Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.231
      1  1.231       chs /* $NetBSD: machdep.c,v 1.231 2001/03/15 06:10:32 chs Exp $ */
      2  1.110   thorpej 
      3  1.110   thorpej /*-
      4  1.211   thorpej  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      5  1.110   thorpej  * All rights reserved.
      6  1.110   thorpej  *
      7  1.110   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.110   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.110   thorpej  * NASA Ames Research Center and by Chris G. Demetriou.
     10  1.110   thorpej  *
     11  1.110   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.110   thorpej  * modification, are permitted provided that the following conditions
     13  1.110   thorpej  * are met:
     14  1.110   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.110   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.110   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.110   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.110   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.110   thorpej  * 3. All advertising materials mentioning features or use of this software
     20  1.110   thorpej  *    must display the following acknowledgement:
     21  1.110   thorpej  *	This product includes software developed by the NetBSD
     22  1.110   thorpej  *	Foundation, Inc. and its contributors.
     23  1.110   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.110   thorpej  *    contributors may be used to endorse or promote products derived
     25  1.110   thorpej  *    from this software without specific prior written permission.
     26  1.110   thorpej  *
     27  1.110   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.110   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.110   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.110   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.110   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.110   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.110   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.110   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.110   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.110   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.110   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38  1.110   thorpej  */
     39    1.1       cgd 
     40    1.1       cgd /*
     41   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42    1.1       cgd  * All rights reserved.
     43    1.1       cgd  *
     44    1.1       cgd  * Author: Chris G. Demetriou
     45    1.1       cgd  *
     46    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     47    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     48    1.1       cgd  * notice and this permission notice appear in all copies of the
     49    1.1       cgd  * software, derivative works or modified versions, and any portions
     50    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     51    1.1       cgd  *
     52    1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53    1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55    1.1       cgd  *
     56    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     57    1.1       cgd  *
     58    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59    1.1       cgd  *  School of Computer Science
     60    1.1       cgd  *  Carnegie Mellon University
     61    1.1       cgd  *  Pittsburgh PA 15213-3890
     62    1.1       cgd  *
     63    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     64    1.1       cgd  * rights to redistribute these changes.
     65    1.1       cgd  */
     66   1.74       cgd 
     67  1.129  jonathan #include "opt_ddb.h"
     68  1.147   thorpej #include "opt_multiprocessor.h"
     69  1.123   thorpej #include "opt_dec_3000_300.h"
     70  1.123   thorpej #include "opt_dec_3000_500.h"
     71  1.127   thorpej #include "opt_compat_osf1.h"
     72  1.141   thorpej #include "opt_compat_netbsd.h"
     73  1.112   thorpej 
     74   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     75   1.75       cgd 
     76  1.231       chs __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.231 2001/03/15 06:10:32 chs Exp $");
     77    1.1       cgd 
     78    1.1       cgd #include <sys/param.h>
     79    1.1       cgd #include <sys/systm.h>
     80    1.1       cgd #include <sys/signalvar.h>
     81    1.1       cgd #include <sys/kernel.h>
     82    1.1       cgd #include <sys/map.h>
     83    1.1       cgd #include <sys/proc.h>
     84  1.207   thorpej #include <sys/sched.h>
     85    1.1       cgd #include <sys/buf.h>
     86    1.1       cgd #include <sys/reboot.h>
     87   1.28       cgd #include <sys/device.h>
     88    1.1       cgd #include <sys/file.h>
     89    1.1       cgd #include <sys/malloc.h>
     90    1.1       cgd #include <sys/mbuf.h>
     91  1.110   thorpej #include <sys/mman.h>
     92    1.1       cgd #include <sys/msgbuf.h>
     93    1.1       cgd #include <sys/ioctl.h>
     94    1.1       cgd #include <sys/tty.h>
     95    1.1       cgd #include <sys/user.h>
     96    1.1       cgd #include <sys/exec.h>
     97    1.1       cgd #include <sys/exec_ecoff.h>
     98   1.43       cgd #include <sys/core.h>
     99   1.43       cgd #include <sys/kcore.h>
    100   1.43       cgd #include <machine/kcore.h>
    101    1.1       cgd 
    102    1.1       cgd #include <sys/mount.h>
    103    1.1       cgd #include <sys/syscallargs.h>
    104    1.1       cgd 
    105  1.112   thorpej #include <uvm/uvm_extern.h>
    106  1.217       mrg #include <sys/sysctl.h>
    107  1.112   thorpej 
    108    1.1       cgd #include <dev/cons.h>
    109    1.1       cgd 
    110   1.81   thorpej #include <machine/autoconf.h>
    111    1.1       cgd #include <machine/cpu.h>
    112    1.1       cgd #include <machine/reg.h>
    113    1.1       cgd #include <machine/rpb.h>
    114    1.1       cgd #include <machine/prom.h>
    115   1.73       cgd #include <machine/conf.h>
    116  1.172      ross #include <machine/ieeefp.h>
    117  1.148   thorpej 
    118   1.81   thorpej #ifdef DDB
    119   1.81   thorpej #include <machine/db_machdep.h>
    120   1.81   thorpej #include <ddb/db_access.h>
    121   1.81   thorpej #include <ddb/db_sym.h>
    122   1.81   thorpej #include <ddb/db_extern.h>
    123   1.81   thorpej #include <ddb/db_interface.h>
    124   1.81   thorpej #endif
    125   1.81   thorpej 
    126  1.229  sommerfe #ifdef DEBUG
    127  1.229  sommerfe #include <machine/sigdebug.h>
    128  1.229  sommerfe #endif
    129  1.229  sommerfe 
    130  1.155      ross #include <machine/alpha.h>
    131  1.143      matt 
    132  1.112   thorpej vm_map_t exec_map = NULL;
    133  1.112   thorpej vm_map_t mb_map = NULL;
    134  1.112   thorpej vm_map_t phys_map = NULL;
    135    1.1       cgd 
    136   1.86       leo caddr_t msgbufaddr;
    137   1.86       leo 
    138    1.1       cgd int	maxmem;			/* max memory per process */
    139    1.7       cgd 
    140    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    141    1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    142    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    143    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    144    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    145    1.1       cgd 
    146    1.1       cgd int	cputype;		/* system type, from the RPB */
    147  1.210   thorpej 
    148  1.210   thorpej int	bootdev_debug = 0;	/* patchable, or from DDB */
    149    1.1       cgd 
    150    1.1       cgd /*
    151    1.1       cgd  * XXX We need an address to which we can assign things so that they
    152    1.1       cgd  * won't be optimized away because we didn't use the value.
    153    1.1       cgd  */
    154    1.1       cgd u_int32_t no_optimize;
    155    1.1       cgd 
    156    1.1       cgd /* the following is used externally (sysctl_hw) */
    157   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    158   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    159   1.29       cgd char	cpu_model[128];
    160    1.1       cgd 
    161    1.1       cgd struct	user *proc0paddr;
    162    1.1       cgd 
    163    1.1       cgd /* Number of machine cycles per microsecond */
    164    1.1       cgd u_int64_t	cycles_per_usec;
    165    1.1       cgd 
    166    1.7       cgd /* number of cpus in the box.  really! */
    167    1.7       cgd int		ncpus;
    168    1.7       cgd 
    169  1.102       cgd struct bootinfo_kernel bootinfo;
    170   1.81   thorpej 
    171  1.123   thorpej /* For built-in TCDS */
    172  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    173  1.123   thorpej u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    174  1.123   thorpej #endif
    175  1.123   thorpej 
    176   1.89    mjacob struct platform platform;
    177   1.89    mjacob 
    178   1.81   thorpej #ifdef DDB
    179   1.81   thorpej /* start and end of kernel symbol table */
    180   1.81   thorpej void	*ksym_start, *ksym_end;
    181   1.81   thorpej #endif
    182   1.81   thorpej 
    183   1.30       cgd /* for cpu_sysctl() */
    184   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    185   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    186   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    187   1.30       cgd 
    188  1.110   thorpej /*
    189  1.110   thorpej  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    190  1.110   thorpej  * XXX it should also be larger than it is, because not all of the mddt
    191  1.110   thorpej  * XXX clusters end up being used for VM.
    192  1.110   thorpej  */
    193  1.110   thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    194  1.110   thorpej int	mem_cluster_cnt;
    195  1.110   thorpej 
    196   1.55       cgd int	cpu_dump __P((void));
    197   1.55       cgd int	cpu_dumpsize __P((void));
    198  1.110   thorpej u_long	cpu_dump_mempagecnt __P((void));
    199   1.55       cgd void	dumpsys __P((void));
    200   1.55       cgd void	identifycpu __P((void));
    201   1.55       cgd void	printregs __P((struct reg *));
    202   1.33       cgd 
    203   1.55       cgd void
    204  1.102       cgd alpha_init(pfn, ptb, bim, bip, biv)
    205    1.1       cgd 	u_long pfn;		/* first free PFN number */
    206    1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    207   1.81   thorpej 	u_long bim;		/* bootinfo magic */
    208   1.81   thorpej 	u_long bip;		/* bootinfo pointer */
    209  1.102       cgd 	u_long biv;		/* bootinfo version */
    210    1.1       cgd {
    211   1.95   thorpej 	extern char kernel_text[], _end[];
    212    1.1       cgd 	struct mddt *mddtp;
    213  1.110   thorpej 	struct mddt_cluster *memc;
    214    1.7       cgd 	int i, mddtweird;
    215  1.110   thorpej 	struct vm_physseg *vps;
    216  1.140   thorpej 	vaddr_t kernstart, kernend;
    217  1.140   thorpej 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    218  1.140   thorpej 	vsize_t size;
    219  1.211   thorpej 	cpuid_t cpu_id;
    220  1.211   thorpej 	struct cpu_info *ci;
    221    1.1       cgd 	char *p;
    222   1.95   thorpej 	caddr_t v;
    223  1.209   thorpej 	const char *bootinfo_msg;
    224  1.209   thorpej 	const struct cpuinit *c;
    225  1.106       cgd 
    226  1.106       cgd 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    227    1.1       cgd 
    228    1.1       cgd 	/*
    229   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    230    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    231    1.1       cgd 	 */
    232   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    233   1.32       cgd 	alpha_pal_wrfen(0);
    234   1.37       cgd 	ALPHA_TBIA();
    235   1.32       cgd 	alpha_pal_imb();
    236    1.1       cgd 
    237  1.211   thorpej 	cpu_id = cpu_number();
    238  1.211   thorpej 
    239  1.189   thorpej #if defined(MULTIPROCESSOR)
    240  1.189   thorpej 	/*
    241  1.189   thorpej 	 * Set our SysValue to the address of our cpu_info structure.
    242  1.189   thorpej 	 * Secondary processors do this in their spinup trampoline.
    243  1.189   thorpej 	 */
    244  1.211   thorpej 	alpha_pal_wrval((u_long)&cpu_info[cpu_id]);
    245  1.189   thorpej #endif
    246  1.189   thorpej 
    247  1.211   thorpej 	ci = curcpu();
    248  1.211   thorpej 	ci->ci_cpuid = cpu_id;
    249  1.211   thorpej 
    250    1.1       cgd 	/*
    251  1.106       cgd 	 * Get critical system information (if possible, from the
    252  1.106       cgd 	 * information provided by the boot program).
