machdep.c revision 1.244 1 1.244 lukem /* $NetBSD: machdep.c,v 1.244 2001/05/30 15:24:27 lukem Exp $ */
2 1.110 thorpej
3 1.110 thorpej /*-
4 1.211 thorpej * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 1.110 thorpej * All rights reserved.
6 1.110 thorpej *
7 1.110 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.110 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.110 thorpej * NASA Ames Research Center and by Chris G. Demetriou.
10 1.110 thorpej *
11 1.110 thorpej * Redistribution and use in source and binary forms, with or without
12 1.110 thorpej * modification, are permitted provided that the following conditions
13 1.110 thorpej * are met:
14 1.110 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.110 thorpej * notice, this list of conditions and the following disclaimer.
16 1.110 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.110 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.110 thorpej * documentation and/or other materials provided with the distribution.
19 1.110 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.110 thorpej * must display the following acknowledgement:
21 1.110 thorpej * This product includes software developed by the NetBSD
22 1.110 thorpej * Foundation, Inc. and its contributors.
23 1.110 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.110 thorpej * contributors may be used to endorse or promote products derived
25 1.110 thorpej * from this software without specific prior written permission.
26 1.110 thorpej *
27 1.110 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.110 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.110 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.110 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.110 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.110 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.110 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.110 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.110 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.110 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.110 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.110 thorpej */
39 1.1 cgd
40 1.1 cgd /*
41 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 1.1 cgd * All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Author: Chris G. Demetriou
45 1.1 cgd *
46 1.1 cgd * Permission to use, copy, modify and distribute this software and
47 1.1 cgd * its documentation is hereby granted, provided that both the copyright
48 1.1 cgd * notice and this permission notice appear in all copies of the
49 1.1 cgd * software, derivative works or modified versions, and any portions
50 1.1 cgd * thereof, and that both notices appear in supporting documentation.
51 1.1 cgd *
52 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 1.1 cgd *
56 1.1 cgd * Carnegie Mellon requests users of this software to return to
57 1.1 cgd *
58 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 1.1 cgd * School of Computer Science
60 1.1 cgd * Carnegie Mellon University
61 1.1 cgd * Pittsburgh PA 15213-3890
62 1.1 cgd *
63 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
64 1.1 cgd * rights to redistribute these changes.
65 1.1 cgd */
66 1.74 cgd
67 1.129 jonathan #include "opt_ddb.h"
68 1.244 lukem #include "opt_kgdb.h"
69 1.147 thorpej #include "opt_multiprocessor.h"
70 1.123 thorpej #include "opt_dec_3000_300.h"
71 1.123 thorpej #include "opt_dec_3000_500.h"
72 1.127 thorpej #include "opt_compat_osf1.h"
73 1.141 thorpej #include "opt_compat_netbsd.h"
74 1.112 thorpej
75 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
76 1.75 cgd
77 1.244 lukem __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.244 2001/05/30 15:24:27 lukem Exp $");
78 1.1 cgd
79 1.1 cgd #include <sys/param.h>
80 1.1 cgd #include <sys/systm.h>
81 1.1 cgd #include <sys/signalvar.h>
82 1.1 cgd #include <sys/kernel.h>
83 1.1 cgd #include <sys/map.h>
84 1.1 cgd #include <sys/proc.h>
85 1.207 thorpej #include <sys/sched.h>
86 1.1 cgd #include <sys/buf.h>
87 1.1 cgd #include <sys/reboot.h>
88 1.28 cgd #include <sys/device.h>
89 1.1 cgd #include <sys/file.h>
90 1.1 cgd #include <sys/malloc.h>
91 1.1 cgd #include <sys/mbuf.h>
92 1.110 thorpej #include <sys/mman.h>
93 1.1 cgd #include <sys/msgbuf.h>
94 1.1 cgd #include <sys/ioctl.h>
95 1.1 cgd #include <sys/tty.h>
96 1.1 cgd #include <sys/user.h>
97 1.1 cgd #include <sys/exec.h>
98 1.1 cgd #include <sys/exec_ecoff.h>
99 1.43 cgd #include <sys/core.h>
100 1.43 cgd #include <sys/kcore.h>
101 1.43 cgd #include <machine/kcore.h>
102 1.241 ross #include <machine/fpu.h>
103 1.1 cgd
104 1.1 cgd #include <sys/mount.h>
105 1.1 cgd #include <sys/syscallargs.h>
106 1.1 cgd
107 1.112 thorpej #include <uvm/uvm_extern.h>
108 1.217 mrg #include <sys/sysctl.h>
109 1.112 thorpej
110 1.1 cgd #include <dev/cons.h>
111 1.1 cgd
112 1.81 thorpej #include <machine/autoconf.h>
113 1.1 cgd #include <machine/cpu.h>
114 1.1 cgd #include <machine/reg.h>
115 1.1 cgd #include <machine/rpb.h>
116 1.1 cgd #include <machine/prom.h>
117 1.73 cgd #include <machine/conf.h>
118 1.172 ross #include <machine/ieeefp.h>
119 1.148 thorpej
120 1.81 thorpej #ifdef DDB
121 1.81 thorpej #include <machine/db_machdep.h>
122 1.81 thorpej #include <ddb/db_access.h>
123 1.81 thorpej #include <ddb/db_sym.h>
124 1.81 thorpej #include <ddb/db_extern.h>
125 1.81 thorpej #include <ddb/db_interface.h>
126 1.233 thorpej #endif
127 1.233 thorpej
128 1.233 thorpej #ifdef KGDB
129 1.233 thorpej #include <sys/kgdb.h>
130 1.81 thorpej #endif
131 1.81 thorpej
132 1.229 sommerfe #ifdef DEBUG
133 1.229 sommerfe #include <machine/sigdebug.h>
134 1.229 sommerfe #endif
135 1.229 sommerfe
136 1.155 ross #include <machine/alpha.h>
137 1.143 matt
138 1.112 thorpej vm_map_t exec_map = NULL;
139 1.112 thorpej vm_map_t mb_map = NULL;
140 1.112 thorpej vm_map_t phys_map = NULL;
141 1.1 cgd
142 1.86 leo caddr_t msgbufaddr;
143 1.86 leo
144 1.1 cgd int maxmem; /* max memory per process */
145 1.7 cgd
146 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
147 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
148 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
149 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
150 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
151 1.1 cgd
152 1.1 cgd int cputype; /* system type, from the RPB */
153 1.210 thorpej
154 1.210 thorpej int bootdev_debug = 0; /* patchable, or from DDB */
155 1.1 cgd
156 1.1 cgd /*
157 1.1 cgd * XXX We need an address to which we can assign things so that they
158 1.1 cgd * won't be optimized away because we didn't use the value.
159 1.1 cgd */
160 1.1 cgd u_int32_t no_optimize;
161 1.1 cgd
162 1.1 cgd /* the following is used externally (sysctl_hw) */
163 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
164 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
165 1.29 cgd char cpu_model[128];
166 1.1 cgd
167 1.1 cgd struct user *proc0paddr;
168 1.1 cgd
169 1.1 cgd /* Number of machine cycles per microsecond */
170 1.1 cgd u_int64_t cycles_per_usec;
171 1.1 cgd
172 1.7 cgd /* number of cpus in the box. really! */
173 1.7 cgd int ncpus;
174 1.7 cgd
175 1.102 cgd struct bootinfo_kernel bootinfo;
176 1.81 thorpej
177 1.123 thorpej /* For built-in TCDS */
178 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
179 1.123 thorpej u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
180 1.123 thorpej #endif
181 1.123 thorpej
182 1.89 mjacob struct platform platform;
183 1.89 mjacob
184 1.81 thorpej #ifdef DDB
185 1.81 thorpej /* start and end of kernel symbol table */
186 1.81 thorpej void *ksym_start, *ksym_end;
187 1.81 thorpej #endif
188 1.81 thorpej
189 1.30 cgd /* for cpu_sysctl() */
190 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
191 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
192 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
193 1.241 ross int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
194 1.30 cgd
195 1.110 thorpej /*
196 1.110 thorpej * XXX This should be dynamically sized, but we have the chicken-egg problem!
197 1.110 thorpej * XXX it should also be larger than it is, because not all of the mddt
198 1.110 thorpej * XXX clusters end up being used for VM.
199 1.110 thorpej */
200 1.110 thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
201 1.110 thorpej int mem_cluster_cnt;
202 1.110 thorpej
203 1.55 cgd int cpu_dump __P((void));
204 1.55 cgd int cpu_dumpsize __P((void));
205 1.110 thorpej u_long cpu_dump_mempagecnt __P((void));
206 1.55 cgd void dumpsys __P((void));
207 1.55 cgd void identifycpu __P((void));
208 1.55 cgd void printregs __P((struct reg *));
209 1.33 cgd
210 1.55 cgd void
211 1.102 cgd alpha_init(pfn, ptb, bim, bip, biv)
212 1.1 cgd u_long pfn; /* first free PFN number */
213 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
214 1.81 thorpej u_long bim; /* bootinfo magic */
215 1.81 thorpej u_long bip; /* bootinfo pointer */
216 1.102 cgd u_long biv; /* bootinfo version */
217 1.1 cgd {
218 1.95 thorpej extern char kernel_text[], _end[];
219 1.1 cgd struct mddt *mddtp;
220 1.110 thorpej struct mddt_cluster *memc;
221 1.7 cgd int i, mddtweird;
222 1.110 thorpej struct vm_physseg *vps;
223 1.140 thorpej vaddr_t kernstart, kernend;
224 1.140 thorpej paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
225 1.140 thorpej vsize_t size;
226 1.211 thorpej cpuid_t cpu_id;
227 1.211 thorpej struct cpu_info *ci;
228 1.1 cgd char *p;
229 1.95 thorpej caddr_t v;
230 1.209 thorpej const char *bootinfo_msg;
231 1.209 thorpej const struct cpuinit *c;
232 1.106 cgd
233 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
234 1.1 cgd
235 1.1 cgd /*
236 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
237 1.1 cgd * Make sure the instruction and data streams are consistent.
238 1.1 cgd */
239 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
240 1.32 cgd alpha_pal_wrfen(0);
241 1.37 cgd ALPHA_TBIA();
242 1.32 cgd alpha_pal_imb();
243 1.1 cgd
244 1.211 thorpej cpu_id = cpu_number();
245 1.211 thorpej
246 1.189 thorpej #if defined(MULTIPROCESSOR)
247 1.189 thorpej /*
248 1.189 thorpej * Set our SysValue to the address of our cpu_info structure.
249 1.189 thorpej * Secondary processors do this in their spinup trampoline.
250 1.189 thorpej */
251 1.237 thorpej alpha_pal_wrval((u_long)&cpu_info_primary);
252 1.237 thorpej cpu_info[cpu_id] = &cpu_info_primary;
253 1.189 thorpej #endif
254 1.189 thorpej
255 1.211 thorpej ci = curcpu();
256 1.211 thorpej ci->ci_cpuid = cpu_id;
257 1.211 thorpej
258 1.1 cgd /*
259 1.106 cgd * Get critical system information (if possible, from the
260 1.106 cgd * information provided by the boot program).
