machdep.c revision 1.258 1 1.258 gehenna /* $NetBSD: machdep.c,v 1.258 2002/09/06 13:18:43 gehenna Exp $ */
2 1.110 thorpej
3 1.110 thorpej /*-
4 1.211 thorpej * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 1.110 thorpej * All rights reserved.
6 1.110 thorpej *
7 1.110 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.110 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.110 thorpej * NASA Ames Research Center and by Chris G. Demetriou.
10 1.110 thorpej *
11 1.110 thorpej * Redistribution and use in source and binary forms, with or without
12 1.110 thorpej * modification, are permitted provided that the following conditions
13 1.110 thorpej * are met:
14 1.110 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.110 thorpej * notice, this list of conditions and the following disclaimer.
16 1.110 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.110 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.110 thorpej * documentation and/or other materials provided with the distribution.
19 1.110 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.110 thorpej * must display the following acknowledgement:
21 1.110 thorpej * This product includes software developed by the NetBSD
22 1.110 thorpej * Foundation, Inc. and its contributors.
23 1.110 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.110 thorpej * contributors may be used to endorse or promote products derived
25 1.110 thorpej * from this software without specific prior written permission.
26 1.110 thorpej *
27 1.110 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.110 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.110 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.110 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.110 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.110 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.110 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.110 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.110 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.110 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.110 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.110 thorpej */
39 1.1 cgd
40 1.1 cgd /*
41 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 1.1 cgd * All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Author: Chris G. Demetriou
45 1.1 cgd *
46 1.1 cgd * Permission to use, copy, modify and distribute this software and
47 1.1 cgd * its documentation is hereby granted, provided that both the copyright
48 1.1 cgd * notice and this permission notice appear in all copies of the
49 1.1 cgd * software, derivative works or modified versions, and any portions
50 1.1 cgd * thereof, and that both notices appear in supporting documentation.
51 1.1 cgd *
52 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 1.1 cgd *
56 1.1 cgd * Carnegie Mellon requests users of this software to return to
57 1.1 cgd *
58 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 1.1 cgd * School of Computer Science
60 1.1 cgd * Carnegie Mellon University
61 1.1 cgd * Pittsburgh PA 15213-3890
62 1.1 cgd *
63 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
64 1.1 cgd * rights to redistribute these changes.
65 1.1 cgd */
66 1.74 cgd
67 1.129 jonathan #include "opt_ddb.h"
68 1.244 lukem #include "opt_kgdb.h"
69 1.147 thorpej #include "opt_multiprocessor.h"
70 1.123 thorpej #include "opt_dec_3000_300.h"
71 1.123 thorpej #include "opt_dec_3000_500.h"
72 1.127 thorpej #include "opt_compat_osf1.h"
73 1.141 thorpej #include "opt_compat_netbsd.h"
74 1.250 jdolecek #include "opt_execfmt.h"
75 1.112 thorpej
76 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
77 1.75 cgd
78 1.258 gehenna __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.258 2002/09/06 13:18:43 gehenna Exp $");
79 1.1 cgd
80 1.1 cgd #include <sys/param.h>
81 1.1 cgd #include <sys/systm.h>
82 1.1 cgd #include <sys/signalvar.h>
83 1.1 cgd #include <sys/kernel.h>
84 1.1 cgd #include <sys/map.h>
85 1.1 cgd #include <sys/proc.h>
86 1.207 thorpej #include <sys/sched.h>
87 1.1 cgd #include <sys/buf.h>
88 1.1 cgd #include <sys/reboot.h>
89 1.28 cgd #include <sys/device.h>
90 1.1 cgd #include <sys/file.h>
91 1.1 cgd #include <sys/malloc.h>
92 1.1 cgd #include <sys/mbuf.h>
93 1.110 thorpej #include <sys/mman.h>
94 1.1 cgd #include <sys/msgbuf.h>
95 1.1 cgd #include <sys/ioctl.h>
96 1.1 cgd #include <sys/tty.h>
97 1.1 cgd #include <sys/user.h>
98 1.1 cgd #include <sys/exec.h>
99 1.1 cgd #include <sys/exec_ecoff.h>
100 1.43 cgd #include <sys/core.h>
101 1.43 cgd #include <sys/kcore.h>
102 1.258 gehenna #include <sys/conf.h>
103 1.43 cgd #include <machine/kcore.h>
104 1.241 ross #include <machine/fpu.h>
105 1.1 cgd
106 1.1 cgd #include <sys/mount.h>
107 1.1 cgd #include <sys/syscallargs.h>
108 1.1 cgd
109 1.112 thorpej #include <uvm/uvm_extern.h>
110 1.217 mrg #include <sys/sysctl.h>
111 1.112 thorpej
112 1.1 cgd #include <dev/cons.h>
113 1.1 cgd
114 1.81 thorpej #include <machine/autoconf.h>
115 1.1 cgd #include <machine/cpu.h>
116 1.1 cgd #include <machine/reg.h>
117 1.1 cgd #include <machine/rpb.h>
118 1.1 cgd #include <machine/prom.h>
119 1.258 gehenna #include <machine/cpuconf.h>
120 1.172 ross #include <machine/ieeefp.h>
121 1.148 thorpej
122 1.81 thorpej #ifdef DDB
123 1.81 thorpej #include <machine/db_machdep.h>
124 1.81 thorpej #include <ddb/db_access.h>
125 1.81 thorpej #include <ddb/db_sym.h>
126 1.81 thorpej #include <ddb/db_extern.h>
127 1.81 thorpej #include <ddb/db_interface.h>
128 1.233 thorpej #endif
129 1.233 thorpej
130 1.233 thorpej #ifdef KGDB
131 1.233 thorpej #include <sys/kgdb.h>
132 1.81 thorpej #endif
133 1.81 thorpej
134 1.229 sommerfe #ifdef DEBUG
135 1.229 sommerfe #include <machine/sigdebug.h>
136 1.229 sommerfe #endif
137 1.229 sommerfe
138 1.155 ross #include <machine/alpha.h>
139 1.143 matt
140 1.245 chs struct vm_map *exec_map = NULL;
141 1.245 chs struct vm_map *mb_map = NULL;
142 1.245 chs struct vm_map *phys_map = NULL;
143 1.1 cgd
144 1.86 leo caddr_t msgbufaddr;
145 1.86 leo
146 1.1 cgd int maxmem; /* max memory per process */
147 1.7 cgd
148 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
149 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
150 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
151 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
152 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
153 1.1 cgd
154 1.1 cgd int cputype; /* system type, from the RPB */
155 1.210 thorpej
156 1.210 thorpej int bootdev_debug = 0; /* patchable, or from DDB */
157 1.1 cgd
158 1.1 cgd /*
159 1.1 cgd * XXX We need an address to which we can assign things so that they
160 1.1 cgd * won't be optimized away because we didn't use the value.
161 1.1 cgd */
162 1.1 cgd u_int32_t no_optimize;
163 1.1 cgd
164 1.1 cgd /* the following is used externally (sysctl_hw) */
165 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
166 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
167 1.29 cgd char cpu_model[128];
168 1.1 cgd
169 1.1 cgd struct user *proc0paddr;
170 1.1 cgd
171 1.1 cgd /* Number of machine cycles per microsecond */
172 1.1 cgd u_int64_t cycles_per_usec;
173 1.1 cgd
174 1.7 cgd /* number of cpus in the box. really! */
175 1.7 cgd int ncpus;
176 1.7 cgd
177 1.102 cgd struct bootinfo_kernel bootinfo;
178 1.81 thorpej
179 1.123 thorpej /* For built-in TCDS */
180 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
181 1.123 thorpej u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
182 1.123 thorpej #endif
183 1.123 thorpej
184 1.89 mjacob struct platform platform;
185 1.89 mjacob
186 1.81 thorpej #ifdef DDB
187 1.81 thorpej /* start and end of kernel symbol table */
188 1.81 thorpej void *ksym_start, *ksym_end;
189 1.81 thorpej #endif
190 1.81 thorpej
191 1.30 cgd /* for cpu_sysctl() */
192 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
193 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
194 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
195 1.241 ross int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
196 1.30 cgd
197 1.110 thorpej /*
198 1.110 thorpej * XXX This should be dynamically sized, but we have the chicken-egg problem!
199 1.110 thorpej * XXX it should also be larger than it is, because not all of the mddt
200 1.110 thorpej * XXX clusters end up being used for VM.
201 1.110 thorpej */
202 1.110 thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
203 1.110 thorpej int mem_cluster_cnt;
204 1.110 thorpej
205 1.55 cgd int cpu_dump __P((void));
206 1.55 cgd int cpu_dumpsize __P((void));
207 1.110 thorpej u_long cpu_dump_mempagecnt __P((void));
208 1.55 cgd void dumpsys __P((void));
209 1.55 cgd void identifycpu __P((void));
210 1.55 cgd void printregs __P((struct reg *));
211 1.33 cgd
212 1.55 cgd void
213 1.102 cgd alpha_init(pfn, ptb, bim, bip, biv)
214 1.1 cgd u_long pfn; /* first free PFN number */
215 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
216 1.81 thorpej u_long bim; /* bootinfo magic */
217 1.81 thorpej u_long bip; /* bootinfo pointer */
218 1.102 cgd u_long biv; /* bootinfo version */
219 1.1 cgd {
220 1.95 thorpej extern char kernel_text[], _end[];
221 1.1 cgd struct mddt *mddtp;
222 1.110 thorpej struct mddt_cluster *memc;
223 1.7 cgd int i, mddtweird;
224 1.110 thorpej struct vm_physseg *vps;
225 1.140 thorpej vaddr_t kernstart, kernend;
226 1.140 thorpej paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
227 1.140 thorpej vsize_t size;
228 1.211 thorpej cpuid_t cpu_id;
229 1.211 thorpej struct cpu_info *ci;
230 1.1 cgd char *p;
231 1.95 thorpej caddr_t v;
232 1.209 thorpej const char *bootinfo_msg;
233 1.209 thorpej const struct cpuinit *c;
234 1.106 cgd
235 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
236 1.1 cgd
237 1.1 cgd /*
238 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
239 1.1 cgd * Make sure the instruction and data streams are consistent.