    253   1.81   thorpej 	 */
    254  1.106       cgd 	bootinfo_msg = NULL;
    255   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    256  1.102       cgd 		if (biv == 0) {		/* backward compat */
    257  1.102       cgd 			biv = *(u_long *)bip;
    258  1.102       cgd 			bip += 8;
    259  1.102       cgd 		}
    260  1.102       cgd 		switch (biv) {
    261  1.102       cgd 		case 1: {
    262  1.102       cgd 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    263  1.102       cgd 
    264  1.102       cgd 			bootinfo.ssym = v1p->ssym;
    265  1.102       cgd 			bootinfo.esym = v1p->esym;
    266  1.106       cgd 			/* hwrpb may not be provided by boot block in v1 */
    267  1.106       cgd 			if (v1p->hwrpb != NULL) {
    268  1.106       cgd 				bootinfo.hwrpb_phys =
    269  1.106       cgd 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    270  1.106       cgd 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    271  1.106       cgd 			} else {
    272  1.106       cgd 				bootinfo.hwrpb_phys =
    273  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    274  1.106       cgd 				bootinfo.hwrpb_size =
    275  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    276  1.106       cgd 			}
    277  1.102       cgd 			bcopy(v1p->boot_flags, bootinfo.boot_flags,
    278  1.102       cgd 			    min(sizeof v1p->boot_flags,
    279  1.102       cgd 			      sizeof bootinfo.boot_flags));
    280  1.102       cgd 			bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
    281  1.102       cgd 			    min(sizeof v1p->booted_kernel,
    282  1.102       cgd 			      sizeof bootinfo.booted_kernel));
    283  1.106       cgd 			/* booted dev not provided in bootinfo */
    284  1.106       cgd 			init_prom_interface((struct rpb *)
    285  1.106       cgd 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    286  1.102       cgd                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    287  1.102       cgd 			    sizeof bootinfo.booted_dev);
    288   1.81   thorpej 			break;
    289  1.102       cgd 		}
    290   1.81   thorpej 		default:
    291  1.106       cgd 			bootinfo_msg = "unknown bootinfo version";
    292  1.102       cgd 			goto nobootinfo;
    293   1.81   thorpej 		}
    294  1.102       cgd 	} else {
    295  1.106       cgd 		bootinfo_msg = "boot program did not pass bootinfo";
    296  1.102       cgd nobootinfo:
    297  1.102       cgd 		bootinfo.ssym = (u_long)_end;
    298  1.102       cgd 		bootinfo.esym = (u_long)_end;
    299  1.106       cgd 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    300  1.106       cgd 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    301  1.106       cgd 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    302  1.102       cgd 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    303  1.102       cgd 		    sizeof bootinfo.boot_flags);
    304  1.102       cgd 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    305  1.102       cgd 		    sizeof bootinfo.booted_kernel);
    306  1.102       cgd 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    307  1.102       cgd 		    sizeof bootinfo.booted_dev);
    308  1.102       cgd 	}
    309  1.102       cgd 
    310   1.81   thorpej 	/*
    311  1.106       cgd 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    312  1.106       cgd 	 * lots of things.
    313  1.106       cgd 	 */
    314  1.106       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    315  1.123   thorpej 
    316  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    317  1.123   thorpej 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    318  1.123   thorpej 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    319  1.123   thorpej 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    320  1.123   thorpej 		    sizeof(dec_3000_scsiid));
    321  1.123   thorpej 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    322  1.123   thorpej 		    sizeof(dec_3000_scsifast));
    323  1.123   thorpej 	}
    324  1.123   thorpej #endif
    325  1.106       cgd 
    326  1.106       cgd 	/*
    327  1.106       cgd 	 * Remember how many cycles there are per microsecond,
    328  1.106       cgd 	 * so that we can use delay().  Round up, for safety.
    329  1.106       cgd 	 */
    330  1.106       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    331  1.106       cgd 
    332  1.106       cgd 	/*
    333  1.106       cgd 	 * Initalize the (temporary) bootstrap console interface, so
    334  1.106       cgd 	 * we can use printf until the VM system starts being setup.
    335  1.106       cgd 	 * The real console is initialized before then.
    336  1.106       cgd 	 */
    337  1.106       cgd 	init_bootstrap_console();
    338  1.106       cgd 
    339  1.106       cgd 	/* OUTPUT NOW ALLOWED */
    340  1.106       cgd 
    341  1.106       cgd 	/* delayed from above */
    342  1.106       cgd 	if (bootinfo_msg)
    343  1.106       cgd 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    344  1.106       cgd 		    bootinfo_msg, bim, bip, biv);
    345  1.106       cgd 
    346  1.147   thorpej 	/* Initialize the trap vectors on the primary processor. */
    347  1.147   thorpej 	trap_init();
    348    1.1       cgd 
    349    1.1       cgd 	/*
    350  1.106       cgd 	 * Find out what hardware we're on, and do basic initialization.
    351  1.106       cgd 	 */
    352  1.106       cgd 	cputype = hwrpb->rpb_type;
    353  1.167       cgd 	if (cputype < 0) {
    354  1.167       cgd 		/*
    355  1.167       cgd 		 * At least some white-box systems have SRM which
    356  1.167       cgd 		 * reports a systype that's the negative of their
    357  1.167       cgd 		 * blue-box counterpart.
    358  1.167       cgd 		 */
    359  1.167       cgd 		cputype = -cputype;
    360  1.167       cgd 	}
    361  1.209   thorpej 	c = platform_lookup(cputype);
    362  1.209   thorpej 	if (c == NULL) {
    363  1.106       cgd 		platform_not_supported();
    364  1.106       cgd 		/* NOTREACHED */
    365  1.106       cgd 	}
    366  1.209   thorpej 	(*c->init)();
    367  1.106       cgd 	strcpy(cpu_model, platform.model);
    368  1.106       cgd 
    369  1.106       cgd 	/*
    370  1.199     soren 	 * Initalize the real console, so that the bootstrap console is
    371  1.106       cgd 	 * no longer necessary.
    372  1.106       cgd 	 */
    373  1.169   thorpej 	(*platform.cons_init)();
    374  1.106       cgd 
    375  1.106       cgd #ifdef DIAGNOSTIC
    376  1.106       cgd 	/* Paranoid sanity checking */
    377  1.106       cgd 
    378  1.199     soren 	/* We should always be running on the primary. */
    379  1.211   thorpej 	assert(hwrpb->rpb_primary_cpu_id == cpu_id);
    380  1.106       cgd 
    381  1.116    mjacob 	/*
    382  1.116    mjacob 	 * On single-CPU systypes, the primary should always be CPU 0,
    383  1.116    mjacob 	 * except on Alpha 8200 systems where the CPU id is related
    384  1.116    mjacob 	 * to the VID, which is related to the Turbo Laser node id.
    385  1.116    mjacob 	 */
    386  1.106       cgd 	if (cputype != ST_DEC_21000)
    387  1.106       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);
    388  1.106       cgd #endif
    389  1.106       cgd 
    390  1.106       cgd 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    391  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    392  1.106       cgd 	/*
    393  1.106       cgd 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    394  1.106       cgd 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    395  1.106       cgd 	 */
    396  1.106       cgd #endif
    397  1.106       cgd 
    398  1.106       cgd 	/*
    399  1.106       cgd 	 * find out this system's page size
    400   1.95   thorpej 	 */
    401   1.95   thorpej 	PAGE_SIZE = hwrpb->rpb_page_size;
    402   1.95   thorpej 	if (PAGE_SIZE != 8192)
    403   1.95   thorpej 		panic("page size %d != 8192?!", PAGE_SIZE);
    404   1.95   thorpej 
    405   1.95   thorpej 	/*
    406   1.95   thorpej 	 * Initialize PAGE_SIZE-dependent variables.
    407   1.95   thorpej 	 */
    408  1.112   thorpej 	uvm_setpagesize();
    409   1.95   thorpej 
    410   1.95   thorpej 	/*
    411  1.101       cgd 	 * Find the beginning and end of the kernel (and leave a
    412  1.101       cgd 	 * bit of space before the beginning for the bootstrap
    413  1.101       cgd 	 * stack).
    414   1.95   thorpej 	 */
    415  1.201    kleink 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
    416   1.95   thorpej #ifdef DDB
    417  1.102       cgd 	ksym_start = (void *)bootinfo.ssym;
    418  1.102       cgd 	ksym_end   = (void *)bootinfo.esym;
    419  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
    420  1.102       cgd #else
    421  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)_end);
    422   1.95   thorpej #endif
    423   1.95   thorpej 
    424  1.110   thorpej 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    425  1.110   thorpej 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    426  1.110   thorpej 
    427   1.95   thorpej 	/*
    428    1.1       cgd 	 * Find out how much memory is available, by looking at
    429    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    430    1.7       cgd 	 * its best to detect things things that have never been seen
    431    1.7       cgd 	 * before...
    432    1.1       cgd 	 */
    433    1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    434    1.7       cgd 
    435  1.110   thorpej 	/* MDDT SANITY CHECKING */
    436    1.7       cgd 	mddtweird = 0;
    437  1.110   thorpej 	if (mddtp->mddt_cluster_cnt < 2) {
    438    1.7       cgd 		mddtweird = 1;
    439  1.160   thorpej 		printf("WARNING: weird number of mem clusters: %lu\n",
    440  1.110   thorpej 		    mddtp->mddt_cluster_cnt);
    441    1.7       cgd 	}
    442    1.7       cgd 
    443  1.110   thorpej #if 0
    444  1.110   thorpej 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    445  1.110   thorpej #endif
    446  1.110   thorpej 
    447  1.110   thorpej 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    448  1.110   thorpej 		memc = &mddtp->mddt_clusters[i];
    449  1.110   thorpej #if 0
    450  1.110   thorpej 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    451  1.110   thorpej 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    452  1.110   thorpej #endif
    453  1.110   thorpej 		totalphysmem += memc->mddt_pg_cnt;
    454  1.110   thorpej 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    455  1.110   thorpej 			mem_clusters[mem_cluster_cnt].start =
    456  1.110   thorpej 			    ptoa(memc->mddt_pfn);
    457  1.110   thorpej 			mem_clusters[mem_cluster_cnt].size =
    458  1.110   thorpej 			    ptoa(memc->mddt_pg_cnt);
    459  1.110   thorpej 			if (memc->mddt_usage & MDDT_mbz ||
    460  1.110   thorpej 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    461  1.110   thorpej 			    memc->mddt_usage & MDDT_PALCODE)
    462  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    463  1.110   thorpej 				    PROT_READ;
    464  1.110   thorpej 			else
    465  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    466  1.110   thorpej 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    467  1.110   thorpej 			mem_cluster_cnt++;
    468  1.110   thorpej 		}
    469  1.110   thorpej 
    470  1.110   thorpej 		if (memc->mddt_usage & MDDT_mbz) {
    471    1.7       cgd 			mddtweird = 1;
    472  1.110   thorpej 			printf("WARNING: mem cluster %d has weird "
    473  1.110   thorpej 			    "usage 0x%lx\n", i, memc->mddt_usage);
    474  1.110   thorpej 			unknownmem += memc->mddt_pg_cnt;
    475  1.110   thorpej 			continue;
    476    1.7       cgd 		}
    477  1.110   thorpej 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    478  1.110   thorpej 			/* XXX should handle these... */
    479  1.110   thorpej 			printf("WARNING: skipping non-volatile mem "
    480  1.110   thorpej 			    "cluster %d\n", i);
    481  1.110   thorpej 			unusedmem += memc->mddt_pg_cnt;
    482  1.110   thorpej 			continue;
    483  1.110   thorpej 		}
    484  1.110   thorpej 		if (memc->mddt_usage & MDDT_PALCODE) {
    485  1.110   thorpej 			resvmem += memc->mddt_pg_cnt;
    486  1.110   thorpej 			continue;
    487  1.110   thorpej 		}
    488  1.110   thorpej 
    489  1.110   thorpej 		/*
    490  1.110   thorpej 		 * We have a memory cluster available for system
    491  1.110   thorpej 		 * software use.  We must determine if this cluster
    492  1.110   thorpej 		 * holds the kernel.
    493  1.110   thorpej 		 */
    494  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    495  1.110   thorpej 		/*
    496  1.110   thorpej 		 * XXX If the kernel uses the PROM console, we only use the
    497  1.110   thorpej 		 * XXX memory after the kernel in the first system segment,
    498  1.110   thorpej 		 * XXX to avoid clobbering prom mapping, data, etc.
    499  1.110   thorpej 		 */
    500  1.110   thorpej 	    if (!pmap_uses_prom_console() || physmem == 0) {
    501  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    502  1.110   thorpej 		physmem += memc->mddt_pg_cnt;
    503  1.110   thorpej 		pfn0 = memc->mddt_pfn;
    504  1.110   thorpej 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    505  1.110   thorpej 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    506  1.110   thorpej 			/*
    507  1.110   thorpej 			 * Must compute the location of the kernel
    508  1.110   thorpej 			 * within the segment.