261 1.81 thorpej */
262 1.106 cgd bootinfo_msg = NULL;
263 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
264 1.102 cgd if (biv == 0) { /* backward compat */
265 1.102 cgd biv = *(u_long *)bip;
266 1.102 cgd bip += 8;
267 1.102 cgd }
268 1.102 cgd switch (biv) {
269 1.102 cgd case 1: {
270 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
271 1.102 cgd
272 1.102 cgd bootinfo.ssym = v1p->ssym;
273 1.102 cgd bootinfo.esym = v1p->esym;
274 1.106 cgd /* hwrpb may not be provided by boot block in v1 */
275 1.106 cgd if (v1p->hwrpb != NULL) {
276 1.106 cgd bootinfo.hwrpb_phys =
277 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys;
278 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize;
279 1.106 cgd } else {
280 1.106 cgd bootinfo.hwrpb_phys =
281 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys;
282 1.106 cgd bootinfo.hwrpb_size =
283 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size;
284 1.106 cgd }
285 1.102 cgd bcopy(v1p->boot_flags, bootinfo.boot_flags,
286 1.102 cgd min(sizeof v1p->boot_flags,
287 1.102 cgd sizeof bootinfo.boot_flags));
288 1.102 cgd bcopy(v1p->booted_kernel, bootinfo.booted_kernel,
289 1.102 cgd min(sizeof v1p->booted_kernel,
290 1.102 cgd sizeof bootinfo.booted_kernel));
291 1.106 cgd /* booted dev not provided in bootinfo */
292 1.106 cgd init_prom_interface((struct rpb *)
293 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
294 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
295 1.102 cgd sizeof bootinfo.booted_dev);
296 1.81 thorpej break;
297 1.102 cgd }
298 1.81 thorpej default:
299 1.106 cgd bootinfo_msg = "unknown bootinfo version";
300 1.102 cgd goto nobootinfo;
301 1.81 thorpej }
302 1.102 cgd } else {
303 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo";
304 1.102 cgd nobootinfo:
305 1.102 cgd bootinfo.ssym = (u_long)_end;
306 1.102 cgd bootinfo.esym = (u_long)_end;
307 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
308 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
309 1.106 cgd init_prom_interface((struct rpb *)HWRPB_ADDR);
310 1.102 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
311 1.102 cgd sizeof bootinfo.boot_flags);
312 1.102 cgd prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
313 1.102 cgd sizeof bootinfo.booted_kernel);
314 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
315 1.102 cgd sizeof bootinfo.booted_dev);
316 1.102 cgd }
317 1.102 cgd
318 1.81 thorpej /*
319 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for
320 1.106 cgd * lots of things.
321 1.106 cgd */
322 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
323 1.123 thorpej
324 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
325 1.123 thorpej if (hwrpb->rpb_type == ST_DEC_3000_300 ||
326 1.123 thorpej hwrpb->rpb_type == ST_DEC_3000_500) {
327 1.123 thorpej prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
328 1.123 thorpej sizeof(dec_3000_scsiid));
329 1.123 thorpej prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
330 1.123 thorpej sizeof(dec_3000_scsifast));
331 1.123 thorpej }
332 1.123 thorpej #endif
333 1.106 cgd
334 1.106 cgd /*
335 1.106 cgd * Remember how many cycles there are per microsecond,
336 1.106 cgd * so that we can use delay(). Round up, for safety.
337 1.106 cgd */
338 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
339 1.106 cgd
340 1.106 cgd /*
341 1.106 cgd * Initalize the (temporary) bootstrap console interface, so
342 1.106 cgd * we can use printf until the VM system starts being setup.
343 1.106 cgd * The real console is initialized before then.
344 1.106 cgd */
345 1.106 cgd init_bootstrap_console();
346 1.106 cgd
347 1.106 cgd /* OUTPUT NOW ALLOWED */
348 1.106 cgd
349 1.106 cgd /* delayed from above */
350 1.106 cgd if (bootinfo_msg)
351 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
352 1.106 cgd bootinfo_msg, bim, bip, biv);
353 1.106 cgd
354 1.147 thorpej /* Initialize the trap vectors on the primary processor. */
355 1.147 thorpej trap_init();
356 1.1 cgd
357 1.1 cgd /*
358 1.243 thorpej * find out this system's page size
359 1.243 thorpej */
360 1.243 thorpej PAGE_SIZE = hwrpb->rpb_page_size;
361 1.243 thorpej if (PAGE_SIZE != 8192)
362 1.243 thorpej panic("page size %d != 8192?!", PAGE_SIZE);
363 1.243 thorpej
364 1.243 thorpej /*
365 1.243 thorpej * Initialize PAGE_SIZE-dependent variables.
366 1.243 thorpej */
367 1.243 thorpej uvm_setpagesize();
368 1.243 thorpej
369 1.243 thorpej /*
370 1.106 cgd * Find out what hardware we're on, and do basic initialization.
371 1.106 cgd */
372 1.106 cgd cputype = hwrpb->rpb_type;
373 1.167 cgd if (cputype < 0) {
374 1.167 cgd /*
375 1.167 cgd * At least some white-box systems have SRM which
376 1.167 cgd * reports a systype that's the negative of their
377 1.167 cgd * blue-box counterpart.
378 1.167 cgd */
379 1.167 cgd cputype = -cputype;
380 1.167 cgd }
381 1.209 thorpej c = platform_lookup(cputype);
382 1.209 thorpej if (c == NULL) {
383 1.106 cgd platform_not_supported();
384 1.106 cgd /* NOTREACHED */
385 1.106 cgd }
386 1.209 thorpej (*c->init)();
387 1.106 cgd strcpy(cpu_model, platform.model);
388 1.106 cgd
389 1.106 cgd /*
390 1.199 soren * Initalize the real console, so that the bootstrap console is
391 1.106 cgd * no longer necessary.
392 1.106 cgd */
393 1.169 thorpej (*platform.cons_init)();
394 1.106 cgd
395 1.106 cgd #ifdef DIAGNOSTIC
396 1.106 cgd /* Paranoid sanity checking */
397 1.106 cgd
398 1.199 soren /* We should always be running on the primary. */
399 1.211 thorpej assert(hwrpb->rpb_primary_cpu_id == cpu_id);
400 1.106 cgd
401 1.116 mjacob /*
402 1.116 mjacob * On single-CPU systypes, the primary should always be CPU 0,
403 1.116 mjacob * except on Alpha 8200 systems where the CPU id is related
404 1.116 mjacob * to the VID, which is related to the Turbo Laser node id.
405 1.116 mjacob */
406 1.106 cgd if (cputype != ST_DEC_21000)
407 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0);
408 1.106 cgd #endif
409 1.106 cgd
410 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */
411 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
412 1.106 cgd /*
413 1.106 cgd * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
414 1.106 cgd * XXX pmap_uses_prom_console() evaluates to non-zero.)
415 1.106 cgd */
416 1.106 cgd #endif
417 1.95 thorpej
418 1.95 thorpej /*
419 1.101 cgd * Find the beginning and end of the kernel (and leave a
420 1.101 cgd * bit of space before the beginning for the bootstrap
421 1.101 cgd * stack).
422 1.95 thorpej */
423 1.201 kleink kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
424 1.95 thorpej #ifdef DDB
425 1.102 cgd ksym_start = (void *)bootinfo.ssym;
426 1.102 cgd ksym_end = (void *)bootinfo.esym;
427 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
428 1.102 cgd #else
429 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)_end);
430 1.95 thorpej #endif
431 1.95 thorpej
432 1.110 thorpej kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
433 1.110 thorpej kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
434 1.110 thorpej
435 1.95 thorpej /*
436 1.1 cgd * Find out how much memory is available, by looking at
437 1.7 cgd * the memory cluster descriptors. This also tries to do
438 1.7 cgd * its best to detect things things that have never been seen
439 1.7 cgd * before...
440 1.1 cgd */
441 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
442 1.7 cgd
443 1.110 thorpej /* MDDT SANITY CHECKING */
444 1.7 cgd mddtweird = 0;
445 1.110 thorpej if (mddtp->mddt_cluster_cnt < 2) {
446 1.7 cgd mddtweird = 1;
447 1.160 thorpej printf("WARNING: weird number of mem clusters: %lu\n",
448 1.110 thorpej mddtp->mddt_cluster_cnt);
449 1.7 cgd }
450 1.7 cgd
451 1.110 thorpej #if 0
452 1.110 thorpej printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
453 1.110 thorpej #endif
454 1.110 thorpej
455 1.110 thorpej for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
456 1.110 thorpej memc = &mddtp->mddt_clusters[i];
457 1.110 thorpej #if 0
458 1.110 thorpej printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
459 1.110 thorpej memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
460 1.110 thorpej #endif
461 1.110 thorpej totalphysmem += memc->mddt_pg_cnt;
462 1.110 thorpej if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
463 1.110 thorpej mem_clusters[mem_cluster_cnt].start =
464 1.110 thorpej ptoa(memc->mddt_pfn);
465 1.110 thorpej mem_clusters[mem_cluster_cnt].size =
466 1.110 thorpej ptoa(memc->mddt_pg_cnt);
467 1.110 thorpej if (memc->mddt_usage & MDDT_mbz ||
468 1.110 thorpej memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
469 1.110 thorpej memc->mddt_usage & MDDT_PALCODE)
470 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
471 1.110 thorpej PROT_READ;
472 1.110 thorpej else
473 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
474 1.110 thorpej PROT_READ | PROT_WRITE | PROT_EXEC;
475 1.110 thorpej mem_cluster_cnt++;
476 1.110 thorpej }
477 1.110 thorpej
478 1.110 thorpej if (memc->mddt_usage & MDDT_mbz) {
479 1.7 cgd mddtweird = 1;
480 1.110 thorpej printf("WARNING: mem cluster %d has weird "
481 1.110 thorpej "usage 0x%lx\n", i, memc->mddt_usage);
482 1.110 thorpej unknownmem += memc->mddt_pg_cnt;
483 1.110 thorpej continue;
484 1.7 cgd }
485 1.110 thorpej if (memc->mddt_usage & MDDT_NONVOLATILE) {
486 1.110 thorpej /* XXX should handle these... */
487 1.110 thorpej printf("WARNING: skipping non-volatile mem "
488 1.110 thorpej "cluster %d\n", i);
489 1.110 thorpej unusedmem += memc->mddt_pg_cnt;
490 1.110 thorpej continue;
491 1.110 thorpej }
492 1.110 thorpej if (memc->mddt_usage & MDDT_PALCODE) {
493 1.110 thorpej resvmem += memc->mddt_pg_cnt;
494 1.110 thorpej continue;
495 1.110 thorpej }
496 1.110 thorpej
497 1.110 thorpej /*
498 1.110 thorpej * We have a memory cluster available for system
499 1.110 thorpej * software use. We must determine if this cluster
500 1.110 thorpej * holds the kernel.
501 1.110 thorpej */
502 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
503 1.110 thorpej /*
504 1.110 thorpej * XXX If the kernel uses the PROM console, we only use the
505 1.110 thorpej * XXX memory after the kernel in the first system segment,
506 1.110 thorpej * XXX to avoid clobbering prom mapping, data, etc.