240 1.1 cgd */
241 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
242 1.32 cgd alpha_pal_wrfen(0);
243 1.37 cgd ALPHA_TBIA();
244 1.32 cgd alpha_pal_imb();
245 1.248 thorpej
246 1.248 thorpej /* Initialize the SCB. */
247 1.248 thorpej scb_init();
248 1.1 cgd
249 1.211 thorpej cpu_id = cpu_number();
250 1.211 thorpej
251 1.189 thorpej #if defined(MULTIPROCESSOR)
252 1.189 thorpej /*
253 1.189 thorpej * Set our SysValue to the address of our cpu_info structure.
254 1.189 thorpej * Secondary processors do this in their spinup trampoline.
255 1.189 thorpej */
256 1.237 thorpej alpha_pal_wrval((u_long)&cpu_info_primary);
257 1.237 thorpej cpu_info[cpu_id] = &cpu_info_primary;
258 1.189 thorpej #endif
259 1.189 thorpej
260 1.211 thorpej ci = curcpu();
261 1.211 thorpej ci->ci_cpuid = cpu_id;
262 1.211 thorpej
263 1.1 cgd /*
264 1.106 cgd * Get critical system information (if possible, from the
265 1.106 cgd * information provided by the boot program).
266 1.81 thorpej */
267 1.106 cgd bootinfo_msg = NULL;
268 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
269 1.102 cgd if (biv == 0) { /* backward compat */
270 1.102 cgd biv = *(u_long *)bip;
271 1.102 cgd bip += 8;
272 1.102 cgd }
273 1.102 cgd switch (biv) {
274 1.102 cgd case 1: {
275 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
276 1.102 cgd
277 1.102 cgd bootinfo.ssym = v1p->ssym;
278 1.102 cgd bootinfo.esym = v1p->esym;
279 1.106 cgd /* hwrpb may not be provided by boot block in v1 */
280 1.106 cgd if (v1p->hwrpb != NULL) {
281 1.106 cgd bootinfo.hwrpb_phys =
282 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys;
283 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize;
284 1.106 cgd } else {
285 1.106 cgd bootinfo.hwrpb_phys =
286 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys;
287 1.106 cgd bootinfo.hwrpb_size =
288 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size;
289 1.106 cgd }
290 1.247 thorpej memcpy(bootinfo.boot_flags, v1p->boot_flags,
291 1.102 cgd min(sizeof v1p->boot_flags,
292 1.102 cgd sizeof bootinfo.boot_flags));
293 1.247 thorpej memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
294 1.102 cgd min(sizeof v1p->booted_kernel,
295 1.102 cgd sizeof bootinfo.booted_kernel));
296 1.106 cgd /* booted dev not provided in bootinfo */
297 1.106 cgd init_prom_interface((struct rpb *)
298 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
299 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
300 1.102 cgd sizeof bootinfo.booted_dev);
301 1.81 thorpej break;
302 1.102 cgd }
303 1.81 thorpej default:
304 1.106 cgd bootinfo_msg = "unknown bootinfo version";
305 1.102 cgd goto nobootinfo;
306 1.81 thorpej }
307 1.102 cgd } else {
308 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo";
309 1.102 cgd nobootinfo:
310 1.102 cgd bootinfo.ssym = (u_long)_end;
311 1.102 cgd bootinfo.esym = (u_long)_end;
312 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
313 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
314 1.106 cgd init_prom_interface((struct rpb *)HWRPB_ADDR);
315 1.102 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
316 1.102 cgd sizeof bootinfo.boot_flags);
317 1.102 cgd prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
318 1.102 cgd sizeof bootinfo.booted_kernel);
319 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
320 1.102 cgd sizeof bootinfo.booted_dev);
321 1.102 cgd }
322 1.102 cgd
323 1.81 thorpej /*
324 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for
325 1.106 cgd * lots of things.
326 1.106 cgd */
327 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
328 1.123 thorpej
329 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
330 1.123 thorpej if (hwrpb->rpb_type == ST_DEC_3000_300 ||
331 1.123 thorpej hwrpb->rpb_type == ST_DEC_3000_500) {
332 1.123 thorpej prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
333 1.123 thorpej sizeof(dec_3000_scsiid));
334 1.123 thorpej prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
335 1.123 thorpej sizeof(dec_3000_scsifast));
336 1.123 thorpej }
337 1.123 thorpej #endif
338 1.106 cgd
339 1.106 cgd /*
340 1.106 cgd * Remember how many cycles there are per microsecond,
341 1.106 cgd * so that we can use delay(). Round up, for safety.
342 1.106 cgd */
343 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
344 1.106 cgd
345 1.106 cgd /*
346 1.251 wiz * Initialize the (temporary) bootstrap console interface, so
347 1.106 cgd * we can use printf until the VM system starts being setup.
348 1.106 cgd * The real console is initialized before then.
349 1.106 cgd */
350 1.106 cgd init_bootstrap_console();
351 1.106 cgd
352 1.106 cgd /* OUTPUT NOW ALLOWED */
353 1.106 cgd
354 1.106 cgd /* delayed from above */
355 1.106 cgd if (bootinfo_msg)
356 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
357 1.106 cgd bootinfo_msg, bim, bip, biv);
358 1.106 cgd
359 1.147 thorpej /* Initialize the trap vectors on the primary processor. */
360 1.147 thorpej trap_init();
361 1.1 cgd
362 1.1 cgd /*
363 1.243 thorpej * find out this system's page size
364 1.243 thorpej */
365 1.243 thorpej PAGE_SIZE = hwrpb->rpb_page_size;
366 1.243 thorpej if (PAGE_SIZE != 8192)
367 1.243 thorpej panic("page size %d != 8192?!", PAGE_SIZE);
368 1.243 thorpej
369 1.243 thorpej /*
370 1.243 thorpej * Initialize PAGE_SIZE-dependent variables.
371 1.243 thorpej */
372 1.243 thorpej uvm_setpagesize();
373 1.243 thorpej
374 1.243 thorpej /*
375 1.106 cgd * Find out what hardware we're on, and do basic initialization.
376 1.106 cgd */
377 1.106 cgd cputype = hwrpb->rpb_type;
378 1.167 cgd if (cputype < 0) {
379 1.167 cgd /*
380 1.167 cgd * At least some white-box systems have SRM which
381 1.167 cgd * reports a systype that's the negative of their
382 1.167 cgd * blue-box counterpart.
383 1.167 cgd */
384 1.167 cgd cputype = -cputype;
385 1.167 cgd }
386 1.209 thorpej c = platform_lookup(cputype);
387 1.209 thorpej if (c == NULL) {
388 1.106 cgd platform_not_supported();
389 1.106 cgd /* NOTREACHED */
390 1.106 cgd }
391 1.209 thorpej (*c->init)();
392 1.106 cgd strcpy(cpu_model, platform.model);
393 1.106 cgd
394 1.106 cgd /*
395 1.251 wiz * Initialize the real console, so that the bootstrap console is
396 1.106 cgd * no longer necessary.
397 1.106 cgd */
398 1.169 thorpej (*platform.cons_init)();
399 1.106 cgd
400 1.106 cgd #ifdef DIAGNOSTIC
401 1.106 cgd /* Paranoid sanity checking */
402 1.106 cgd
403 1.199 soren /* We should always be running on the primary. */
404 1.211 thorpej assert(hwrpb->rpb_primary_cpu_id == cpu_id);
405 1.106 cgd
406 1.116 mjacob /*
407 1.116 mjacob * On single-CPU systypes, the primary should always be CPU 0,
408 1.116 mjacob * except on Alpha 8200 systems where the CPU id is related
409 1.116 mjacob * to the VID, which is related to the Turbo Laser node id.
410 1.116 mjacob */
411 1.106 cgd if (cputype != ST_DEC_21000)
412 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0);
413 1.106 cgd #endif
414 1.106 cgd
415 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */
416 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
417 1.106 cgd /*
418 1.106 cgd * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
419 1.106 cgd * XXX pmap_uses_prom_console() evaluates to non-zero.)
420 1.106 cgd */
421 1.106 cgd #endif
422 1.95 thorpej
423 1.95 thorpej /*
424 1.101 cgd * Find the beginning and end of the kernel (and leave a
425 1.101 cgd * bit of space before the beginning for the bootstrap
426 1.101 cgd * stack).
427 1.95 thorpej */
428 1.201 kleink kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
429 1.95 thorpej #ifdef DDB
430 1.102 cgd ksym_start = (void *)bootinfo.ssym;
431 1.102 cgd ksym_end = (void *)bootinfo.esym;
432 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
433 1.102 cgd #else
434 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)_end);
435 1.95 thorpej #endif
436 1.95 thorpej
437 1.110 thorpej kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
438 1.110 thorpej kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
439 1.110 thorpej
440 1.95 thorpej /*
441 1.1 cgd * Find out how much memory is available, by looking at
442 1.7 cgd * the memory cluster descriptors. This also tries to do
443 1.7 cgd * its best to detect things things that have never been seen
444 1.7 cgd * before...
