Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.249
      1  1.249     chris /* $NetBSD: machdep.c,v 1.249 2001/09/10 21:19:08 chris Exp $ */
      2  1.110   thorpej 
      3  1.110   thorpej /*-
      4  1.211   thorpej  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      5  1.110   thorpej  * All rights reserved.
      6  1.110   thorpej  *
      7  1.110   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.110   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.110   thorpej  * NASA Ames Research Center and by Chris G. Demetriou.
     10  1.110   thorpej  *
     11  1.110   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.110   thorpej  * modification, are permitted provided that the following conditions
     13  1.110   thorpej  * are met:
     14  1.110   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.110   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.110   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.110   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.110   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.110   thorpej  * 3. All advertising materials mentioning features or use of this software
     20  1.110   thorpej  *    must display the following acknowledgement:
     21  1.110   thorpej  *	This product includes software developed by the NetBSD
     22  1.110   thorpej  *	Foundation, Inc. and its contributors.
     23  1.110   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.110   thorpej  *    contributors may be used to endorse or promote products derived
     25  1.110   thorpej  *    from this software without specific prior written permission.
     26  1.110   thorpej  *
     27  1.110   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.110   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.110   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.110   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.110   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.110   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.110   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.110   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.110   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.110   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.110   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38  1.110   thorpej  */
     39    1.1       cgd 
     40    1.1       cgd /*
     41   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42    1.1       cgd  * All rights reserved.
     43    1.1       cgd  *
     44    1.1       cgd  * Author: Chris G. Demetriou
     45    1.1       cgd  *
     46    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     47    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     48    1.1       cgd  * notice and this permission notice appear in all copies of the
     49    1.1       cgd  * software, derivative works or modified versions, and any portions
     50    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     51    1.1       cgd  *
     52    1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53    1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55    1.1       cgd  *
     56    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     57    1.1       cgd  *
     58    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59    1.1       cgd  *  School of Computer Science
     60    1.1       cgd  *  Carnegie Mellon University
     61    1.1       cgd  *  Pittsburgh PA 15213-3890
     62    1.1       cgd  *
     63    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     64    1.1       cgd  * rights to redistribute these changes.
     65    1.1       cgd  */
     66   1.74       cgd 
     67  1.129  jonathan #include "opt_ddb.h"
     68  1.244     lukem #include "opt_kgdb.h"
     69  1.147   thorpej #include "opt_multiprocessor.h"
     70  1.123   thorpej #include "opt_dec_3000_300.h"
     71  1.123   thorpej #include "opt_dec_3000_500.h"
     72  1.127   thorpej #include "opt_compat_osf1.h"
     73  1.141   thorpej #include "opt_compat_netbsd.h"
     74  1.112   thorpej 
     75   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     76   1.75       cgd 
     77  1.249     chris __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.249 2001/09/10 21:19:08 chris Exp $");
     78    1.1       cgd 
     79    1.1       cgd #include <sys/param.h>
     80    1.1       cgd #include <sys/systm.h>
     81    1.1       cgd #include <sys/signalvar.h>
     82    1.1       cgd #include <sys/kernel.h>
     83    1.1       cgd #include <sys/map.h>
     84    1.1       cgd #include <sys/proc.h>
     85  1.207   thorpej #include <sys/sched.h>
     86    1.1       cgd #include <sys/buf.h>
     87    1.1       cgd #include <sys/reboot.h>
     88   1.28       cgd #include <sys/device.h>
     89    1.1       cgd #include <sys/file.h>
     90    1.1       cgd #include <sys/malloc.h>
     91    1.1       cgd #include <sys/mbuf.h>
     92  1.110   thorpej #include <sys/mman.h>
     93    1.1       cgd #include <sys/msgbuf.h>
     94    1.1       cgd #include <sys/ioctl.h>
     95    1.1       cgd #include <sys/tty.h>
     96    1.1       cgd #include <sys/user.h>
     97    1.1       cgd #include <sys/exec.h>
     98    1.1       cgd #include <sys/exec_ecoff.h>
     99   1.43       cgd #include <sys/core.h>
    100   1.43       cgd #include <sys/kcore.h>
    101   1.43       cgd #include <machine/kcore.h>
    102  1.241      ross #include <machine/fpu.h>
    103    1.1       cgd 
    104    1.1       cgd #include <sys/mount.h>
    105    1.1       cgd #include <sys/syscallargs.h>
    106    1.1       cgd 
    107  1.112   thorpej #include <uvm/uvm_extern.h>
    108  1.217       mrg #include <sys/sysctl.h>
    109  1.112   thorpej 
    110    1.1       cgd #include <dev/cons.h>
    111    1.1       cgd 
    112   1.81   thorpej #include <machine/autoconf.h>
    113    1.1       cgd #include <machine/cpu.h>
    114    1.1       cgd #include <machine/reg.h>
    115    1.1       cgd #include <machine/rpb.h>
    116    1.1       cgd #include <machine/prom.h>
    117   1.73       cgd #include <machine/conf.h>
    118  1.172      ross #include <machine/ieeefp.h>
    119  1.148   thorpej 
    120   1.81   thorpej #ifdef DDB
    121   1.81   thorpej #include <machine/db_machdep.h>
    122   1.81   thorpej #include <ddb/db_access.h>
    123   1.81   thorpej #include <ddb/db_sym.h>
    124   1.81   thorpej #include <ddb/db_extern.h>
    125   1.81   thorpej #include <ddb/db_interface.h>
    126  1.233   thorpej #endif
    127  1.233   thorpej 
    128  1.233   thorpej #ifdef KGDB
    129  1.233   thorpej #include <sys/kgdb.h>
    130   1.81   thorpej #endif
    131   1.81   thorpej 
    132  1.229  sommerfe #ifdef DEBUG
    133  1.229  sommerfe #include <machine/sigdebug.h>
    134  1.229  sommerfe #endif
    135  1.229  sommerfe 
    136  1.155      ross #include <machine/alpha.h>
    137  1.143      matt 
    138  1.245       chs struct vm_map *exec_map = NULL;
    139  1.245       chs struct vm_map *mb_map = NULL;
    140  1.245       chs struct vm_map *phys_map = NULL;
    141    1.1       cgd 
    142   1.86       leo caddr_t msgbufaddr;
    143   1.86       leo 
    144    1.1       cgd int	maxmem;			/* max memory per process */
    145    1.7       cgd 
    146    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    147    1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    148    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    149    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    150    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    151    1.1       cgd 
    152    1.1       cgd int	cputype;		/* system type, from the RPB */
    153  1.210   thorpej 
    154  1.210   thorpej int	bootdev_debug = 0;	/* patchable, or from DDB */
    155    1.1       cgd 
    156    1.1       cgd /*
    157    1.1       cgd  * XXX We need an address to which we can assign things so that they
    158    1.1       cgd  * won't be optimized away because we didn't use the value.
    159    1.1       cgd  */
    160    1.1       cgd u_int32_t no_optimize;
    161    1.1       cgd 
    162    1.1       cgd /* the following is used externally (sysctl_hw) */
    163   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    164   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    165   1.29       cgd char	cpu_model[128];
    166    1.1       cgd 
    167    1.1       cgd struct	user *proc0paddr;
    168    1.1       cgd 
    169    1.1       cgd /* Number of machine cycles per microsecond */
    170    1.1       cgd u_int64_t	cycles_per_usec;
    171    1.1       cgd 
    172    1.7       cgd /* number of cpus in the box.  really! */
    173    1.7       cgd int		ncpus;
    174    1.7       cgd 
    175  1.102       cgd struct bootinfo_kernel bootinfo;
    176   1.81   thorpej 
    177  1.123   thorpej /* For built-in TCDS */
    178  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    179  1.123   thorpej u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    180  1.123   thorpej #endif
    181  1.123   thorpej 
    182   1.89    mjacob struct platform platform;
    183   1.89    mjacob 
    184   1.81   thorpej #ifdef DDB
    185   1.81   thorpej /* start and end of kernel symbol table */
    186   1.81   thorpej void	*ksym_start, *ksym_end;
    187   1.81   thorpej #endif
    188   1.81   thorpej 
    189   1.30       cgd /* for cpu_sysctl() */
    190   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    191   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    192   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    193  1.241      ross int	alpha_fp_sync_complete = 0;	/* fp fixup if sync even without /s */
    194   1.30       cgd 
    195  1.110   thorpej /*
    196  1.110   thorpej  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    197  1.110   thorpej  * XXX it should also be larger than it is, because not all of the mddt
    198  1.110   thorpej  * XXX clusters end up being used for VM.
    199  1.110   thorpej  */
    200  1.110   thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    201  1.110   thorpej int	mem_cluster_cnt;
    202  1.110   thorpej 
    203   1.55       cgd int	cpu_dump __P((void));
    204   1.55       cgd int	cpu_dumpsize __P((void));
    205  1.110   thorpej u_long	cpu_dump_mempagecnt __P((void));
    206   1.55       cgd void	dumpsys __P((void));
    207   1.55       cgd void	identifycpu __P((void));
    208   1.55       cgd void	printregs __P((struct reg *));
    209   1.33       cgd 
    210   1.55       cgd void
    211  1.102       cgd alpha_init(pfn, ptb, bim, bip, biv)
    212    1.1       cgd 	u_long pfn;		/* first free PFN number */
    213    1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    214   1.81   thorpej 	u_long bim;		/* bootinfo magic */
    215   1.81   thorpej 	u_long bip;		/* bootinfo pointer */
    216  1.102       cgd 	u_long biv;		/* bootinfo version */
    217    1.1       cgd {
    218   1.95   thorpej 	extern char kernel_text[], _end[];
    219    1.1       cgd 	struct mddt *mddtp;
    220  1.110   thorpej 	struct mddt_cluster *memc;
    221    1.7       cgd 	int i, mddtweird;
    222  1.110   thorpej 	struct vm_physseg *vps;
    223  1.140   thorpej 	vaddr_t kernstart, kernend;
    224  1.140   thorpej 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    225  1.140   thorpej 	vsize_t size;
    226  1.211   thorpej 	cpuid_t cpu_id;
    227  1.211   thorpej 	struct cpu_info *ci;
    228    1.1       cgd 	char *p;
    229   1.95   thorpej 	caddr_t v;
    230  1.209   thorpej 	const char *bootinfo_msg;
    231  1.209   thorpej 	const struct cpuinit *c;
    232  1.106       cgd 
    233  1.106       cgd 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    234    1.1       cgd 
    235    1.1       cgd 	/*
    236   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    237    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    238    1.1       cgd 	 */
    239   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    240   1.32       cgd 	alpha_pal_wrfen(0);
    241   1.37       cgd 	ALPHA_TBIA();
    242   1.32       cgd 	alpha_pal_imb();
    243  1.248   thorpej 
    244  1.248   thorpej 	/* Initialize the SCB. */
    245  1.248   thorpej 	scb_init();
    246    1.1       cgd 
    247  1.211   thorpej 	cpu_id = cpu_number();
    248  1.211   thorpej 
    249  1.189   thorpej #if defined(MULTIPROCESSOR)
    250  1.189   thorpej 	/*
    251  1.189   thorpej 	 * Set our SysValue to the address of our cpu_info structure.
    252  1.189   thorpej 	 * Secondary processors do this in their spinup trampoline.
    253  1.189   thorpej 	 */
    254  1.237   thorpej 	alpha_pal_wrval((u_long)&cpu_info_primary);
    255  1.237   thorpej 	cpu_info[cpu_id] = &cpu_info_primary;
    256  1.189   thorpej #endif
    257  1.189   thorpej 
    258  1.211   thorpej 	ci = curcpu();
    259  1.211   thorpej 	ci->ci_cpuid = cpu_id;
    260  1.211   thorpej 
    261    1.1       cgd 	/*
    262  1.106       cgd 	 * Get critical system information (if possible, from the
    263  1.106       cgd 	 * information provided by the boot program).