507 1.110 thorpej */
508 1.110 thorpej if (!pmap_uses_prom_console() || physmem == 0) {
509 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
510 1.110 thorpej physmem += memc->mddt_pg_cnt;
511 1.110 thorpej pfn0 = memc->mddt_pfn;
512 1.110 thorpej pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
513 1.110 thorpej if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
514 1.110 thorpej /*
515 1.110 thorpej * Must compute the location of the kernel
516 1.110 thorpej * within the segment.
517 1.110 thorpej */
518 1.110 thorpej #if 0
519 1.110 thorpej printf("Cluster %d contains kernel\n", i);
520 1.110 thorpej #endif
521 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
522 1.110 thorpej if (!pmap_uses_prom_console()) {
523 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
524 1.110 thorpej if (pfn0 < kernstartpfn) {
525 1.110 thorpej /*
526 1.110 thorpej * There is a chunk before the kernel.
527 1.110 thorpej */
528 1.110 thorpej #if 0
529 1.110 thorpej printf("Loading chunk before kernel: "
530 1.110 thorpej "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
531 1.110 thorpej #endif
532 1.112 thorpej uvm_page_physload(pfn0, kernstartpfn,
533 1.135 thorpej pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
534 1.110 thorpej }
535 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
536 1.110 thorpej }
537 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
538 1.110 thorpej if (kernendpfn < pfn1) {
539 1.110 thorpej /*
540 1.110 thorpej * There is a chunk after the kernel.
541 1.110 thorpej */
542 1.110 thorpej #if 0
543 1.110 thorpej printf("Loading chunk after kernel: "
544 1.110 thorpej "0x%lx / 0x%lx\n", kernendpfn, pfn1);
545 1.110 thorpej #endif
546 1.112 thorpej uvm_page_physload(kernendpfn, pfn1,
547 1.135 thorpej kernendpfn, pfn1, VM_FREELIST_DEFAULT);
548 1.110 thorpej }
549 1.110 thorpej } else {
550 1.110 thorpej /*
551 1.110 thorpej * Just load this cluster as one chunk.
552 1.110 thorpej */
553 1.110 thorpej #if 0
554 1.110 thorpej printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
555 1.110 thorpej pfn0, pfn1);
556 1.110 thorpej #endif
557 1.135 thorpej uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
558 1.135 thorpej VM_FREELIST_DEFAULT);
559 1.7 cgd }
560 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
561 1.110 thorpej }
562 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
563 1.7 cgd }
564 1.7 cgd
565 1.110 thorpej /*
566 1.110 thorpej * Dump out the MDDT if it looks odd...
567 1.110 thorpej */
568 1.7 cgd if (mddtweird) {
569 1.46 christos printf("\n");
570 1.46 christos printf("complete memory cluster information:\n");
571 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
572 1.46 christos printf("mddt %d:\n", i);
573 1.46 christos printf("\tpfn %lx\n",
574 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
575 1.46 christos printf("\tcnt %lx\n",
576 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
577 1.46 christos printf("\ttest %lx\n",
578 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
579 1.46 christos printf("\tbva %lx\n",
580 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
581 1.46 christos printf("\tbpa %lx\n",
582 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
583 1.46 christos printf("\tbcksum %lx\n",
584 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
585 1.46 christos printf("\tusage %lx\n",
586 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
587 1.2 cgd }
588 1.46 christos printf("\n");
589 1.2 cgd }
590 1.2 cgd
591 1.7 cgd if (totalphysmem == 0)
592 1.1 cgd panic("can't happen: system seems to have no memory!");
593 1.1 cgd maxmem = physmem;
594 1.7 cgd #if 0
595 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
596 1.46 christos printf("physmem = %d\n", physmem);
597 1.46 christos printf("resvmem = %d\n", resvmem);
598 1.46 christos printf("unusedmem = %d\n", unusedmem);
599 1.46 christos printf("unknownmem = %d\n", unknownmem);
600 1.7 cgd #endif
601 1.7 cgd
602 1.1 cgd /*
603 1.1 cgd * Initialize error message buffer (at end of core).
604 1.1 cgd */
605 1.110 thorpej {
606 1.204 enami vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
607 1.203 enami vsize_t reqsz = sz;
608 1.110 thorpej
609 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
610 1.110 thorpej
611 1.110 thorpej /* shrink so that it'll fit in the last segment */
612 1.110 thorpej if ((vps->avail_end - vps->avail_start) < atop(sz))
613 1.110 thorpej sz = ptoa(vps->avail_end - vps->avail_start);
614 1.110 thorpej
615 1.110 thorpej vps->end -= atop(sz);
616 1.110 thorpej vps->avail_end -= atop(sz);
617 1.110 thorpej msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
618 1.110 thorpej initmsgbuf(msgbufaddr, sz);
619 1.110 thorpej
620 1.110 thorpej /* Remove the last segment if it now has no pages. */
621 1.110 thorpej if (vps->start == vps->end)
622 1.110 thorpej vm_nphysseg--;
623 1.110 thorpej
624 1.110 thorpej /* warn if the message buffer had to be shrunk */
625 1.203 enami if (sz != reqsz)
626 1.203 enami printf("WARNING: %ld bytes not available for msgbuf "
627 1.203 enami "in last cluster (%ld used)\n", reqsz, sz);
628 1.110 thorpej
629 1.110 thorpej }
630 1.239 thorpej
631 1.239 thorpej /*
632 1.239 thorpej * NOTE: It is safe to use uvm_pageboot_alloc() before
633 1.239 thorpej * pmap_bootstrap() because our pmap_virtual_space()
634 1.239 thorpej * returns compile-time constants.
635 1.239 thorpej */
636 1.1 cgd
637 1.1 cgd /*
638 1.95 thorpej * Init mapping for u page(s) for proc 0
639 1.1 cgd */
640 1.110 thorpej proc0.p_addr = proc0paddr =
641 1.238 thorpej (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
642 1.1 cgd
643 1.1 cgd /*
644 1.95 thorpej * Allocate space for system data structures. These data structures
645 1.95 thorpej * are allocated here instead of cpu_startup() because physical
646 1.95 thorpej * memory is directly addressable. We don't have to map these into
647 1.95 thorpej * virtual address space.
648 1.95 thorpej */
649 1.198 thorpej size = (vsize_t)allocsys(NULL, NULL);
650 1.238 thorpej v = (caddr_t)uvm_pageboot_alloc(size);
651 1.198 thorpej if ((allocsys(v, NULL) - v) != size)
652 1.95 thorpej panic("alpha_init: table size inconsistency");
653 1.1 cgd
654 1.1 cgd /*
655 1.1 cgd * Initialize the virtual memory system, and set the
656 1.1 cgd * page table base register in proc 0's PCB.
657 1.1 cgd */
658 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
659 1.144 thorpej hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
660 1.1 cgd
661 1.1 cgd /*
662 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
663 1.3 cgd * address.
664 1.3 cgd */
665 1.3 cgd proc0.p_md.md_pcbpaddr =
666 1.140 thorpej (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
667 1.3 cgd
668 1.3 cgd /*
669 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
670 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
671 1.3 cgd */
672 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
673 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
674 1.81 thorpej proc0.p_md.md_tf =
675 1.81 thorpej (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
676 1.235 thorpej simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
677 1.189 thorpej
678 1.189 thorpej /*
679 1.208 thorpej * Initialize the primary CPU's idle PCB to proc0's. In a
680 1.208 thorpej * MULTIPROCESSOR configuration, each CPU will later get
681 1.208 thorpej * its own idle PCB when autoconfiguration runs.
682 1.189 thorpej */
683 1.211 thorpej ci->ci_idle_pcb = &proc0paddr->u_pcb;
684 1.211 thorpej ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
685 1.208 thorpej
686 1.208 thorpej /* Indicate that proc0 has a CPU. */
687 1.211 thorpej proc0.p_cpu = ci;
688 1.1 cgd
689 1.1 cgd /*
690 1.25 cgd * Look at arguments passed to us and compute boothowto.
691 1.8 cgd */
692 1.1 cgd
693 1.8 cgd boothowto = RB_SINGLE;
694 1.1 cgd #ifdef KADB
695 1.1 cgd boothowto |= RB_KDB;
696 1.1 cgd #endif
697 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
698 1.26 cgd /*
699 1.26 cgd * Note that we'd really like to differentiate case here,
700 1.26 cgd * but the Alpha AXP Architecture Reference Manual
701 1.26 cgd * says that we shouldn't.
702 1.26 cgd */
703 1.8 cgd switch (*p) {
704 1.26 cgd case 'a': /* autoboot */
705 1.26 cgd case 'A':
706 1.26 cgd boothowto &= ~RB_SINGLE;
707 1.21 cgd break;
708 1.21 cgd
709 1.43 cgd #ifdef DEBUG
710 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
711 1.43 cgd case 'C':
712 1.43 cgd boothowto |= RB_DUMP;
713 1.43 cgd break;
714 1.43 cgd #endif
715 1.43 cgd
716 1.81 thorpej #if defined(KGDB) || defined(DDB)
717 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
718 1.81 thorpej case 'D':
719 1.81 thorpej boothowto |= RB_KDB;
720 1.81 thorpej break;
721 1.81 thorpej #endif
722 1.81 thorpej
723 1.36 cgd case 'h': /* always halt, never reboot */
724 1.36 cgd case 'H':
725 1.36 cgd boothowto |= RB_HALT;
726 1.8 cgd break;
727 1.8 cgd
728 1.21 cgd #if 0
729 1.8 cgd case 'm': /* mini root present in memory */
730 1.26 cgd case 'M':
731 1.8 cgd boothowto |= RB_MINIROOT;
732 1.8 cgd break;
733 1.21 cgd #endif
734 1.36 cgd
735 1.36 cgd case 'n': /* askname */
736 1.36 cgd case 'N':
737 1.36 cgd boothowto |= RB_ASKNAME;
738 1.65 cgd break;
739 1.65 cgd
740 1.65 cgd case 's': /* single-user (default, supported for sanity) */
741 1.65 cgd case 'S':
742 1.65 cgd boothowto |= RB_SINGLE;
743 1.221 jdolecek break;
744 1.221 jdolecek
745 1.221 jdolecek case 'q': /* quiet boot */
746 1.221 jdolecek case 'Q':
747 1.221 jdolecek boothowto |= AB_QUIET;
748 1.221 jdolecek break;
749 1.221 jdolecek
750 1.221 jdolecek case 'v': /* verbose boot */
751 1.221 jdolecek case 'V':
752 1.221 jdolecek boothowto |= AB_VERBOSE;
753 1.119 thorpej break;
754 1.119 thorpej
755 1.119 thorpej case '-':
756 1.119 thorpej /*
757 1.119 thorpej * Just ignore this. It's not required, but it's
758 1.119 thorpej * common for it to be passed regardless.
759 1.119 thorpej */
760 1.65 cgd break;
761 1.65 cgd
762 1.65 cgd default:
763 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
764 1.36 cgd break;
765 1.1 cgd }
766 1.1 cgd }
767 1.1 cgd
768 1.136 mjacob
769 1.136 mjacob /*
770 1.136 mjacob * Figure out the number of cpus in the box, from RPB fields.