    509  1.110   thorpej 			 */
    510  1.110   thorpej #if 0
    511  1.110   thorpej 			printf("Cluster %d contains kernel\n", i);
    512  1.110   thorpej #endif
    513  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    514  1.110   thorpej 		    if (!pmap_uses_prom_console()) {
    515  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    516  1.110   thorpej 			if (pfn0 < kernstartpfn) {
    517  1.110   thorpej 				/*
    518  1.110   thorpej 				 * There is a chunk before the kernel.
    519  1.110   thorpej 				 */
    520  1.110   thorpej #if 0
    521  1.110   thorpej 				printf("Loading chunk before kernel: "
    522  1.110   thorpej 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    523  1.110   thorpej #endif
    524  1.112   thorpej 				uvm_page_physload(pfn0, kernstartpfn,
    525  1.135   thorpej 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    526  1.110   thorpej 			}
    527  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    528  1.110   thorpej 		    }
    529  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    530  1.110   thorpej 			if (kernendpfn < pfn1) {
    531  1.110   thorpej 				/*
    532  1.110   thorpej 				 * There is a chunk after the kernel.
    533  1.110   thorpej 				 */
    534  1.110   thorpej #if 0
    535  1.110   thorpej 				printf("Loading chunk after kernel: "
    536  1.110   thorpej 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    537  1.110   thorpej #endif
    538  1.112   thorpej 				uvm_page_physload(kernendpfn, pfn1,
    539  1.135   thorpej 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    540  1.110   thorpej 			}
    541  1.110   thorpej 		} else {
    542  1.110   thorpej 			/*
    543  1.110   thorpej 			 * Just load this cluster as one chunk.
    544  1.110   thorpej 			 */
    545  1.110   thorpej #if 0
    546  1.110   thorpej 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    547  1.110   thorpej 			    pfn0, pfn1);
    548  1.110   thorpej #endif
    549  1.135   thorpej 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    550  1.135   thorpej 			    VM_FREELIST_DEFAULT);
    551    1.7       cgd 		}
    552  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    553  1.110   thorpej 	    }
    554  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    555    1.7       cgd 	}
    556    1.7       cgd 
    557  1.110   thorpej 	/*
    558  1.110   thorpej 	 * Dump out the MDDT if it looks odd...
    559  1.110   thorpej 	 */
    560    1.7       cgd 	if (mddtweird) {
    561   1.46  christos 		printf("\n");
    562   1.46  christos 		printf("complete memory cluster information:\n");
    563    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    564   1.46  christos 			printf("mddt %d:\n", i);
    565   1.46  christos 			printf("\tpfn %lx\n",
    566    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    567   1.46  christos 			printf("\tcnt %lx\n",
    568    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    569   1.46  christos 			printf("\ttest %lx\n",
    570    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    571   1.46  christos 			printf("\tbva %lx\n",
    572    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    573   1.46  christos 			printf("\tbpa %lx\n",
    574    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    575   1.46  christos 			printf("\tbcksum %lx\n",
    576    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    577   1.46  christos 			printf("\tusage %lx\n",
    578    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    579    1.2       cgd 		}
    580   1.46  christos 		printf("\n");
    581    1.2       cgd 	}
    582    1.2       cgd 
    583    1.7       cgd 	if (totalphysmem == 0)
    584    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    585    1.1       cgd 	maxmem = physmem;
    586    1.7       cgd #if 0
    587   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    588   1.46  christos 	printf("physmem = %d\n", physmem);
    589   1.46  christos 	printf("resvmem = %d\n", resvmem);
    590   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    591   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    592    1.7       cgd #endif
    593    1.7       cgd 
    594    1.1       cgd 	/*
    595    1.1       cgd 	 * Initialize error message buffer (at end of core).
    596    1.1       cgd 	 */
    597  1.110   thorpej 	{
    598  1.204     enami 		vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
    599  1.203     enami 		vsize_t reqsz = sz;
    600  1.110   thorpej 
    601  1.110   thorpej 		vps = &vm_physmem[vm_nphysseg - 1];
    602  1.110   thorpej 
    603  1.110   thorpej 		/* shrink so that it'll fit in the last segment */
    604  1.110   thorpej 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    605  1.110   thorpej 			sz = ptoa(vps->avail_end - vps->avail_start);
    606  1.110   thorpej 
    607  1.110   thorpej 		vps->end -= atop(sz);
    608  1.110   thorpej 		vps->avail_end -= atop(sz);
    609  1.110   thorpej 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    610  1.110   thorpej 		initmsgbuf(msgbufaddr, sz);
    611  1.110   thorpej 
    612  1.110   thorpej 		/* Remove the last segment if it now has no pages. */
    613  1.110   thorpej 		if (vps->start == vps->end)
    614  1.110   thorpej 			vm_nphysseg--;
    615  1.110   thorpej 
    616  1.110   thorpej 		/* warn if the message buffer had to be shrunk */
    617  1.203     enami 		if (sz != reqsz)
    618  1.203     enami 			printf("WARNING: %ld bytes not available for msgbuf "
    619  1.203     enami 			    "in last cluster (%ld used)\n", reqsz, sz);
    620  1.110   thorpej 
    621  1.110   thorpej 	}
    622    1.1       cgd 
    623    1.1       cgd 	/*
    624   1.95   thorpej 	 * Init mapping for u page(s) for proc 0
    625    1.1       cgd 	 */
    626  1.110   thorpej 	proc0.p_addr = proc0paddr =
    627  1.110   thorpej 	    (struct user *)pmap_steal_memory(UPAGES * PAGE_SIZE, NULL, NULL);
    628    1.1       cgd 
    629    1.1       cgd 	/*
    630   1.95   thorpej 	 * Allocate space for system data structures.  These data structures
    631   1.95   thorpej 	 * are allocated here instead of cpu_startup() because physical
    632   1.95   thorpej 	 * memory is directly addressable.  We don't have to map these into
    633   1.95   thorpej 	 * virtual address space.
    634   1.95   thorpej 	 */
    635  1.198   thorpej 	size = (vsize_t)allocsys(NULL, NULL);
    636  1.110   thorpej 	v = (caddr_t)pmap_steal_memory(size, NULL, NULL);
    637  1.198   thorpej 	if ((allocsys(v, NULL) - v) != size)
    638   1.95   thorpej 		panic("alpha_init: table size inconsistency");
    639    1.1       cgd 
    640    1.1       cgd 	/*
    641    1.1       cgd 	 * Initialize the virtual memory system, and set the
    642    1.1       cgd 	 * page table base register in proc 0's PCB.
    643    1.1       cgd 	 */
    644  1.110   thorpej 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    645  1.144   thorpej 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    646    1.1       cgd 
    647    1.1       cgd 	/*
    648    1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    649    1.3       cgd 	 * address.
    650    1.3       cgd 	 */
    651    1.3       cgd 	proc0.p_md.md_pcbpaddr =
    652  1.140   thorpej 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
    653    1.3       cgd 
    654    1.3       cgd 	/*
    655    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    656    1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    657    1.3       cgd 	 */
    658   1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    659    1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    660   1.81   thorpej 	proc0.p_md.md_tf =
    661   1.81   thorpej 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    662  1.189   thorpej 
    663  1.189   thorpej 	/*
    664  1.208   thorpej 	 * Initialize the primary CPU's idle PCB to proc0's.  In a
    665  1.208   thorpej 	 * MULTIPROCESSOR configuration, each CPU will later get
    666  1.208   thorpej 	 * its own idle PCB when autoconfiguration runs.
    667  1.189   thorpej 	 */
    668  1.211   thorpej 	ci->ci_idle_pcb = &proc0paddr->u_pcb;
    669  1.211   thorpej 	ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
    670  1.208   thorpej 
    671  1.208   thorpej 	/* Indicate that proc0 has a CPU. */
    672  1.211   thorpej 	proc0.p_cpu = ci;
    673    1.1       cgd 
    674    1.1       cgd 	/*
    675   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    676    1.8       cgd 	 */
    677    1.1       cgd 
    678    1.8       cgd 	boothowto = RB_SINGLE;
    679    1.1       cgd #ifdef KADB
    680    1.1       cgd 	boothowto |= RB_KDB;
    681    1.1       cgd #endif
    682  1.102       cgd 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    683   1.26       cgd 		/*
    684   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    685   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    686   1.26       cgd 		 * says that we shouldn't.
    687   1.26       cgd 		 */
    688    1.8       cgd 		switch (*p) {
    689   1.26       cgd 		case 'a': /* autoboot */
    690   1.26       cgd 		case 'A':
    691   1.26       cgd 			boothowto &= ~RB_SINGLE;
    692   1.21       cgd 			break;
    693   1.21       cgd 
    694   1.43       cgd #ifdef DEBUG
    695   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    696   1.43       cgd 		case 'C':
    697   1.43       cgd 			boothowto |= RB_DUMP;
    698   1.43       cgd 			break;
    699   1.43       cgd #endif
    700   1.43       cgd 
    701   1.81   thorpej #if defined(KGDB) || defined(DDB)
    702   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    703   1.81   thorpej 		case 'D':
    704   1.81   thorpej 			boothowto |= RB_KDB;
    705   1.81   thorpej 			break;
    706   1.81   thorpej #endif
    707   1.81   thorpej 
    708   1.36       cgd 		case 'h': /* always halt, never reboot */
    709   1.36       cgd 		case 'H':
    710   1.36       cgd 			boothowto |= RB_HALT;
    711    1.8       cgd 			break;
    712    1.8       cgd 
    713   1.21       cgd #if 0
    714    1.8       cgd 		case 'm': /* mini root present in memory */
    715   1.26       cgd 		case 'M':
    716    1.8       cgd 			boothowto |= RB_MINIROOT;
    717    1.8       cgd 			break;
    718   1.21       cgd #endif
    719   1.36       cgd 
    720   1.36       cgd 		case 'n': /* askname */
    721   1.36       cgd 		case 'N':
    722   1.36       cgd 			boothowto |= RB_ASKNAME;
    723   1.65       cgd 			break;
    724   1.65       cgd 
    725   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    726   1.65       cgd 		case 'S':
    727   1.65       cgd 			boothowto |= RB_SINGLE;
    728  1.221  jdolecek 			break;
    729  1.221  jdolecek 
    730  1.221  jdolecek 		case 'q': /* quiet boot */
    731  1.221  jdolecek 		case 'Q':
    732  1.221  jdolecek 			boothowto |= AB_QUIET;
    733  1.221  jdolecek 			break;
    734  1.221  jdolecek 
    735  1.221  jdolecek 		case 'v': /* verbose boot */
    736  1.221  jdolecek 		case 'V':
    737  1.221  jdolecek 			boothowto |= AB_VERBOSE;
    738  1.119   thorpej 			break;
    739  1.119   thorpej 
    740  1.119   thorpej 		case '-':
    741  1.119   thorpej 			/*
    742  1.119   thorpej 			 * Just ignore this.  It's not required, but it's
    743  1.119   thorpej 			 * common for it to be passed regardless.
    744  1.119   thorpej 			 */
    745   1.65       cgd 			break;
    746   1.65       cgd 
    747   1.65       cgd 		default:
    748   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    749   1.36       cgd 			break;
    750    1.1       cgd 		}
    751    1.1       cgd 	}
    752    1.1       cgd 
    753  1.136    mjacob 
    754  1.136    mjacob 	/*
    755  1.136    mjacob 	 * Figure out the number of cpus in the box, from RPB fields.
    756  1.136    mjacob 	 * Really.  We mean it.
    757  1.136    mjacob 	 */
    758  1.136    mjacob 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    759  1.136    mjacob 		struct pcs *pcsp;
    760  1.136    mjacob 
    761  1.144   thorpej 		pcsp = LOCATE_PCS(hwrpb, i);
    762  1.136    mjacob 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    763  1.136    mjacob 			ncpus++;
    764  1.136    mjacob 	}
    765  1.136    mjacob 
    766    1.7       cgd 	/*
    767  1.106       cgd 	 * Initialize debuggers, and break into them if appropriate.