    264   1.81   thorpej 	 */
    265  1.106       cgd 	bootinfo_msg = NULL;
    266   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    267  1.102       cgd 		if (biv == 0) {		/* backward compat */
    268  1.102       cgd 			biv = *(u_long *)bip;
    269  1.102       cgd 			bip += 8;
    270  1.102       cgd 		}
    271  1.102       cgd 		switch (biv) {
    272  1.102       cgd 		case 1: {
    273  1.102       cgd 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    274  1.102       cgd 
    275  1.102       cgd 			bootinfo.ssym = v1p->ssym;
    276  1.102       cgd 			bootinfo.esym = v1p->esym;
    277  1.106       cgd 			/* hwrpb may not be provided by boot block in v1 */
    278  1.106       cgd 			if (v1p->hwrpb != NULL) {
    279  1.106       cgd 				bootinfo.hwrpb_phys =
    280  1.106       cgd 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    281  1.106       cgd 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    282  1.106       cgd 			} else {
    283  1.106       cgd 				bootinfo.hwrpb_phys =
    284  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    285  1.106       cgd 				bootinfo.hwrpb_size =
    286  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    287  1.106       cgd 			}
    288  1.247   thorpej 			memcpy(bootinfo.boot_flags, v1p->boot_flags,
    289  1.102       cgd 			    min(sizeof v1p->boot_flags,
    290  1.102       cgd 			      sizeof bootinfo.boot_flags));
    291  1.247   thorpej 			memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
    292  1.102       cgd 			    min(sizeof v1p->booted_kernel,
    293  1.102       cgd 			      sizeof bootinfo.booted_kernel));
    294  1.106       cgd 			/* booted dev not provided in bootinfo */
    295  1.106       cgd 			init_prom_interface((struct rpb *)
    296  1.106       cgd 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    297  1.102       cgd                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    298  1.102       cgd 			    sizeof bootinfo.booted_dev);
    299   1.81   thorpej 			break;
    300  1.102       cgd 		}
    301   1.81   thorpej 		default:
    302  1.106       cgd 			bootinfo_msg = "unknown bootinfo version";
    303  1.102       cgd 			goto nobootinfo;
    304   1.81   thorpej 		}
    305  1.102       cgd 	} else {
    306  1.106       cgd 		bootinfo_msg = "boot program did not pass bootinfo";
    307  1.102       cgd nobootinfo:
    308  1.102       cgd 		bootinfo.ssym = (u_long)_end;
    309  1.102       cgd 		bootinfo.esym = (u_long)_end;
    310  1.106       cgd 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    311  1.106       cgd 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    312  1.106       cgd 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    313  1.102       cgd 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    314  1.102       cgd 		    sizeof bootinfo.boot_flags);
    315  1.102       cgd 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    316  1.102       cgd 		    sizeof bootinfo.booted_kernel);
    317  1.102       cgd 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    318  1.102       cgd 		    sizeof bootinfo.booted_dev);
    319  1.102       cgd 	}
    320  1.102       cgd 
    321   1.81   thorpej 	/*
    322  1.106       cgd 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    323  1.106       cgd 	 * lots of things.
    324  1.106       cgd 	 */
    325  1.106       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    326  1.123   thorpej 
    327  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    328  1.123   thorpej 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    329  1.123   thorpej 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    330  1.123   thorpej 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    331  1.123   thorpej 		    sizeof(dec_3000_scsiid));
    332  1.123   thorpej 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    333  1.123   thorpej 		    sizeof(dec_3000_scsifast));
    334  1.123   thorpej 	}
    335  1.123   thorpej #endif
    336  1.106       cgd 
    337  1.106       cgd 	/*
    338  1.106       cgd 	 * Remember how many cycles there are per microsecond,
    339  1.106       cgd 	 * so that we can use delay().  Round up, for safety.
    340  1.106       cgd 	 */
    341  1.106       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    342  1.106       cgd 
    343  1.106       cgd 	/*
    344  1.106       cgd 	 * Initalize the (temporary) bootstrap console interface, so
    345  1.106       cgd 	 * we can use printf until the VM system starts being setup.
    346  1.106       cgd 	 * The real console is initialized before then.
    347  1.106       cgd 	 */
    348  1.106       cgd 	init_bootstrap_console();
    349  1.106       cgd 
    350  1.106       cgd 	/* OUTPUT NOW ALLOWED */
    351  1.106       cgd 
    352  1.106       cgd 	/* delayed from above */
    353  1.106       cgd 	if (bootinfo_msg)
    354  1.106       cgd 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    355  1.106       cgd 		    bootinfo_msg, bim, bip, biv);
    356  1.106       cgd 
    357  1.147   thorpej 	/* Initialize the trap vectors on the primary processor. */
    358  1.147   thorpej 	trap_init();
    359    1.1       cgd 
    360    1.1       cgd 	/*
    361  1.243   thorpej 	 * find out this system's page size
    362  1.243   thorpej 	 */
    363  1.243   thorpej 	PAGE_SIZE = hwrpb->rpb_page_size;
    364  1.243   thorpej 	if (PAGE_SIZE != 8192)
    365  1.243   thorpej 		panic("page size %d != 8192?!", PAGE_SIZE);
    366  1.243   thorpej 
    367  1.243   thorpej 	/*
    368  1.243   thorpej 	 * Initialize PAGE_SIZE-dependent variables.
    369  1.243   thorpej 	 */
    370  1.243   thorpej 	uvm_setpagesize();
    371  1.243   thorpej 
    372  1.243   thorpej 	/*
    373  1.106       cgd 	 * Find out what hardware we're on, and do basic initialization.
    374  1.106       cgd 	 */
    375  1.106       cgd 	cputype = hwrpb->rpb_type;
    376  1.167       cgd 	if (cputype < 0) {
    377  1.167       cgd 		/*
    378  1.167       cgd 		 * At least some white-box systems have SRM which
    379  1.167       cgd 		 * reports a systype that's the negative of their
    380  1.167       cgd 		 * blue-box counterpart.
    381  1.167       cgd 		 */
    382  1.167       cgd 		cputype = -cputype;
    383  1.167       cgd 	}
    384  1.209   thorpej 	c = platform_lookup(cputype);
    385  1.209   thorpej 	if (c == NULL) {
    386  1.106       cgd 		platform_not_supported();
    387  1.106       cgd 		/* NOTREACHED */
    388  1.106       cgd 	}
    389  1.209   thorpej 	(*c->init)();
    390  1.106       cgd 	strcpy(cpu_model, platform.model);
    391  1.106       cgd 
    392  1.106       cgd 	/*
    393  1.199     soren 	 * Initalize the real console, so that the bootstrap console is
    394  1.106       cgd 	 * no longer necessary.
    395  1.106       cgd 	 */
    396  1.169   thorpej 	(*platform.cons_init)();
    397  1.106       cgd 
    398  1.106       cgd #ifdef DIAGNOSTIC
    399  1.106       cgd 	/* Paranoid sanity checking */
    400  1.106       cgd 
    401  1.199     soren 	/* We should always be running on the primary. */
    402  1.211   thorpej 	assert(hwrpb->rpb_primary_cpu_id == cpu_id);
    403  1.106       cgd 
    404  1.116    mjacob 	/*
    405  1.116    mjacob 	 * On single-CPU systypes, the primary should always be CPU 0,
    406  1.116    mjacob 	 * except on Alpha 8200 systems where the CPU id is related
    407  1.116    mjacob 	 * to the VID, which is related to the Turbo Laser node id.
    408  1.116    mjacob 	 */
    409  1.106       cgd 	if (cputype != ST_DEC_21000)
    410  1.106       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);
    411  1.106       cgd #endif
    412  1.106       cgd 
    413  1.106       cgd 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    414  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    415  1.106       cgd 	/*
    416  1.106       cgd 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    417  1.106       cgd 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    418  1.106       cgd 	 */
    419  1.106       cgd #endif
    420   1.95   thorpej 
    421   1.95   thorpej 	/*
    422  1.101       cgd 	 * Find the beginning and end of the kernel (and leave a
    423  1.101       cgd 	 * bit of space before the beginning for the bootstrap
    424  1.101       cgd 	 * stack).
    425   1.95   thorpej 	 */
    426  1.201    kleink 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
    427   1.95   thorpej #ifdef DDB
    428  1.102       cgd 	ksym_start = (void *)bootinfo.ssym;
    429  1.102       cgd 	ksym_end   = (void *)bootinfo.esym;
    430  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
    431  1.102       cgd #else
    432  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)_end);
    433   1.95   thorpej #endif
    434   1.95   thorpej 
    435  1.110   thorpej 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    436  1.110   thorpej 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    437  1.110   thorpej 
    438   1.95   thorpej 	/*
    439    1.1       cgd 	 * Find out how much memory is available, by looking at
    440    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    441    1.7       cgd 	 * its best to detect things things that have never been seen
    442    1.7       cgd 	 * before...
    443    1.1       cgd 	 */
    444    1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    445    1.7       cgd 
    446  1.110   thorpej 	/* MDDT SANITY CHECKING */
    447    1.7       cgd 	mddtweird = 0;
    448  1.110   thorpej 	if (mddtp->mddt_cluster_cnt < 2) {
    449    1.7       cgd 		mddtweird = 1;
    450  1.160   thorpej 		printf("WARNING: weird number of mem clusters: %lu\n",
    451  1.110   thorpej 		    mddtp->mddt_cluster_cnt);
    452    1.7       cgd 	}
    453    1.7       cgd 
    454  1.110   thorpej #if 0
    455  1.110   thorpej 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    456  1.110   thorpej #endif
    457  1.110   thorpej 
    458  1.110   thorpej 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    459  1.110   thorpej 		memc = &mddtp->mddt_clusters[i];
    460  1.110   thorpej #if 0
    461  1.110   thorpej 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    462  1.110   thorpej 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    463  1.110   thorpej #endif
    464  1.110   thorpej 		totalphysmem += memc->mddt_pg_cnt;
    465  1.110   thorpej 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    466  1.110   thorpej 			mem_clusters[mem_cluster_cnt].start =
    467  1.110   thorpej 			    ptoa(memc->mddt_pfn);
    468  1.110   thorpej 			mem_clusters[mem_cluster_cnt].size =
    469  1.110   thorpej 			    ptoa(memc->mddt_pg_cnt);
    470  1.110   thorpej 			if (memc->mddt_usage & MDDT_mbz ||
    471  1.110   thorpej 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    472  1.110   thorpej 			    memc->mddt_usage & MDDT_PALCODE)
    473  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    474  1.110   thorpej 				    PROT_READ;
    475  1.110   thorpej 			else
    476  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    477  1.110   thorpej 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    478  1.110   thorpej 			mem_cluster_cnt++;
    479  1.110   thorpej 		}
    480  1.110   thorpej 
    481  1.110   thorpej 		if (memc->mddt_usage & MDDT_mbz) {
    482    1.7       cgd 			mddtweird = 1;
    483  1.110   thorpej 			printf("WARNING: mem cluster %d has weird "
    484  1.110   thorpej 			    "usage 0x%lx\n", i, memc->mddt_usage);
    485  1.110   thorpej 			unknownmem += memc->mddt_pg_cnt;
    486  1.110   thorpej 			continue;
    487    1.7       cgd 		}
    488  1.110   thorpej 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    489  1.110   thorpej 			/* XXX should handle these... */
    490  1.110   thorpej 			printf("WARNING: skipping non-volatile mem "
    491  1.110   thorpej 			    "cluster %d\n", i);
    492  1.110   thorpej 			unusedmem += memc->mddt_pg_cnt;
    493  1.110   thorpej 			continue;
    494  1.110   thorpej 		}
    495  1.110   thorpej 		if (memc->mddt_usage & MDDT_PALCODE) {
    496  1.110   thorpej 			resvmem += memc->mddt_pg_cnt;
    497  1.110   thorpej 			continue;
    498  1.110   thorpej 		}
    499  1.110   thorpej 
    500  1.110   thorpej 		/*
    501  1.110   thorpej 		 * We have a memory cluster available for system
    502  1.110   thorpej 		 * software use.  We must determine if this cluster
    503  1.110   thorpej 		 * holds the kernel.
    504  1.110   thorpej 		 */
    505  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    506  1.110   thorpej 		/*
    507  1.110   thorpej 		 * XXX If the kernel uses the PROM console, we only use the
    508  1.110   thorpej 		 * XXX memory after the kernel in the first system segment,
    509  1.110   thorpej 		 * XXX to avoid clobbering prom mapping, data, etc.