771 1.136 mjacob * Really. We mean it.
772 1.136 mjacob */
773 1.136 mjacob for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
774 1.136 mjacob struct pcs *pcsp;
775 1.136 mjacob
776 1.144 thorpej pcsp = LOCATE_PCS(hwrpb, i);
777 1.136 mjacob if ((pcsp->pcs_flags & PCS_PP) != 0)
778 1.136 mjacob ncpus++;
779 1.136 mjacob }
780 1.136 mjacob
781 1.7 cgd /*
782 1.106 cgd * Initialize debuggers, and break into them if appropriate.
783 1.106 cgd */
784 1.106 cgd #ifdef DDB
785 1.159 mjacob ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
786 1.159 mjacob ksym_start, ksym_end);
787 1.234 thorpej #endif
788 1.234 thorpej
789 1.234 thorpej if (boothowto & RB_KDB) {
790 1.234 thorpej #if defined(KGDB)
791 1.234 thorpej kgdb_debug_init = 1;
792 1.234 thorpej kgdb_connect(1);
793 1.234 thorpej #elif defined(DDB)
794 1.106 cgd Debugger();
795 1.106 cgd #endif
796 1.234 thorpej }
797 1.234 thorpej
798 1.106 cgd /*
799 1.106 cgd * Figure out our clock frequency, from RPB fields.
800 1.106 cgd */
801 1.106 cgd hz = hwrpb->rpb_intr_freq >> 12;
802 1.106 cgd if (!(60 <= hz && hz <= 10240)) {
803 1.106 cgd hz = 1024;
804 1.106 cgd #ifdef DIAGNOSTIC
805 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
806 1.106 cgd hwrpb->rpb_intr_freq, hz);
807 1.106 cgd #endif
808 1.106 cgd }
809 1.95 thorpej }
810 1.95 thorpej
811 1.18 cgd void
812 1.1 cgd consinit()
813 1.1 cgd {
814 1.81 thorpej
815 1.106 cgd /*
816 1.106 cgd * Everything related to console initialization is done
817 1.106 cgd * in alpha_init().
818 1.106 cgd */
819 1.106 cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
820 1.106 cgd printf("consinit: %susing prom console\n",
821 1.106 cgd pmap_uses_prom_console() ? "" : "not ");
822 1.81 thorpej #endif
823 1.1 cgd }
824 1.118 thorpej
825 1.118 thorpej #include "pckbc.h"
826 1.118 thorpej #include "pckbd.h"
827 1.118 thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
828 1.118 thorpej
829 1.187 thorpej #include <dev/ic/pckbcvar.h>
830 1.118 thorpej
831 1.118 thorpej /*
832 1.118 thorpej * This is called by the pbkbc driver if no pckbd is configured.
833 1.118 thorpej * On the i386, it is used to glue in the old, deprecated console
834 1.118 thorpej * code. On the Alpha, it does nothing.
835 1.118 thorpej */
836 1.118 thorpej int
837 1.118 thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
838 1.118 thorpej pckbc_tag_t kbctag;
839 1.118 thorpej pckbc_slot_t kbcslot;
840 1.118 thorpej {
841 1.118 thorpej
842 1.118 thorpej return (ENXIO);
843 1.118 thorpej }
844 1.118 thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
845 1.1 cgd
846 1.18 cgd void
847 1.1 cgd cpu_startup()
848 1.1 cgd {
849 1.1 cgd register unsigned i;
850 1.1 cgd int base, residual;
851 1.140 thorpej vaddr_t minaddr, maxaddr;
852 1.140 thorpej vsize_t size;
853 1.173 lukem char pbuf[9];
854 1.40 cgd #if defined(DEBUG)
855 1.1 cgd extern int pmapdebug;
856 1.1 cgd int opmapdebug = pmapdebug;
857 1.1 cgd
858 1.1 cgd pmapdebug = 0;
859 1.1 cgd #endif
860 1.1 cgd
861 1.1 cgd /*
862 1.1 cgd * Good {morning,afternoon,evening,night}.
863 1.1 cgd */
864 1.46 christos printf(version);
865 1.1 cgd identifycpu();
866 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
867 1.173 lukem printf("total memory = %s\n", pbuf);
868 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
869 1.173 lukem printf("(%s reserved for PROM, ", pbuf);
870 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
871 1.173 lukem printf("%s used by NetBSD)\n", pbuf);
872 1.173 lukem if (unusedmem) {
873 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
874 1.173 lukem printf("WARNING: unused memory = %s\n", pbuf);
875 1.173 lukem }
876 1.173 lukem if (unknownmem) {
877 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
878 1.173 lukem printf("WARNING: %s of memory with unknown purpose\n", pbuf);
879 1.173 lukem }
880 1.1 cgd
881 1.1 cgd /*
882 1.1 cgd * Allocate virtual address space for file I/O buffers.
883 1.1 cgd * Note they are different than the array of headers, 'buf',
884 1.1 cgd * and usually occupy more virtual memory than physical.
885 1.1 cgd */
886 1.1 cgd size = MAXBSIZE * nbuf;
887 1.140 thorpej if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
888 1.220 thorpej NULL, UVM_UNKNOWN_OFFSET, 0,
889 1.112 thorpej UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
890 1.231 chs UVM_ADV_NORMAL, 0)) != 0)
891 1.112 thorpej panic("startup: cannot allocate VM for buffers");
892 1.1 cgd base = bufpages / nbuf;
893 1.1 cgd residual = bufpages % nbuf;
894 1.1 cgd for (i = 0; i < nbuf; i++) {
895 1.140 thorpej vsize_t curbufsize;
896 1.140 thorpej vaddr_t curbuf;
897 1.112 thorpej struct vm_page *pg;
898 1.112 thorpej
899 1.112 thorpej /*
900 1.112 thorpej * Each buffer has MAXBSIZE bytes of VM space allocated. Of
901 1.112 thorpej * that MAXBSIZE space, we allocate and map (base+1) pages
902 1.112 thorpej * for the first "residual" buffers, and then we allocate
903 1.112 thorpej * "base" pages for the rest.
904 1.112 thorpej */
905 1.140 thorpej curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
906 1.188 ragge curbufsize = NBPG * ((i < residual) ? (base+1) : base);
907 1.112 thorpej
908 1.112 thorpej while (curbufsize) {
909 1.168 chs pg = uvm_pagealloc(NULL, 0, NULL, 0);
910 1.112 thorpej if (pg == NULL)
911 1.112 thorpej panic("cpu_startup: not enough memory for "
912 1.112 thorpej "buffer cache");
913 1.182 chs pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
914 1.182 chs VM_PROT_READ|VM_PROT_WRITE);
915 1.112 thorpej curbuf += PAGE_SIZE;
916 1.112 thorpej curbufsize -= PAGE_SIZE;
917 1.112 thorpej }
918 1.1 cgd }
919 1.240 thorpej pmap_update();
920 1.240 thorpej
921 1.1 cgd /*
922 1.1 cgd * Allocate a submap for exec arguments. This map effectively
923 1.1 cgd * limits the number of processes exec'ing at any time.
924 1.1 cgd */
925 1.112 thorpej exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
926 1.175 thorpej 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
927 1.1 cgd
928 1.1 cgd /*
929 1.1 cgd * Allocate a submap for physio
930 1.1 cgd */
931 1.112 thorpej phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
932 1.175 thorpej VM_PHYS_SIZE, 0, FALSE, NULL);
933 1.1 cgd
934 1.1 cgd /*
935 1.164 thorpej * No need to allocate an mbuf cluster submap. Mbuf clusters
936 1.164 thorpej * are allocated via the pool allocator, and we use K0SEG to
937 1.164 thorpej * map those pages.
938 1.1 cgd */
939 1.1 cgd
940 1.40 cgd #if defined(DEBUG)
941 1.1 cgd pmapdebug = opmapdebug;
942 1.1 cgd #endif
943 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
944 1.173 lukem printf("avail memory = %s\n", pbuf);
945 1.139 thorpej #if 0
946 1.139 thorpej {
947 1.139 thorpej extern u_long pmap_pages_stolen;
948 1.173 lukem
949 1.173 lukem format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
950 1.173 lukem printf("stolen memory for VM structures = %s\n", pbuf);
951 1.139 thorpej }
952 1.112 thorpej #endif
953 1.188 ragge format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
954 1.173 lukem printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
955 1.1 cgd
956 1.1 cgd /*
957 1.1 cgd * Set up buffers, so they can be used to read disk labels.
958 1.1 cgd */
959 1.1 cgd bufinit();
960 1.151 thorpej
961 1.151 thorpej /*
962 1.151 thorpej * Set up the HWPCB so that it's safe to configure secondary
963 1.151 thorpej * CPUs.
964 1.151 thorpej */
965 1.151 thorpej hwrpb_primary_init();
966 1.104 thorpej }
967 1.104 thorpej
968 1.104 thorpej /*
969 1.104 thorpej * Retrieve the platform name from the DSR.
970 1.104 thorpej */
971 1.104 thorpej const char *
972 1.104 thorpej alpha_dsr_sysname()
973 1.104 thorpej {
974 1.104 thorpej struct dsrdb *dsr;
975 1.104 thorpej const char *sysname;
976 1.104 thorpej
977 1.104 thorpej /*
978 1.104 thorpej * DSR does not exist on early HWRPB versions.
979 1.104 thorpej */
980 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
981 1.104 thorpej return (NULL);
982 1.104 thorpej
983 1.104 thorpej dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
984 1.104 thorpej sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
985 1.104 thorpej sizeof(u_int64_t)));
986 1.104 thorpej return (sysname);
987 1.104 thorpej }
988 1.104 thorpej
989 1.104 thorpej /*
990 1.104 thorpej * Lookup the system specified system variation in the provided table,
991 1.104 thorpej * returning the model string on match.
992 1.104 thorpej */
993 1.104 thorpej const char *
994 1.104 thorpej alpha_variation_name(variation, avtp)
995 1.104 thorpej u_int64_t variation;
996 1.104 thorpej const struct alpha_variation_table *avtp;
997 1.104 thorpej {
998 1.104 thorpej int i;
999 1.104 thorpej
1000 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++)
1001 1.104 thorpej if (avtp[i].avt_variation == variation)
1002 1.104 thorpej return (avtp[i].avt_model);
1003 1.104 thorpej return (NULL);
1004 1.104 thorpej }
1005 1.104 thorpej
1006 1.104 thorpej /*
1007 1.104 thorpej * Generate a default platform name based for unknown system variations.
1008 1.104 thorpej */
1009 1.104 thorpej const char *
1010 1.104 thorpej alpha_unknown_sysname()
1011 1.104 thorpej {
1012 1.105 thorpej static char s[128]; /* safe size */
1013 1.104 thorpej
1014 1.105 thorpej sprintf(s, "%s family, unknown model variation 0x%lx",
1015 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1016 1.104 thorpej return ((const char *)s);
1017 1.1 cgd }
1018 1.1 cgd
1019 1.33 cgd void
1020 1.1 cgd identifycpu()
1021 1.1 cgd {
1022 1.177 ross char *s;
1023 1.218 thorpej int i;
1024 1.1 cgd
1025 1.7 cgd /*
1026 1.7 cgd * print out CPU identification information.