445 1.1 cgd */
446 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
447 1.7 cgd
448 1.110 thorpej /* MDDT SANITY CHECKING */
449 1.7 cgd mddtweird = 0;
450 1.110 thorpej if (mddtp->mddt_cluster_cnt < 2) {
451 1.7 cgd mddtweird = 1;
452 1.160 thorpej printf("WARNING: weird number of mem clusters: %lu\n",
453 1.110 thorpej mddtp->mddt_cluster_cnt);
454 1.7 cgd }
455 1.7 cgd
456 1.110 thorpej #if 0
457 1.110 thorpej printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
458 1.110 thorpej #endif
459 1.110 thorpej
460 1.110 thorpej for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
461 1.110 thorpej memc = &mddtp->mddt_clusters[i];
462 1.110 thorpej #if 0
463 1.110 thorpej printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
464 1.110 thorpej memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
465 1.110 thorpej #endif
466 1.110 thorpej totalphysmem += memc->mddt_pg_cnt;
467 1.110 thorpej if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
468 1.110 thorpej mem_clusters[mem_cluster_cnt].start =
469 1.110 thorpej ptoa(memc->mddt_pfn);
470 1.110 thorpej mem_clusters[mem_cluster_cnt].size =
471 1.110 thorpej ptoa(memc->mddt_pg_cnt);
472 1.110 thorpej if (memc->mddt_usage & MDDT_mbz ||
473 1.110 thorpej memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
474 1.110 thorpej memc->mddt_usage & MDDT_PALCODE)
475 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
476 1.110 thorpej PROT_READ;
477 1.110 thorpej else
478 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
479 1.110 thorpej PROT_READ | PROT_WRITE | PROT_EXEC;
480 1.110 thorpej mem_cluster_cnt++;
481 1.110 thorpej }
482 1.110 thorpej
483 1.110 thorpej if (memc->mddt_usage & MDDT_mbz) {
484 1.7 cgd mddtweird = 1;
485 1.110 thorpej printf("WARNING: mem cluster %d has weird "
486 1.110 thorpej "usage 0x%lx\n", i, memc->mddt_usage);
487 1.110 thorpej unknownmem += memc->mddt_pg_cnt;
488 1.110 thorpej continue;
489 1.7 cgd }
490 1.110 thorpej if (memc->mddt_usage & MDDT_NONVOLATILE) {
491 1.110 thorpej /* XXX should handle these... */
492 1.110 thorpej printf("WARNING: skipping non-volatile mem "
493 1.110 thorpej "cluster %d\n", i);
494 1.110 thorpej unusedmem += memc->mddt_pg_cnt;
495 1.110 thorpej continue;
496 1.110 thorpej }
497 1.110 thorpej if (memc->mddt_usage & MDDT_PALCODE) {
498 1.110 thorpej resvmem += memc->mddt_pg_cnt;
499 1.110 thorpej continue;
500 1.110 thorpej }
501 1.110 thorpej
502 1.110 thorpej /*
503 1.110 thorpej * We have a memory cluster available for system
504 1.110 thorpej * software use. We must determine if this cluster
505 1.110 thorpej * holds the kernel.
506 1.110 thorpej */
507 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
508 1.110 thorpej /*
509 1.110 thorpej * XXX If the kernel uses the PROM console, we only use the
510 1.110 thorpej * XXX memory after the kernel in the first system segment,
511 1.110 thorpej * XXX to avoid clobbering prom mapping, data, etc.
512 1.110 thorpej */
513 1.110 thorpej if (!pmap_uses_prom_console() || physmem == 0) {
514 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
515 1.110 thorpej physmem += memc->mddt_pg_cnt;
516 1.110 thorpej pfn0 = memc->mddt_pfn;
517 1.110 thorpej pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
518 1.110 thorpej if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
519 1.110 thorpej /*
520 1.110 thorpej * Must compute the location of the kernel
521 1.110 thorpej * within the segment.
522 1.110 thorpej */
523 1.110 thorpej #if 0
524 1.110 thorpej printf("Cluster %d contains kernel\n", i);
525 1.110 thorpej #endif
526 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
527 1.110 thorpej if (!pmap_uses_prom_console()) {
528 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
529 1.110 thorpej if (pfn0 < kernstartpfn) {
530 1.110 thorpej /*
531 1.110 thorpej * There is a chunk before the kernel.
532 1.110 thorpej */
533 1.110 thorpej #if 0
534 1.110 thorpej printf("Loading chunk before kernel: "
535 1.110 thorpej "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
536 1.110 thorpej #endif
537 1.112 thorpej uvm_page_physload(pfn0, kernstartpfn,
538 1.135 thorpej pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
539 1.110 thorpej }
540 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
541 1.110 thorpej }
542 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
543 1.110 thorpej if (kernendpfn < pfn1) {
544 1.110 thorpej /*
545 1.110 thorpej * There is a chunk after the kernel.
546 1.110 thorpej */
547 1.110 thorpej #if 0
548 1.110 thorpej printf("Loading chunk after kernel: "
549 1.110 thorpej "0x%lx / 0x%lx\n", kernendpfn, pfn1);
550 1.110 thorpej #endif
551 1.112 thorpej uvm_page_physload(kernendpfn, pfn1,
552 1.135 thorpej kernendpfn, pfn1, VM_FREELIST_DEFAULT);
553 1.110 thorpej }
554 1.110 thorpej } else {
555 1.110 thorpej /*
556 1.110 thorpej * Just load this cluster as one chunk.
557 1.110 thorpej */
558 1.110 thorpej #if 0
559 1.110 thorpej printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
560 1.110 thorpej pfn0, pfn1);
561 1.110 thorpej #endif
562 1.135 thorpej uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
563 1.135 thorpej VM_FREELIST_DEFAULT);
564 1.7 cgd }
565 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
566 1.110 thorpej }
567 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
568 1.7 cgd }
569 1.7 cgd
570 1.110 thorpej /*
571 1.110 thorpej * Dump out the MDDT if it looks odd...
572 1.110 thorpej */
573 1.7 cgd if (mddtweird) {
574 1.46 christos printf("\n");
575 1.46 christos printf("complete memory cluster information:\n");
576 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
577 1.46 christos printf("mddt %d:\n", i);
578 1.46 christos printf("\tpfn %lx\n",
579 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
580 1.46 christos printf("\tcnt %lx\n",
581 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
582 1.46 christos printf("\ttest %lx\n",
583 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
584 1.46 christos printf("\tbva %lx\n",
585 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
586 1.46 christos printf("\tbpa %lx\n",
587 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
588 1.46 christos printf("\tbcksum %lx\n",
589 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
590 1.46 christos printf("\tusage %lx\n",
591 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
592 1.2 cgd }
593 1.46 christos printf("\n");
594 1.2 cgd }
595 1.2 cgd
596 1.7 cgd if (totalphysmem == 0)
597 1.1 cgd panic("can't happen: system seems to have no memory!");
598 1.1 cgd maxmem = physmem;
599 1.7 cgd #if 0
600 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
601 1.46 christos printf("physmem = %d\n", physmem);
602 1.46 christos printf("resvmem = %d\n", resvmem);
603 1.46 christos printf("unusedmem = %d\n", unusedmem);
604 1.46 christos printf("unknownmem = %d\n", unknownmem);
605 1.7 cgd #endif
606 1.7 cgd
607 1.1 cgd /*
608 1.1 cgd * Initialize error message buffer (at end of core).
609 1.1 cgd */
610 1.110 thorpej {
611 1.204 enami vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
612 1.203 enami vsize_t reqsz = sz;
613 1.110 thorpej
614 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
615 1.110 thorpej
616 1.110 thorpej /* shrink so that it'll fit in the last segment */
617 1.110 thorpej if ((vps->avail_end - vps->avail_start) < atop(sz))
618 1.110 thorpej sz = ptoa(vps->avail_end - vps->avail_start);
619 1.110 thorpej
620 1.110 thorpej vps->end -= atop(sz);
621 1.110 thorpej vps->avail_end -= atop(sz);
622 1.110 thorpej msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
623 1.110 thorpej initmsgbuf(msgbufaddr, sz);
624 1.110 thorpej
625 1.110 thorpej /* Remove the last segment if it now has no pages. */
626 1.110 thorpej if (vps->start == vps->end)
627 1.110 thorpej vm_nphysseg--;
628 1.110 thorpej
629 1.110 thorpej /* warn if the message buffer had to be shrunk */
630 1.203 enami if (sz != reqsz)
631 1.203 enami printf("WARNING: %ld bytes not available for msgbuf "
632 1.203 enami "in last cluster (%ld used)\n", reqsz, sz);
633 1.110 thorpej
634 1.110 thorpej }
635 1.239 thorpej
636 1.239 thorpej /*
637 1.239 thorpej * NOTE: It is safe to use uvm_pageboot_alloc() before
638 1.239 thorpej * pmap_bootstrap() because our pmap_virtual_space()
639 1.239 thorpej * returns compile-time constants.
640 1.239 thorpej */
641 1.1 cgd
642 1.1 cgd /*
643 1.95 thorpej * Init mapping for u page(s) for proc 0
644 1.1 cgd */
645 1.110 thorpej proc0.p_addr = proc0paddr =
646 1.238 thorpej (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
647 1.1 cgd
648 1.1 cgd /*
649 1.95 thorpej * Allocate space for system data structures. These data structures
650 1.95 thorpej * are allocated here instead of cpu_startup() because physical
651 1.95 thorpej * memory is directly addressable. We don't have to map these into
652 1.95 thorpej * virtual address space.
653 1.95 thorpej */
654 1.198 thorpej size = (vsize_t)allocsys(NULL, NULL);
655 1.238 thorpej v = (caddr_t)uvm_pageboot_alloc(size);
656 1.198 thorpej if ((allocsys(v, NULL) - v) != size)
657 1.95 thorpej panic("alpha_init: table size inconsistency");
658 1.1 cgd
659 1.1 cgd /*
660 1.1 cgd * Initialize the virtual memory system, and set the
661 1.1 cgd * page table base register in proc 0's PCB.
662 1.1 cgd */
663 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
664 1.144 thorpej hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
665 1.1 cgd
666 1.1 cgd /*
667 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
668 1.3 cgd * address.
669 1.3 cgd */
670 1.3 cgd proc0.p_md.md_pcbpaddr =
671 1.140 thorpej (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
672 1.3 cgd
673 1.3 cgd /*
674 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
675 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
676 1.3 cgd */
677 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
678 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
679 1.81 thorpej proc0.p_md.md_tf =
680 1.81 thorpej (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
681 1.235 thorpej simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
682 1.189 thorpej
683 1.189 thorpej /*
684 1.208 thorpej * Initialize the primary CPU's idle PCB to proc0's. In a
685 1.208 thorpej * MULTIPROCESSOR configuration, each CPU will later get
686 1.208 thorpej * its own idle PCB when autoconfiguration runs.