    510  1.110   thorpej 		 */
    511  1.110   thorpej 	    if (!pmap_uses_prom_console() || physmem == 0) {
    512  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    513  1.110   thorpej 		physmem += memc->mddt_pg_cnt;
    514  1.110   thorpej 		pfn0 = memc->mddt_pfn;
    515  1.110   thorpej 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    516  1.110   thorpej 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    517  1.110   thorpej 			/*
    518  1.110   thorpej 			 * Must compute the location of the kernel
    519  1.110   thorpej 			 * within the segment.
    520  1.110   thorpej 			 */
    521  1.110   thorpej #if 0
    522  1.110   thorpej 			printf("Cluster %d contains kernel\n", i);
    523  1.110   thorpej #endif
    524  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    525  1.110   thorpej 		    if (!pmap_uses_prom_console()) {
    526  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    527  1.110   thorpej 			if (pfn0 < kernstartpfn) {
    528  1.110   thorpej 				/*
    529  1.110   thorpej 				 * There is a chunk before the kernel.
    530  1.110   thorpej 				 */
    531  1.110   thorpej #if 0
    532  1.110   thorpej 				printf("Loading chunk before kernel: "
    533  1.110   thorpej 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    534  1.110   thorpej #endif
    535  1.112   thorpej 				uvm_page_physload(pfn0, kernstartpfn,
    536  1.135   thorpej 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    537  1.110   thorpej 			}
    538  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    539  1.110   thorpej 		    }
    540  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    541  1.110   thorpej 			if (kernendpfn < pfn1) {
    542  1.110   thorpej 				/*
    543  1.110   thorpej 				 * There is a chunk after the kernel.
    544  1.110   thorpej 				 */
    545  1.110   thorpej #if 0
    546  1.110   thorpej 				printf("Loading chunk after kernel: "
    547  1.110   thorpej 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    548  1.110   thorpej #endif
    549  1.112   thorpej 				uvm_page_physload(kernendpfn, pfn1,
    550  1.135   thorpej 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    551  1.110   thorpej 			}
    552  1.110   thorpej 		} else {
    553  1.110   thorpej 			/*
    554  1.110   thorpej 			 * Just load this cluster as one chunk.
    555  1.110   thorpej 			 */
    556  1.110   thorpej #if 0
    557  1.110   thorpej 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    558  1.110   thorpej 			    pfn0, pfn1);
    559  1.110   thorpej #endif
    560  1.135   thorpej 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    561  1.135   thorpej 			    VM_FREELIST_DEFAULT);
    562    1.7       cgd 		}
    563  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    564  1.110   thorpej 	    }
    565  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    566    1.7       cgd 	}
    567    1.7       cgd 
    568  1.110   thorpej 	/*
    569  1.110   thorpej 	 * Dump out the MDDT if it looks odd...
    570  1.110   thorpej 	 */
    571    1.7       cgd 	if (mddtweird) {
    572   1.46  christos 		printf("\n");
    573   1.46  christos 		printf("complete memory cluster information:\n");
    574    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    575   1.46  christos 			printf("mddt %d:\n", i);
    576   1.46  christos 			printf("\tpfn %lx\n",
    577    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    578   1.46  christos 			printf("\tcnt %lx\n",
    579    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    580   1.46  christos 			printf("\ttest %lx\n",
    581    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    582   1.46  christos 			printf("\tbva %lx\n",
    583    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    584   1.46  christos 			printf("\tbpa %lx\n",
    585    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    586   1.46  christos 			printf("\tbcksum %lx\n",
    587    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    588   1.46  christos 			printf("\tusage %lx\n",
    589    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    590    1.2       cgd 		}
    591   1.46  christos 		printf("\n");
    592    1.2       cgd 	}
    593    1.2       cgd 
    594    1.7       cgd 	if (totalphysmem == 0)
    595    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    596    1.1       cgd 	maxmem = physmem;
    597    1.7       cgd #if 0
    598   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    599   1.46  christos 	printf("physmem = %d\n", physmem);
    600   1.46  christos 	printf("resvmem = %d\n", resvmem);
    601   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    602   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    603    1.7       cgd #endif
    604    1.7       cgd 
    605    1.1       cgd 	/*
    606    1.1       cgd 	 * Initialize error message buffer (at end of core).
    607    1.1       cgd 	 */
    608  1.110   thorpej 	{
    609  1.204     enami 		vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
    610  1.203     enami 		vsize_t reqsz = sz;
    611  1.110   thorpej 
    612  1.110   thorpej 		vps = &vm_physmem[vm_nphysseg - 1];
    613  1.110   thorpej 
    614  1.110   thorpej 		/* shrink so that it'll fit in the last segment */
    615  1.110   thorpej 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    616  1.110   thorpej 			sz = ptoa(vps->avail_end - vps->avail_start);
    617  1.110   thorpej 
    618  1.110   thorpej 		vps->end -= atop(sz);
    619  1.110   thorpej 		vps->avail_end -= atop(sz);
    620  1.110   thorpej 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    621  1.110   thorpej 		initmsgbuf(msgbufaddr, sz);
    622  1.110   thorpej 
    623  1.110   thorpej 		/* Remove the last segment if it now has no pages. */
    624  1.110   thorpej 		if (vps->start == vps->end)
    625  1.110   thorpej 			vm_nphysseg--;
    626  1.110   thorpej 
    627  1.110   thorpej 		/* warn if the message buffer had to be shrunk */
    628  1.203     enami 		if (sz != reqsz)
    629  1.203     enami 			printf("WARNING: %ld bytes not available for msgbuf "
    630  1.203     enami 			    "in last cluster (%ld used)\n", reqsz, sz);
    631  1.110   thorpej 
    632  1.110   thorpej 	}
    633  1.239   thorpej 
    634  1.239   thorpej 	/*
    635  1.239   thorpej 	 * NOTE: It is safe to use uvm_pageboot_alloc() before
    636  1.239   thorpej 	 * pmap_bootstrap() because our pmap_virtual_space()
    637  1.239   thorpej 	 * returns compile-time constants.
    638  1.239   thorpej 	 */
    639    1.1       cgd 
    640    1.1       cgd 	/*
    641   1.95   thorpej 	 * Init mapping for u page(s) for proc 0
    642    1.1       cgd 	 */
    643  1.110   thorpej 	proc0.p_addr = proc0paddr =
    644  1.238   thorpej 	    (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
    645    1.1       cgd 
    646    1.1       cgd 	/*
    647   1.95   thorpej 	 * Allocate space for system data structures.  These data structures
    648   1.95   thorpej 	 * are allocated here instead of cpu_startup() because physical
    649   1.95   thorpej 	 * memory is directly addressable.  We don't have to map these into
    650   1.95   thorpej 	 * virtual address space.
    651   1.95   thorpej 	 */
    652  1.198   thorpej 	size = (vsize_t)allocsys(NULL, NULL);
    653  1.238   thorpej 	v = (caddr_t)uvm_pageboot_alloc(size);
    654  1.198   thorpej 	if ((allocsys(v, NULL) - v) != size)
    655   1.95   thorpej 		panic("alpha_init: table size inconsistency");
    656    1.1       cgd 
    657    1.1       cgd 	/*
    658    1.1       cgd 	 * Initialize the virtual memory system, and set the
    659    1.1       cgd 	 * page table base register in proc 0's PCB.
    660    1.1       cgd 	 */
    661  1.110   thorpej 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    662  1.144   thorpej 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    663    1.1       cgd 
    664    1.1       cgd 	/*
    665    1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    666    1.3       cgd 	 * address.
    667    1.3       cgd 	 */
    668    1.3       cgd 	proc0.p_md.md_pcbpaddr =
    669  1.140   thorpej 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
    670    1.3       cgd 
    671    1.3       cgd 	/*
    672    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    673    1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    674    1.3       cgd 	 */
    675   1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    676    1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    677   1.81   thorpej 	proc0.p_md.md_tf =
    678   1.81   thorpej 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    679  1.235   thorpej 	simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
    680  1.189   thorpej 
    681  1.189   thorpej 	/*
    682  1.208   thorpej 	 * Initialize the primary CPU's idle PCB to proc0's.  In a
    683  1.208   thorpej 	 * MULTIPROCESSOR configuration, each CPU will later get
    684  1.208   thorpej 	 * its own idle PCB when autoconfiguration runs.
    685  1.189   thorpej 	 */
    686  1.211   thorpej 	ci->ci_idle_pcb = &proc0paddr->u_pcb;
    687  1.211   thorpej 	ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
    688  1.208   thorpej 
    689  1.208   thorpej 	/* Indicate that proc0 has a CPU. */
    690  1.211   thorpej 	proc0.p_cpu = ci;
    691    1.1       cgd 
    692    1.1       cgd 	/*
    693   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    694    1.8       cgd 	 */
    695    1.1       cgd 
    696    1.8       cgd 	boothowto = RB_SINGLE;
    697    1.1       cgd #ifdef KADB
    698    1.1       cgd 	boothowto |= RB_KDB;
    699    1.1       cgd #endif
    700  1.102       cgd 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    701   1.26       cgd 		/*
    702   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    703   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    704   1.26       cgd 		 * says that we shouldn't.
    705   1.26       cgd 		 */
    706    1.8       cgd 		switch (*p) {
    707   1.26       cgd 		case 'a': /* autoboot */
    708   1.26       cgd 		case 'A':
    709   1.26       cgd 			boothowto &= ~RB_SINGLE;
    710   1.21       cgd 			break;
    711   1.21       cgd 
    712   1.43       cgd #ifdef DEBUG
    713   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    714   1.43       cgd 		case 'C':
    715   1.43       cgd 			boothowto |= RB_DUMP;
    716   1.43       cgd 			break;
    717   1.43       cgd #endif
    718   1.43       cgd 
    719   1.81   thorpej #if defined(KGDB) || defined(DDB)
    720   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    721   1.81   thorpej 		case 'D':
    722   1.81   thorpej 			boothowto |= RB_KDB;
    723   1.81   thorpej 			break;
    724   1.81   thorpej #endif
    725   1.81   thorpej 
    726   1.36       cgd 		case 'h': /* always halt, never reboot */
    727   1.36       cgd 		case 'H':
    728   1.36       cgd 			boothowto |= RB_HALT;
    729    1.8       cgd 			break;
    730    1.8       cgd 
    731   1.21       cgd #if 0
    732    1.8       cgd 		case 'm': /* mini root present in memory */
    733   1.26       cgd 		case 'M':
    734    1.8       cgd 			boothowto |= RB_MINIROOT;
    735    1.8       cgd 			break;
    736   1.21       cgd #endif
    737   1.36       cgd 
    738   1.36       cgd 		case 'n': /* askname */
    739   1.36       cgd 		case 'N':
    740   1.36       cgd 			boothowto |= RB_ASKNAME;
    741   1.65       cgd 			break;
    742   1.65       cgd 
    743   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    744   1.65       cgd 		case 'S':
    745   1.65       cgd 			boothowto |= RB_SINGLE;
    746  1.221  jdolecek 			break;
    747  1.221  jdolecek 
    748  1.221  jdolecek 		case 'q': /* quiet boot */
    749  1.221  jdolecek 		case 'Q':
    750  1.221  jdolecek 			boothowto |= AB_QUIET;
    751  1.221  jdolecek 			break;
    752  1.221  jdolecek 
    753  1.221  jdolecek 		case 'v': /* verbose boot */
    754  1.221  jdolecek 		case 'V':
    755  1.221  jdolecek 			boothowto |= AB_VERBOSE;
    756  1.119   thorpej 			break;
    757  1.119   thorpej 
    758  1.119   thorpej 		case '-':
    759  1.119   thorpej 			/*
    760  1.119   thorpej 			 * Just ignore this.  It's not required, but it's
    761  1.119   thorpej 			 * common for it to be passed regardless.
    762  1.119   thorpej 			 */
    763   1.65       cgd 			break;
    764   1.65       cgd 
    765   1.65       cgd 		default:
    766   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    767   1.36       cgd 			break;
    768    1.1       cgd 		}
    769    1.1       cgd 	}
    770    1.1       cgd 
    771  1.136    mjacob 
    772  1.136    mjacob 	/*
    773  1.136    mjacob 	 * Figure out the number of cpus in the box, from RPB fields.