1027 1.7 cgd */
1028 1.177 ross printf("%s", cpu_model);
1029 1.177 ross for(s = cpu_model; *s; ++s)
1030 1.177 ross if(strncasecmp(s, "MHz", 3) == 0)
1031 1.177 ross goto skipMHz;
1032 1.177 ross printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1033 1.177 ross skipMHz:
1034 1.218 thorpej printf(", s/n ");
1035 1.218 thorpej for (i = 0; i < 10; i++)
1036 1.218 thorpej printf("%c", hwrpb->rpb_ssn[i]);
1037 1.177 ross printf("\n");
1038 1.46 christos printf("%ld byte page size, %d processor%s.\n",
1039 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1040 1.7 cgd #if 0
1041 1.7 cgd /* this isn't defined for any systems that we run on? */
1042 1.46 christos printf("serial number 0x%lx 0x%lx\n",
1043 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1044 1.7 cgd
1045 1.7 cgd /* and these aren't particularly useful! */
1046 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
1047 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1048 1.7 cgd #endif
1049 1.1 cgd }
1050 1.1 cgd
1051 1.1 cgd int waittime = -1;
1052 1.7 cgd struct pcb dumppcb;
1053 1.1 cgd
1054 1.18 cgd void
1055 1.68 gwr cpu_reboot(howto, bootstr)
1056 1.1 cgd int howto;
1057 1.39 mrg char *bootstr;
1058 1.1 cgd {
1059 1.148 thorpej #if defined(MULTIPROCESSOR)
1060 1.225 thorpej u_long cpu_id = cpu_number();
1061 1.225 thorpej u_long wait_mask = (1UL << cpu_id) |
1062 1.225 thorpej (1UL << hwrpb->rpb_primary_cpu_id);
1063 1.225 thorpej int i;
1064 1.148 thorpej #endif
1065 1.148 thorpej
1066 1.225 thorpej /* If "always halt" was specified as a boot flag, obey. */
1067 1.225 thorpej if ((boothowto & RB_HALT) != 0)
1068 1.225 thorpej howto |= RB_HALT;
1069 1.225 thorpej
1070 1.225 thorpej boothowto = howto;
1071 1.1 cgd
1072 1.1 cgd /* If system is cold, just halt. */
1073 1.1 cgd if (cold) {
1074 1.225 thorpej boothowto |= RB_HALT;
1075 1.1 cgd goto haltsys;
1076 1.1 cgd }
1077 1.1 cgd
1078 1.225 thorpej if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1079 1.1 cgd waittime = 0;
1080 1.7 cgd vfs_shutdown();
1081 1.1 cgd /*
1082 1.1 cgd * If we've been adjusting the clock, the todr
1083 1.1 cgd * will be out of synch; adjust it now.
1084 1.1 cgd */
1085 1.1 cgd resettodr();
1086 1.1 cgd }
1087 1.1 cgd
1088 1.1 cgd /* Disable interrupts. */
1089 1.1 cgd splhigh();
1090 1.1 cgd
1091 1.225 thorpej #if defined(MULTIPROCESSOR)
1092 1.225 thorpej /*
1093 1.225 thorpej * Halt all other CPUs. If we're not the primary, the
1094 1.225 thorpej * primary will spin, waiting for us to halt.
1095 1.225 thorpej */
1096 1.225 thorpej alpha_broadcast_ipi(ALPHA_IPI_HALT);
1097 1.225 thorpej
1098 1.225 thorpej for (i = 0; i < 10000; i++) {
1099 1.225 thorpej alpha_mb();
1100 1.225 thorpej if (cpus_running == wait_mask)
1101 1.225 thorpej break;
1102 1.225 thorpej delay(1000);
1103 1.225 thorpej }
1104 1.225 thorpej alpha_mb();
1105 1.225 thorpej if (cpus_running != wait_mask)
1106 1.225 thorpej printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1107 1.225 thorpej cpus_running);
1108 1.225 thorpej #endif /* MULTIPROCESSOR */
1109 1.225 thorpej
1110 1.7 cgd /* If rebooting and a dump is requested do it. */
1111 1.42 cgd #if 0
1112 1.225 thorpej if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1113 1.42 cgd #else
1114 1.225 thorpej if (boothowto & RB_DUMP)
1115 1.42 cgd #endif
1116 1.1 cgd dumpsys();
1117 1.6 cgd
1118 1.12 cgd haltsys:
1119 1.12 cgd
1120 1.6 cgd /* run any shutdown hooks */
1121 1.6 cgd doshutdownhooks();
1122 1.148 thorpej
1123 1.7 cgd #ifdef BOOTKEY
1124 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1125 1.117 drochner cnpollc(1); /* for proper keyboard command handling */
1126 1.7 cgd cngetc();
1127 1.117 drochner cnpollc(0);
1128 1.46 christos printf("\n");
1129 1.7 cgd #endif
1130 1.7 cgd
1131 1.124 thorpej /* Finally, powerdown/halt/reboot the system. */
1132 1.225 thorpej if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1133 1.124 thorpej platform.powerdown != NULL) {
1134 1.124 thorpej (*platform.powerdown)();
1135 1.124 thorpej printf("WARNING: powerdown failed!\n");
1136 1.124 thorpej }
1137 1.225 thorpej printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1138 1.225 thorpej #if defined(MULTIPROCESSOR)
1139 1.225 thorpej if (cpu_id != hwrpb->rpb_primary_cpu_id)
1140 1.225 thorpej cpu_halt();
1141 1.225 thorpej else
1142 1.225 thorpej #endif
1143 1.225 thorpej prom_halt(boothowto & RB_HALT);
1144 1.1 cgd /*NOTREACHED*/
1145 1.1 cgd }
1146 1.1 cgd
1147 1.7 cgd /*
1148 1.7 cgd * These variables are needed by /sbin/savecore
1149 1.7 cgd */
1150 1.7 cgd u_long dumpmag = 0x8fca0101; /* magic number */
1151 1.7 cgd int dumpsize = 0; /* pages */
1152 1.7 cgd long dumplo = 0; /* blocks */
1153 1.7 cgd
1154 1.7 cgd /*
1155 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1156 1.43 cgd */
1157 1.43 cgd int
1158 1.43 cgd cpu_dumpsize()
1159 1.43 cgd {
1160 1.43 cgd int size;
1161 1.43 cgd
1162 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1163 1.110 thorpej ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1164 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
1165 1.43 cgd return -1;
1166 1.43 cgd
1167 1.43 cgd return (1);
1168 1.43 cgd }
1169 1.43 cgd
1170 1.43 cgd /*
1171 1.110 thorpej * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1172 1.110 thorpej */
1173 1.110 thorpej u_long
1174 1.110 thorpej cpu_dump_mempagecnt()
1175 1.110 thorpej {
1176 1.110 thorpej u_long i, n;
1177 1.110 thorpej
1178 1.110 thorpej n = 0;
1179 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++)
1180 1.110 thorpej n += atop(mem_clusters[i].size);
1181 1.110 thorpej return (n);
1182 1.110 thorpej }
1183 1.110 thorpej
1184 1.110 thorpej /*
1185 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
1186 1.43 cgd */
1187 1.43 cgd int
1188 1.43 cgd cpu_dump()
1189 1.43 cgd {
1190 1.43 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1191 1.107 cgd char buf[dbtob(1)];
1192 1.107 cgd kcore_seg_t *segp;
1193 1.107 cgd cpu_kcore_hdr_t *cpuhdrp;
1194 1.107 cgd phys_ram_seg_t *memsegp;
1195 1.110 thorpej int i;
1196 1.43 cgd
1197 1.107 cgd dump = bdevsw[major(dumpdev)].d_dump;
1198 1.43 cgd
1199 1.107 cgd bzero(buf, sizeof buf);
1200 1.43 cgd segp = (kcore_seg_t *)buf;
1201 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1202 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1203 1.107 cgd ALIGN(sizeof(*cpuhdrp))];
1204 1.43 cgd
1205 1.43 cgd /*
1206 1.43 cgd * Generate a segment header.
1207 1.43 cgd */
1208 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1209 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1210 1.43 cgd
1211 1.43 cgd /*
1212 1.107 cgd * Add the machine-dependent header info.
1213 1.43 cgd */
1214 1.140 thorpej cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1215 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
1216 1.110 thorpej cpuhdrp->nmemsegs = mem_cluster_cnt;
1217 1.107 cgd
1218 1.107 cgd /*
1219 1.107 cgd * Fill in the memory segment descriptors.
1220 1.107 cgd */
1221 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1222 1.110 thorpej memsegp[i].start = mem_clusters[i].start;
1223 1.110 thorpej memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1224 1.110 thorpej }
1225 1.43 cgd
1226 1.43 cgd return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1227 1.43 cgd }
1228 1.43 cgd
1229 1.43 cgd /*
1230 1.68 gwr * This is called by main to set dumplo and dumpsize.
1231 1.188 ragge * Dumps always skip the first NBPG of disk space
1232 1.7 cgd * in case there might be a disk label stored there.
1233 1.7 cgd * If there is extra space, put dump at the end to
1234 1.7 cgd * reduce the chance that swapping trashes it.
1235 1.7 cgd */
1236 1.7 cgd void
1237 1.68 gwr cpu_dumpconf()
1238 1.7 cgd {
1239 1.43 cgd int nblks, dumpblks; /* size of dump area */
1240 1.7 cgd int maj;
1241 1.7 cgd
1242 1.7 cgd if (dumpdev == NODEV)
1243 1.43 cgd goto bad;
1244 1.7 cgd maj = major(dumpdev);
1245 1.7 cgd if (maj < 0 || maj >= nblkdev)
1246 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1247 1.7 cgd if (bdevsw[maj].d_psize == NULL)
1248 1.43 cgd goto bad;
1249 1.7 cgd nblks = (*bdevsw[maj].d_psize)(dumpdev);
1250 1.7 cgd if (nblks <= ctod(1))
1251 1.43 cgd goto bad;
1252 1.43 cgd
1253 1.43 cgd dumpblks = cpu_dumpsize();
1254 1.43 cgd if (dumpblks < 0)
1255 1.43 cgd goto bad;
1256 1.110 thorpej dumpblks += ctod(cpu_dump_mempagecnt());
1257 1.43 cgd
1258 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
1259 1.43 cgd if (dumpblks > (nblks - ctod(1)))
1260 1.43 cgd goto bad;
1261 1.43 cgd
1262 1.43 cgd /* Put dump at end of partition */
1263 1.43 cgd dumplo = nblks - dumpblks;
1264 1.7 cgd
1265 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1266 1.110 thorpej dumpsize = cpu_dump_mempagecnt();
1267 1.43 cgd return;
1268 1.7 cgd
1269 1.43 cgd bad:
1270 1.43 cgd dumpsize = 0;
1271 1.43 cgd return;
1272 1.7 cgd }
1273 1.7 cgd
1274 1.7 cgd /*
1275 1.42 cgd * Dump the kernel's image to the swap partition.