    768  1.106       cgd 	 */
    769  1.106       cgd #ifdef DDB
    770  1.159    mjacob 	ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    771  1.159    mjacob 	    ksym_start, ksym_end);
    772  1.106       cgd 	if (boothowto & RB_KDB)
    773  1.106       cgd 		Debugger();
    774  1.106       cgd #endif
    775  1.106       cgd #ifdef KGDB
    776  1.106       cgd 	if (boothowto & RB_KDB)
    777  1.106       cgd 		kgdb_connect(0);
    778  1.106       cgd #endif
    779  1.106       cgd 	/*
    780  1.106       cgd 	 * Figure out our clock frequency, from RPB fields.
    781  1.106       cgd 	 */
    782  1.106       cgd 	hz = hwrpb->rpb_intr_freq >> 12;
    783  1.106       cgd 	if (!(60 <= hz && hz <= 10240)) {
    784  1.106       cgd 		hz = 1024;
    785  1.106       cgd #ifdef DIAGNOSTIC
    786  1.106       cgd 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    787  1.106       cgd 			hwrpb->rpb_intr_freq, hz);
    788  1.106       cgd #endif
    789  1.106       cgd 	}
    790   1.95   thorpej }
    791   1.95   thorpej 
    792   1.18       cgd void
    793    1.1       cgd consinit()
    794    1.1       cgd {
    795   1.81   thorpej 
    796  1.106       cgd 	/*
    797  1.106       cgd 	 * Everything related to console initialization is done
    798  1.106       cgd 	 * in alpha_init().
    799  1.106       cgd 	 */
    800  1.106       cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    801  1.106       cgd 	printf("consinit: %susing prom console\n",
    802  1.106       cgd 	    pmap_uses_prom_console() ? "" : "not ");
    803   1.81   thorpej #endif
    804    1.1       cgd }
    805  1.118   thorpej 
    806  1.118   thorpej #include "pckbc.h"
    807  1.118   thorpej #include "pckbd.h"
    808  1.118   thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
    809  1.118   thorpej 
    810  1.187   thorpej #include <dev/ic/pckbcvar.h>
    811  1.118   thorpej 
    812  1.118   thorpej /*
    813  1.118   thorpej  * This is called by the pbkbc driver if no pckbd is configured.
    814  1.118   thorpej  * On the i386, it is used to glue in the old, deprecated console
    815  1.118   thorpej  * code.  On the Alpha, it does nothing.
    816  1.118   thorpej  */
    817  1.118   thorpej int
    818  1.118   thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
    819  1.118   thorpej 	pckbc_tag_t kbctag;
    820  1.118   thorpej 	pckbc_slot_t kbcslot;
    821  1.118   thorpej {
    822  1.118   thorpej 
    823  1.118   thorpej 	return (ENXIO);
    824  1.118   thorpej }
    825  1.118   thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
    826    1.1       cgd 
    827   1.18       cgd void
    828    1.1       cgd cpu_startup()
    829    1.1       cgd {
    830    1.1       cgd 	register unsigned i;
    831    1.1       cgd 	int base, residual;
    832  1.140   thorpej 	vaddr_t minaddr, maxaddr;
    833  1.140   thorpej 	vsize_t size;
    834  1.173     lukem 	char pbuf[9];
    835   1.40       cgd #if defined(DEBUG)
    836    1.1       cgd 	extern int pmapdebug;
    837    1.1       cgd 	int opmapdebug = pmapdebug;
    838    1.1       cgd 
    839    1.1       cgd 	pmapdebug = 0;
    840    1.1       cgd #endif
    841    1.1       cgd 
    842    1.1       cgd 	/*
    843    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    844    1.1       cgd 	 */
    845   1.46  christos 	printf(version);
    846    1.1       cgd 	identifycpu();
    847  1.185   thorpej 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
    848  1.173     lukem 	printf("total memory = %s\n", pbuf);
    849  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    850  1.173     lukem 	printf("(%s reserved for PROM, ", pbuf);
    851  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    852  1.173     lukem 	printf("%s used by NetBSD)\n", pbuf);
    853  1.173     lukem 	if (unusedmem) {
    854  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
    855  1.173     lukem 		printf("WARNING: unused memory = %s\n", pbuf);
    856  1.173     lukem 	}
    857  1.173     lukem 	if (unknownmem) {
    858  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
    859  1.173     lukem 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    860  1.173     lukem 	}
    861    1.1       cgd 
    862    1.1       cgd 	/*
    863    1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    864    1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    865    1.1       cgd 	 * and usually occupy more virtual memory than physical.
    866    1.1       cgd 	 */
    867    1.1       cgd 	size = MAXBSIZE * nbuf;
    868  1.140   thorpej 	if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
    869  1.220   thorpej 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    870  1.112   thorpej 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
    871  1.231       chs 				UVM_ADV_NORMAL, 0)) != 0)
    872  1.112   thorpej 		panic("startup: cannot allocate VM for buffers");
    873    1.1       cgd 	base = bufpages / nbuf;
    874    1.1       cgd 	residual = bufpages % nbuf;
    875    1.1       cgd 	for (i = 0; i < nbuf; i++) {
    876  1.140   thorpej 		vsize_t curbufsize;
    877  1.140   thorpej 		vaddr_t curbuf;
    878  1.112   thorpej 		struct vm_page *pg;
    879  1.112   thorpej 
    880  1.112   thorpej 		/*
    881  1.112   thorpej 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
    882  1.112   thorpej 		 * that MAXBSIZE space, we allocate and map (base+1) pages
    883  1.112   thorpej 		 * for the first "residual" buffers, and then we allocate
    884  1.112   thorpej 		 * "base" pages for the rest.
    885  1.112   thorpej 		 */
    886  1.140   thorpej 		curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
    887  1.188     ragge 		curbufsize = NBPG * ((i < residual) ? (base+1) : base);
    888  1.112   thorpej 
    889  1.112   thorpej 		while (curbufsize) {
    890  1.168       chs 			pg = uvm_pagealloc(NULL, 0, NULL, 0);
    891  1.112   thorpej 			if (pg == NULL)
    892  1.112   thorpej 				panic("cpu_startup: not enough memory for "
    893  1.112   thorpej 				    "buffer cache");
    894  1.182       chs 			pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
    895  1.182       chs 					VM_PROT_READ|VM_PROT_WRITE);
    896  1.112   thorpej 			curbuf += PAGE_SIZE;
    897  1.112   thorpej 			curbufsize -= PAGE_SIZE;
    898  1.112   thorpej 		}
    899    1.1       cgd 	}
    900    1.1       cgd 	/*
    901    1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    902    1.1       cgd 	 * limits the number of processes exec'ing at any time.
    903    1.1       cgd 	 */
    904  1.112   thorpej 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    905  1.175   thorpej 				   16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
    906    1.1       cgd 
    907    1.1       cgd 	/*
    908    1.1       cgd 	 * Allocate a submap for physio
    909    1.1       cgd 	 */
    910  1.112   thorpej 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    911  1.175   thorpej 				   VM_PHYS_SIZE, 0, FALSE, NULL);
    912    1.1       cgd 
    913    1.1       cgd 	/*
    914  1.164   thorpej 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    915  1.164   thorpej 	 * are allocated via the pool allocator, and we use K0SEG to
    916  1.164   thorpej 	 * map those pages.
    917    1.1       cgd 	 */
    918    1.1       cgd 
    919   1.40       cgd #if defined(DEBUG)
    920    1.1       cgd 	pmapdebug = opmapdebug;
    921    1.1       cgd #endif
    922  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
    923  1.173     lukem 	printf("avail memory = %s\n", pbuf);
    924  1.139   thorpej #if 0
    925  1.139   thorpej 	{
    926  1.139   thorpej 		extern u_long pmap_pages_stolen;
    927  1.173     lukem 
    928  1.173     lukem 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
    929  1.173     lukem 		printf("stolen memory for VM structures = %s\n", pbuf);
    930  1.139   thorpej 	}
    931  1.112   thorpej #endif
    932  1.188     ragge 	format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
    933  1.173     lukem 	printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
    934    1.1       cgd 
    935    1.1       cgd 	/*
    936    1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
    937    1.1       cgd 	 */
    938    1.1       cgd 	bufinit();
    939  1.151   thorpej 
    940  1.151   thorpej 	/*
    941  1.151   thorpej 	 * Set up the HWPCB so that it's safe to configure secondary
    942  1.151   thorpej 	 * CPUs.
    943  1.151   thorpej 	 */
    944  1.151   thorpej 	hwrpb_primary_init();
    945  1.104   thorpej }
    946  1.104   thorpej 
    947  1.104   thorpej /*
    948  1.104   thorpej  * Retrieve the platform name from the DSR.
    949  1.104   thorpej  */
    950  1.104   thorpej const char *
    951  1.104   thorpej alpha_dsr_sysname()
    952  1.104   thorpej {
    953  1.104   thorpej 	struct dsrdb *dsr;
    954  1.104   thorpej 	const char *sysname;
    955  1.104   thorpej 
    956  1.104   thorpej 	/*
    957  1.104   thorpej 	 * DSR does not exist on early HWRPB versions.
    958  1.104   thorpej 	 */
    959  1.104   thorpej 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
    960  1.104   thorpej 		return (NULL);
    961  1.104   thorpej 
    962  1.104   thorpej 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
    963  1.104   thorpej 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
    964  1.104   thorpej 	    sizeof(u_int64_t)));
    965  1.104   thorpej 	return (sysname);
    966  1.104   thorpej }
    967  1.104   thorpej 
    968  1.104   thorpej /*
    969  1.104   thorpej  * Lookup the system specified system variation in the provided table,
    970  1.104   thorpej  * returning the model string on match.
    971  1.104   thorpej  */
    972  1.104   thorpej const char *
    973  1.104   thorpej alpha_variation_name(variation, avtp)
    974  1.104   thorpej 	u_int64_t variation;
    975  1.104   thorpej 	const struct alpha_variation_table *avtp;
    976  1.104   thorpej {
    977  1.104   thorpej 	int i;
    978  1.104   thorpej 
    979  1.104   thorpej 	for (i = 0; avtp[i].avt_model != NULL; i++)
    980  1.104   thorpej 		if (avtp[i].avt_variation == variation)
    981  1.104   thorpej 			return (avtp[i].avt_model);
    982  1.104   thorpej 	return (NULL);
    983  1.104   thorpej }
    984  1.104   thorpej 
    985  1.104   thorpej /*
    986  1.104   thorpej  * Generate a default platform name based for unknown system variations.
    987  1.104   thorpej  */
    988  1.104   thorpej const char *
    989  1.104   thorpej alpha_unknown_sysname()
    990  1.104   thorpej {
    991  1.105   thorpej 	static char s[128];		/* safe size */
    992  1.104   thorpej 
    993  1.105   thorpej 	sprintf(s, "%s family, unknown model variation 0x%lx",
    994  1.105   thorpej 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
    995  1.104   thorpej 	return ((const char *)s);
    996    1.1       cgd }
    997    1.1       cgd 
    998   1.33       cgd void
    999    1.1       cgd identifycpu()
   1000    1.1       cgd {
   1001  1.177      ross 	char *s;
   1002  1.218   thorpej 	int i;
   1003    1.1       cgd 
   1004    1.7       cgd 	/*
   1005    1.7       cgd 	 * print out CPU identification information.