687 1.189 thorpej */
688 1.211 thorpej ci->ci_idle_pcb = &proc0paddr->u_pcb;
689 1.211 thorpej ci->ci_idle_pcb_paddr = (u_long)proc0.p_md.md_pcbpaddr;
690 1.208 thorpej
691 1.208 thorpej /* Indicate that proc0 has a CPU. */
692 1.211 thorpej proc0.p_cpu = ci;
693 1.1 cgd
694 1.1 cgd /*
695 1.25 cgd * Look at arguments passed to us and compute boothowto.
696 1.8 cgd */
697 1.1 cgd
698 1.8 cgd boothowto = RB_SINGLE;
699 1.1 cgd #ifdef KADB
700 1.1 cgd boothowto |= RB_KDB;
701 1.1 cgd #endif
702 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
703 1.26 cgd /*
704 1.26 cgd * Note that we'd really like to differentiate case here,
705 1.26 cgd * but the Alpha AXP Architecture Reference Manual
706 1.26 cgd * says that we shouldn't.
707 1.26 cgd */
708 1.8 cgd switch (*p) {
709 1.26 cgd case 'a': /* autoboot */
710 1.26 cgd case 'A':
711 1.26 cgd boothowto &= ~RB_SINGLE;
712 1.21 cgd break;
713 1.21 cgd
714 1.43 cgd #ifdef DEBUG
715 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
716 1.43 cgd case 'C':
717 1.43 cgd boothowto |= RB_DUMP;
718 1.43 cgd break;
719 1.43 cgd #endif
720 1.43 cgd
721 1.81 thorpej #if defined(KGDB) || defined(DDB)
722 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
723 1.81 thorpej case 'D':
724 1.81 thorpej boothowto |= RB_KDB;
725 1.81 thorpej break;
726 1.81 thorpej #endif
727 1.81 thorpej
728 1.36 cgd case 'h': /* always halt, never reboot */
729 1.36 cgd case 'H':
730 1.36 cgd boothowto |= RB_HALT;
731 1.8 cgd break;
732 1.8 cgd
733 1.21 cgd #if 0
734 1.8 cgd case 'm': /* mini root present in memory */
735 1.26 cgd case 'M':
736 1.8 cgd boothowto |= RB_MINIROOT;
737 1.8 cgd break;
738 1.21 cgd #endif
739 1.36 cgd
740 1.36 cgd case 'n': /* askname */
741 1.36 cgd case 'N':
742 1.36 cgd boothowto |= RB_ASKNAME;
743 1.65 cgd break;
744 1.65 cgd
745 1.65 cgd case 's': /* single-user (default, supported for sanity) */
746 1.65 cgd case 'S':
747 1.65 cgd boothowto |= RB_SINGLE;
748 1.221 jdolecek break;
749 1.221 jdolecek
750 1.221 jdolecek case 'q': /* quiet boot */
751 1.221 jdolecek case 'Q':
752 1.221 jdolecek boothowto |= AB_QUIET;
753 1.221 jdolecek break;
754 1.221 jdolecek
755 1.221 jdolecek case 'v': /* verbose boot */
756 1.221 jdolecek case 'V':
757 1.221 jdolecek boothowto |= AB_VERBOSE;
758 1.119 thorpej break;
759 1.119 thorpej
760 1.119 thorpej case '-':
761 1.119 thorpej /*
762 1.119 thorpej * Just ignore this. It's not required, but it's
763 1.119 thorpej * common for it to be passed regardless.
764 1.119 thorpej */
765 1.65 cgd break;
766 1.65 cgd
767 1.65 cgd default:
768 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
769 1.36 cgd break;
770 1.1 cgd }
771 1.1 cgd }
772 1.1 cgd
773 1.136 mjacob
774 1.136 mjacob /*
775 1.136 mjacob * Figure out the number of cpus in the box, from RPB fields.
776 1.136 mjacob * Really. We mean it.
777 1.136 mjacob */
778 1.136 mjacob for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
779 1.136 mjacob struct pcs *pcsp;
780 1.136 mjacob
781 1.144 thorpej pcsp = LOCATE_PCS(hwrpb, i);
782 1.136 mjacob if ((pcsp->pcs_flags & PCS_PP) != 0)
783 1.136 mjacob ncpus++;
784 1.136 mjacob }
785 1.136 mjacob
786 1.7 cgd /*
787 1.106 cgd * Initialize debuggers, and break into them if appropriate.
788 1.106 cgd */
789 1.106 cgd #ifdef DDB
790 1.159 mjacob ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
791 1.159 mjacob ksym_start, ksym_end);
792 1.234 thorpej #endif
793 1.234 thorpej
794 1.234 thorpej if (boothowto & RB_KDB) {
795 1.234 thorpej #if defined(KGDB)
796 1.234 thorpej kgdb_debug_init = 1;
797 1.234 thorpej kgdb_connect(1);
798 1.234 thorpej #elif defined(DDB)
799 1.106 cgd Debugger();
800 1.106 cgd #endif
801 1.234 thorpej }
802 1.234 thorpej
803 1.106 cgd /*
804 1.106 cgd * Figure out our clock frequency, from RPB fields.
805 1.106 cgd */
806 1.106 cgd hz = hwrpb->rpb_intr_freq >> 12;
807 1.106 cgd if (!(60 <= hz && hz <= 10240)) {
808 1.106 cgd hz = 1024;
809 1.106 cgd #ifdef DIAGNOSTIC
810 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
811 1.106 cgd hwrpb->rpb_intr_freq, hz);
812 1.106 cgd #endif
813 1.106 cgd }
814 1.95 thorpej }
815 1.95 thorpej
816 1.18 cgd void
817 1.1 cgd consinit()
818 1.1 cgd {
819 1.81 thorpej
820 1.106 cgd /*
821 1.106 cgd * Everything related to console initialization is done
822 1.106 cgd * in alpha_init().
823 1.106 cgd */
824 1.106 cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
825 1.106 cgd printf("consinit: %susing prom console\n",
826 1.106 cgd pmap_uses_prom_console() ? "" : "not ");
827 1.81 thorpej #endif
828 1.1 cgd }
829 1.118 thorpej
830 1.118 thorpej #include "pckbc.h"
831 1.118 thorpej #include "pckbd.h"
832 1.118 thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
833 1.118 thorpej
834 1.187 thorpej #include <dev/ic/pckbcvar.h>
835 1.118 thorpej
836 1.118 thorpej /*
837 1.118 thorpej * This is called by the pbkbc driver if no pckbd is configured.
838 1.118 thorpej * On the i386, it is used to glue in the old, deprecated console
839 1.118 thorpej * code. On the Alpha, it does nothing.
840 1.118 thorpej */
841 1.118 thorpej int
842 1.118 thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
843 1.118 thorpej pckbc_tag_t kbctag;
844 1.118 thorpej pckbc_slot_t kbcslot;
845 1.118 thorpej {
846 1.118 thorpej
847 1.118 thorpej return (ENXIO);
848 1.118 thorpej }
849 1.118 thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
850 1.1 cgd
851 1.18 cgd void
852 1.1 cgd cpu_startup()
853 1.1 cgd {
854 1.257 thorpej u_int i, base, residual;
855 1.140 thorpej vaddr_t minaddr, maxaddr;
856 1.140 thorpej vsize_t size;
857 1.173 lukem char pbuf[9];
858 1.40 cgd #if defined(DEBUG)
859 1.1 cgd extern int pmapdebug;
860 1.1 cgd int opmapdebug = pmapdebug;
861 1.1 cgd
862 1.1 cgd pmapdebug = 0;
863 1.1 cgd #endif
864 1.1 cgd
865 1.1 cgd /*
866 1.1 cgd * Good {morning,afternoon,evening,night}.
867 1.1 cgd */
868 1.46 christos printf(version);
869 1.1 cgd identifycpu();
870 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
871 1.173 lukem printf("total memory = %s\n", pbuf);
872 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
873 1.173 lukem printf("(%s reserved for PROM, ", pbuf);
874 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
875 1.173 lukem printf("%s used by NetBSD)\n", pbuf);
876 1.173 lukem if (unusedmem) {
877 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
878 1.173 lukem printf("WARNING: unused memory = %s\n", pbuf);
879 1.173 lukem }
880 1.173 lukem if (unknownmem) {
881 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
882 1.173 lukem printf("WARNING: %s of memory with unknown purpose\n", pbuf);
883 1.173 lukem }
884 1.1 cgd
885 1.1 cgd /*
886 1.1 cgd * Allocate virtual address space for file I/O buffers.
887 1.1 cgd * Note they are different than the array of headers, 'buf',
888 1.1 cgd * and usually occupy more virtual memory than physical.
889 1.1 cgd */
890 1.1 cgd size = MAXBSIZE * nbuf;
891 1.140 thorpej if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
892 1.220 thorpej NULL, UVM_UNKNOWN_OFFSET, 0,
893 1.112 thorpej UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
894 1.231 chs UVM_ADV_NORMAL, 0)) != 0)
895 1.112 thorpej panic("startup: cannot allocate VM for buffers");
896 1.1 cgd base = bufpages / nbuf;
897 1.1 cgd residual = bufpages % nbuf;
898 1.1 cgd for (i = 0; i < nbuf; i++) {
899 1.140 thorpej vsize_t curbufsize;
900 1.140 thorpej vaddr_t curbuf;
901 1.112 thorpej struct vm_page *pg;
902 1.112 thorpej
903 1.112 thorpej /*
904 1.112 thorpej * Each buffer has MAXBSIZE bytes of VM space allocated. Of
905 1.112 thorpej * that MAXBSIZE space, we allocate and map (base+1) pages
906 1.112 thorpej * for the first "residual" buffers, and then we allocate
907 1.112 thorpej * "base" pages for the rest.