1276 1.7 cgd */
1277 1.42 cgd #define BYTES_PER_DUMP NBPG
1278 1.42 cgd
1279 1.7 cgd void
1280 1.7 cgd dumpsys()
1281 1.7 cgd {
1282 1.110 thorpej u_long totalbytesleft, bytes, i, n, memcl;
1283 1.110 thorpej u_long maddr;
1284 1.110 thorpej int psize;
1285 1.42 cgd daddr_t blkno;
1286 1.42 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1287 1.42 cgd int error;
1288 1.42 cgd
1289 1.42 cgd /* Save registers. */
1290 1.42 cgd savectx(&dumppcb);
1291 1.7 cgd
1292 1.7 cgd if (dumpdev == NODEV)
1293 1.7 cgd return;
1294 1.42 cgd
1295 1.42 cgd /*
1296 1.42 cgd * For dumps during autoconfiguration,
1297 1.42 cgd * if dump device has already configured...
1298 1.42 cgd */
1299 1.42 cgd if (dumpsize == 0)
1300 1.68 gwr cpu_dumpconf();
1301 1.47 cgd if (dumplo <= 0) {
1302 1.97 mycroft printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1303 1.97 mycroft minor(dumpdev));
1304 1.42 cgd return;
1305 1.43 cgd }
1306 1.97 mycroft printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1307 1.97 mycroft minor(dumpdev), dumplo);
1308 1.7 cgd
1309 1.42 cgd psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
1310 1.46 christos printf("dump ");
1311 1.42 cgd if (psize == -1) {
1312 1.46 christos printf("area unavailable\n");
1313 1.42 cgd return;
1314 1.42 cgd }
1315 1.42 cgd
1316 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1317 1.42 cgd
1318 1.43 cgd if ((error = cpu_dump()) != 0)
1319 1.43 cgd goto err;
1320 1.43 cgd
1321 1.110 thorpej totalbytesleft = ptoa(cpu_dump_mempagecnt());
1322 1.43 cgd blkno = dumplo + cpu_dumpsize();
1323 1.42 cgd dump = bdevsw[major(dumpdev)].d_dump;
1324 1.42 cgd error = 0;
1325 1.42 cgd
1326 1.110 thorpej for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1327 1.110 thorpej maddr = mem_clusters[memcl].start;
1328 1.110 thorpej bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1329 1.110 thorpej
1330 1.110 thorpej for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1331 1.110 thorpej
1332 1.110 thorpej /* Print out how many MBs we to go. */
1333 1.110 thorpej if ((totalbytesleft % (1024*1024)) == 0)
1334 1.160 thorpej printf("%ld ", totalbytesleft / (1024 * 1024));
1335 1.110 thorpej
1336 1.110 thorpej /* Limit size for next transfer. */
1337 1.110 thorpej n = bytes - i;
1338 1.110 thorpej if (n > BYTES_PER_DUMP)
1339 1.110 thorpej n = BYTES_PER_DUMP;
1340 1.110 thorpej
1341 1.110 thorpej error = (*dump)(dumpdev, blkno,
1342 1.110 thorpej (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1343 1.110 thorpej if (error)
1344 1.110 thorpej goto err;
1345 1.110 thorpej maddr += n;
1346 1.110 thorpej blkno += btodb(n); /* XXX? */
1347 1.42 cgd
1348 1.110 thorpej /* XXX should look for keystrokes, to cancel. */
1349 1.110 thorpej }
1350 1.42 cgd }
1351 1.42 cgd
1352 1.43 cgd err:
1353 1.42 cgd switch (error) {
1354 1.7 cgd
1355 1.7 cgd case ENXIO:
1356 1.46 christos printf("device bad\n");
1357 1.7 cgd break;
1358 1.7 cgd
1359 1.7 cgd case EFAULT:
1360 1.46 christos printf("device not ready\n");
1361 1.7 cgd break;
1362 1.7 cgd
1363 1.7 cgd case EINVAL:
1364 1.46 christos printf("area improper\n");
1365 1.7 cgd break;
1366 1.7 cgd
1367 1.7 cgd case EIO:
1368 1.46 christos printf("i/o error\n");
1369 1.7 cgd break;
1370 1.7 cgd
1371 1.7 cgd case EINTR:
1372 1.46 christos printf("aborted from console\n");
1373 1.7 cgd break;
1374 1.7 cgd
1375 1.42 cgd case 0:
1376 1.46 christos printf("succeeded\n");
1377 1.42 cgd break;
1378 1.42 cgd
1379 1.7 cgd default:
1380 1.46 christos printf("error %d\n", error);
1381 1.7 cgd break;
1382 1.7 cgd }
1383 1.46 christos printf("\n\n");
1384 1.7 cgd delay(1000);
1385 1.7 cgd }
1386 1.7 cgd
1387 1.1 cgd void
1388 1.1 cgd frametoreg(framep, regp)
1389 1.1 cgd struct trapframe *framep;
1390 1.1 cgd struct reg *regp;
1391 1.1 cgd {
1392 1.1 cgd
1393 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1394 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1395 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1396 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1397 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1398 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1399 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1400 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1401 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1402 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1403 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1404 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1405 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1406 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1407 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1408 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1409 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1410 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1411 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1412 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1413 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1414 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1415 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1416 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1417 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1418 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1419 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1420 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1421 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1422 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1423 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1424 1.1 cgd regp->r_regs[R_ZERO] = 0;
1425 1.1 cgd }
1426 1.1 cgd
1427 1.1 cgd void
1428 1.1 cgd regtoframe(regp, framep)
1429 1.1 cgd struct reg *regp;
1430 1.1 cgd struct trapframe *framep;
1431 1.1 cgd {
1432 1.1 cgd
1433 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1434 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1435 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1436 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1437 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1438 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1439 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1440 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1441 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1442 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1443 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1444 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1445 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1446 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1447 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1448 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1449 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1450 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1451 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1452 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1453 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1454 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1455 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1456 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1457 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1458 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1459 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1460 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1461 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1462 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1463 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1464 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1465 1.1 cgd }
1466 1.1 cgd
1467 1.1 cgd void
1468 1.1 cgd printregs(regp)
1469 1.1 cgd struct reg *regp;
1470 1.1 cgd {
1471 1.1 cgd int i;
1472 1.1 cgd
1473 1.1 cgd for (i = 0; i < 32; i++)
1474 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1475 1.1 cgd i & 1 ? "\n" : "\t");
1476 1.1 cgd }
1477 1.1 cgd
1478 1.1 cgd void
1479 1.1 cgd regdump(framep)
1480 1.1 cgd struct trapframe *framep;
1481 1.1 cgd {
1482 1.1 cgd struct reg reg;
1483 1.1 cgd
1484 1.1 cgd frametoreg(framep, ®);
1485 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1486 1.35 cgd
1487 1.46 christos printf("REGISTERS:\n");
1488 1.1 cgd printregs(®);
1489 1.1 cgd }
1490 1.1 cgd
1491 1.1 cgd
1492 1.1 cgd /*
1493 1.1 cgd * Send an interrupt to process.
1494 1.1 cgd */
1495 1.1 cgd void
1496 1.1 cgd sendsig(catcher, sig, mask, code)
1497 1.1 cgd sig_t catcher;
1498 1.141 thorpej int sig;
1499 1.141 thorpej sigset_t *mask;
1500 1.1 cgd u_long code;
1501 1.1 cgd {
1502 1.1 cgd struct proc *p = curproc;
1503 1.1 cgd struct sigcontext *scp, ksc;
1504 1.1 cgd struct trapframe *frame;
1505 1.141 thorpej int onstack, fsize, rndfsize;
1506 1.1 cgd
1507 1.1 cgd frame = p->p_md.md_tf;
1508 1.141 thorpej
1509 1.141 thorpej /* Do we need to jump onto the signal stack? */
1510 1.141 thorpej onstack =
1511 1.228 jdolecek (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1512 1.228 jdolecek (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1513 1.141 thorpej
1514 1.141 thorpej /* Allocate space for the signal handler context. */
1515 1.141 thorpej fsize = sizeof(ksc);
1516 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1517 1.141 thorpej
1518 1.141 thorpej if (onstack)
1519 1.228 jdolecek scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1520 1.228 jdolecek p->p_sigctx.ps_sigstk.ss_size);
1521 1.141 thorpej else
1522 1.142 mycroft scp = (struct sigcontext *)(alpha_pal_rdusp());
1523 1.142 mycroft scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1524 1.141 thorpej
1525 1.1 cgd #ifdef DEBUG
1526 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1527 1.46 christos printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1528 1.141 thorpej sig, &onstack, scp);
1529 1.125 ross #endif
1530 1.1 cgd
1531 1.141 thorpej /* Build stack frame for signal trampoline. */
1532 1.34 cgd ksc.sc_pc = frame->tf_regs[FRAME_PC];
1533 1.34 cgd ksc.sc_ps = frame->tf_regs[FRAME_PS];
1534 1.1 cgd
1535 1.141 thorpej /* Save register context. */
1536 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1537 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1538 1.35 cgd ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1539 1.1 cgd
1540 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1541 1.219 thorpej if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1542 1.225 thorpej fpusave_proc(p, 1);
1543 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1544 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1545 1.1 cgd sizeof(struct fpreg));
1546 1.241 ross ksc.sc_fp_control = alpha_read_fp_c(p);
1547 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1548 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1549 1.1 cgd
1550 1.141 thorpej /* Save signal stack. */
1551 1.228 jdolecek ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
1552 1.141 thorpej
1553 1.141 thorpej /* Save signal mask. */
1554 1.141 thorpej ksc.sc_mask = *mask;
1555 1.141 thorpej
1556 1.141 thorpej #ifdef COMPAT_13
1557 1.141 thorpej /*
1558 1.141 thorpej * XXX We always have to save an old style signal mask because
1559 1.141 thorpej * XXX we might be delivering a signal to a process which will
1560 1.141 thorpej * XXX escape from the signal in a non-standard way and invoke
1561 1.141 thorpej * XXX sigreturn() directly.
1562 1.141 thorpej */
1563 1.141 thorpej {
1564 1.141 thorpej /* Note: it's a long in the stack frame. */
1565 1.141 thorpej sigset13_t mask13;
1566 1.141 thorpej
1567 1.141 thorpej native_sigset_to_sigset13(mask, &mask13);
1568 1.141 thorpej ksc.__sc_mask13 = mask13;
1569 1.141 thorpej }
1570 1.141 thorpej #endif
1571 1.1 cgd
1572 1.1 cgd #ifdef COMPAT_OSF1
1573 1.1 cgd /*
1574 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1575 1.1 cgd */
1576 1.1 cgd #endif
1577 1.1 cgd
1578 1.141 thorpej if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1579 1.141 thorpej /*
1580 1.141 thorpej * Process has trashed its stack; give it an illegal
1581 1.141 thorpej * instruction to halt it in its tracks.