   1006    1.7       cgd 	 */
   1007  1.177      ross 	printf("%s", cpu_model);
   1008  1.177      ross 	for(s = cpu_model; *s; ++s)
   1009  1.177      ross 		if(strncasecmp(s, "MHz", 3) == 0)
   1010  1.177      ross 			goto skipMHz;
   1011  1.177      ross 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
   1012  1.177      ross skipMHz:
   1013  1.218   thorpej 	printf(", s/n ");
   1014  1.218   thorpej 	for (i = 0; i < 10; i++)
   1015  1.218   thorpej 		printf("%c", hwrpb->rpb_ssn[i]);
   1016  1.177      ross 	printf("\n");
   1017   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
   1018    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1019    1.7       cgd #if 0
   1020    1.7       cgd 	/* this isn't defined for any systems that we run on? */
   1021   1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
   1022    1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1023    1.7       cgd 
   1024    1.7       cgd 	/* and these aren't particularly useful! */
   1025   1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
   1026    1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1027    1.7       cgd #endif
   1028    1.1       cgd }
   1029    1.1       cgd 
   1030    1.1       cgd int	waittime = -1;
   1031    1.7       cgd struct pcb dumppcb;
   1032    1.1       cgd 
   1033   1.18       cgd void
   1034   1.68       gwr cpu_reboot(howto, bootstr)
   1035    1.1       cgd 	int howto;
   1036   1.39       mrg 	char *bootstr;
   1037    1.1       cgd {
   1038  1.148   thorpej #if defined(MULTIPROCESSOR)
   1039  1.225   thorpej 	u_long cpu_id = cpu_number();
   1040  1.225   thorpej 	u_long wait_mask = (1UL << cpu_id) |
   1041  1.225   thorpej 			   (1UL << hwrpb->rpb_primary_cpu_id);
   1042  1.225   thorpej 	int i;
   1043  1.148   thorpej #endif
   1044  1.148   thorpej 
   1045  1.225   thorpej 	/* If "always halt" was specified as a boot flag, obey. */
   1046  1.225   thorpej 	if ((boothowto & RB_HALT) != 0)
   1047  1.225   thorpej 		howto |= RB_HALT;
   1048  1.225   thorpej 
   1049  1.225   thorpej 	boothowto = howto;
   1050    1.1       cgd 
   1051    1.1       cgd 	/* If system is cold, just halt. */
   1052    1.1       cgd 	if (cold) {
   1053  1.225   thorpej 		boothowto |= RB_HALT;
   1054    1.1       cgd 		goto haltsys;
   1055    1.1       cgd 	}
   1056    1.1       cgd 
   1057  1.225   thorpej 	if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
   1058    1.1       cgd 		waittime = 0;
   1059    1.7       cgd 		vfs_shutdown();
   1060    1.1       cgd 		/*
   1061    1.1       cgd 		 * If we've been adjusting the clock, the todr
   1062    1.1       cgd 		 * will be out of synch; adjust it now.
   1063    1.1       cgd 		 */
   1064    1.1       cgd 		resettodr();
   1065    1.1       cgd 	}
   1066    1.1       cgd 
   1067    1.1       cgd 	/* Disable interrupts. */
   1068    1.1       cgd 	splhigh();
   1069    1.1       cgd 
   1070  1.225   thorpej #if defined(MULTIPROCESSOR)
   1071  1.225   thorpej 	/*
   1072  1.225   thorpej 	 * Halt all other CPUs.  If we're not the primary, the
   1073  1.225   thorpej 	 * primary will spin, waiting for us to halt.
   1074  1.225   thorpej 	 */
   1075  1.225   thorpej 	alpha_broadcast_ipi(ALPHA_IPI_HALT);
   1076  1.225   thorpej 
   1077  1.225   thorpej 	for (i = 0; i < 10000; i++) {
   1078  1.225   thorpej 		alpha_mb();
   1079  1.225   thorpej 		if (cpus_running == wait_mask)
   1080  1.225   thorpej 			break;
   1081  1.225   thorpej 		delay(1000);
   1082  1.225   thorpej 	}
   1083  1.225   thorpej 	alpha_mb();
   1084  1.225   thorpej 	if (cpus_running != wait_mask)
   1085  1.225   thorpej 		printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
   1086  1.225   thorpej 		    cpus_running);
   1087  1.225   thorpej #endif /* MULTIPROCESSOR */
   1088  1.225   thorpej 
   1089    1.7       cgd 	/* If rebooting and a dump is requested do it. */
   1090   1.42       cgd #if 0
   1091  1.225   thorpej 	if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1092   1.42       cgd #else
   1093  1.225   thorpej 	if (boothowto & RB_DUMP)
   1094   1.42       cgd #endif
   1095    1.1       cgd 		dumpsys();
   1096    1.6       cgd 
   1097   1.12       cgd haltsys:
   1098   1.12       cgd 
   1099    1.6       cgd 	/* run any shutdown hooks */
   1100    1.6       cgd 	doshutdownhooks();
   1101  1.148   thorpej 
   1102    1.7       cgd #ifdef BOOTKEY
   1103   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1104  1.117  drochner 	cnpollc(1);	/* for proper keyboard command handling */
   1105    1.7       cgd 	cngetc();
   1106  1.117  drochner 	cnpollc(0);
   1107   1.46  christos 	printf("\n");
   1108    1.7       cgd #endif
   1109    1.7       cgd 
   1110  1.124   thorpej 	/* Finally, powerdown/halt/reboot the system. */
   1111  1.225   thorpej 	if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
   1112  1.124   thorpej 	    platform.powerdown != NULL) {
   1113  1.124   thorpej 		(*platform.powerdown)();
   1114  1.124   thorpej 		printf("WARNING: powerdown failed!\n");
   1115  1.124   thorpej 	}
   1116  1.225   thorpej 	printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
   1117  1.225   thorpej #if defined(MULTIPROCESSOR)
   1118  1.225   thorpej 	if (cpu_id != hwrpb->rpb_primary_cpu_id)
   1119  1.225   thorpej 		cpu_halt();
   1120  1.225   thorpej 	else
   1121  1.225   thorpej #endif
   1122  1.225   thorpej 		prom_halt(boothowto & RB_HALT);
   1123    1.1       cgd 	/*NOTREACHED*/
   1124    1.1       cgd }
   1125    1.1       cgd 
   1126    1.7       cgd /*
   1127    1.7       cgd  * These variables are needed by /sbin/savecore
   1128    1.7       cgd  */
   1129    1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
   1130    1.7       cgd int 	dumpsize = 0;		/* pages */
   1131    1.7       cgd long	dumplo = 0; 		/* blocks */
   1132    1.7       cgd 
   1133    1.7       cgd /*
   1134   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1135   1.43       cgd  */
   1136   1.43       cgd int
   1137   1.43       cgd cpu_dumpsize()
   1138   1.43       cgd {
   1139   1.43       cgd 	int size;
   1140   1.43       cgd 
   1141  1.108       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1142  1.110   thorpej 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1143   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
   1144   1.43       cgd 		return -1;
   1145   1.43       cgd 
   1146   1.43       cgd 	return (1);
   1147   1.43       cgd }
   1148   1.43       cgd 
   1149   1.43       cgd /*
   1150  1.110   thorpej  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1151  1.110   thorpej  */
   1152  1.110   thorpej u_long
   1153  1.110   thorpej cpu_dump_mempagecnt()
   1154  1.110   thorpej {
   1155  1.110   thorpej 	u_long i, n;
   1156  1.110   thorpej 
   1157  1.110   thorpej 	n = 0;
   1158  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++)
   1159  1.110   thorpej 		n += atop(mem_clusters[i].size);
   1160  1.110   thorpej 	return (n);
   1161  1.110   thorpej }
   1162  1.110   thorpej 
   1163  1.110   thorpej /*
   1164   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
   1165   1.43       cgd  */
   1166   1.43       cgd int
   1167   1.43       cgd cpu_dump()
   1168   1.43       cgd {
   1169   1.43       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1170  1.107       cgd 	char buf[dbtob(1)];
   1171  1.107       cgd 	kcore_seg_t *segp;
   1172  1.107       cgd 	cpu_kcore_hdr_t *cpuhdrp;
   1173  1.107       cgd 	phys_ram_seg_t *memsegp;
   1174  1.110   thorpej 	int i;
   1175   1.43       cgd 
   1176  1.107       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1177   1.43       cgd 
   1178  1.107       cgd 	bzero(buf, sizeof buf);
   1179   1.43       cgd 	segp = (kcore_seg_t *)buf;
   1180  1.107       cgd 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1181  1.107       cgd 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1182  1.107       cgd 	    ALIGN(sizeof(*cpuhdrp))];
   1183   1.43       cgd 
   1184   1.43       cgd 	/*
   1185   1.43       cgd 	 * Generate a segment header.
   1186   1.43       cgd 	 */
   1187   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1188   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1189   1.43       cgd 
   1190   1.43       cgd 	/*
   1191  1.107       cgd 	 * Add the machine-dependent header info.
   1192   1.43       cgd 	 */
   1193  1.140   thorpej 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1194   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
   1195  1.110   thorpej 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1196  1.107       cgd 
   1197  1.107       cgd 	/*
   1198  1.107       cgd 	 * Fill in the memory segment descriptors.
   1199  1.107       cgd 	 */
   1200  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1201  1.110   thorpej 		memsegp[i].start = mem_clusters[i].start;
   1202  1.110   thorpej 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1203  1.110   thorpej 	}
   1204   1.43       cgd 
   1205   1.43       cgd 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1206   1.43       cgd }
   1207   1.43       cgd 
   1208   1.43       cgd /*
   1209   1.68       gwr  * This is called by main to set dumplo and dumpsize.
   1210  1.188     ragge  * Dumps always skip the first NBPG of disk space
   1211    1.7       cgd  * in case there might be a disk label stored there.
   1212    1.7       cgd  * If there is extra space, put dump at the end to
   1213    1.7       cgd  * reduce the chance that swapping trashes it.
   1214    1.7       cgd  */
   1215    1.7       cgd void
   1216   1.68       gwr cpu_dumpconf()
   1217    1.7       cgd {
   1218   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
   1219    1.7       cgd 	int maj;
   1220    1.7       cgd 
   1221    1.7       cgd 	if (dumpdev == NODEV)
   1222   1.43       cgd 		goto bad;
   1223    1.7       cgd 	maj = major(dumpdev);
   1224    1.7       cgd 	if (maj < 0 || maj >= nblkdev)
   1225    1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1226    1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
   1227   1.43       cgd 		goto bad;
   1228    1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1229    1.7       cgd 	if (nblks <= ctod(1))
   1230   1.43       cgd 		goto bad;
   1231   1.43       cgd 
   1232   1.43       cgd 	dumpblks = cpu_dumpsize();
   1233   1.43       cgd 	if (dumpblks < 0)
   1234   1.43       cgd 		goto bad;
   1235  1.110   thorpej 	dumpblks += ctod(cpu_dump_mempagecnt());
   1236   1.43       cgd 
   1237   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1238   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1239   1.43       cgd 		goto bad;
   1240   1.43       cgd 
   1241   1.43       cgd 	/* Put dump at end of partition */
   1242   1.43       cgd 	dumplo = nblks - dumpblks;
   1243    1.7       cgd 
   1244   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1245  1.110   thorpej 	dumpsize = cpu_dump_mempagecnt();
   1246   1.43       cgd 	return;
   1247    1.7       cgd 
   1248   1.43       cgd bad:
   1249   1.43       cgd 	dumpsize = 0;
   1250   1.43       cgd 	return;
   1251    1.7       cgd }
   1252    1.7       cgd 
   1253    1.7       cgd /*
   1254   1.42       cgd  * Dump the kernel's image to the swap partition.
   1255    1.7       cgd  */
   1256   1.42       cgd #define	BYTES_PER_DUMP	NBPG
   1257   1.42       cgd 
   1258    1.7       cgd void
   1259    1.7       cgd dumpsys()
   1260    1.7       cgd {
   1261  1.110   thorpej 	u_long totalbytesleft, bytes, i, n, memcl;
   1262  1.110   thorpej 	u_long maddr;
   1263  1.110   thorpej 	int psize;
   1264   1.42       cgd 	daddr_t blkno;
   1265   1.42       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1266   1.42       cgd 	int error;
   1267   1.42       cgd 
   1268   1.42       cgd 	/* Save registers. */
   1269   1.42       cgd 	savectx(&dumppcb);
   1270    1.7       cgd 
   1271    1.7       cgd 	if (dumpdev == NODEV)
   1272    1.7       cgd 		return;
   1273   1.42       cgd 
   1274   1.42       cgd 	/*
   1275   1.42       cgd 	 * For dumps during autoconfiguration,
   1276   1.42       cgd 	 * if dump device has already configured...