908 1.112 thorpej */
909 1.140 thorpej curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
910 1.188 ragge curbufsize = NBPG * ((i < residual) ? (base+1) : base);
911 1.112 thorpej
912 1.112 thorpej while (curbufsize) {
913 1.168 chs pg = uvm_pagealloc(NULL, 0, NULL, 0);
914 1.112 thorpej if (pg == NULL)
915 1.112 thorpej panic("cpu_startup: not enough memory for "
916 1.112 thorpej "buffer cache");
917 1.182 chs pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
918 1.182 chs VM_PROT_READ|VM_PROT_WRITE);
919 1.112 thorpej curbuf += PAGE_SIZE;
920 1.112 thorpej curbufsize -= PAGE_SIZE;
921 1.112 thorpej }
922 1.1 cgd }
923 1.249 chris pmap_update(pmap_kernel());
924 1.240 thorpej
925 1.1 cgd /*
926 1.1 cgd * Allocate a submap for exec arguments. This map effectively
927 1.1 cgd * limits the number of processes exec'ing at any time.
928 1.1 cgd */
929 1.112 thorpej exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
930 1.175 thorpej 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
931 1.1 cgd
932 1.1 cgd /*
933 1.1 cgd * Allocate a submap for physio
934 1.1 cgd */
935 1.112 thorpej phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
936 1.175 thorpej VM_PHYS_SIZE, 0, FALSE, NULL);
937 1.1 cgd
938 1.1 cgd /*
939 1.164 thorpej * No need to allocate an mbuf cluster submap. Mbuf clusters
940 1.164 thorpej * are allocated via the pool allocator, and we use K0SEG to
941 1.164 thorpej * map those pages.
942 1.1 cgd */
943 1.1 cgd
944 1.40 cgd #if defined(DEBUG)
945 1.1 cgd pmapdebug = opmapdebug;
946 1.1 cgd #endif
947 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
948 1.173 lukem printf("avail memory = %s\n", pbuf);
949 1.139 thorpej #if 0
950 1.139 thorpej {
951 1.139 thorpej extern u_long pmap_pages_stolen;
952 1.173 lukem
953 1.173 lukem format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
954 1.173 lukem printf("stolen memory for VM structures = %s\n", pbuf);
955 1.139 thorpej }
956 1.112 thorpej #endif
957 1.188 ragge format_bytes(pbuf, sizeof(pbuf), bufpages * NBPG);
958 1.257 thorpej printf("using %u buffers containing %s of memory\n", nbuf, pbuf);
959 1.1 cgd
960 1.1 cgd /*
961 1.1 cgd * Set up buffers, so they can be used to read disk labels.
962 1.1 cgd */
963 1.1 cgd bufinit();
964 1.151 thorpej
965 1.151 thorpej /*
966 1.151 thorpej * Set up the HWPCB so that it's safe to configure secondary
967 1.151 thorpej * CPUs.
968 1.151 thorpej */
969 1.151 thorpej hwrpb_primary_init();
970 1.104 thorpej }
971 1.104 thorpej
972 1.104 thorpej /*
973 1.104 thorpej * Retrieve the platform name from the DSR.
974 1.104 thorpej */
975 1.104 thorpej const char *
976 1.104 thorpej alpha_dsr_sysname()
977 1.104 thorpej {
978 1.104 thorpej struct dsrdb *dsr;
979 1.104 thorpej const char *sysname;
980 1.104 thorpej
981 1.104 thorpej /*
982 1.104 thorpej * DSR does not exist on early HWRPB versions.
983 1.104 thorpej */
984 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
985 1.104 thorpej return (NULL);
986 1.104 thorpej
987 1.104 thorpej dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
988 1.104 thorpej sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
989 1.104 thorpej sizeof(u_int64_t)));
990 1.104 thorpej return (sysname);
991 1.104 thorpej }
992 1.104 thorpej
993 1.104 thorpej /*
994 1.104 thorpej * Lookup the system specified system variation in the provided table,
995 1.104 thorpej * returning the model string on match.
996 1.104 thorpej */
997 1.104 thorpej const char *
998 1.104 thorpej alpha_variation_name(variation, avtp)
999 1.104 thorpej u_int64_t variation;
1000 1.104 thorpej const struct alpha_variation_table *avtp;
1001 1.104 thorpej {
1002 1.104 thorpej int i;
1003 1.104 thorpej
1004 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++)
1005 1.104 thorpej if (avtp[i].avt_variation == variation)
1006 1.104 thorpej return (avtp[i].avt_model);
1007 1.104 thorpej return (NULL);
1008 1.104 thorpej }
1009 1.104 thorpej
1010 1.104 thorpej /*
1011 1.104 thorpej * Generate a default platform name based for unknown system variations.
1012 1.104 thorpej */
1013 1.104 thorpej const char *
1014 1.104 thorpej alpha_unknown_sysname()
1015 1.104 thorpej {
1016 1.105 thorpej static char s[128]; /* safe size */
1017 1.104 thorpej
1018 1.105 thorpej sprintf(s, "%s family, unknown model variation 0x%lx",
1019 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1020 1.104 thorpej return ((const char *)s);
1021 1.1 cgd }
1022 1.1 cgd
1023 1.33 cgd void
1024 1.1 cgd identifycpu()
1025 1.1 cgd {
1026 1.177 ross char *s;
1027 1.218 thorpej int i;
1028 1.1 cgd
1029 1.7 cgd /*
1030 1.7 cgd * print out CPU identification information.
1031 1.7 cgd */
1032 1.177 ross printf("%s", cpu_model);
1033 1.177 ross for(s = cpu_model; *s; ++s)
1034 1.177 ross if(strncasecmp(s, "MHz", 3) == 0)
1035 1.177 ross goto skipMHz;
1036 1.177 ross printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1037 1.177 ross skipMHz:
1038 1.218 thorpej printf(", s/n ");
1039 1.218 thorpej for (i = 0; i < 10; i++)
1040 1.218 thorpej printf("%c", hwrpb->rpb_ssn[i]);
1041 1.177 ross printf("\n");
1042 1.46 christos printf("%ld byte page size, %d processor%s.\n",
1043 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1044 1.7 cgd #if 0
1045 1.7 cgd /* this isn't defined for any systems that we run on? */
1046 1.46 christos printf("serial number 0x%lx 0x%lx\n",
1047 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
1048 1.7 cgd
1049 1.7 cgd /* and these aren't particularly useful! */
1050 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
1051 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
1052 1.7 cgd #endif
1053 1.1 cgd }
1054 1.1 cgd
1055 1.1 cgd int waittime = -1;
1056 1.7 cgd struct pcb dumppcb;
1057 1.1 cgd
1058 1.18 cgd void
1059 1.68 gwr cpu_reboot(howto, bootstr)
1060 1.1 cgd int howto;
1061 1.39 mrg char *bootstr;
1062 1.1 cgd {
1063 1.148 thorpej #if defined(MULTIPROCESSOR)
1064 1.225 thorpej u_long cpu_id = cpu_number();
1065 1.225 thorpej u_long wait_mask = (1UL << cpu_id) |
1066 1.225 thorpej (1UL << hwrpb->rpb_primary_cpu_id);
1067 1.225 thorpej int i;
1068 1.148 thorpej #endif
1069 1.148 thorpej
1070 1.225 thorpej /* If "always halt" was specified as a boot flag, obey. */
1071 1.225 thorpej if ((boothowto & RB_HALT) != 0)
1072 1.225 thorpej howto |= RB_HALT;
1073 1.225 thorpej
1074 1.225 thorpej boothowto = howto;
1075 1.1 cgd
1076 1.1 cgd /* If system is cold, just halt. */
1077 1.1 cgd if (cold) {
1078 1.225 thorpej boothowto |= RB_HALT;
1079 1.1 cgd goto haltsys;
1080 1.1 cgd }
1081 1.1 cgd
1082 1.225 thorpej if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1083 1.1 cgd waittime = 0;
1084 1.7 cgd vfs_shutdown();
1085 1.1 cgd /*
1086 1.1 cgd * If we've been adjusting the clock, the todr
1087 1.1 cgd * will be out of synch; adjust it now.
1088 1.1 cgd */
1089 1.1 cgd resettodr();
1090 1.1 cgd }
1091 1.1 cgd
1092 1.1 cgd /* Disable interrupts. */
1093 1.1 cgd splhigh();
1094 1.1 cgd
1095 1.225 thorpej #if defined(MULTIPROCESSOR)
1096 1.225 thorpej /*
1097 1.225 thorpej * Halt all other CPUs. If we're not the primary, the
1098 1.225 thorpej * primary will spin, waiting for us to halt.