    774  1.136    mjacob 	 * Really.  We mean it.
    775  1.136    mjacob 	 */
    776  1.136    mjacob 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    777  1.136    mjacob 		struct pcs *pcsp;
    778  1.136    mjacob 
    779  1.144   thorpej 		pcsp = LOCATE_PCS(hwrpb, i);
    780  1.136    mjacob 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    781  1.136    mjacob 			ncpus++;
    782  1.136    mjacob 	}
    783  1.136    mjacob 
    784    1.7       cgd 	/*
    785  1.106       cgd 	 * Initialize debuggers, and break into them if appropriate.
    786  1.106       cgd 	 */
    787  1.106       cgd #ifdef DDB
    788  1.159    mjacob 	ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    789  1.159    mjacob 	    ksym_start, ksym_end);
    790  1.234   thorpej #endif
    791  1.234   thorpej 
    792  1.234   thorpej 	if (boothowto & RB_KDB) {
    793  1.234   thorpej #if defined(KGDB)
    794  1.234   thorpej 		kgdb_debug_init = 1;
    795  1.234   thorpej 		kgdb_connect(1);
    796  1.234   thorpej #elif defined(DDB)
    797  1.106       cgd 		Debugger();
    798  1.106       cgd #endif
    799  1.234   thorpej 	}
    800  1.234   thorpej 
    801  1.106       cgd 	/*
    802  1.106       cgd 	 * Figure out our clock frequency, from RPB fields.
    803  1.106       cgd 	 */
    804  1.106       cgd 	hz = hwrpb->rpb_intr_freq >> 12;
    805  1.106       cgd 	if (!(60 <= hz && hz <= 10240)) {
    806  1.106       cgd 		hz = 1024;
    807  1.106       cgd #ifdef DIAGNOSTIC
    808  1.106       cgd 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    809  1.106       cgd 			hwrpb->rpb_intr_freq, hz);
    810  1.106       cgd #endif
    811  1.106       cgd 	}
    812   1.95   thorpej }
    813   1.95   thorpej 
    814   1.18       cgd void
    815    1.1       cgd consinit()
    816    1.1       cgd {
    817   1.81   thorpej 
    818  1.106       cgd 	/*
    819  1.106       cgd 	 * Everything related to console initialization is done
    820  1.106       cgd 	 * in alpha_init().
    821  1.106       cgd 	 */
    822  1.106       cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    823  1.106       cgd 	printf("consinit: %susing prom console\n",
    824  1.106       cgd 	    pmap_uses_prom_console() ? "" : "not ");
    825   1.81   thorpej #endif
    826    1.1       cgd }
    827  1.118   thorpej 
    828  1.118   thorpej #include "pckbc.h"
    829  1.118   thorpej #include "pckbd.h"
    830  1.118   thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
    831  1.118   thorpej 
    832  1.187   thorpej #include <dev/ic/pckbcvar.h>
    833  1.118   thorpej 
    834  1.118   thorpej /*
    835  1.118   thorpej  * This is called by the pbkbc driver if no pckbd is configured.
    836  1.118   thorpej  * On the i386, it is used to glue in the old, deprecated console
    837  1.118   thorpej  * code.  On the Alpha, it does nothing.
    838  1.118   thorpej  */
    839  1.118   thorpej int
    840  1.118   thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
    841  1.118   thorpej 	pckbc_tag_t kbctag;
    842  1.118   thorpej 	pckbc_slot_t kbcslot;
    843  1.118   thorpej {
    844  1.118   thorpej 
    845  1.118   thorpej 	return (ENXIO);
    846  1.118   thorpej }
    847  1.118   thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
    848    1.1       cgd 
    849   1.18       cgd void
    850    1.1       cgd cpu_startup()
    851    1.1       cgd {
    852    1.1       cgd 	register unsigned i;
    853    1.1       cgd 	int base, residual;
    854  1.140   thorpej 	vaddr_t minaddr, maxaddr;
    855  1.140   thorpej 	vsize_t size;
    856  1.173     lukem 	char pbuf[9];
    857   1.40       cgd #if defined(DEBUG)
    858    1.1       cgd 	extern int pmapdebug;
    859    1.1       cgd 	int opmapdebug = pmapdebug;
    860    1.1       cgd 
    861    1.1       cgd 	pmapdebug = 0;
    862    1.1       cgd #endif
    863    1.1       cgd 
    864    1.1       cgd 	/*
    865    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    866    1.1       cgd 	 */
    867   1.46  christos 	printf(version);
    868    1.1       cgd 	identifycpu();
    869  1.185   thorpej 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
    870  1.173     lukem 	printf("total memory = %s\n", pbuf);
    871  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    872  1.173     lukem 	printf("(%s reserved for PROM, ", pbuf);
    873  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    874  1.173     lukem 	printf("%s used by NetBSD)\n", pbuf);
    875  1.173     lukem 	if (unusedmem) {
    876  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
    877  1.173     lukem 		printf("WARNING: unused memory = %s\n", pbuf);
    878  1.173     lukem 	}
    879  1.173     lukem 	if (unknownmem) {
    880  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
    881  1.173     lukem 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    882  1.173     lukem 	}
    883    1.1       cgd 
    884    1.1       cgd 	/*
    885    1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    886    1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    887    1.1       cgd 	 * and usually occupy more virtual memory than physical.
    888    1.1       cgd 	 */
    889    1.1       cgd 	size = MAXBSIZE * nbuf;
    890  1.140   thorpej 	if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
    891  1.220   thorpej 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    892  1.112   thorpej 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
    893  1.231       chs 				UVM_ADV_NORMAL, 0)) != 0)
    894  1.112   thorpej 		panic("startup: cannot allocate VM for buffers");
    895    1.1       cgd 	base = bufpages / nbuf;
    896    1.1       cgd 	residual = bufpages % nbuf;
    897    1.1       cgd 	for (i = 0; i < nbuf; i++) {
    898  1.140   thorpej 		vsize_t curbufsize;
    899  1.140   thorpej 		vaddr_t curbuf;
    900  1.112   thorpej 		struct vm_page *pg;
    901  1.112   thorpej 
    902  1.112   thorpej 		/*
    903  1.112   thorpej 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
    904  1.112   thorpej 		 * that MAXBSIZE space, we allocate and map (base+1) pages
    905  1.112   thorpej 		 * for the first "residual" buffers, and then we allocate
    906  1.112   thorpej 		 * "base" pages for the rest.
    907  1.112   thorpej 		 */
    908  1.140   thorpej 		curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
    909  1.188     ragge 		curbufsize = NBPG * ((i < residual) ? (base+1) : base);
    910  1.112   thorpej 
    911  1.112   thorpej 		while (curbufsize) {
    912  1.168       chs 			pg = uvm_pagealloc(NULL, 0, NULL, 0);
    913  1.112   thorpej 			if (pg == NULL)
    914  1.112   thorpej 				panic("cpu_startup: not enough memory for "
    915  1.112   thorpej 				    "buffer cache");
    916  1.182       chs 			pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
    917  1.182       chs 					VM_PROT_READ|VM_PROT_WRITE);
    918  1.112   thorpej 			curbuf += PAGE_SIZE;
    919  1.112   thorpej 			curbufsize -= PAGE_SIZE;
    920  1.112   thorpej 		}
    921    1.1       cgd 	}
    922  1.249     chris 	pmap_update(pmap_kernel());
    923  1.240   thorpej 
    924    1.1       cgd 	/*
    925    1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    926    1.1       cgd 	 * limits the number of processes exec'ing at any time.
    927    1.1       cgd 	 */
    928  1.112   thorpej 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    929  1.175   thorpej 				   16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
    930    1.1       cgd 
    931    1.1       cgd 	/*
    932    1.1       cgd 	 * Allocate a submap for physio
    933    1.1       cgd 	 */
    934  1.112   thorpej 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    935  1.175   thorpej 				   VM_PHYS_SIZE, 0, FALSE, NULL);
    936    1.1       cgd 
    937    1.1       cgd 	/*
    938  1.164   thorpej 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    939  1.164   thorpej 	 * are allocated via the pool allocator, and we use K0SEG to
    940  1.164   thorpej 	 * map those pages.
    941    1.1       cgd 	 */
    942    1.1       cgd 
    943   1.40       cgd #if defined(DEBUG)
    944    1.1       cgd 	pmapdebug = opmapdebug;
    945    1.1       cgd #endif
    946  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
    947  1.173     lukem 	printf("avail memory = %s\n", pbuf);
    948  1.139   thorpej #if 0
    949  1.139   thorpej 	{
    950  1.139   thorpej 		extern u_long pmap_pages_stolen;
    951  1.173     lukem 
    952  1.173     lukem 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
    953  1.173     lukem 		printf("stolen memory for VM structures = %s\n", pbuf);
    954  1.139   thorpej 	}
    955  1.112   thorpej #endif
    956  1.188     ragge 	format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
    957  1.173     lukem 	printf("using %ld buffers containing %s of memory\n", (long)nbuf, pbuf);
    958    1.1       cgd 
    959    1.1       cgd 	/*
    960    1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
    961    1.1       cgd 	 */
    962    1.1       cgd 	bufinit();
    963  1.151   thorpej 
    964  1.151   thorpej 	/*
    965  1.151   thorpej 	 * Set up the HWPCB so that it's safe to configure secondary
    966  1.151   thorpej 	 * CPUs.
    967  1.151   thorpej 	 */
    968  1.151   thorpej 	hwrpb_primary_init();
    969  1.104   thorpej }
    970  1.104   thorpej 
    971  1.104   thorpej /*
    972  1.104   thorpej  * Retrieve the platform name from the DSR.
    973  1.104   thorpej  */
    974  1.104   thorpej const char *
    975  1.104   thorpej alpha_dsr_sysname()
    976  1.104   thorpej {
    977  1.104   thorpej 	struct dsrdb *dsr;
    978  1.104   thorpej 	const char *sysname;
    979  1.104   thorpej 
    980  1.104   thorpej 	/*
    981  1.104   thorpej 	 * DSR does not exist on early HWRPB versions.
    982  1.104   thorpej 	 */
    983  1.104   thorpej 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
    984  1.104   thorpej 		return (NULL);
    985  1.104   thorpej 
    986  1.104   thorpej 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
    987  1.104   thorpej 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
    988  1.104   thorpej 	    sizeof(u_int64_t)));
    989  1.104   thorpej 	return (sysname);
    990  1.104   thorpej }
    991  1.104   thorpej 
    992  1.104   thorpej /*
    993  1.104   thorpej  * Lookup the system specified system variation in the provided table,
    994  1.104   thorpej  * returning the model string on match.
    995  1.104   thorpej  */
    996  1.104   thorpej const char *
    997  1.104   thorpej alpha_variation_name(variation, avtp)
    998  1.104   thorpej 	u_int64_t variation;
    999  1.104   thorpej 	const struct alpha_variation_table *avtp;
   1000  1.104   thorpej {
   1001  1.104   thorpej 	int i;
   1002  1.104   thorpej 
   1003  1.104   thorpej 	for (i = 0; avtp[i].avt_model != NULL; i++)
   1004  1.104   thorpej 		if (avtp[i].avt_variation == variation)
   1005  1.104   thorpej 			return (avtp[i].avt_model);
   1006  1.104   thorpej 	return (NULL);
   1007  1.104   thorpej }
   1008  1.104   thorpej 
   1009  1.104   thorpej /*
   1010  1.104   thorpej  * Generate a default platform name based for unknown system variations.
   1011  1.104   thorpej  */
   1012  1.104   thorpej const char *
   1013  1.104   thorpej alpha_unknown_sysname()
   1014  1.104   thorpej {
   1015  1.105   thorpej 	static char s[128];		/* safe size */
   1016  1.104   thorpej 
   1017  1.105   thorpej 	sprintf(s, "%s family, unknown model variation 0x%lx",
   1018  1.105   thorpej 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1019  1.104   thorpej 	return ((const char *)s);
   1020    1.1       cgd }
   1021    1.1       cgd 
   1022   1.33       cgd void
   1023    1.1       cgd identifycpu()
   1024    1.1       cgd {
   1025  1.177      ross 	char *s;
   1026  1.218   thorpej 	int i;
   1027    1.1       cgd 
   1028    1.7       cgd 	/*
   1029    1.7       cgd 	 * print out CPU identification information.