   1277   1.42       cgd 	 */
   1278   1.42       cgd 	if (dumpsize == 0)
   1279   1.68       gwr 		cpu_dumpconf();
   1280   1.47       cgd 	if (dumplo <= 0) {
   1281   1.97   mycroft 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1282   1.97   mycroft 		    minor(dumpdev));
   1283   1.42       cgd 		return;
   1284   1.43       cgd 	}
   1285   1.97   mycroft 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1286   1.97   mycroft 	    minor(dumpdev), dumplo);
   1287    1.7       cgd 
   1288   1.42       cgd 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1289   1.46  christos 	printf("dump ");
   1290   1.42       cgd 	if (psize == -1) {
   1291   1.46  christos 		printf("area unavailable\n");
   1292   1.42       cgd 		return;
   1293   1.42       cgd 	}
   1294   1.42       cgd 
   1295   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1296   1.42       cgd 
   1297   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1298   1.43       cgd 		goto err;
   1299   1.43       cgd 
   1300  1.110   thorpej 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1301   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1302   1.42       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1303   1.42       cgd 	error = 0;
   1304   1.42       cgd 
   1305  1.110   thorpej 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1306  1.110   thorpej 		maddr = mem_clusters[memcl].start;
   1307  1.110   thorpej 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1308  1.110   thorpej 
   1309  1.110   thorpej 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1310  1.110   thorpej 
   1311  1.110   thorpej 			/* Print out how many MBs we to go. */
   1312  1.110   thorpej 			if ((totalbytesleft % (1024*1024)) == 0)
   1313  1.160   thorpej 				printf("%ld ", totalbytesleft / (1024 * 1024));
   1314  1.110   thorpej 
   1315  1.110   thorpej 			/* Limit size for next transfer. */
   1316  1.110   thorpej 			n = bytes - i;
   1317  1.110   thorpej 			if (n > BYTES_PER_DUMP)
   1318  1.110   thorpej 				n =  BYTES_PER_DUMP;
   1319  1.110   thorpej 
   1320  1.110   thorpej 			error = (*dump)(dumpdev, blkno,
   1321  1.110   thorpej 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1322  1.110   thorpej 			if (error)
   1323  1.110   thorpej 				goto err;
   1324  1.110   thorpej 			maddr += n;
   1325  1.110   thorpej 			blkno += btodb(n);			/* XXX? */
   1326   1.42       cgd 
   1327  1.110   thorpej 			/* XXX should look for keystrokes, to cancel. */
   1328  1.110   thorpej 		}
   1329   1.42       cgd 	}
   1330   1.42       cgd 
   1331   1.43       cgd err:
   1332   1.42       cgd 	switch (error) {
   1333    1.7       cgd 
   1334    1.7       cgd 	case ENXIO:
   1335   1.46  christos 		printf("device bad\n");
   1336    1.7       cgd 		break;
   1337    1.7       cgd 
   1338    1.7       cgd 	case EFAULT:
   1339   1.46  christos 		printf("device not ready\n");
   1340    1.7       cgd 		break;
   1341    1.7       cgd 
   1342    1.7       cgd 	case EINVAL:
   1343   1.46  christos 		printf("area improper\n");
   1344    1.7       cgd 		break;
   1345    1.7       cgd 
   1346    1.7       cgd 	case EIO:
   1347   1.46  christos 		printf("i/o error\n");
   1348    1.7       cgd 		break;
   1349    1.7       cgd 
   1350    1.7       cgd 	case EINTR:
   1351   1.46  christos 		printf("aborted from console\n");
   1352    1.7       cgd 		break;
   1353    1.7       cgd 
   1354   1.42       cgd 	case 0:
   1355   1.46  christos 		printf("succeeded\n");
   1356   1.42       cgd 		break;
   1357   1.42       cgd 
   1358    1.7       cgd 	default:
   1359   1.46  christos 		printf("error %d\n", error);
   1360    1.7       cgd 		break;
   1361    1.7       cgd 	}
   1362   1.46  christos 	printf("\n\n");
   1363    1.7       cgd 	delay(1000);
   1364    1.7       cgd }
   1365    1.7       cgd 
   1366    1.1       cgd void
   1367    1.1       cgd frametoreg(framep, regp)
   1368    1.1       cgd 	struct trapframe *framep;
   1369    1.1       cgd 	struct reg *regp;
   1370    1.1       cgd {
   1371    1.1       cgd 
   1372    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1373    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1374    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1375    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1376    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1377    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1378    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1379    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1380    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1381    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1382    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1383    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1384    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1385    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1386    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1387    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1388   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1389   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1390   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1391    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1392    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1393    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1394    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1395    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1396    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1397    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1398    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1399    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1400    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1401   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1402   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1403    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1404    1.1       cgd }
   1405    1.1       cgd 
   1406    1.1       cgd void
   1407    1.1       cgd regtoframe(regp, framep)
   1408    1.1       cgd 	struct reg *regp;
   1409    1.1       cgd 	struct trapframe *framep;
   1410    1.1       cgd {
   1411    1.1       cgd 
   1412    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1413    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1414    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1415    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1416    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1417    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1418    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1419    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1420    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1421    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1422    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1423    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1424    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1425    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1426    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1427    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1428   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1429   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1430   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1431    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1432    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1433    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1434    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1435    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1436    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1437    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1438    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1439    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1440    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1441   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1442   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1443    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1444    1.1       cgd }
   1445    1.1       cgd 
   1446    1.1       cgd void
   1447    1.1       cgd printregs(regp)
   1448    1.1       cgd 	struct reg *regp;
   1449    1.1       cgd {
   1450    1.1       cgd 	int i;
   1451    1.1       cgd 
   1452    1.1       cgd 	for (i = 0; i < 32; i++)
   1453   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1454    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1455    1.1       cgd }
   1456    1.1       cgd 
   1457    1.1       cgd void
   1458    1.1       cgd regdump(framep)
   1459    1.1       cgd 	struct trapframe *framep;
   1460    1.1       cgd {
   1461    1.1       cgd 	struct reg reg;
   1462    1.1       cgd 
   1463    1.1       cgd 	frametoreg(framep, &reg);
   1464   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1465   1.35       cgd 
   1466   1.46  christos 	printf("REGISTERS:\n");
   1467    1.1       cgd 	printregs(&reg);
   1468    1.1       cgd }
   1469    1.1       cgd 
   1470    1.1       cgd 
   1471    1.1       cgd /*
   1472    1.1       cgd  * Send an interrupt to process.
   1473    1.1       cgd  */
   1474    1.1       cgd void
   1475    1.1       cgd sendsig(catcher, sig, mask, code)
   1476    1.1       cgd 	sig_t catcher;
   1477  1.141   thorpej 	int sig;
   1478  1.141   thorpej 	sigset_t *mask;
   1479    1.1       cgd 	u_long code;
   1480    1.1       cgd {
   1481    1.1       cgd 	struct proc *p = curproc;
   1482    1.1       cgd 	struct sigcontext *scp, ksc;
   1483    1.1       cgd 	struct trapframe *frame;
   1484  1.141   thorpej 	int onstack, fsize, rndfsize;
   1485    1.1       cgd 
   1486    1.1       cgd 	frame = p->p_md.md_tf;
   1487  1.141   thorpej 
   1488  1.141   thorpej 	/* Do we need to jump onto the signal stack? */
   1489  1.141   thorpej 	onstack =
   1490  1.228  jdolecek 	    (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1491  1.228  jdolecek 	    (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
   1492  1.141   thorpej 
   1493  1.141   thorpej 	/* Allocate space for the signal handler context. */
   1494  1.141   thorpej 	fsize = sizeof(ksc);
   1495    1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1496  1.141   thorpej 
   1497  1.141   thorpej 	if (onstack)
   1498  1.228  jdolecek 		scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
   1499  1.228  jdolecek 					p->p_sigctx.ps_sigstk.ss_size);
   1500  1.141   thorpej 	else
   1501  1.142   mycroft 		scp = (struct sigcontext *)(alpha_pal_rdusp());
   1502  1.142   mycroft 	scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
   1503  1.141   thorpej 
   1504    1.1       cgd #ifdef DEBUG
   1505    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1506   1.46  christos 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1507  1.141   thorpej 		    sig, &onstack, scp);
   1508  1.125      ross #endif
   1509    1.1       cgd 
   1510  1.141   thorpej 	/* Build stack frame for signal trampoline. */
   1511   1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1512   1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1513    1.1       cgd 
   1514  1.141   thorpej 	/* Save register context. */
   1515    1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1516    1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1517   1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1518    1.1       cgd 
   1519    1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1520  1.219   thorpej 	if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
   1521  1.225   thorpej 		fpusave_proc(p, 1);
   1522    1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1523    1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1524    1.1       cgd 	    sizeof(struct fpreg));
   1525    1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1526    1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1527    1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1528    1.1       cgd 
   1529  1.141   thorpej 	/* Save signal stack. */
   1530  1.228  jdolecek 	ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
   1531  1.141   thorpej 
   1532  1.141   thorpej 	/* Save signal mask. */
   1533  1.141   thorpej 	ksc.sc_mask = *mask;
   1534  1.141   thorpej 
   1535  1.141   thorpej #ifdef COMPAT_13
   1536  1.141   thorpej 	/*
   1537  1.141   thorpej 	 * XXX We always have to save an old style signal mask because
   1538  1.141   thorpej 	 * XXX we might be delivering a signal to a process which will
   1539  1.141   thorpej 	 * XXX escape from the signal in a non-standard way and invoke
   1540  1.141   thorpej 	 * XXX sigreturn() directly.
   1541  1.141   thorpej 	 */
   1542  1.141   thorpej 	{
   1543  1.141   thorpej 		/* Note: it's a long in the stack frame. */
   1544  1.141   thorpej 		sigset13_t mask13;
   1545  1.141   thorpej 
   1546  1.141   thorpej 		native_sigset_to_sigset13(mask, &mask13);
   1547  1.141   thorpej 		ksc.__sc_mask13 = mask13;
   1548  1.141   thorpej 	}
   1549  1.141   thorpej #endif
   1550    1.1       cgd 
   1551    1.1       cgd #ifdef COMPAT_OSF1
   1552    1.1       cgd 	/*
   1553    1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1554    1.1       cgd 	 */
   1555    1.1       cgd #endif
   1556    1.1       cgd 
   1557  1.141   thorpej 	if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
   1558  1.141   thorpej 		/*
   1559  1.141   thorpej 		 * Process has trashed its stack; give it an illegal
   1560  1.141   thorpej 		 * instruction to halt it in its tracks.
   1561  1.141   thorpej 		 */
   1562  1.141   thorpej #ifdef DEBUG
   1563  1.141   thorpej 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1564  1.141   thorpej 			printf("sendsig(%d): copyout failed on sig %d\n",
   1565  1.141   thorpej 			    p->p_pid, sig);
   1566  1.141   thorpej #endif
   1567  1.141   thorpej 		sigexit(p, SIGILL);
   1568  1.141   thorpej 		/* NOTREACHED */
   1569  1.141   thorpej 	}
   1570    1.1       cgd #ifdef DEBUG
   1571    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1572   1.46  christos 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1573    1.1       cgd 		    scp, code);
   1574    1.1       cgd #endif
   1575    1.1       cgd 
   1576  1.141   thorpej 	/* Set up the registers to return to sigcode. */
   1577  1.228  jdolecek 	frame->tf_regs[FRAME_PC] = (u_int64_t)p->p_sigctx.ps_sigcode;
   1578   1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1579   1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1580   1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1581    1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1582   1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1583  1.142   mycroft 
   1584  1.142   mycroft 	/* Remember that we're now on the signal stack. */
   1585  1.142   mycroft 	if (onstack)
   1586  1.228  jdolecek 		p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
   1587    1.1       cgd 
   1588    1.1       cgd #ifdef DEBUG
   1589    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1590   1.46  christos 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1591   1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1592    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1593   1.46  christos 		printf("sendsig(%d): sig %d returns\n",
   1594    1.1       cgd 		    p->p_pid, sig);
   1595    1.1       cgd #endif
   1596    1.1       cgd }
   1597    1.1       cgd 
   1598    1.1       cgd /*
   1599    1.1       cgd  * System call to cleanup state after a signal
   1600    1.1       cgd  * has been taken.  Reset signal mask and
   1601    1.1       cgd  * stack state from context left by sendsig (above).