1099 1.225 thorpej */
1100 1.225 thorpej alpha_broadcast_ipi(ALPHA_IPI_HALT);
1101 1.225 thorpej
1102 1.225 thorpej for (i = 0; i < 10000; i++) {
1103 1.225 thorpej alpha_mb();
1104 1.225 thorpej if (cpus_running == wait_mask)
1105 1.225 thorpej break;
1106 1.225 thorpej delay(1000);
1107 1.225 thorpej }
1108 1.225 thorpej alpha_mb();
1109 1.225 thorpej if (cpus_running != wait_mask)
1110 1.225 thorpej printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1111 1.225 thorpej cpus_running);
1112 1.225 thorpej #endif /* MULTIPROCESSOR */
1113 1.225 thorpej
1114 1.7 cgd /* If rebooting and a dump is requested do it. */
1115 1.42 cgd #if 0
1116 1.225 thorpej if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1117 1.42 cgd #else
1118 1.225 thorpej if (boothowto & RB_DUMP)
1119 1.42 cgd #endif
1120 1.1 cgd dumpsys();
1121 1.6 cgd
1122 1.12 cgd haltsys:
1123 1.12 cgd
1124 1.6 cgd /* run any shutdown hooks */
1125 1.6 cgd doshutdownhooks();
1126 1.148 thorpej
1127 1.7 cgd #ifdef BOOTKEY
1128 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1129 1.117 drochner cnpollc(1); /* for proper keyboard command handling */
1130 1.7 cgd cngetc();
1131 1.117 drochner cnpollc(0);
1132 1.46 christos printf("\n");
1133 1.7 cgd #endif
1134 1.7 cgd
1135 1.124 thorpej /* Finally, powerdown/halt/reboot the system. */
1136 1.225 thorpej if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1137 1.124 thorpej platform.powerdown != NULL) {
1138 1.124 thorpej (*platform.powerdown)();
1139 1.124 thorpej printf("WARNING: powerdown failed!\n");
1140 1.124 thorpej }
1141 1.225 thorpej printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1142 1.225 thorpej #if defined(MULTIPROCESSOR)
1143 1.225 thorpej if (cpu_id != hwrpb->rpb_primary_cpu_id)
1144 1.225 thorpej cpu_halt();
1145 1.225 thorpej else
1146 1.225 thorpej #endif
1147 1.225 thorpej prom_halt(boothowto & RB_HALT);
1148 1.1 cgd /*NOTREACHED*/
1149 1.1 cgd }
1150 1.1 cgd
1151 1.7 cgd /*
1152 1.7 cgd * These variables are needed by /sbin/savecore
1153 1.7 cgd */
1154 1.253 tsutsui u_int32_t dumpmag = 0x8fca0101; /* magic number */
1155 1.7 cgd int dumpsize = 0; /* pages */
1156 1.7 cgd long dumplo = 0; /* blocks */
1157 1.7 cgd
1158 1.7 cgd /*
1159 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1160 1.43 cgd */
1161 1.43 cgd int
1162 1.43 cgd cpu_dumpsize()
1163 1.43 cgd {
1164 1.43 cgd int size;
1165 1.43 cgd
1166 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1167 1.110 thorpej ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1168 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
1169 1.43 cgd return -1;
1170 1.43 cgd
1171 1.43 cgd return (1);
1172 1.43 cgd }
1173 1.43 cgd
1174 1.43 cgd /*
1175 1.110 thorpej * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1176 1.110 thorpej */
1177 1.110 thorpej u_long
1178 1.110 thorpej cpu_dump_mempagecnt()
1179 1.110 thorpej {
1180 1.110 thorpej u_long i, n;
1181 1.110 thorpej
1182 1.110 thorpej n = 0;
1183 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++)
1184 1.110 thorpej n += atop(mem_clusters[i].size);
1185 1.110 thorpej return (n);
1186 1.110 thorpej }
1187 1.110 thorpej
1188 1.110 thorpej /*
1189 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
1190 1.43 cgd */
1191 1.43 cgd int
1192 1.43 cgd cpu_dump()
1193 1.43 cgd {
1194 1.43 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1195 1.107 cgd char buf[dbtob(1)];
1196 1.107 cgd kcore_seg_t *segp;
1197 1.107 cgd cpu_kcore_hdr_t *cpuhdrp;
1198 1.107 cgd phys_ram_seg_t *memsegp;
1199 1.258 gehenna const struct bdevsw *bdev;
1200 1.110 thorpej int i;
1201 1.43 cgd
1202 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1203 1.258 gehenna if (bdev == NULL)
1204 1.258 gehenna return (ENXIO);
1205 1.258 gehenna dump = bdev->d_dump;
1206 1.43 cgd
1207 1.246 thorpej memset(buf, 0, sizeof buf);
1208 1.43 cgd segp = (kcore_seg_t *)buf;
1209 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1210 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1211 1.107 cgd ALIGN(sizeof(*cpuhdrp))];
1212 1.43 cgd
1213 1.43 cgd /*
1214 1.43 cgd * Generate a segment header.
1215 1.43 cgd */
1216 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1217 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1218 1.43 cgd
1219 1.43 cgd /*
1220 1.107 cgd * Add the machine-dependent header info.
1221 1.43 cgd */
1222 1.140 thorpej cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1223 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
1224 1.110 thorpej cpuhdrp->nmemsegs = mem_cluster_cnt;
1225 1.107 cgd
1226 1.107 cgd /*
1227 1.107 cgd * Fill in the memory segment descriptors.
1228 1.107 cgd */
1229 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1230 1.110 thorpej memsegp[i].start = mem_clusters[i].start;
1231 1.110 thorpej memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1232 1.110 thorpej }
1233 1.43 cgd
1234 1.43 cgd return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1235 1.43 cgd }
1236 1.43 cgd
1237 1.43 cgd /*
1238 1.68 gwr * This is called by main to set dumplo and dumpsize.
1239 1.188 ragge * Dumps always skip the first NBPG of disk space
1240 1.7 cgd * in case there might be a disk label stored there.
1241 1.7 cgd * If there is extra space, put dump at the end to
1242 1.7 cgd * reduce the chance that swapping trashes it.
1243 1.7 cgd */
1244 1.7 cgd void
1245 1.68 gwr cpu_dumpconf()
1246 1.7 cgd {
1247 1.258 gehenna const struct bdevsw *bdev;
1248 1.43 cgd int nblks, dumpblks; /* size of dump area */
1249 1.7 cgd
1250 1.7 cgd if (dumpdev == NODEV)
1251 1.43 cgd goto bad;
1252 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1253 1.258 gehenna if (bdev == NULL)
1254 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
1255 1.258 gehenna if (bdev->d_psize == NULL)
1256 1.43 cgd goto bad;
1257 1.258 gehenna nblks = (*bdev->d_psize)(dumpdev);
1258 1.7 cgd if (nblks <= ctod(1))
1259 1.43 cgd goto bad;
1260 1.43 cgd
1261 1.43 cgd dumpblks = cpu_dumpsize();
1262 1.43 cgd if (dumpblks < 0)
1263 1.43 cgd goto bad;
1264 1.110 thorpej dumpblks += ctod(cpu_dump_mempagecnt());
1265 1.43 cgd
1266 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
1267 1.43 cgd if (dumpblks > (nblks - ctod(1)))
1268 1.43 cgd goto bad;
1269 1.43 cgd
1270 1.43 cgd /* Put dump at end of partition */
1271 1.43 cgd dumplo = nblks - dumpblks;
1272 1.7 cgd
1273 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1274 1.110 thorpej dumpsize = cpu_dump_mempagecnt();
1275 1.43 cgd return;
1276 1.7 cgd
1277 1.43 cgd bad:
1278 1.43 cgd dumpsize = 0;
1279 1.43 cgd return;
1280 1.7 cgd }
1281 1.7 cgd
1282 1.7 cgd /*
1283 1.42 cgd * Dump the kernel's image to the swap partition.
1284 1.7 cgd */
1285 1.42 cgd #define BYTES_PER_DUMP NBPG
1286 1.42 cgd
1287 1.7 cgd void
1288 1.7 cgd dumpsys()
1289 1.7 cgd {
1290 1.258 gehenna const struct bdevsw *bdev;
1291 1.110 thorpej u_long totalbytesleft, bytes, i, n, memcl;
1292 1.110 thorpej u_long maddr;
1293 1.110 thorpej int psize;
1294 1.42 cgd daddr_t blkno;
1295 1.42 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1296 1.42 cgd int error;
1297 1.42 cgd
1298 1.42 cgd /* Save registers. */
1299 1.42 cgd savectx(&dumppcb);
1300 1.7 cgd
1301 1.7 cgd if (dumpdev == NODEV)
1302 1.7 cgd return;
1303 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1304 1.258 gehenna if (bdev == NULL || bdev->d_psize == NULL)
1305 1.258 gehenna return;
1306 1.42 cgd
1307 1.42 cgd /*
1308 1.42 cgd * For dumps during autoconfiguration,
1309 1.42 cgd * if dump device has already configured...