   1030    1.7       cgd 	 */
   1031  1.177      ross 	printf("%s", cpu_model);
   1032  1.177      ross 	for(s = cpu_model; *s; ++s)
   1033  1.177      ross 		if(strncasecmp(s, "MHz", 3) == 0)
   1034  1.177      ross 			goto skipMHz;
   1035  1.177      ross 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
   1036  1.177      ross skipMHz:
   1037  1.218   thorpej 	printf(", s/n ");
   1038  1.218   thorpej 	for (i = 0; i < 10; i++)
   1039  1.218   thorpej 		printf("%c", hwrpb->rpb_ssn[i]);
   1040  1.177      ross 	printf("\n");
   1041   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
   1042    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1043    1.7       cgd #if 0
   1044    1.7       cgd 	/* this isn't defined for any systems that we run on? */
   1045   1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
   1046    1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1047    1.7       cgd 
   1048    1.7       cgd 	/* and these aren't particularly useful! */
   1049   1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
   1050    1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1051    1.7       cgd #endif
   1052    1.1       cgd }
   1053    1.1       cgd 
   1054    1.1       cgd int	waittime = -1;
   1055    1.7       cgd struct pcb dumppcb;
   1056    1.1       cgd 
   1057   1.18       cgd void
   1058   1.68       gwr cpu_reboot(howto, bootstr)
   1059    1.1       cgd 	int howto;
   1060   1.39       mrg 	char *bootstr;
   1061    1.1       cgd {
   1062  1.148   thorpej #if defined(MULTIPROCESSOR)
   1063  1.225   thorpej 	u_long cpu_id = cpu_number();
   1064  1.225   thorpej 	u_long wait_mask = (1UL << cpu_id) |
   1065  1.225   thorpej 			   (1UL << hwrpb->rpb_primary_cpu_id);
   1066  1.225   thorpej 	int i;
   1067  1.148   thorpej #endif
   1068  1.148   thorpej 
   1069  1.225   thorpej 	/* If "always halt" was specified as a boot flag, obey. */
   1070  1.225   thorpej 	if ((boothowto & RB_HALT) != 0)
   1071  1.225   thorpej 		howto |= RB_HALT;
   1072  1.225   thorpej 
   1073  1.225   thorpej 	boothowto = howto;
   1074    1.1       cgd 
   1075    1.1       cgd 	/* If system is cold, just halt. */
   1076    1.1       cgd 	if (cold) {
   1077  1.225   thorpej 		boothowto |= RB_HALT;
   1078    1.1       cgd 		goto haltsys;
   1079    1.1       cgd 	}
   1080    1.1       cgd 
   1081  1.225   thorpej 	if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
   1082    1.1       cgd 		waittime = 0;
   1083    1.7       cgd 		vfs_shutdown();
   1084    1.1       cgd 		/*
   1085    1.1       cgd 		 * If we've been adjusting the clock, the todr
   1086    1.1       cgd 		 * will be out of synch; adjust it now.
   1087    1.1       cgd 		 */
   1088    1.1       cgd 		resettodr();
   1089    1.1       cgd 	}
   1090    1.1       cgd 
   1091    1.1       cgd 	/* Disable interrupts. */
   1092    1.1       cgd 	splhigh();
   1093    1.1       cgd 
   1094  1.225   thorpej #if defined(MULTIPROCESSOR)
   1095  1.225   thorpej 	/*
   1096  1.225   thorpej 	 * Halt all other CPUs.  If we're not the primary, the
   1097  1.225   thorpej 	 * primary will spin, waiting for us to halt.
   1098  1.225   thorpej 	 */
   1099  1.225   thorpej 	alpha_broadcast_ipi(ALPHA_IPI_HALT);
   1100  1.225   thorpej 
   1101  1.225   thorpej 	for (i = 0; i < 10000; i++) {
   1102  1.225   thorpej 		alpha_mb();
   1103  1.225   thorpej 		if (cpus_running == wait_mask)
   1104  1.225   thorpej 			break;
   1105  1.225   thorpej 		delay(1000);
   1106  1.225   thorpej 	}
   1107  1.225   thorpej 	alpha_mb();
   1108  1.225   thorpej 	if (cpus_running != wait_mask)
   1109  1.225   thorpej 		printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
   1110  1.225   thorpej 		    cpus_running);
   1111  1.225   thorpej #endif /* MULTIPROCESSOR */
   1112  1.225   thorpej 
   1113    1.7       cgd 	/* If rebooting and a dump is requested do it. */
   1114   1.42       cgd #if 0
   1115  1.225   thorpej 	if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1116   1.42       cgd #else
   1117  1.225   thorpej 	if (boothowto & RB_DUMP)
   1118   1.42       cgd #endif
   1119    1.1       cgd 		dumpsys();
   1120    1.6       cgd 
   1121   1.12       cgd haltsys:
   1122   1.12       cgd 
   1123    1.6       cgd 	/* run any shutdown hooks */
   1124    1.6       cgd 	doshutdownhooks();
   1125  1.148   thorpej 
   1126    1.7       cgd #ifdef BOOTKEY
   1127   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1128  1.117  drochner 	cnpollc(1);	/* for proper keyboard command handling */
   1129    1.7       cgd 	cngetc();
   1130  1.117  drochner 	cnpollc(0);
   1131   1.46  christos 	printf("\n");
   1132    1.7       cgd #endif
   1133    1.7       cgd 
   1134  1.124   thorpej 	/* Finally, powerdown/halt/reboot the system. */
   1135  1.225   thorpej 	if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
   1136  1.124   thorpej 	    platform.powerdown != NULL) {
   1137  1.124   thorpej 		(*platform.powerdown)();
   1138  1.124   thorpej 		printf("WARNING: powerdown failed!\n");
   1139  1.124   thorpej 	}
   1140  1.225   thorpej 	printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
   1141  1.225   thorpej #if defined(MULTIPROCESSOR)
   1142  1.225   thorpej 	if (cpu_id != hwrpb->rpb_primary_cpu_id)
   1143  1.225   thorpej 		cpu_halt();
   1144  1.225   thorpej 	else
   1145  1.225   thorpej #endif
   1146  1.225   thorpej 		prom_halt(boothowto & RB_HALT);
   1147    1.1       cgd 	/*NOTREACHED*/
   1148    1.1       cgd }
   1149    1.1       cgd 
   1150    1.7       cgd /*
   1151    1.7       cgd  * These variables are needed by /sbin/savecore
   1152    1.7       cgd  */
   1153    1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
   1154    1.7       cgd int 	dumpsize = 0;		/* pages */
   1155    1.7       cgd long	dumplo = 0; 		/* blocks */
   1156    1.7       cgd 
   1157    1.7       cgd /*
   1158   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1159   1.43       cgd  */
   1160   1.43       cgd int
   1161   1.43       cgd cpu_dumpsize()
   1162   1.43       cgd {
   1163   1.43       cgd 	int size;
   1164   1.43       cgd 
   1165  1.108       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1166  1.110   thorpej 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1167   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
   1168   1.43       cgd 		return -1;
   1169   1.43       cgd 
   1170   1.43       cgd 	return (1);
   1171   1.43       cgd }
   1172   1.43       cgd 
   1173   1.43       cgd /*
   1174  1.110   thorpej  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1175  1.110   thorpej  */
   1176  1.110   thorpej u_long
   1177  1.110   thorpej cpu_dump_mempagecnt()
   1178  1.110   thorpej {
   1179  1.110   thorpej 	u_long i, n;
   1180  1.110   thorpej 
   1181  1.110   thorpej 	n = 0;
   1182  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++)
   1183  1.110   thorpej 		n += atop(mem_clusters[i].size);
   1184  1.110   thorpej 	return (n);
   1185  1.110   thorpej }
   1186  1.110   thorpej 
   1187  1.110   thorpej /*
   1188   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
   1189   1.43       cgd  */
   1190   1.43       cgd int
   1191   1.43       cgd cpu_dump()
   1192   1.43       cgd {
   1193   1.43       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1194  1.107       cgd 	char buf[dbtob(1)];
   1195  1.107       cgd 	kcore_seg_t *segp;
   1196  1.107       cgd 	cpu_kcore_hdr_t *cpuhdrp;
   1197  1.107       cgd 	phys_ram_seg_t *memsegp;
   1198  1.110   thorpej 	int i;
   1199   1.43       cgd 
   1200  1.107       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1201   1.43       cgd 
   1202  1.246   thorpej 	memset(buf, 0, sizeof buf);
   1203   1.43       cgd 	segp = (kcore_seg_t *)buf;
   1204  1.107       cgd 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1205  1.107       cgd 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1206  1.107       cgd 	    ALIGN(sizeof(*cpuhdrp))];
   1207   1.43       cgd 
   1208   1.43       cgd 	/*
   1209   1.43       cgd 	 * Generate a segment header.
   1210   1.43       cgd 	 */
   1211   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1212   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1213   1.43       cgd 
   1214   1.43       cgd 	/*
   1215  1.107       cgd 	 * Add the machine-dependent header info.
   1216   1.43       cgd 	 */
   1217  1.140   thorpej 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1218   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
   1219  1.110   thorpej 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1220  1.107       cgd 
   1221  1.107       cgd 	/*
   1222  1.107       cgd 	 * Fill in the memory segment descriptors.
   1223  1.107       cgd 	 */
   1224  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1225  1.110   thorpej 		memsegp[i].start = mem_clusters[i].start;
   1226  1.110   thorpej 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1227  1.110   thorpej 	}
   1228   1.43       cgd 
   1229   1.43       cgd 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1230   1.43       cgd }
   1231   1.43       cgd 
   1232   1.43       cgd /*
   1233   1.68       gwr  * This is called by main to set dumplo and dumpsize.
   1234  1.188     ragge  * Dumps always skip the first NBPG of disk space
   1235    1.7       cgd  * in case there might be a disk label stored there.
   1236    1.7       cgd  * If there is extra space, put dump at the end to
   1237    1.7       cgd  * reduce the chance that swapping trashes it.
   1238    1.7       cgd  */
   1239    1.7       cgd void
   1240   1.68       gwr cpu_dumpconf()
   1241    1.7       cgd {
   1242   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
   1243    1.7       cgd 	int maj;
   1244    1.7       cgd 
   1245    1.7       cgd 	if (dumpdev == NODEV)
   1246   1.43       cgd 		goto bad;
   1247    1.7       cgd 	maj = major(dumpdev);
   1248    1.7       cgd 	if (maj < 0 || maj >= nblkdev)
   1249    1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1250    1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
   1251   1.43       cgd 		goto bad;
   1252    1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
   1253    1.7       cgd 	if (nblks <= ctod(1))
   1254   1.43       cgd 		goto bad;
   1255   1.43       cgd 
   1256   1.43       cgd 	dumpblks = cpu_dumpsize();
   1257   1.43       cgd 	if (dumpblks < 0)
   1258   1.43       cgd 		goto bad;
   1259  1.110   thorpej 	dumpblks += ctod(cpu_dump_mempagecnt());
   1260   1.43       cgd 
   1261   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1262   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1263   1.43       cgd 		goto bad;
   1264   1.43       cgd 
   1265   1.43       cgd 	/* Put dump at end of partition */
   1266   1.43       cgd 	dumplo = nblks - dumpblks;
   1267    1.7       cgd 
   1268   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1269  1.110   thorpej 	dumpsize = cpu_dump_mempagecnt();
   1270   1.43       cgd 	return;
   1271    1.7       cgd 
   1272   1.43       cgd bad:
   1273   1.43       cgd 	dumpsize = 0;
   1274   1.43       cgd 	return;
   1275    1.7       cgd }
   1276    1.7       cgd 
   1277    1.7       cgd /*
   1278   1.42       cgd  * Dump the kernel's image to the swap partition.