   1602    1.1       cgd  * Return to previous pc and psl as specified by
   1603    1.1       cgd  * context left by sendsig. Check carefully to
   1604    1.1       cgd  * make sure that the user has not modified the
   1605  1.180    simonb  * psl to gain improper privileges or to cause
   1606    1.1       cgd  * a machine fault.
   1607    1.1       cgd  */
   1608    1.1       cgd /* ARGSUSED */
   1609   1.11   mycroft int
   1610  1.141   thorpej sys___sigreturn14(p, v, retval)
   1611    1.1       cgd 	struct proc *p;
   1612   1.10   thorpej 	void *v;
   1613   1.10   thorpej 	register_t *retval;
   1614   1.10   thorpej {
   1615  1.141   thorpej 	struct sys___sigreturn14_args /* {
   1616    1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1617   1.10   thorpej 	} */ *uap = v;
   1618    1.1       cgd 	struct sigcontext *scp, ksc;
   1619    1.1       cgd 
   1620  1.141   thorpej 	/*
   1621  1.141   thorpej 	 * The trampoline code hands us the context.
   1622  1.141   thorpej 	 * It is unsafe to keep track of it ourselves, in the event that a
   1623  1.141   thorpej 	 * program jumps out of a signal handler.
   1624  1.141   thorpej 	 */
   1625    1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1626    1.1       cgd #ifdef DEBUG
   1627    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1628   1.46  christos 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1629    1.1       cgd #endif
   1630    1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1631    1.1       cgd 		return (EINVAL);
   1632    1.1       cgd 
   1633  1.141   thorpej 	if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
   1634  1.141   thorpej 		return (EFAULT);
   1635    1.1       cgd 
   1636    1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1637    1.1       cgd 		return (EINVAL);
   1638    1.1       cgd 
   1639  1.141   thorpej 	/* Restore register context. */
   1640   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1641   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1642   1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1643    1.1       cgd 
   1644    1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1645   1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1646    1.1       cgd 
   1647    1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1648  1.219   thorpej 	if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
   1649  1.225   thorpej 		fpusave_proc(p, 0);
   1650    1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1651    1.1       cgd 	    sizeof(struct fpreg));
   1652    1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1653  1.141   thorpej 
   1654  1.141   thorpej 	/* Restore signal stack. */
   1655  1.141   thorpej 	if (ksc.sc_onstack & SS_ONSTACK)
   1656  1.228  jdolecek 		p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
   1657  1.141   thorpej 	else
   1658  1.228  jdolecek 		p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1659  1.141   thorpej 
   1660  1.141   thorpej 	/* Restore signal mask. */
   1661  1.141   thorpej 	(void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
   1662    1.1       cgd 
   1663    1.1       cgd #ifdef DEBUG
   1664    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1665   1.46  christos 		printf("sigreturn(%d): returns\n", p->p_pid);
   1666    1.1       cgd #endif
   1667    1.1       cgd 	return (EJUSTRETURN);
   1668    1.1       cgd }
   1669    1.1       cgd 
   1670    1.1       cgd /*
   1671    1.1       cgd  * machine dependent system variables.
   1672    1.1       cgd  */
   1673   1.33       cgd int
   1674    1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1675    1.1       cgd 	int *name;
   1676    1.1       cgd 	u_int namelen;
   1677    1.1       cgd 	void *oldp;
   1678    1.1       cgd 	size_t *oldlenp;
   1679    1.1       cgd 	void *newp;
   1680    1.1       cgd 	size_t newlen;
   1681    1.1       cgd 	struct proc *p;
   1682    1.1       cgd {
   1683    1.1       cgd 	dev_t consdev;
   1684    1.1       cgd 
   1685    1.1       cgd 	/* all sysctl names at this level are terminal */
   1686    1.1       cgd 	if (namelen != 1)
   1687    1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1688    1.1       cgd 
   1689    1.1       cgd 	switch (name[0]) {
   1690    1.1       cgd 	case CPU_CONSDEV:
   1691    1.1       cgd 		if (cn_tab != NULL)
   1692    1.1       cgd 			consdev = cn_tab->cn_dev;
   1693    1.1       cgd 		else
   1694    1.1       cgd 			consdev = NODEV;
   1695    1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1696    1.1       cgd 			sizeof consdev));
   1697   1.30       cgd 
   1698   1.30       cgd 	case CPU_ROOT_DEVICE:
   1699   1.64   thorpej 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1700   1.64   thorpej 		    root_device->dv_xname));
   1701   1.36       cgd 
   1702   1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1703   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1704   1.36       cgd 		    &alpha_unaligned_print));
   1705   1.36       cgd 
   1706   1.36       cgd 	case CPU_UNALIGNED_FIX:
   1707   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1708   1.36       cgd 		    &alpha_unaligned_fix));
   1709   1.36       cgd 
   1710   1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1711   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1712   1.36       cgd 		    &alpha_unaligned_sigbus));
   1713   1.61       cgd 
   1714   1.61       cgd 	case CPU_BOOTED_KERNEL:
   1715  1.102       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1716  1.102       cgd 		    bootinfo.booted_kernel));
   1717   1.30       cgd 
   1718    1.1       cgd 	default:
   1719    1.1       cgd 		return (EOPNOTSUPP);
   1720    1.1       cgd 	}
   1721    1.1       cgd 	/* NOTREACHED */
   1722    1.1       cgd }
   1723    1.1       cgd 
   1724    1.1       cgd /*
   1725    1.1       cgd  * Set registers on exec.
   1726    1.1       cgd  */
   1727    1.1       cgd void
   1728   1.85   mycroft setregs(p, pack, stack)
   1729    1.1       cgd 	register struct proc *p;
   1730    1.5  christos 	struct exec_package *pack;
   1731    1.1       cgd 	u_long stack;
   1732    1.1       cgd {
   1733    1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1734   1.56       cgd #ifdef DEBUG
   1735    1.1       cgd 	int i;
   1736   1.56       cgd #endif
   1737   1.43       cgd 
   1738   1.43       cgd #ifdef DEBUG
   1739   1.43       cgd 	/*
   1740   1.43       cgd 	 * Crash and dump, if the user requested it.
   1741   1.43       cgd 	 */
   1742   1.43       cgd 	if (boothowto & RB_DUMP)
   1743   1.43       cgd 		panic("crash requested by boot flags");
   1744   1.43       cgd #endif
   1745    1.1       cgd 
   1746    1.1       cgd #ifdef DEBUG
   1747   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1748    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1749    1.1       cgd #else
   1750   1.34       cgd 	bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1751    1.1       cgd #endif
   1752    1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1753  1.172      ross 	p->p_addr->u_pcb.pcb_fp.fpr_cr =  FPCR_INED
   1754  1.172      ross 					| FPCR_UNFD
   1755  1.172      ross 					| FPCR_UNDZ
   1756  1.172      ross 					| FPCR_DYN(FP_RN)
   1757  1.172      ross 					| FPCR_OVFD
   1758  1.172      ross 					| FPCR_DZED
   1759  1.172      ross 					| FPCR_INVD
   1760  1.172      ross 					| FPCR_DNZ;
   1761   1.35       cgd 	alpha_pal_wrusp(stack);
   1762   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1763   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1764   1.41       cgd 
   1765   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1766   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1767   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1768   1.63       cgd 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1769   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1770    1.1       cgd 
   1771   1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   1772  1.219   thorpej 	if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
   1773  1.225   thorpej 		fpusave_proc(p, 0);
   1774  1.219   thorpej }
   1775  1.219   thorpej 
   1776  1.219   thorpej /*
   1777  1.219   thorpej  * Release the FPU.
   1778  1.219   thorpej  */
   1779  1.219   thorpej void
   1780  1.225   thorpej fpusave_cpu(struct cpu_info *ci, int save)
   1781  1.219   thorpej {
   1782  1.219   thorpej 	struct proc *p;
   1783  1.225   thorpej #if defined(MULTIPROCESSOR)
   1784  1.219   thorpej 	int s;
   1785  1.225   thorpej #endif
   1786  1.219   thorpej 
   1787  1.225   thorpej 	KDASSERT(ci == curcpu());
   1788  1.225   thorpej 
   1789  1.225   thorpej 	p = ci->ci_fpcurproc;
   1790  1.225   thorpej 	if (p == NULL)
   1791  1.219   thorpej 		return;
   1792  1.219   thorpej 
   1793  1.219   thorpej 	if (save) {
   1794  1.219   thorpej 		alpha_pal_wrfen(1);
   1795  1.219   thorpej 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1796  1.225   thorpej 	}
   1797  1.225   thorpej 
   1798  1.225   thorpej 	alpha_pal_wrfen(0);
   1799  1.225   thorpej 
   1800  1.219   thorpej #if defined(MULTIPROCESSOR)
   1801  1.225   thorpej 	s = splhigh();
   1802  1.219   thorpej #endif
   1803  1.219   thorpej 	p->p_addr->u_pcb.pcb_fpcpu = NULL;
   1804  1.225   thorpej 	ci->ci_fpcurproc = NULL;
   1805  1.219   thorpej #if defined(MULTIPROCESSOR)
   1806  1.225   thorpej 	splx(s);
   1807  1.219   thorpej 	alpha_mb();
   1808  1.219   thorpej #endif
   1809  1.219   thorpej }
   1810  1.219   thorpej 
   1811  1.219   thorpej /*
   1812  1.219   thorpej  * Synchronize FP state for this process.
   1813  1.219   thorpej  */
   1814  1.219   thorpej void
   1815  1.225   thorpej fpusave_proc(struct proc *p, int save)
   1816  1.219   thorpej {
   1817  1.225   thorpej 	struct cpu_info *ci = curcpu();
   1818  1.225   thorpej 	struct cpu_info *oci;
   1819  1.219   thorpej 
   1820  1.225   thorpej 	KDASSERT(p->p_addr != NULL);
   1821  1.225   thorpej 	KDASSERT(p->p_flag & P_INMEM);
   1822  1.225   thorpej 
   1823  1.225   thorpej 	oci = p->p_addr->u_pcb.pcb_fpcpu;
   1824  1.225   thorpej 	if (oci == NULL)
   1825  1.219   thorpej 		return;
   1826  1.219   thorpej 
   1827  1.219   thorpej #if defined(MULTIPROCESSOR)
   1828  1.225   thorpej 	if (oci == ci) {
   1829  1.225   thorpej 		int s;
   1830  1.225   thorpej 		KASSERT(ci->ci_fpcurproc == p);
   1831  1.225   thorpej 		s = splhigh();
   1832  1.225   thorpej 		fpusave_cpu(ci, save);
   1833  1.225   thorpej 		splx(s);
   1834  1.219   thorpej 	} else {
   1835  1.225   thorpej 		u_long ipi = save ? ALPHA_IPI_SYNCH_FPU :
   1836  1.225   thorpej 				    ALPHA_IPI_DISCARD_FPU;
   1837  1.225   thorpej 
   1838  1.225   thorpej 		KASSERT(oci->ci_fpcurproc == p);
   1839  1.219   thorpej 		do {
   1840  1.225   thorpej 			alpha_send_ipi(oci->ci_cpuid, ipi);
   1841  1.219   thorpej 		} while (p->p_addr->u_pcb.pcb_fpcpu != NULL);
   1842  1.219   thorpej 	}
   1843  1.219   thorpej #else
   1844  1.225   thorpej 	KASSERT(ci->ci_fpcurproc == p);
   1845  1.225   thorpej 	fpusave_cpu(ci, save);
   1846  1.219   thorpej #endif /* MULTIPROCESSOR */
   1847    1.1       cgd }
   1848    1.1       cgd 
   1849  1.214       cgd void
   1850    1.1       cgd spl0()
   1851    1.1       cgd {
   1852    1.1       cgd 
   1853  1.178   thorpej 	if (ssir) {
   1854  1.178   thorpej 		(void) alpha_pal_swpipl(ALPHA_PSL_IPL_SOFT);
   1855  1.211   thorpej 		softintr_dispatch();
   1856  1.178   thorpej 	}
   1857    1.1       cgd 
   1858  1.214       cgd 	(void) alpha_pal_swpipl(ALPHA_PSL_IPL_0);
   1859    1.1       cgd }
   1860    1.1       cgd 
   1861    1.1       cgd /*
   1862    1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1863    1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1864   1.52       cgd  * into queues, Remrunqueue removes them from queues.  The running process is
   1865   1.52       cgd  * on no queue, other processes are on a queue related to p->p_priority,
   1866   1.52       cgd  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1867   1.52       cgd  * available queues.