1310 1.42 cgd */
1311 1.42 cgd if (dumpsize == 0)
1312 1.68 gwr cpu_dumpconf();
1313 1.47 cgd if (dumplo <= 0) {
1314 1.97 mycroft printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1315 1.97 mycroft minor(dumpdev));
1316 1.42 cgd return;
1317 1.43 cgd }
1318 1.97 mycroft printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1319 1.97 mycroft minor(dumpdev), dumplo);
1320 1.7 cgd
1321 1.258 gehenna psize = (*bdev->d_psize)(dumpdev);
1322 1.46 christos printf("dump ");
1323 1.42 cgd if (psize == -1) {
1324 1.46 christos printf("area unavailable\n");
1325 1.42 cgd return;
1326 1.42 cgd }
1327 1.42 cgd
1328 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1329 1.42 cgd
1330 1.43 cgd if ((error = cpu_dump()) != 0)
1331 1.43 cgd goto err;
1332 1.43 cgd
1333 1.110 thorpej totalbytesleft = ptoa(cpu_dump_mempagecnt());
1334 1.43 cgd blkno = dumplo + cpu_dumpsize();
1335 1.258 gehenna dump = bdev->d_dump;
1336 1.42 cgd error = 0;
1337 1.42 cgd
1338 1.110 thorpej for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1339 1.110 thorpej maddr = mem_clusters[memcl].start;
1340 1.110 thorpej bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1341 1.110 thorpej
1342 1.110 thorpej for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1343 1.110 thorpej
1344 1.110 thorpej /* Print out how many MBs we to go. */
1345 1.110 thorpej if ((totalbytesleft % (1024*1024)) == 0)
1346 1.160 thorpej printf("%ld ", totalbytesleft / (1024 * 1024));
1347 1.110 thorpej
1348 1.110 thorpej /* Limit size for next transfer. */
1349 1.110 thorpej n = bytes - i;
1350 1.110 thorpej if (n > BYTES_PER_DUMP)
1351 1.110 thorpej n = BYTES_PER_DUMP;
1352 1.110 thorpej
1353 1.110 thorpej error = (*dump)(dumpdev, blkno,
1354 1.110 thorpej (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1355 1.110 thorpej if (error)
1356 1.110 thorpej goto err;
1357 1.110 thorpej maddr += n;
1358 1.110 thorpej blkno += btodb(n); /* XXX? */
1359 1.42 cgd
1360 1.110 thorpej /* XXX should look for keystrokes, to cancel. */
1361 1.110 thorpej }
1362 1.42 cgd }
1363 1.42 cgd
1364 1.43 cgd err:
1365 1.42 cgd switch (error) {
1366 1.7 cgd
1367 1.7 cgd case ENXIO:
1368 1.46 christos printf("device bad\n");
1369 1.7 cgd break;
1370 1.7 cgd
1371 1.7 cgd case EFAULT:
1372 1.46 christos printf("device not ready\n");
1373 1.7 cgd break;
1374 1.7 cgd
1375 1.7 cgd case EINVAL:
1376 1.46 christos printf("area improper\n");
1377 1.7 cgd break;
1378 1.7 cgd
1379 1.7 cgd case EIO:
1380 1.46 christos printf("i/o error\n");
1381 1.7 cgd break;
1382 1.7 cgd
1383 1.7 cgd case EINTR:
1384 1.46 christos printf("aborted from console\n");
1385 1.7 cgd break;
1386 1.7 cgd
1387 1.42 cgd case 0:
1388 1.46 christos printf("succeeded\n");
1389 1.42 cgd break;
1390 1.42 cgd
1391 1.7 cgd default:
1392 1.46 christos printf("error %d\n", error);
1393 1.7 cgd break;
1394 1.7 cgd }
1395 1.46 christos printf("\n\n");
1396 1.7 cgd delay(1000);
1397 1.7 cgd }
1398 1.7 cgd
1399 1.1 cgd void
1400 1.1 cgd frametoreg(framep, regp)
1401 1.1 cgd struct trapframe *framep;
1402 1.1 cgd struct reg *regp;
1403 1.1 cgd {
1404 1.1 cgd
1405 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1406 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1407 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1408 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1409 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1410 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1411 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1412 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1413 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1414 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1415 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1416 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1417 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1418 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1419 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1420 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1421 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1422 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1423 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1424 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1425 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1426 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1427 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1428 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1429 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1430 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1431 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1432 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1433 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1434 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1435 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1436 1.1 cgd regp->r_regs[R_ZERO] = 0;
1437 1.1 cgd }
1438 1.1 cgd
1439 1.1 cgd void
1440 1.1 cgd regtoframe(regp, framep)
1441 1.1 cgd struct reg *regp;
1442 1.1 cgd struct trapframe *framep;
1443 1.1 cgd {
1444 1.1 cgd
1445 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1446 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1447 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1448 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1449 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1450 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1451 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1452 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1453 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1454 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1455 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1456 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1457 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1458 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1459 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1460 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1461 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1462 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1463 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1464 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1465 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1466 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1467 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1468 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1469 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1470 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1471 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1472 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1473 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1474 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1475 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1476 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1477 1.1 cgd }
1478 1.1 cgd
1479 1.1 cgd void
1480 1.1 cgd printregs(regp)
1481 1.1 cgd struct reg *regp;
1482 1.1 cgd {
1483 1.1 cgd int i;
1484 1.1 cgd
1485 1.1 cgd for (i = 0; i < 32; i++)
1486 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1487 1.1 cgd i & 1 ? "\n" : "\t");
1488 1.1 cgd }
1489 1.1 cgd
1490 1.1 cgd void
1491 1.1 cgd regdump(framep)
1492 1.1 cgd struct trapframe *framep;
1493 1.1 cgd {
1494 1.1 cgd struct reg reg;
1495 1.1 cgd
1496 1.1 cgd frametoreg(framep, ®);
1497 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1498 1.35 cgd
1499 1.46 christos printf("REGISTERS:\n");
1500 1.1 cgd printregs(®);
1501 1.1 cgd }
1502 1.1 cgd
1503 1.1 cgd
1504 1.1 cgd /*
1505 1.1 cgd * Send an interrupt to process.
1506 1.1 cgd */
1507 1.1 cgd void
1508 1.256 thorpej sendsig(sig, mask, code)
1509 1.141 thorpej int sig;
1510 1.141 thorpej sigset_t *mask;
1511 1.1 cgd u_long code;
1512 1.1 cgd {
1513 1.1 cgd struct proc *p = curproc;
1514 1.256 thorpej struct sigacts *ps = p->p_sigacts;
1515 1.1 cgd struct sigcontext *scp, ksc;
1516 1.1 cgd struct trapframe *frame;
1517 1.141 thorpej int onstack, fsize, rndfsize;
1518 1.256 thorpej sig_t catcher = SIGACTION(p, sig).sa_handler;
1519 1.1 cgd
1520 1.1 cgd frame = p->p_md.md_tf;
1521 1.141 thorpej
1522 1.141 thorpej /* Do we need to jump onto the signal stack? */
1523 1.141 thorpej onstack =
1524 1.228 jdolecek (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1525 1.228 jdolecek (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1526 1.141 thorpej
1527 1.141 thorpej /* Allocate space for the signal handler context. */
1528 1.141 thorpej fsize = sizeof(ksc);
1529 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1530 1.141 thorpej
1531 1.141 thorpej if (onstack)
1532 1.228 jdolecek scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1533 1.228 jdolecek p->p_sigctx.ps_sigstk.ss_size);
1534 1.141 thorpej else
1535 1.142 mycroft scp = (struct sigcontext *)(alpha_pal_rdusp());
1536 1.142 mycroft scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
1537 1.141 thorpej
1538 1.1 cgd #ifdef DEBUG
1539 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1540 1.46 christos printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1541 1.141 thorpej sig, &onstack, scp);
1542 1.125 ross #endif
1543 1.1 cgd
1544 1.141 thorpej /* Build stack frame for signal trampoline. */
1545 1.34 cgd ksc.sc_pc = frame->tf_regs[FRAME_PC];
1546 1.34 cgd ksc.sc_ps = frame->tf_regs[FRAME_PS];
1547 1.1 cgd
1548 1.141 thorpej /* Save register context. */
1549 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1550 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1551 1.35 cgd ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1552 1.1 cgd
1553 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1554 1.219 thorpej if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1555 1.225 thorpej fpusave_proc(p, 1);
1556 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1557 1.247 thorpej memcpy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1558 1.1 cgd sizeof(struct fpreg));
1559 1.241 ross ksc.sc_fp_control = alpha_read_fp_c(p);
1560 1.246 thorpej memset(ksc.sc_reserved, 0, sizeof ksc.sc_reserved); /* XXX */
1561 1.246 thorpej memset(ksc.sc_xxx, 0, sizeof ksc.sc_xxx); /* XXX */
1562 1.1 cgd
1563 1.141 thorpej /* Save signal stack. */
1564 1.228 jdolecek ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
1565 1.141 thorpej
1566 1.141 thorpej /* Save signal mask. */
1567 1.141 thorpej ksc.sc_mask = *mask;
1568 1.141 thorpej
1569 1.141 thorpej #ifdef COMPAT_13
1570 1.141 thorpej /*
1571 1.141 thorpej * XXX We always have to save an old style signal mask because
1572 1.141 thorpej * XXX we might be delivering a signal to a process which will
1573 1.141 thorpej * XXX escape from the signal in a non-standard way and invoke
1574 1.141 thorpej * XXX sigreturn() directly.
1575 1.141 thorpej */
1576 1.141 thorpej {
1577 1.141 thorpej /* Note: it's a long in the stack frame. */
1578 1.141 thorpej sigset13_t mask13;
1579 1.141 thorpej
1580 1.141 thorpej native_sigset_to_sigset13(mask, &mask13);
1581 1.141 thorpej ksc.__sc_mask13 = mask13;
1582 1.141 thorpej }
1583 1.141 thorpej #endif
1584 1.1 cgd
1585 1.1 cgd #ifdef COMPAT_OSF1
1586 1.1 cgd /*
1587 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1588 1.1 cgd */
1589 1.1 cgd #endif
1590 1.1 cgd
1591 1.141 thorpej if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
1592 1.141 thorpej /*
1593 1.141 thorpej * Process has trashed its stack; give it an illegal
1594 1.141 thorpej * instruction to halt it in its tracks.
1595 1.141 thorpej */
1596 1.141 thorpej #ifdef DEBUG
1597 1.141 thorpej if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1598 1.141 thorpej printf("sendsig(%d): copyout failed on sig %d\n",
1599 1.141 thorpej p->p_pid, sig);
1600 1.141 thorpej #endif
1601 1.141 thorpej sigexit(p, SIGILL);
1602 1.141 thorpej /* NOTREACHED */
1603 1.141 thorpej }
1604 1.1 cgd #ifdef DEBUG
1605 1.1 cgd if (sigdebug & SDB_FOLLOW)
1606 1.46 christos printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1607 1.1 cgd scp, code);
1608 1.1 cgd #endif
1609 1.1 cgd
1610 1.256 thorpej /*
1611 1.256 thorpej * Set up the registers to directly invoke the signal handler. The
1612 1.256 thorpej * signal trampoline is then used to return from the signal. Note
1613 1.256 thorpej * the trampoline version numbers are coordinated with machine-
1614 1.256 thorpej * dependent code in libc.
1615 1.256 thorpej */
1616 1.256 thorpej switch (ps->sa_sigdesc[sig].sd_vers) {
1617 1.256 thorpej #if 1 /* COMPAT_16 */
1618 1.256 thorpej case 0: /* legacy on-stack sigtramp */
1619 1.256 thorpej frame->tf_regs[FRAME_RA] = (u_int64_t)p->p_sigctx.ps_sigcode;
1620 1.256 thorpej break;
1621 1.256 thorpej #endif /* COMPAT_16 */
1622 1.256 thorpej
1623 1.256 thorpej case 1:
1624 1.256 thorpej frame->tf_regs[FRAME_RA] =
1625 1.256 thorpej (u_int64_t)ps->sa_sigdesc[sig].sd_tramp;
1626 1.256 thorpej break;
1627 1.256 thorpej
1628 1.256 thorpej default:
1629 1.256 thorpej /* Don't know what trampoline version; kill it. */
1630 1.256 thorpej sigexit(p, SIGILL);
1631 1.256 thorpej }
1632 1.255 thorpej frame->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1633 1.34 cgd frame->tf_regs[FRAME_A0] = sig;
1634 1.34 cgd frame->tf_regs[FRAME_A1] = code;
1635 1.34 cgd frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1636 1.256 thorpej frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1637 1.35 cgd alpha_pal_wrusp((unsigned long)scp);
1638 1.142 mycroft
1639 1.142 mycroft /* Remember that we're now on the signal stack. */
1640 1.142 mycroft if (onstack)
1641 1.228 jdolecek p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1642 1.1 cgd
1643 1.1 cgd #ifdef DEBUG
1644 1.1 cgd if (sigdebug & SDB_FOLLOW)
1645 1.46 christos printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1646 1.34 cgd frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1647 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1648 1.46 christos printf("sendsig(%d): sig %d returns\n",
1649 1.1 cgd p->p_pid, sig);
1650 1.1 cgd #endif
1651 1.1 cgd }
1652 1.1 cgd
1653 1.1 cgd /*
1654 1.1 cgd * System call to cleanup state after a signal
1655 1.1 cgd * has been taken. Reset signal mask and
1656 1.1 cgd * stack state from context left by sendsig (above).