1582 1.141 thorpej */
1583 1.141 thorpej #ifdef DEBUG
1584 1.141 thorpej if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1585 1.141 thorpej printf("sendsig(%d): copyout failed on sig %d\n",
1586 1.141 thorpej p->p_pid, sig);
1587 1.141 thorpej #endif
1588 1.141 thorpej sigexit(p, SIGILL);
1589 1.141 thorpej /* NOTREACHED */
1590 1.141 thorpej }
1591 1.1 cgd #ifdef DEBUG
1592 1.1 cgd if (sigdebug & SDB_FOLLOW)
1593 1.46 christos printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1594 1.1 cgd scp, code);
1595 1.1 cgd #endif
1596 1.1 cgd
1597 1.141 thorpej /* Set up the registers to return to sigcode. */
1598 1.228 jdolecek frame->tf_regs[FRAME_PC] = (u_int64_t)p->p_sigctx.ps_sigcode;
1599 1.34 cgd frame->tf_regs[FRAME_A0] = sig;
1600 1.34 cgd frame->tf_regs[FRAME_A1] = code;
1601 1.34 cgd frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1602 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1603 1.35 cgd alpha_pal_wrusp((unsigned long)scp);
1604 1.142 mycroft
1605 1.142 mycroft /* Remember that we're now on the signal stack. */
1606 1.142 mycroft if (onstack)
1607 1.228 jdolecek p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1608 1.1 cgd
1609 1.1 cgd #ifdef DEBUG
1610 1.1 cgd if (sigdebug & SDB_FOLLOW)
1611 1.46 christos printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1612 1.34 cgd frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1613 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1614 1.46 christos printf("sendsig(%d): sig %d returns\n",
1615 1.1 cgd p->p_pid, sig);
1616 1.1 cgd #endif
1617 1.1 cgd }
1618 1.1 cgd
1619 1.1 cgd /*
1620 1.1 cgd * System call to cleanup state after a signal
1621 1.1 cgd * has been taken. Reset signal mask and
1622 1.1 cgd * stack state from context left by sendsig (above).
1623 1.1 cgd * Return to previous pc and psl as specified by
1624 1.1 cgd * context left by sendsig. Check carefully to
1625 1.1 cgd * make sure that the user has not modified the
1626 1.180 simonb * psl to gain improper privileges or to cause
1627 1.1 cgd * a machine fault.
1628 1.1 cgd */
1629 1.1 cgd /* ARGSUSED */
1630 1.11 mycroft int
1631 1.141 thorpej sys___sigreturn14(p, v, retval)
1632 1.1 cgd struct proc *p;
1633 1.10 thorpej void *v;
1634 1.10 thorpej register_t *retval;
1635 1.10 thorpej {
1636 1.141 thorpej struct sys___sigreturn14_args /* {
1637 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1638 1.10 thorpej } */ *uap = v;
1639 1.1 cgd struct sigcontext *scp, ksc;
1640 1.1 cgd
1641 1.141 thorpej /*
1642 1.141 thorpej * The trampoline code hands us the context.
1643 1.141 thorpej * It is unsafe to keep track of it ourselves, in the event that a
1644 1.141 thorpej * program jumps out of a signal handler.
1645 1.141 thorpej */
1646 1.1 cgd scp = SCARG(uap, sigcntxp);
1647 1.1 cgd #ifdef DEBUG
1648 1.1 cgd if (sigdebug & SDB_FOLLOW)
1649 1.46 christos printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1650 1.1 cgd #endif
1651 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1652 1.1 cgd return (EINVAL);
1653 1.1 cgd
1654 1.141 thorpej if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1655 1.141 thorpej return (EFAULT);
1656 1.1 cgd
1657 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1658 1.1 cgd return (EINVAL);
1659 1.1 cgd
1660 1.141 thorpej /* Restore register context. */
1661 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1662 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PS] =
1663 1.32 cgd (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1664 1.1 cgd
1665 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1666 1.35 cgd alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1667 1.1 cgd
1668 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1669 1.219 thorpej if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1670 1.225 thorpej fpusave_proc(p, 0);
1671 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1672 1.1 cgd sizeof(struct fpreg));
1673 1.241 ross p->p_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
1674 1.241 ross p->p_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
1675 1.141 thorpej
1676 1.141 thorpej /* Restore signal stack. */
1677 1.141 thorpej if (ksc.sc_onstack & SS_ONSTACK)
1678 1.228 jdolecek p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1679 1.141 thorpej else
1680 1.228 jdolecek p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
1681 1.141 thorpej
1682 1.141 thorpej /* Restore signal mask. */
1683 1.141 thorpej (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1684 1.1 cgd
1685 1.1 cgd #ifdef DEBUG
1686 1.1 cgd if (sigdebug & SDB_FOLLOW)
1687 1.46 christos printf("sigreturn(%d): returns\n", p->p_pid);
1688 1.1 cgd #endif
1689 1.1 cgd return (EJUSTRETURN);
1690 1.1 cgd }
1691 1.1 cgd
1692 1.1 cgd /*
1693 1.1 cgd * machine dependent system variables.
1694 1.1 cgd */
1695 1.33 cgd int
1696 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1697 1.1 cgd int *name;
1698 1.1 cgd u_int namelen;
1699 1.1 cgd void *oldp;
1700 1.1 cgd size_t *oldlenp;
1701 1.1 cgd void *newp;
1702 1.1 cgd size_t newlen;
1703 1.1 cgd struct proc *p;
1704 1.1 cgd {
1705 1.1 cgd dev_t consdev;
1706 1.1 cgd
1707 1.1 cgd /* all sysctl names at this level are terminal */
1708 1.1 cgd if (namelen != 1)
1709 1.1 cgd return (ENOTDIR); /* overloaded */
1710 1.1 cgd
1711 1.1 cgd switch (name[0]) {
1712 1.1 cgd case CPU_CONSDEV:
1713 1.1 cgd if (cn_tab != NULL)
1714 1.1 cgd consdev = cn_tab->cn_dev;
1715 1.1 cgd else
1716 1.1 cgd consdev = NODEV;
1717 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1718 1.1 cgd sizeof consdev));
1719 1.30 cgd
1720 1.30 cgd case CPU_ROOT_DEVICE:
1721 1.64 thorpej return (sysctl_rdstring(oldp, oldlenp, newp,
1722 1.64 thorpej root_device->dv_xname));
1723 1.36 cgd
1724 1.36 cgd case CPU_UNALIGNED_PRINT:
1725 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1726 1.36 cgd &alpha_unaligned_print));
1727 1.36 cgd
1728 1.36 cgd case CPU_UNALIGNED_FIX:
1729 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1730 1.36 cgd &alpha_unaligned_fix));
1731 1.36 cgd
1732 1.36 cgd case CPU_UNALIGNED_SIGBUS:
1733 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1734 1.36 cgd &alpha_unaligned_sigbus));
1735 1.61 cgd
1736 1.61 cgd case CPU_BOOTED_KERNEL:
1737 1.102 cgd return (sysctl_rdstring(oldp, oldlenp, newp,
1738 1.102 cgd bootinfo.booted_kernel));
1739 1.30 cgd
1740 1.241 ross case CPU_FP_SYNC_COMPLETE:
1741 1.241 ross return (sysctl_int(oldp, oldlenp, newp, newlen,
1742 1.241 ross &alpha_fp_sync_complete));
1743 1.241 ross
1744 1.1 cgd default:
1745 1.1 cgd return (EOPNOTSUPP);
1746 1.1 cgd }
1747 1.1 cgd /* NOTREACHED */
1748 1.1 cgd }
1749 1.1 cgd
1750 1.1 cgd /*
1751 1.1 cgd * Set registers on exec.
1752 1.1 cgd */
1753 1.1 cgd void
1754 1.85 mycroft setregs(p, pack, stack)
1755 1.1 cgd register struct proc *p;
1756 1.5 christos struct exec_package *pack;
1757 1.1 cgd u_long stack;
1758 1.1 cgd {
1759 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1760 1.56 cgd #ifdef DEBUG
1761 1.1 cgd int i;
1762 1.56 cgd #endif
1763 1.43 cgd
1764 1.43 cgd #ifdef DEBUG
1765 1.43 cgd /*
1766 1.43 cgd * Crash and dump, if the user requested it.
1767 1.43 cgd */
1768 1.43 cgd if (boothowto & RB_DUMP)
1769 1.43 cgd panic("crash requested by boot flags");
1770 1.43 cgd #endif
1771 1.1 cgd
1772 1.1 cgd #ifdef DEBUG
1773 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1774 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1775 1.1 cgd #else
1776 1.34 cgd bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1777 1.1 cgd #endif
1778 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1779 1.35 cgd alpha_pal_wrusp(stack);
1780 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1781 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1782 1.41 cgd
1783 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1784 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1785 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1786 1.63 cgd tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS; /* a3 = ps_strings */
1787 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1788 1.1 cgd
1789 1.33 cgd p->p_md.md_flags &= ~MDP_FPUSED;
1790 1.241 ross if (__predict_true((p->p_md.md_flags & IEEE_INHERIT) == 0)) {
1791 1.241 ross p->p_md.md_flags &= ~MDP_FP_C;
1792 1.241 ross p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1793 1.241 ross }
1794 1.219 thorpej if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1795 1.225 thorpej fpusave_proc(p, 0);
1796 1.219 thorpej }
1797 1.219 thorpej
1798 1.219 thorpej /*
1799 1.219 thorpej * Release the FPU.
1800 1.219 thorpej */
1801 1.219 thorpej void
1802 1.225 thorpej fpusave_cpu(struct cpu_info *ci, int save)
1803 1.219 thorpej {
1804 1.219 thorpej struct proc *p;
1805 1.225 thorpej #if defined(MULTIPROCESSOR)
1806 1.219 thorpej int s;
1807 1.225 thorpej #endif
1808 1.219 thorpej
1809 1.225 thorpej KDASSERT(ci == curcpu());
1810 1.225 thorpej
1811 1.235 thorpej #if defined(MULTIPROCESSOR)
1812 1.235 thorpej atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1813 1.235 thorpej #endif
1814 1.235 thorpej
1815 1.225 thorpej p = ci->ci_fpcurproc;
1816 1.225 thorpej if (p == NULL)
1817 1.235 thorpej goto out;
1818 1.219 thorpej
1819 1.219 thorpej if (save) {
1820 1.219 thorpej alpha_pal_wrfen(1);
1821 1.219 thorpej savefpstate(&p->p_addr->u_pcb.pcb_fp);
1822 1.225 thorpej }
1823 1.225 thorpej
1824 1.225 thorpej alpha_pal_wrfen(0);
1825 1.225 thorpej
1826 1.235 thorpej FPCPU_LOCK(&p->p_addr->u_pcb, s);
1827 1.235 thorpej
1828 1.219 thorpej p->p_addr->u_pcb.pcb_fpcpu = NULL;
1829 1.225 thorpej ci->ci_fpcurproc = NULL;
1830 1.235 thorpej
1831 1.235 thorpej FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1832 1.235 thorpej
1833 1.235 thorpej out:
1834 1.219 thorpej #if defined(MULTIPROCESSOR)
1835 1.235 thorpej atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1836 1.219 thorpej #endif
1837 1.235 thorpej return;
1838 1.219 thorpej }
1839 1.219 thorpej
1840 1.219 thorpej /*
1841 1.219 thorpej * Synchronize FP state for this process.