   1868    1.1       cgd  */
   1869    1.1       cgd /*
   1870    1.1       cgd  * setrunqueue(p)
   1871    1.1       cgd  *	proc *p;
   1872    1.1       cgd  *
   1873    1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1874    1.1       cgd  */
   1875    1.1       cgd 
   1876    1.1       cgd void
   1877    1.1       cgd setrunqueue(p)
   1878    1.1       cgd 	struct proc *p;
   1879    1.1       cgd {
   1880    1.1       cgd 	int bit;
   1881    1.1       cgd 
   1882    1.1       cgd 	/* firewall: p->p_back must be NULL */
   1883    1.1       cgd 	if (p->p_back != NULL)
   1884    1.1       cgd 		panic("setrunqueue");
   1885    1.1       cgd 
   1886    1.1       cgd 	bit = p->p_priority >> 2;
   1887  1.207   thorpej 	sched_whichqs |= (1 << bit);
   1888  1.207   thorpej 	p->p_forw = (struct proc *)&sched_qs[bit];
   1889  1.207   thorpej 	p->p_back = sched_qs[bit].ph_rlink;
   1890    1.1       cgd 	p->p_back->p_forw = p;
   1891  1.207   thorpej 	sched_qs[bit].ph_rlink = p;
   1892    1.1       cgd }
   1893    1.1       cgd 
   1894    1.1       cgd /*
   1895   1.52       cgd  * remrunqueue(p)
   1896    1.1       cgd  *
   1897    1.1       cgd  * Call should be made at splclock().
   1898    1.1       cgd  */
   1899    1.1       cgd void
   1900   1.52       cgd remrunqueue(p)
   1901    1.1       cgd 	struct proc *p;
   1902    1.1       cgd {
   1903    1.1       cgd 	int bit;
   1904    1.1       cgd 
   1905    1.1       cgd 	bit = p->p_priority >> 2;
   1906  1.207   thorpej 	if ((sched_whichqs & (1 << bit)) == 0)
   1907   1.52       cgd 		panic("remrunqueue");
   1908    1.1       cgd 
   1909    1.1       cgd 	p->p_back->p_forw = p->p_forw;
   1910    1.1       cgd 	p->p_forw->p_back = p->p_back;
   1911    1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   1912    1.1       cgd 
   1913  1.207   thorpej 	if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
   1914  1.207   thorpej 		sched_whichqs &= ~(1 << bit);
   1915    1.1       cgd }
   1916    1.1       cgd 
   1917    1.1       cgd /*
   1918    1.1       cgd  * Return the best possible estimate of the time in the timeval
   1919    1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1920    1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   1921    1.1       cgd  * previous call.
   1922  1.222   thorpej  *
   1923  1.222   thorpej  * XXX PLEASE REWRITE ME TO USE THE CYCLE COUNTER AND DEAL WITH
   1924  1.222   thorpej  * XXX MULTIPLE CPUs IN A SANE WAY!
   1925    1.1       cgd  */
   1926    1.1       cgd void
   1927    1.1       cgd microtime(tvp)
   1928    1.1       cgd 	register struct timeval *tvp;
   1929    1.1       cgd {
   1930    1.1       cgd 	static struct timeval lasttime;
   1931  1.227       chs 	static struct simplelock microtime_slock = SIMPLELOCK_INITIALIZER;
   1932  1.222   thorpej 	int s;
   1933  1.222   thorpej 
   1934  1.222   thorpej 	s = splclock();
   1935  1.222   thorpej 	simple_lock(&microtime_slock);
   1936    1.1       cgd 
   1937    1.1       cgd 	*tvp = time;
   1938    1.1       cgd #ifdef notdef
   1939    1.1       cgd 	tvp->tv_usec += clkread();
   1940  1.190   msaitoh 	while (tvp->tv_usec >= 1000000) {
   1941    1.1       cgd 		tvp->tv_sec++;
   1942    1.1       cgd 		tvp->tv_usec -= 1000000;
   1943    1.1       cgd 	}
   1944    1.1       cgd #endif
   1945    1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1946    1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1947  1.190   msaitoh 	    (tvp->tv_usec = lasttime.tv_usec + 1) >= 1000000) {
   1948    1.1       cgd 		tvp->tv_sec++;
   1949    1.1       cgd 		tvp->tv_usec -= 1000000;
   1950    1.1       cgd 	}
   1951    1.1       cgd 	lasttime = *tvp;
   1952  1.222   thorpej 
   1953  1.222   thorpej 	simple_unlock(&microtime_slock);
   1954    1.1       cgd 	splx(s);
   1955   1.15       cgd }
   1956   1.15       cgd 
   1957   1.15       cgd /*
   1958   1.15       cgd  * Wait "n" microseconds.
   1959   1.15       cgd  */
   1960   1.32       cgd void
   1961   1.15       cgd delay(n)
   1962   1.32       cgd 	unsigned long n;
   1963   1.15       cgd {
   1964  1.216   thorpej 	unsigned long pcc0, pcc1, curcycle, cycles, usec;
   1965   1.15       cgd 
   1966  1.216   thorpej 	if (n == 0)
   1967  1.216   thorpej 		return;
   1968  1.216   thorpej 
   1969  1.216   thorpej 	pcc0 = alpha_rpcc() & 0xffffffffUL;
   1970  1.216   thorpej 	cycles = 0;
   1971  1.216   thorpej 	usec = 0;
   1972  1.216   thorpej 
   1973  1.216   thorpej 	while (usec <= n) {
   1974  1.216   thorpej 		/*
   1975  1.216   thorpej 		 * Get the next CPU cycle count- assumes that we cannot
   1976  1.216   thorpej 		 * have had more than one 32 bit overflow.
   1977  1.216   thorpej 		 */
   1978  1.216   thorpej 		pcc1 = alpha_rpcc() & 0xffffffffUL;
   1979  1.216   thorpej 		if (pcc1 < pcc0)
   1980  1.216   thorpej 			curcycle = (pcc1 + 0x100000000UL) - pcc0;
   1981  1.216   thorpej 		else
   1982  1.216   thorpej 			curcycle = pcc1 - pcc0;
   1983  1.186   thorpej 
   1984  1.216   thorpej 		/*
   1985  1.216   thorpej 		 * We now have the number of processor cycles since we
   1986  1.216   thorpej 		 * last checked. Add the current cycle count to the
   1987  1.216   thorpej 		 * running total. If it's over cycles_per_usec, increment
   1988  1.216   thorpej 		 * the usec counter.
   1989  1.216   thorpej 		 */
   1990  1.216   thorpej 		cycles += curcycle;
   1991  1.216   thorpej 		while (cycles > cycles_per_usec) {
   1992  1.216   thorpej 			usec++;
   1993  1.216   thorpej 			cycles -= cycles_per_usec;
   1994  1.216   thorpej 		}
   1995  1.216   thorpej 		pcc0 = pcc1;
   1996  1.216   thorpej 	}
   1997    1.1       cgd }
   1998  1.225   thorpej 
   1999  1.225   thorpej #if defined(COMPAT_OSF1) || 1		/* XXX */
   2000  1.225   thorpej void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   2001  1.225   thorpej 	    u_long));
   2002  1.226    simonb #endif
   2003    1.1       cgd 
   2004  1.224  jdolecek #if 1		/* XXX */
   2005    1.1       cgd void
   2006   1.85   mycroft cpu_exec_ecoff_setregs(p, epp, stack)
   2007    1.1       cgd 	struct proc *p;
   2008   1.19       cgd 	struct exec_package *epp;
   2009    1.5  christos 	u_long stack;
   2010    1.1       cgd {
   2011   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2012    1.1       cgd 
   2013   1.85   mycroft 	setregs(p, epp, stack);
   2014   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   2015    1.1       cgd }
   2016    1.1       cgd 
   2017    1.1       cgd /*
   2018    1.1       cgd  * cpu_exec_ecoff_hook():
   2019    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   2020    1.1       cgd  *
   2021    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2022    1.1       cgd  *
   2023    1.1       cgd  */
   2024    1.1       cgd int
   2025  1.224  jdolecek cpu_exec_ecoff_probe(p, epp)
   2026    1.1       cgd 	struct proc *p;
   2027    1.1       cgd 	struct exec_package *epp;
   2028    1.1       cgd {
   2029   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2030  1.171       cgd 	int error;
   2031    1.1       cgd 
   2032  1.224  jdolecek 	if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
   2033  1.171       cgd 		error = 0;
   2034  1.224  jdolecek 	else
   2035  1.224  jdolecek 		error = ENOEXEC;
   2036    1.1       cgd 
   2037  1.171       cgd 	return (error);
   2038    1.1       cgd }
   2039    1.1       cgd #endif
   2040  1.110   thorpej 
   2041  1.110   thorpej int
   2042  1.110   thorpej alpha_pa_access(pa)
   2043  1.110   thorpej 	u_long pa;
   2044  1.110   thorpej {
   2045  1.110   thorpej 	int i;
   2046  1.110   thorpej 
   2047  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   2048  1.110   thorpej 		if (pa < mem_clusters[i].start)
   2049  1.110   thorpej 			continue;
   2050  1.110   thorpej 		if ((pa - mem_clusters[i].start) >=
   2051  1.110   thorpej 		    (mem_clusters[i].size & ~PAGE_MASK))
   2052  1.110   thorpej 			continue;
   2053  1.110   thorpej 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2054  1.110   thorpej 	}
   2055  1.197   thorpej 
   2056  1.197   thorpej 	/*
   2057  1.197   thorpej 	 * Address is not a memory address.  If we're secure, disallow
   2058  1.197   thorpej 	 * access.  Otherwise, grant read/write.
   2059  1.197   thorpej 	 */
   2060  1.197   thorpej 	if (securelevel > 0)
   2061  1.197   thorpej 		return (PROT_NONE);
   2062  1.197   thorpej 	else
   2063  1.197   thorpej 		return (PROT_READ | PROT_WRITE);
   2064  1.110   thorpej }
   2065   1.50       cgd 
   2066   1.50       cgd /* XXX XXX BEGIN XXX XXX */
   2067  1.140   thorpej paddr_t alpha_XXX_dmamap_or;					/* XXX */
   2068   1.50       cgd 								/* XXX */
   2069  1.140   thorpej paddr_t								/* XXX */
   2070   1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   2071  1.140   thorpej 	vaddr_t v;						/* XXX */
   2072   1.50       cgd {								/* XXX */
   2073   1.50       cgd 								/* XXX */
   2074   1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2075   1.50       cgd }								/* XXX */
   2076   1.50       cgd /* XXX XXX END XXX XXX */
   2077  1.177      ross 
   2078  1.177      ross char *
   2079  1.177      ross dot_conv(x)
   2080  1.177      ross 	unsigned long x;
   2081  1.177      ross {
   2082  1.177      ross 	int i;
   2083  1.177      ross 	char *xc;
   2084  1.177      ross 	static int next;
   2085  1.177      ross 	static char space[2][20];
   2086  1.177      ross 
   2087  1.177      ross 	xc = space[next ^= 1] + sizeof space[0];
   2088  1.177      ross 	*--xc = '\0';
   2089  1.177      ross 	for (i = 0;; ++i) {
   2090  1.177      ross 		if (i && (i & 3) == 0)
   2091  1.177      ross 			*--xc = '.';
   2092  1.177      ross 		*--xc = "0123456789abcdef"[x & 0xf];
   2093  1.177      ross 		x >>= 4;
   2094  1.177      ross 		if (x == 0)
   2095  1.177      ross 			break;
   2096  1.177      ross 	}
   2097  1.177      ross 	return xc;
   2098  1.138      ross }
   2099