   1279    1.7       cgd  */
   1280   1.42       cgd #define	BYTES_PER_DUMP	NBPG
   1281   1.42       cgd 
   1282    1.7       cgd void
   1283    1.7       cgd dumpsys()
   1284    1.7       cgd {
   1285  1.110   thorpej 	u_long totalbytesleft, bytes, i, n, memcl;
   1286  1.110   thorpej 	u_long maddr;
   1287  1.110   thorpej 	int psize;
   1288   1.42       cgd 	daddr_t blkno;
   1289   1.42       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1290   1.42       cgd 	int error;
   1291   1.42       cgd 
   1292   1.42       cgd 	/* Save registers. */
   1293   1.42       cgd 	savectx(&dumppcb);
   1294    1.7       cgd 
   1295    1.7       cgd 	if (dumpdev == NODEV)
   1296    1.7       cgd 		return;
   1297   1.42       cgd 
   1298   1.42       cgd 	/*
   1299   1.42       cgd 	 * For dumps during autoconfiguration,
   1300   1.42       cgd 	 * if dump device has already configured...
   1301   1.42       cgd 	 */
   1302   1.42       cgd 	if (dumpsize == 0)
   1303   1.68       gwr 		cpu_dumpconf();
   1304   1.47       cgd 	if (dumplo <= 0) {
   1305   1.97   mycroft 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1306   1.97   mycroft 		    minor(dumpdev));
   1307   1.42       cgd 		return;
   1308   1.43       cgd 	}
   1309   1.97   mycroft 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1310   1.97   mycroft 	    minor(dumpdev), dumplo);
   1311    1.7       cgd 
   1312   1.42       cgd 	psize = (*bdevsw[major(dumpdev)].d_psize)(dumpdev);
   1313   1.46  christos 	printf("dump ");
   1314   1.42       cgd 	if (psize == -1) {
   1315   1.46  christos 		printf("area unavailable\n");
   1316   1.42       cgd 		return;
   1317   1.42       cgd 	}
   1318   1.42       cgd 
   1319   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1320   1.42       cgd 
   1321   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1322   1.43       cgd 		goto err;
   1323   1.43       cgd 
   1324  1.110   thorpej 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1325   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1326   1.42       cgd 	dump = bdevsw[major(dumpdev)].d_dump;
   1327   1.42       cgd 	error = 0;
   1328   1.42       cgd 
   1329  1.110   thorpej 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1330  1.110   thorpej 		maddr = mem_clusters[memcl].start;
   1331  1.110   thorpej 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1332  1.110   thorpej 
   1333  1.110   thorpej 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1334  1.110   thorpej 
   1335  1.110   thorpej 			/* Print out how many MBs we to go. */
   1336  1.110   thorpej 			if ((totalbytesleft % (1024*1024)) == 0)
   1337  1.160   thorpej 				printf("%ld ", totalbytesleft / (1024 * 1024));
   1338  1.110   thorpej 
   1339  1.110   thorpej 			/* Limit size for next transfer. */
   1340  1.110   thorpej 			n = bytes - i;
   1341  1.110   thorpej 			if (n > BYTES_PER_DUMP)
   1342  1.110   thorpej 				n =  BYTES_PER_DUMP;
   1343  1.110   thorpej 
   1344  1.110   thorpej 			error = (*dump)(dumpdev, blkno,
   1345  1.110   thorpej 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1346  1.110   thorpej 			if (error)
   1347  1.110   thorpej 				goto err;
   1348  1.110   thorpej 			maddr += n;
   1349  1.110   thorpej 			blkno += btodb(n);			/* XXX? */
   1350   1.42       cgd 
   1351  1.110   thorpej 			/* XXX should look for keystrokes, to cancel. */
   1352  1.110   thorpej 		}
   1353   1.42       cgd 	}
   1354   1.42       cgd 
   1355   1.43       cgd err:
   1356   1.42       cgd 	switch (error) {
   1357    1.7       cgd 
   1358    1.7       cgd 	case ENXIO:
   1359   1.46  christos 		printf("device bad\n");
   1360    1.7       cgd 		break;
   1361    1.7       cgd 
   1362    1.7       cgd 	case EFAULT:
   1363   1.46  christos 		printf("device not ready\n");
   1364    1.7       cgd 		break;
   1365    1.7       cgd 
   1366    1.7       cgd 	case EINVAL:
   1367   1.46  christos 		printf("area improper\n");
   1368    1.7       cgd 		break;
   1369    1.7       cgd 
   1370    1.7       cgd 	case EIO:
   1371   1.46  christos 		printf("i/o error\n");
   1372    1.7       cgd 		break;
   1373    1.7       cgd 
   1374    1.7       cgd 	case EINTR:
   1375   1.46  christos 		printf("aborted from console\n");
   1376    1.7       cgd 		break;
   1377    1.7       cgd 
   1378   1.42       cgd 	case 0:
   1379   1.46  christos 		printf("succeeded\n");
   1380   1.42       cgd 		break;
   1381   1.42       cgd 
   1382    1.7       cgd 	default:
   1383   1.46  christos 		printf("error %d\n", error);
   1384    1.7       cgd 		break;
   1385    1.7       cgd 	}
   1386   1.46  christos 	printf("\n\n");
   1387    1.7       cgd 	delay(1000);
   1388    1.7       cgd }
   1389    1.7       cgd 
   1390    1.1       cgd void
   1391    1.1       cgd frametoreg(framep, regp)
   1392    1.1       cgd 	struct trapframe *framep;
   1393    1.1       cgd 	struct reg *regp;
   1394    1.1       cgd {
   1395    1.1       cgd 
   1396    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1397    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1398    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1399    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1400    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1401    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1402    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1403    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1404    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1405    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1406    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1407    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1408    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1409    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1410    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1411    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1412   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1413   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1414   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1415    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1416    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1417    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1418    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1419    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1420    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1421    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1422    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1423    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1424    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1425   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1426   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1427    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1428    1.1       cgd }
   1429    1.1       cgd 
   1430    1.1       cgd void
   1431    1.1       cgd regtoframe(regp, framep)
   1432    1.1       cgd 	struct reg *regp;
   1433    1.1       cgd 	struct trapframe *framep;
   1434    1.1       cgd {
   1435    1.1       cgd 
   1436    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1437    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1438    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1439    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1440    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1441    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1442    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1443    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1444    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1445    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1446    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1447    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1448    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1449    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1450    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1451    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1452   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1453   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1454   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1455    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1456    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1457    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1458    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1459    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1460    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1461    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1462    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1463    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1464    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1465   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1466   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1467    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1468    1.1       cgd }
   1469    1.1       cgd 
   1470    1.1       cgd void
   1471    1.1       cgd printregs(regp)
   1472    1.1       cgd 	struct reg *regp;
   1473    1.1       cgd {
   1474    1.1       cgd 	int i;
   1475    1.1       cgd 
   1476    1.1       cgd 	for (i = 0; i < 32; i++)
   1477   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1478    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1479    1.1       cgd }
   1480    1.1       cgd 
   1481    1.1       cgd void
   1482    1.1       cgd regdump(framep)
   1483    1.1       cgd 	struct trapframe *framep;
   1484    1.1       cgd {
   1485    1.1       cgd 	struct reg reg;
   1486    1.1       cgd 
   1487    1.1       cgd 	frametoreg(framep, &reg);
   1488   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1489   1.35       cgd 
   1490   1.46  christos 	printf("REGISTERS:\n");
   1491    1.1       cgd 	printregs(&reg);
   1492    1.1       cgd }
   1493    1.1       cgd 
   1494    1.1       cgd 
   1495    1.1       cgd /*
   1496    1.1       cgd  * Send an interrupt to process.
   1497    1.1       cgd  */
   1498    1.1       cgd void
   1499    1.1       cgd sendsig(catcher, sig, mask, code)
   1500    1.1       cgd 	sig_t catcher;
   1501  1.141   thorpej 	int sig;
   1502  1.141   thorpej 	sigset_t *mask;
   1503    1.1       cgd 	u_long code;
   1504    1.1       cgd {
   1505    1.1       cgd 	struct proc *p = curproc;
   1506    1.1       cgd 	struct sigcontext *scp, ksc;
   1507    1.1       cgd 	struct trapframe *frame;
   1508  1.141   thorpej 	int onstack, fsize, rndfsize;
   1509    1.1       cgd 
   1510    1.1       cgd 	frame = p->p_md.md_tf;
   1511  1.141   thorpej 
   1512  1.141   thorpej 	/* Do we need to jump onto the signal stack? */
   1513  1.141   thorpej 	onstack =
   1514  1.228  jdolecek 	    (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1515  1.228  jdolecek 	    (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
   1516  1.141   thorpej 
   1517  1.141   thorpej 	/* Allocate space for the signal handler context. */
   1518  1.141   thorpej 	fsize = sizeof(ksc);
   1519    1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1520  1.141   thorpej 
   1521  1.141   thorpej 	if (onstack)
   1522  1.228  jdolecek 		scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
   1523  1.228  jdolecek 					p->p_sigctx.ps_sigstk.ss_size);
   1524  1.141   thorpej 	else
   1525  1.142   mycroft 		scp = (struct sigcontext *)(alpha_pal_rdusp());
   1526  1.142   mycroft 	scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
   1527  1.141   thorpej 
   1528    1.1       cgd #ifdef DEBUG
   1529    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1530   1.46  christos 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1531  1.141   thorpej 		    sig, &onstack, scp);
   1532  1.125      ross #endif
   1533    1.1       cgd 
   1534  1.141   thorpej 	/* Build stack frame for signal trampoline. */
   1535   1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1536   1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1537    1.1       cgd 
   1538  1.141   thorpej 	/* Save register context. */
   1539    1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1540    1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1541   1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1542    1.1       cgd 
   1543    1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1544  1.219   thorpej 	if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
   1545  1.225   thorpej 		fpusave_proc(p, 1);
   1546    1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1547  1.247   thorpej 	memcpy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1548    1.1       cgd 	    sizeof(struct fpreg));
   1549  1.241      ross 	ksc.sc_fp_control = alpha_read_fp_c(p);
   1550  1.246   thorpej 	memset(ksc.sc_reserved, 0, sizeof ksc.sc_reserved);	/* XXX */
   1551  1.246   thorpej 	memset(ksc.sc_xxx, 0, sizeof ksc.sc_xxx);		/* XXX */
   1552    1.1       cgd 
   1553  1.141   thorpej 	/* Save signal stack. */
   1554  1.228  jdolecek 	ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
   1555  1.141   thorpej 
   1556  1.141   thorpej 	/* Save signal mask. */
   1557  1.141   thorpej 	ksc.sc_mask = *mask;
   1558  1.141   thorpej 
   1559  1.141   thorpej #ifdef COMPAT_13
   1560  1.141   thorpej 	/*
   1561  1.141   thorpej 	 * XXX We always have to save an old style signal mask because
   1562  1.141   thorpej 	 * XXX we might be delivering a signal to a process which will
   1563  1.141   thorpej 	 * XXX escape from the signal in a non-standard way and invoke
   1564  1.141   thorpej 	 * XXX sigreturn() directly.
   1565  1.141   thorpej 	 */
   1566  1.141   thorpej 	{
   1567  1.141   thorpej 		/* Note: it's a long in the stack frame. */
   1568  1.141   thorpej 		sigset13_t mask13;
   1569  1.141   thorpej 
   1570  1.141   thorpej 		native_sigset_to_sigset13(mask, &mask13);
   1571  1.141   thorpej 		ksc.__sc_mask13 = mask13;
   1572  1.141   thorpej 	}
   1573  1.141   thorpej #endif
   1574    1.1       cgd 
   1575    1.1       cgd #ifdef COMPAT_OSF1
   1576    1.1       cgd 	/*
   1577    1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1578    1.1       cgd 	 */
   1579    1.1       cgd #endif
   1580    1.1       cgd 
   1581  1.141   thorpej 	if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
   1582  1.141   thorpej 		/*
   1583  1.141   thorpej 		 * Process has trashed its stack; give it an illegal
   1584  1.141   thorpej 		 * instruction to halt it in its tracks.
