | PROT_WRITE);
2050 1.110 thorpej }
2051 1.50 cgd
2052 1.50 cgd /* XXX XXX BEGIN XXX XXX */
2053 1.140 thorpej paddr_t alpha_XXX_dmamap_or; /* XXX */
2054 1.50 cgd /* XXX */
2055 1.140 thorpej paddr_t /* XXX */
2056 1.50 cgd alpha_XXX_dmamap(v) /* XXX */
2057 1.140 thorpej vaddr_t v; /* XXX */
2058 1.50 cgd { /* XXX */
2059 1.50 cgd /* XXX */
2060 1.51 cgd return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2061 1.50 cgd } /* XXX */
2062 1.50 cgd /* XXX XXX END XXX XXX */
2063 1.177 ross
2064 1.177 ross char *
2065 1.177 ross dot_conv(x)
2066 1.177 ross unsigned long x;
2067 1.177 ross {
2068 1.177 ross int i;
2069 1.177 ross char *xc;
2070 1.177 ross static int next;
2071 1.177 ross static char space[2][20];
2072 1.177 ross
2073 1.177 ross xc = space[next ^= 1] + sizeof space[0];
2074 1.177 ross *--xc = '\0';
2075 1.177 ross for (i = 0;; ++i) {
2076 1.177 ross if (i && (i & 3) == 0)
2077 1.177 ross *--xc = '.';
2078 1.177 ross *--xc = "0123456789abcdef"[x & 0xf];
2079 1.177 ross x >>= 4;
2080 1.177 ross if (x == 0)
2081 1.177 ross break;
2082 1.177 ross }
2083 1.177 ross return xc;
2084 1.138 ross }
2085