1842 1.219 thorpej */
1843 1.219 thorpej void
1844 1.225 thorpej fpusave_proc(struct proc *p, int save)
1845 1.219 thorpej {
1846 1.225 thorpej struct cpu_info *ci = curcpu();
1847 1.225 thorpej struct cpu_info *oci;
1848 1.235 thorpej #if defined(MULTIPROCESSOR)
1849 1.235 thorpej u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1850 1.236 thorpej int s, spincount;
1851 1.235 thorpej #endif
1852 1.219 thorpej
1853 1.225 thorpej KDASSERT(p->p_addr != NULL);
1854 1.225 thorpej KDASSERT(p->p_flag & P_INMEM);
1855 1.225 thorpej
1856 1.235 thorpej FPCPU_LOCK(&p->p_addr->u_pcb, s);
1857 1.235 thorpej
1858 1.225 thorpej oci = p->p_addr->u_pcb.pcb_fpcpu;
1859 1.235 thorpej if (oci == NULL) {
1860 1.235 thorpej FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1861 1.219 thorpej return;
1862 1.235 thorpej }
1863 1.219 thorpej
1864 1.219 thorpej #if defined(MULTIPROCESSOR)
1865 1.225 thorpej if (oci == ci) {
1866 1.225 thorpej KASSERT(ci->ci_fpcurproc == p);
1867 1.235 thorpej FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1868 1.225 thorpej fpusave_cpu(ci, save);
1869 1.235 thorpej return;
1870 1.235 thorpej }
1871 1.235 thorpej
1872 1.235 thorpej KASSERT(oci->ci_fpcurproc == p);
1873 1.235 thorpej alpha_send_ipi(oci->ci_cpuid, ipi);
1874 1.235 thorpej FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1875 1.235 thorpej
1876 1.235 thorpej spincount = 0;
1877 1.235 thorpej while (p->p_addr->u_pcb.pcb_fpcpu != NULL) {
1878 1.235 thorpej spincount++;
1879 1.235 thorpej delay(1000); /* XXX */
1880 1.235 thorpej if (spincount > 10000)
1881 1.235 thorpej panic("fpsave ipi didn't");
1882 1.219 thorpej }
1883 1.219 thorpej #else
1884 1.225 thorpej KASSERT(ci->ci_fpcurproc == p);
1885 1.235 thorpej FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1886 1.225 thorpej fpusave_cpu(ci, save);
1887 1.219 thorpej #endif /* MULTIPROCESSOR */
1888 1.1 cgd }
1889 1.1 cgd
1890 1.1 cgd /*
1891 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
1892 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1893 1.52 cgd * into queues, Remrunqueue removes them from queues. The running process is
1894 1.52 cgd * on no queue, other processes are on a queue related to p->p_priority,
1895 1.52 cgd * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1896 1.52 cgd * available queues.
1897 1.1 cgd */
1898 1.1 cgd /*
1899 1.1 cgd * setrunqueue(p)
1900 1.1 cgd * proc *p;
1901 1.1 cgd *
1902 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
1903 1.1 cgd */
1904 1.1 cgd
1905 1.1 cgd void
1906 1.1 cgd setrunqueue(p)
1907 1.1 cgd struct proc *p;
1908 1.1 cgd {
1909 1.1 cgd int bit;
1910 1.1 cgd
1911 1.1 cgd /* firewall: p->p_back must be NULL */
1912 1.1 cgd if (p->p_back != NULL)
1913 1.1 cgd panic("setrunqueue");
1914 1.1 cgd
1915 1.1 cgd bit = p->p_priority >> 2;
1916 1.207 thorpej sched_whichqs |= (1 << bit);
1917 1.207 thorpej p->p_forw = (struct proc *)&sched_qs[bit];
1918 1.207 thorpej p->p_back = sched_qs[bit].ph_rlink;
1919 1.1 cgd p->p_back->p_forw = p;
1920 1.207 thorpej sched_qs[bit].ph_rlink = p;
1921 1.1 cgd }
1922 1.1 cgd
1923 1.1 cgd /*
1924 1.52 cgd * remrunqueue(p)
1925 1.1 cgd *
1926 1.1 cgd * Call should be made at splclock().
1927 1.1 cgd */
1928 1.1 cgd void
1929 1.52 cgd remrunqueue(p)
1930 1.1 cgd struct proc *p;
1931 1.1 cgd {
1932 1.1 cgd int bit;
1933 1.1 cgd
1934 1.1 cgd bit = p->p_priority >> 2;
1935 1.207 thorpej if ((sched_whichqs & (1 << bit)) == 0)
1936 1.52 cgd panic("remrunqueue");
1937 1.1 cgd
1938 1.1 cgd p->p_back->p_forw = p->p_forw;
1939 1.1 cgd p->p_forw->p_back = p->p_back;
1940 1.1 cgd p->p_back = NULL; /* for firewall checking. */
1941 1.1 cgd
1942 1.207 thorpej if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1943 1.207 thorpej sched_whichqs &= ~(1 << bit);
1944 1.15 cgd }
1945 1.15 cgd
1946 1.15 cgd /*
1947 1.15 cgd * Wait "n" microseconds.
1948 1.15 cgd */
1949 1.32 cgd void
1950 1.15 cgd delay(n)
1951 1.32 cgd unsigned long n;
1952 1.15 cgd {
1953 1.216 thorpej unsigned long pcc0, pcc1, curcycle, cycles, usec;
1954 1.15 cgd
1955 1.216 thorpej if (n == 0)
1956 1.216 thorpej return;
1957 1.216 thorpej
1958 1.216 thorpej pcc0 = alpha_rpcc() & 0xffffffffUL;
1959 1.216 thorpej cycles = 0;
1960 1.216 thorpej usec = 0;
1961 1.216 thorpej
1962 1.216 thorpej while (usec <= n) {
1963 1.216 thorpej /*
1964 1.216 thorpej * Get the next CPU cycle count- assumes that we cannot
1965 1.216 thorpej * have had more than one 32 bit overflow.
1966 1.216 thorpej */
1967 1.216 thorpej pcc1 = alpha_rpcc() & 0xffffffffUL;
1968 1.216 thorpej if (pcc1 < pcc0)
1969 1.216 thorpej curcycle = (pcc1 + 0x100000000UL) - pcc0;
1970 1.216 thorpej else
1971 1.216 thorpej curcycle = pcc1 - pcc0;
1972 1.186 thorpej
1973 1.216 thorpej /*
1974 1.216 thorpej * We now have the number of processor cycles since we
1975 1.216 thorpej * last checked. Add the current cycle count to the
1976 1.216 thorpej * running total. If it's over cycles_per_usec, increment
1977 1.216 thorpej * the usec counter.
1978 1.216 thorpej */
1979 1.216 thorpej cycles += curcycle;
1980 1.216 thorpej while (cycles > cycles_per_usec) {
1981 1.216 thorpej usec++;
1982 1.216 thorpej cycles -= cycles_per_usec;
1983 1.216 thorpej }
1984 1.216 thorpej pcc0 = pcc1;
1985 1.216 thorpej }
1986 1.1 cgd }
1987 1.225 thorpej
1988 1.225 thorpej #if defined(COMPAT_OSF1) || 1 /* XXX */
1989 1.225 thorpej void cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
1990 1.225 thorpej u_long));
1991 1.226 simonb #endif
1992 1.1 cgd
1993 1.224 jdolecek #if 1 /* XXX */
1994 1.1 cgd void
1995 1.85 mycroft cpu_exec_ecoff_setregs(p, epp, stack)
1996 1.1 cgd struct proc *p;
1997 1.19 cgd struct exec_package *epp;
1998 1.5 christos u_long stack;
1999 1.1 cgd {
2000 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2001 1.1 cgd
2002 1.85 mycroft setregs(p, epp, stack);
2003 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2004 1.1 cgd }
2005 1.1 cgd
2006 1.1 cgd /*
2007 1.1 cgd * cpu_exec_ecoff_hook():
2008 1.1 cgd * cpu-dependent ECOFF format hook for execve().
2009 1.1 cgd *
2010 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
2011 1.1 cgd *
2012 1.1 cgd */
2013 1.1 cgd int
2014 1.224 jdolecek cpu_exec_ecoff_probe(p, epp)
2015 1.1 cgd struct proc *p;
2016 1.1 cgd struct exec_package *epp;
2017 1.1 cgd {
2018 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2019 1.171 cgd int error;
2020 1.1 cgd
2021 1.224 jdolecek if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
2022 1.171 cgd error = 0;
2023 1.224 jdolecek else
2024 1.224 jdolecek error = ENOEXEC;
2025 1.1 cgd
2026 1.171 cgd return (error);
2027 1.1 cgd }
2028 1.1 cgd #endif
2029 1.110 thorpej
2030 1.110 thorpej int
2031 1.110 thorpej alpha_pa_access(pa)
2032 1.110 thorpej u_long pa;
2033 1.110 thorpej {
2034 1.110 thorpej int i;
2035 1.110 thorpej
2036 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
2037 1.110 thorpej if (pa < mem_clusters[i].start)
2038 1.110 thorpej continue;
2039 1.110 thorpej if ((pa - mem_clusters[i].start) >=
2040 1.110 thorpej (mem_clusters[i].size & ~PAGE_MASK))
2041 1.110 thorpej continue;
2042 1.110 thorpej return (mem_clusters[i].size & PAGE_MASK); /* prot */
2043 1.110 thorpej }
2044 1.197 thorpej
2045 1.197 thorpej /*
2046 1.197 thorpej * Address is not a memory address. If we're secure, disallow
2047 1.197 thorpej * access. Otherwise, grant read/write.
2048 1.197 thorpej */
2049 1.197 thorpej if (securelevel > 0)
2050 1.197 thorpej return (PROT_NONE);
2051 1.197 thorpej else
2052 1.197 thorpej return (PROT_READ | PROT_WRITE);
2053 1.110 thorpej }
2054 1.50 cgd
2055 1.50 cgd /* XXX XXX BEGIN XXX XXX */
2056 1.140 thorpej paddr_t alpha_XXX_dmamap_or; /* XXX */
2057 1.50 cgd /* XXX */
2058 1.140 thorpej paddr_t /* XXX */
2059 1.50 cgd alpha_XXX_dmamap(v) /* XXX */
2060 1.140 thorpej vaddr_t v; /* XXX */
2061 1.50 cgd { /* XXX */
2062 1.50 cgd /* XXX */
2063 1.51 cgd return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2064 1.50 cgd } /* XXX */
2065 1.50 cgd /* XXX XXX END XXX XXX */
2066 1.177 ross
2067 1.177 ross char *
2068 1.177 ross dot_conv(x)
2069 1.177 ross unsigned long x;
2070 1.177 ross {
2071 1.177 ross int i;
2072 1.177 ross char *xc;
2073 1.177 ross static int next;
2074 1.177 ross static char space[2][20];
2075 1.177 ross
2076 1.177 ross xc = space[next ^= 1] + sizeof space[0];
2077 1.177 ross *--xc = '\0';
2078 1.177 ross for (i = 0;; ++i) {
2079 1.177 ross if (i && (i & 3) == 0)
2080 1.177 ross *--xc = '.';
2081 1.177 ross *--xc = "0123456789abcdef"[x & 0xf];
2082 1.177 ross x >>= 4;
2083 1.177 ross if (x == 0)
2084 1.177 ross break;
2085 1.177 ross }
2086 1.177 ross return xc;
2087 1.138 ross }
2088