   1585  1.141   thorpej 		 */
   1586  1.141   thorpej #ifdef DEBUG
   1587  1.141   thorpej 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1588  1.141   thorpej 			printf("sendsig(%d): copyout failed on sig %d\n",
   1589  1.141   thorpej 			    p->p_pid, sig);
   1590  1.141   thorpej #endif
   1591  1.141   thorpej 		sigexit(p, SIGILL);
   1592  1.141   thorpej 		/* NOTREACHED */
   1593  1.141   thorpej 	}
   1594    1.1       cgd #ifdef DEBUG
   1595    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1596   1.46  christos 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1597    1.1       cgd 		    scp, code);
   1598    1.1       cgd #endif
   1599    1.1       cgd 
   1600  1.141   thorpej 	/* Set up the registers to return to sigcode. */
   1601  1.228  jdolecek 	frame->tf_regs[FRAME_PC] = (u_int64_t)p->p_sigctx.ps_sigcode;
   1602   1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1603   1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1604   1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1605    1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1606   1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1607  1.142   mycroft 
   1608  1.142   mycroft 	/* Remember that we're now on the signal stack. */
   1609  1.142   mycroft 	if (onstack)
   1610  1.228  jdolecek 		p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
   1611    1.1       cgd 
   1612    1.1       cgd #ifdef DEBUG
   1613    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1614   1.46  christos 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1615   1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1616    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1617   1.46  christos 		printf("sendsig(%d): sig %d returns\n",
   1618    1.1       cgd 		    p->p_pid, sig);
   1619    1.1       cgd #endif
   1620    1.1       cgd }
   1621    1.1       cgd 
   1622    1.1       cgd /*
   1623    1.1       cgd  * System call to cleanup state after a signal
   1624    1.1       cgd  * has been taken.  Reset signal mask and
   1625    1.1       cgd  * stack state from context left by sendsig (above).
   1626    1.1       cgd  * Return to previous pc and psl as specified by
   1627    1.1       cgd  * context left by sendsig. Check carefully to
   1628    1.1       cgd  * make sure that the user has not modified the
   1629  1.180    simonb  * psl to gain improper privileges or to cause
   1630    1.1       cgd  * a machine fault.
   1631    1.1       cgd  */
   1632    1.1       cgd /* ARGSUSED */
   1633   1.11   mycroft int
   1634  1.141   thorpej sys___sigreturn14(p, v, retval)
   1635    1.1       cgd 	struct proc *p;
   1636   1.10   thorpej 	void *v;
   1637   1.10   thorpej 	register_t *retval;
   1638   1.10   thorpej {
   1639  1.141   thorpej 	struct sys___sigreturn14_args /* {
   1640    1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1641   1.10   thorpej 	} */ *uap = v;
   1642    1.1       cgd 	struct sigcontext *scp, ksc;
   1643    1.1       cgd 
   1644  1.141   thorpej 	/*
   1645  1.141   thorpej 	 * The trampoline code hands us the context.
   1646  1.141   thorpej 	 * It is unsafe to keep track of it ourselves, in the event that a
   1647  1.141   thorpej 	 * program jumps out of a signal handler.
   1648  1.141   thorpej 	 */
   1649    1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1650    1.1       cgd #ifdef DEBUG
   1651    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1652   1.46  christos 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1653    1.1       cgd #endif
   1654    1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1655    1.1       cgd 		return (EINVAL);
   1656    1.1       cgd 
   1657  1.141   thorpej 	if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
   1658  1.141   thorpej 		return (EFAULT);
   1659    1.1       cgd 
   1660    1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1661    1.1       cgd 		return (EINVAL);
   1662    1.1       cgd 
   1663  1.141   thorpej 	/* Restore register context. */
   1664   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1665   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_PS] =
   1666   1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1667    1.1       cgd 
   1668    1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1669   1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1670    1.1       cgd 
   1671    1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1672  1.219   thorpej 	if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
   1673  1.225   thorpej 		fpusave_proc(p, 0);
   1674  1.247   thorpej 	memcpy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1675    1.1       cgd 	    sizeof(struct fpreg));
   1676  1.241      ross 	p->p_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
   1677  1.241      ross 	p->p_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
   1678  1.141   thorpej 
   1679  1.141   thorpej 	/* Restore signal stack. */
   1680  1.141   thorpej 	if (ksc.sc_onstack & SS_ONSTACK)
   1681  1.228  jdolecek 		p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
   1682  1.141   thorpej 	else
   1683  1.228  jdolecek 		p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1684  1.141   thorpej 
   1685  1.141   thorpej 	/* Restore signal mask. */
   1686  1.141   thorpej 	(void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
   1687    1.1       cgd 
   1688    1.1       cgd #ifdef DEBUG
   1689    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1690   1.46  christos 		printf("sigreturn(%d): returns\n", p->p_pid);
   1691    1.1       cgd #endif
   1692    1.1       cgd 	return (EJUSTRETURN);
   1693    1.1       cgd }
   1694    1.1       cgd 
   1695    1.1       cgd /*
   1696    1.1       cgd  * machine dependent system variables.
   1697    1.1       cgd  */
   1698   1.33       cgd int
   1699    1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1700    1.1       cgd 	int *name;
   1701    1.1       cgd 	u_int namelen;
   1702    1.1       cgd 	void *oldp;
   1703    1.1       cgd 	size_t *oldlenp;
   1704    1.1       cgd 	void *newp;
   1705    1.1       cgd 	size_t newlen;
   1706    1.1       cgd 	struct proc *p;
   1707    1.1       cgd {
   1708    1.1       cgd 	dev_t consdev;
   1709    1.1       cgd 
   1710    1.1       cgd 	/* all sysctl names at this level are terminal */
   1711    1.1       cgd 	if (namelen != 1)
   1712    1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1713    1.1       cgd 
   1714    1.1       cgd 	switch (name[0]) {
   1715    1.1       cgd 	case CPU_CONSDEV:
   1716    1.1       cgd 		if (cn_tab != NULL)
   1717    1.1       cgd 			consdev = cn_tab->cn_dev;
   1718    1.1       cgd 		else
   1719    1.1       cgd 			consdev = NODEV;
   1720    1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1721    1.1       cgd 			sizeof consdev));
   1722   1.30       cgd 
   1723   1.30       cgd 	case CPU_ROOT_DEVICE:
   1724   1.64   thorpej 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1725   1.64   thorpej 		    root_device->dv_xname));
   1726   1.36       cgd 
   1727   1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1728   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1729   1.36       cgd 		    &alpha_unaligned_print));
   1730   1.36       cgd 
   1731   1.36       cgd 	case CPU_UNALIGNED_FIX:
   1732   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1733   1.36       cgd 		    &alpha_unaligned_fix));
   1734   1.36       cgd 
   1735   1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1736   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1737   1.36       cgd 		    &alpha_unaligned_sigbus));
   1738   1.61       cgd 
   1739   1.61       cgd 	case CPU_BOOTED_KERNEL:
   1740  1.102       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1741  1.102       cgd 		    bootinfo.booted_kernel));
   1742   1.30       cgd 
   1743  1.241      ross 	case CPU_FP_SYNC_COMPLETE:
   1744  1.241      ross 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1745  1.241      ross 		    &alpha_fp_sync_complete));
   1746  1.241      ross 
   1747    1.1       cgd 	default:
   1748    1.1       cgd 		return (EOPNOTSUPP);
   1749    1.1       cgd 	}
   1750    1.1       cgd 	/* NOTREACHED */
   1751    1.1       cgd }
   1752    1.1       cgd 
   1753    1.1       cgd /*
   1754    1.1       cgd  * Set registers on exec.
   1755    1.1       cgd  */
   1756    1.1       cgd void
   1757   1.85   mycroft setregs(p, pack, stack)
   1758    1.1       cgd 	register struct proc *p;
   1759    1.5  christos 	struct exec_package *pack;
   1760    1.1       cgd 	u_long stack;
   1761    1.1       cgd {
   1762    1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1763   1.56       cgd #ifdef DEBUG
   1764    1.1       cgd 	int i;
   1765   1.56       cgd #endif
   1766   1.43       cgd 
   1767   1.43       cgd #ifdef DEBUG
   1768   1.43       cgd 	/*
   1769   1.43       cgd 	 * Crash and dump, if the user requested it.
   1770   1.43       cgd 	 */
   1771   1.43       cgd 	if (boothowto & RB_DUMP)
   1772   1.43       cgd 		panic("crash requested by boot flags");
   1773   1.43       cgd #endif
   1774    1.1       cgd 
   1775    1.1       cgd #ifdef DEBUG
   1776   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1777    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1778    1.1       cgd #else
   1779  1.246   thorpej 	memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1780    1.1       cgd #endif
   1781  1.246   thorpej 	memset(&p->p_addr->u_pcb.pcb_fp, 0, sizeof p->p_addr->u_pcb.pcb_fp);
   1782   1.35       cgd 	alpha_pal_wrusp(stack);
   1783   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1784   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1785   1.41       cgd 
   1786   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1787   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1788   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1789   1.63       cgd 	tfp->tf_regs[FRAME_A3] = (u_int64_t)PS_STRINGS;	/* a3 = ps_strings */
   1790   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1791    1.1       cgd 
   1792   1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   1793  1.241      ross 	if (__predict_true((p->p_md.md_flags & IEEE_INHERIT) == 0)) {
   1794  1.241      ross 		p->p_md.md_flags &= ~MDP_FP_C;
   1795  1.241      ross 		p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
   1796  1.241      ross 	}
   1797  1.219   thorpej 	if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
   1798  1.225   thorpej 		fpusave_proc(p, 0);
   1799  1.219   thorpej }
   1800  1.219   thorpej 
   1801  1.219   thorpej /*
   1802  1.219   thorpej  * Release the FPU.
   1803  1.219   thorpej  */
   1804  1.219   thorpej void
   1805  1.225   thorpej fpusave_cpu(struct cpu_info *ci, int save)
   1806  1.219   thorpej {
   1807  1.219   thorpej 	struct proc *p;
   1808  1.225   thorpej #if defined(MULTIPROCESSOR)
   1809  1.219   thorpej 	int s;
   1810  1.225   thorpej #endif
   1811  1.219   thorpej 
   1812  1.225   thorpej 	KDASSERT(ci == curcpu());
   1813  1.225   thorpej 
   1814  1.235   thorpej #if defined(MULTIPROCESSOR)
   1815  1.235   thorpej 	atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
   1816  1.235   thorpej #endif
   1817  1.235   thorpej 
   1818  1.225   thorpej 	p = ci->ci_fpcurproc;
   1819  1.225   thorpej 	if (p == NULL)
   1820  1.235   thorpej 		goto out;
   1821  1.219   thorpej 
   1822  1.219   thorpej 	if (save) {
   1823  1.219   thorpej 		alpha_pal_wrfen(1);
   1824  1.219   thorpej 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1825  1.225   thorpej 	}
   1826  1.225   thorpej 
   1827  1.225   thorpej 	alpha_pal_wrfen(0);
   1828  1.225   thorpej 
   1829  1.235   thorpej 	FPCPU_LOCK(&p->p_addr->u_pcb, s);
   1830  1.235   thorpej 
   1831  1.219   thorpej 	p->p_addr->u_pcb.pcb_fpcpu = NULL;
   1832  1.225   thorpej 	ci->ci_fpcurproc = NULL;
   1833  1.235   thorpej 
   1834  1.235   thorpej 	FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
   1835  1.235   thorpej 
   1836  1.235   thorpej  out:
   1837  1.219   thorpej #if defined(MULTIPROCESSOR)
   1838  1.235   thorpej 	atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
   1839  1.219   thorpej #endif
   1840  1.235   thorpej 	return;
   1841  1.219   thorpej }
   1842  1.219   thorpej 
   1843  1.219   thorpej /*
   1844  1.219   thorpej  * Synchronize FP state for this process.
   1845  1.219   thorpej  */
   1846  1.219   thorpej void
   1847  1.225   thorpej fpusave_proc(struct proc *p, int save)
   1848  1.219   thorpej {
   1849  1.225   thorpej 	struct cpu_info *ci = curcpu();
   1850  1.225   thorpej 	struct cpu_info *oci;
   1851  1.235   thorpej #if defined(MULTIPROCESSOR)
   1852  1.235   thorpej 	u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
   1853  1.236   thorpej 	int s, spincount;
   1854  1.235   thorpej #endif
   1855  1.219   thorpej 
   1856  1.225   thorpej 	KDASSERT(p->p_addr != NULL);
   1857  1.225   thorpej 	KDASSERT(p->p_flag & P_INMEM);
   1858  1.225   thorpej 
   1859  1.235   thorpej 	FPCPU_LOCK(&p->p_addr->u_pcb, s);
   1860  1.235   thorpej 
   1861  1.225   thorpej 	oci = p->p_addr->u_pcb.pcb_fpcpu;
   1862  1.235   thorpej 	if (oci == NULL) {
   1863  1.235   thorpej 		FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
   1864  1.219   thorpej 		return;
   1865  1.235   thorpej 	}
   1866  1.219   thorpej 
   1867  1.219   thorpej #if defined(MULTIPROCESSOR)
   1868  1.225   thorpej 	if (oci == ci) {
   1869  1.225   thorpej 		KASSERT(ci->ci_fpcurproc == p);
   1870  1.235   thorpej 		FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
   1871  1.225   thorpej 		fpusave_cpu(ci, save);
   1872  1.235   thorpej 		return;
   1873  1.235   thorpej 	}
   1874  1.235   thorpej 
   1875  1.235   thorpej 	KASSERT(oci->ci_fpcurproc == p);
   1876  1.235   thorpej 	alpha_send_ipi(oci->ci_cpuid, ipi);
   1877  1.235   thorpej 	FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
   1878  1.235   thorpej 
   1879  1.235   thorpej 	spincount = 0;
   1880  1.235   thorpej 	while (p->p_addr->u_pcb.pcb_fpcpu != NULL) {
   1881  1.235   thorpej 		spincount++;
   1882  1.235   thorpej 		delay(1000);	/* XXX */
   1883  1.235   thorpej 		if (spincount > 10000)
   1884  1.235   thorpej 			panic("fpsave ipi didn't");
   1885  1.219   thorpej 	}
   1886  1.219   thorpej #else
   1887  1.225   thorpej 	KASSERT(ci->ci_fpcurproc == p);
   1888  1.235   thorpej 	FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
   1889  1.225   thorpej 	fpusave_cpu(ci, save);
   1890  1.219   thorpej #endif /* MULTIPROCESSOR */
   1891    1.1       cgd }
   1892    1.1       cgd 
   1893    1.1       cgd /*
   1894    1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1895    1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1896   1.52       cgd  * into queues, Remrunqueue removes them from queues.  The running process is
   1897   1.52       cgd  * on no queue, other processes are on a queue related to p->p_priority,
   1898   1.52       cgd  * divided by 4 actually to shrink the 0-127 range of priorities into the 32
   1899   1.52       cgd  * available queues.
   1900    1.1       cgd  */
   1901    1.1       cgd /*
   1902    1.1       cgd  * setrunqueue(p)
   1903    1.1       cgd  *	proc *p;
   1904    1.1       cgd  *
   1905    1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1906    1.1       cgd  */
   1907    1.1       cgd 
   1908    1.1       cgd void
   1909    1.1       cgd setrunqueue(p)
   1910    1.1       cgd 	struct proc *p;
   1911    1.1       cgd {
   1912    1.1       cgd 	int bit;
   1913    1.1       cgd 
   1914    1.1       cgd 	/* firewall: p->p_back must be NULL */
   1915    1.1       cgd 	if (p->p_back != NULL)
   1916    1.1       cgd 		panic("setrunqueue");
   1917    1.1       cgd 
   1918    1.1       cgd 	bit = p->p_priority >> 2;
   1919  1.207   thorpej 	sched_whichqs |= (1 << bit);
   1920  1.207   thorpej 	p->p_forw = (struct proc *)&sched_qs[bit];
   1921  1.207   thorpej 	p->p_back = sched_qs[bit].ph_rlink;
   1922    1.1       cgd 	p->p_back->p_forw = p;
   1923  1.207   thorpej 	sched_qs[bit].ph_rlink = p;
   1924    1.1       cgd }
   1925    1.1       cgd 
   1926    1.1       cgd /*
   1927   1.52       cgd  * remrunqueue(p)
   1928    1.1       cgd  *
   1929    1.1       cgd  * Call should be made at splclock().
   1930    1.1       cgd  */
   1931    1.1       cgd void
   1932   1.52       cgd remrunqueue(p)
   1933    1.1       cgd 	struct proc *p;
   1934    1.1       cgd {
   1935    1.1       cgd 	int bit;
   1936    1.1       cgd 
   1937    1.1       cgd 	bit = p->p_priority >> 2;
   1938  1.207   thorpej 	if ((sched_whichqs & (1 << bit)) == 0)
   1939   1.52       cgd 		panic("remrunqueue");
   1940    1.1       cgd 
   1941    1.1       cgd 	p->p_back->p_forw = p->p_forw;
   1942    1.1       cgd 	p->p_forw->p_back = p->p_back;
   1943    1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   1944    1.1       cgd 
   1945  1.207   thorpej 	if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
   1946  1.207   thorpej 		sched_whichqs &= ~(1 << bit);
   1947   1.15       cgd }
   1948   1.15       cgd 
   1949   1.15       cgd /*
   1950   1.15       cgd  * Wait "n" microseconds.
   1951   1.15       cgd  */
   1952   1.32       cgd void
   1953   1.15       cgd delay(n)
   1954   1.32       cgd 	unsigned long n;
   1955   1.15       cgd {
   1956  1.216   thorpej 	unsigned long pcc0, pcc1, curcycle, cycles, usec;
   1957   1.15       cgd 
   1958  1.216   thorpej 	if (n == 0)
   1959  1.216   thorpej 		return;
   1960  1.216   thorpej 
   1961  1.216   thorpej 	pcc0 = alpha_rpcc() & 0xffffffffUL;
   1962  1.216   thorpej 	cycles = 0;
   1963  1.216   thorpej 	usec = 0;
   1964  1.216   thorpej 
   1965  1.216   thorpej 	while (usec <= n) {
   1966  1.216   thorpej 		/*
   1967  1.216   thorpej 		 * Get the next CPU cycle count- assumes that we cannot
   1968  1.216   thorpej 		 * have had more than one 32 bit overflow.
   1969  1.216   thorpej 		 */
   1970  1.216   thorpej 		pcc1 = alpha_rpcc() & 0xffffffffUL;
   1971  1.216   thorpej 		if (pcc1 < pcc0)
   1972  1.216   thorpej 			curcycle = (pcc1 + 0x100000000UL) - pcc0;
   1973  1.216   thorpej 		else
   1974  1.216   thorpej 			curcycle = pcc1 - pcc0;
   1975  1.186   thorpej 
   1976  1.216   thorpej 		/*
   1977  1.216   thorpej 		 * We now have the number of processor cycles since we
   1978  1.216   thorpej 		 * last checked. Add the current cycle count to the
   1979  1.216   thorpej 		 * running total. If it's over cycles_per_usec, increment
   1980  1.216   thorpej 		 * the usec counter.
   1981  1.216   thorpej 		 */
   1982  1.216   thorpej 		cycles += curcycle;
   1983  1.216   thorpej 		while (cycles > cycles_per_usec) {
   1984  1.216   thorpej 			usec++;
   1985  1.216   thorpej 			cycles -= cycles_per_usec;
   1986  1.216   thorpej 		}
   1987  1.216   thorpej 		pcc0 = pcc1;
   1988  1.216   thorpej 	}
   1989    1.1       cgd }
   1990  1.225   thorpej 
   1991  1.225   thorpej #if defined(COMPAT_OSF1) || 1		/* XXX */
   1992  1.225   thorpej void	cpu_exec_ecoff_setregs __P((struct proc *, struct exec_package *,
   1993  1.225   thorpej 	    u_long));
   1994  1.226    simonb #endif
   1995    1.1       cgd 
   1996  1.224  jdolecek #if 1		/* XXX */
   1997    1.1       cgd void
   1998   1.85   mycroft cpu_exec_ecoff_setregs(p, epp, stack)
   1999    1.1       cgd 	struct proc *p;
   2000   1.19       cgd 	struct exec_package *epp;
   2001    1.5  christos 	u_long stack;
   2002    1.1       cgd {
   2003   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2004    1.1       cgd 
   2005   1.85   mycroft 	setregs(p, epp, stack);
   2006   1.34       cgd 	p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   2007    1.1       cgd }
   2008    1.1       cgd 
   2009    1.1       cgd /*
   2010    1.1       cgd  * cpu_exec_ecoff_hook():
   2011    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   2012    1.1       cgd  *
   2013    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2014    1.1       cgd  *
   2015    1.1       cgd  */
   2016    1.1       cgd int
   2017  1.224  jdolecek cpu_exec_ecoff_probe(p, epp)
   2018    1.1       cgd 	struct proc *p;
   2019    1.1       cgd 	struct exec_package *epp;
   2020    1.1       cgd {
   2021   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2022  1.171       cgd 	int error;
   2023    1.1       cgd 
   2024  1.224  jdolecek 	if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
   2025  1.171       cgd 		error = 0;
   2026  1.224  jdolecek 	else
   2027  1.224  jdolecek 		error = ENOEXEC;
   2028    1.1       cgd 
   2029  1.171       cgd 	return (error);
   2030    1.1       cgd }
   2031    1.1       cgd #endif
   2032  1.110   thorpej 
   2033  1.110   thorpej int
   2034  1.110   thorpej alpha_pa_access(pa)
   2035  1.110   thorpej 	u_long pa;
   2036  1.110   thorpej {
   2037  1.110   thorpej 	int i;
   2038  1.110   thorpej 
   2039  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   2040  1.110   thorpej 		if (pa < mem_clusters[i].start)
   2041  1.110   thorpej 			continue;
   2042  1.110   thorpej 		if ((pa - mem_clusters[i].start) >=
   2043  1.110   thorpej 		    (mem_clusters[i].size & ~PAGE_MASK))
   2044  1.110   thorpej 			continue;
   2045  1.110   thorpej 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2046  1.110   thorpej 	}
   2047  1.197   thorpej 
   2048  1.197   thorpej 	/*
   2049  1.197   thorpej 	 * Address is not a memory address.  If we're secure, disallow
   2050  1.197   thorpej 	 * access.  Otherwise, grant read/write.
   2051  1.197   thorpej 	 */
   2052  1.197   thorpej 	if (securelevel > 0)
   2053  1.197   thorpej 		return (PROT_NONE);
   2054  1.197   thorpej 	else
   2055  1.197   thorpej 		return (PROT_READ | PROT_WRITE);
   2056  1.110   thorpej }
   2057   1.50       cgd 
   2058   1.50       cgd /* XXX XXX BEGIN XXX XXX */
   2059  1.140   thorpej paddr_t alpha_XXX_dmamap_or;					/* XXX */
   2060   1.50       cgd 								/* XXX */
   2061  1.140   thorpej paddr_t								/* XXX */
   2062   1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   2063  1.140   thorpej 	vaddr_t v;						/* XXX */
   2064   1.50       cgd {								/* XXX */
   2065   1.50       cgd 								/* XXX */
   2066   1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2067   1.50       cgd }								/* XXX */
   2068   1.50       cgd /* XXX XXX END XXX XXX */
   2069  1.177      ross 
   2070  1.177      ross char *
   2071  1.177      ross dot_conv(x)
   2072  1.177      ross 	unsigned long x;
   2073  1.177      ross {
   2074  1.177      ross 	int i;
   2075  1.177      ross 	char *xc;
   2076  1.177      ross 	static int next;
   2077  1.177      ross 	static char space[2][20];
   2078  1.177      ross 
   2079  1.177      ross 	xc = space[next ^= 1] + sizeof space[0];
   2080  1.177      ross 	*--xc = '\0';
   2081  1.177      ross 	for (i = 0;; ++i) {
   2082  1.177      ross 		if (i && (i & 3) == 0)
   2083  1.177      ross 			*--xc = '.';
   2084  1.177      ross 		*--xc = "0123456789abcdef"[x & 0xf];
   2085  1.177      ross 		x >>= 4;
   2086  1.177      ross 		if (x == 0)
   2087  1.177      ross 			break;
   2088  1.177      ross 	}
   2089  1.177      ross 	return xc;
   2090  1.138      ross }
   2091