1657 1.1 cgd * Return to previous pc and psl as specified by
1658 1.1 cgd * context left by sendsig. Check carefully to
1659 1.1 cgd * make sure that the user has not modified the
1660 1.180 simonb * psl to gain improper privileges or to cause
1661 1.1 cgd * a machine fault.
1662 1.1 cgd */
1663 1.1 cgd /* ARGSUSED */
1664 1.11 mycroft int
1665 1.141 thorpej sys___sigreturn14(p, v, retval)
1666 1.1 cgd struct proc *p;
1667 1.10 thorpej void *v;
1668 1.10 thorpej register_t *retval;
1669 1.10 thorpej {
1670 1.141 thorpej struct sys___sigreturn14_args /* {
1671 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1672 1.10 thorpej } */ *uap = v;
1673 1.1 cgd struct sigcontext *scp, ksc;
1674 1.1 cgd
1675 1.141 thorpej /*
1676 1.141 thorpej * The trampoline code hands us the context.
1677 1.141 thorpej * It is unsafe to keep track of it ourselves, in the event that a
1678 1.141 thorpej * program jumps out of a signal handler.
1679 1.141 thorpej */
1680 1.1 cgd scp = SCARG(uap, sigcntxp);
1681 1.1 cgd #ifdef DEBUG
1682 1.1 cgd if (sigdebug & SDB_FOLLOW)
1683 1.46 christos printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1684 1.1 cgd #endif
1685 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1686 1.1 cgd return (EINVAL);
1687 1.1 cgd
1688 1.141 thorpej if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
1689 1.141 thorpej return (EFAULT);
1690 1.1 cgd
1691 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1692 1.1 cgd return (EINVAL);
1693 1.1 cgd
1694 1.141 thorpej /* Restore register context. */
1695 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1696 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PS] =
1697 1.32 cgd (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1698 1.1 cgd
1699 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1700 1.35 cgd alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1701 1.1 cgd
1702 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1703 1.219 thorpej if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1704 1.225 thorpej fpusave_proc(p, 0);
1705 1.247 thorpej memcpy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1706 1.1 cgd sizeof(struct fpreg));
1707 1.241 ross p->p_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
1708 1.241 ross p->p_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
1709 1.141 thorpej
1710 1.141 thorpej /* Restore signal stack. */
1711 1.141 thorpej if (ksc.sc_onstack & SS_ONSTACK)
1712 1.228 jdolecek p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1713 1.141 thorpej else
1714 1.228 jdolecek p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
1715 1.141 thorpej
1716 1.141 thorpej /* Restore signal mask. */
1717 1.141 thorpej (void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
1718 1.1 cgd
1719 1.1 cgd #ifdef DEBUG
1720 1.1 cgd if (sigdebug & SDB_FOLLOW)
1721 1.46 christos printf("sigreturn(%d): returns\n", p->p_pid);
1722 1.1 cgd #endif
1723 1.1 cgd return (EJUSTRETURN);
1724 1.1 cgd }
1725 1.1 cgd
1726 1.1 cgd /*
1727 1.1 cgd * machine dependent system variables.
1728 1.1 cgd */
1729 1.33 cgd int
1730 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1731 1.1 cgd int *name;
1732 1.1 cgd u_int namelen;
1733 1.1 cgd void *oldp;
1734 1.1 cgd size_t *oldlenp;
1735 1.1 cgd void *newp;
1736 1.1 cgd size_t newlen;
1737 1.1 cgd struct proc *p;
1738 1.1 cgd {
1739 1.1 cgd dev_t consdev;
1740 1.1 cgd
1741 1.1 cgd /* all sysctl names at this level are terminal */
1742 1.1 cgd if (namelen != 1)
1743 1.1 cgd return (ENOTDIR); /* overloaded */
1744 1.1 cgd
1745 1.1 cgd switch (name[0]) {
1746 1.1 cgd case CPU_CONSDEV:
1747 1.1 cgd if (cn_tab != NULL)
1748 1.1 cgd consdev = cn_tab->cn_dev;
1749 1.1 cgd else
1750 1.1 cgd consdev = NODEV;
1751 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1752 1.1 cgd sizeof consdev));
1753 1.30 cgd
1754 1.30 cgd case CPU_ROOT_DEVICE:
1755 1.64 thorpej return (sysctl_rdstring(oldp, oldlenp, newp,
1756 1.64 thorpej root_device->dv_xname));
1757 1.36 cgd
1758 1.36 cgd case CPU_UNALIGNED_PRINT:
1759 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1760 1.36 cgd &alpha_unaligned_print));
1761 1.36 cgd
1762 1.36 cgd case CPU_UNALIGNED_FIX:
1763 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1764 1.36 cgd &alpha_unaligned_fix));
1765 1.36 cgd
1766 1.36 cgd case CPU_UNALIGNED_SIGBUS:
1767 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1768 1.36 cgd &alpha_unaligned_sigbus));
1769 1.61 cgd
1770 1.61 cgd case CPU_BOOTED_KERNEL:
1771 1.102 cgd return (sysctl_rdstring(oldp, oldlenp, newp,
1772 1.102 cgd bootinfo.booted_kernel));
1773 1.30 cgd
1774 1.241 ross case CPU_FP_SYNC_COMPLETE:
1775 1.241 ross return (sysctl_int(oldp, oldlenp, newp, newlen,
1776 1.241 ross &alpha_fp_sync_complete));
1777 1.241 ross
1778 1.1 cgd default:
1779 1.1 cgd return (EOPNOTSUPP);
1780 1.1 cgd }
1781 1.1 cgd /* NOTREACHED */
1782 1.1 cgd }
1783 1.1 cgd
1784 1.1 cgd /*
1785 1.1 cgd * Set registers on exec.
1786 1.1 cgd */
1787 1.1 cgd void
1788 1.85 mycroft setregs(p, pack, stack)
1789 1.1 cgd register struct proc *p;
1790 1.5 christos struct exec_package *pack;
1791 1.1 cgd u_long stack;
1792 1.1 cgd {
1793 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1794 1.56 cgd #ifdef DEBUG
1795 1.1 cgd int i;
1796 1.56 cgd #endif
1797 1.43 cgd
1798 1.43 cgd #ifdef DEBUG
1799 1.43 cgd /*
1800 1.43 cgd * Crash and dump, if the user requested it.
1801 1.43 cgd */
1802 1.43 cgd if (boothowto & RB_DUMP)
1803 1.43 cgd panic("crash requested by boot flags");
1804 1.43 cgd #endif
1805 1.1 cgd
1806 1.1 cgd #ifdef DEBUG
1807 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1808 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1809 1.1 cgd #else
1810 1.246 thorpej memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1811 1.1 cgd #endif
1812 1.246 thorpej memset(&p->p_addr->u_pcb.pcb_fp, 0, sizeof p->p_addr->u_pcb.pcb_fp);
1813 1.35 cgd alpha_pal_wrusp(stack);
1814 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1815 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1816 1.41 cgd
1817 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1818 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1819 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1820 1.254 thorpej tfp->tf_regs[FRAME_A3] = (u_int64_t)p->p_psstr; /* a3 = ps_strings */
1821 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1822 1.1 cgd
1823 1.33 cgd p->p_md.md_flags &= ~MDP_FPUSED;
1824 1.241 ross if (__predict_true((p->p_md.md_flags & IEEE_INHERIT) == 0)) {
1825 1.241 ross p->p_md.md_flags &= ~MDP_FP_C;
1826 1.241 ross p->p_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1827 1.241 ross }
1828 1.219 thorpej if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
1829 1.225 thorpej fpusave_proc(p, 0);
1830 1.219 thorpej }
1831 1.219 thorpej
1832 1.219 thorpej /*
1833 1.219 thorpej * Release the FPU.
1834 1.219 thorpej */
1835 1.219 thorpej void
1836 1.225 thorpej fpusave_cpu(struct cpu_info *ci, int save)
1837 1.219 thorpej {
1838 1.219 thorpej struct proc *p;
1839 1.225 thorpej #if defined(MULTIPROCESSOR)
1840 1.219 thorpej int s;
1841 1.225 thorpej #endif
1842 1.219 thorpej
1843 1.225 thorpej KDASSERT(ci == curcpu());
1844 1.225 thorpej
1845 1.235 thorpej #if defined(MULTIPROCESSOR)
1846 1.235 thorpej atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1847 1.235 thorpej #endif
1848 1.235 thorpej
1849 1.225 thorpej p = ci->ci_fpcurproc;
1850 1.225 thorpej if (p == NULL)
1851 1.235 thorpej goto out;
1852 1.219 thorpej
1853 1.219 thorpej if (save) {
1854 1.219 thorpej alpha_pal_wrfen(1);
1855 1.219 thorpej savefpstate(&p->p_addr->u_pcb.pcb_fp);
1856 1.225 thorpej }
1857 1.225 thorpej
1858 1.225 thorpej alpha_pal_wrfen(0);
1859 1.225 thorpej
1860 1.235 thorpej FPCPU_LOCK(&p->p_addr->u_pcb, s);
1861 1.235 thorpej
1862 1.219 thorpej p->p_addr->u_pcb.pcb_fpcpu = NULL;
1863 1.225 thorpej ci->ci_fpcurproc = NULL;
1864 1.235 thorpej
1865 1.235 thorpej FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1866 1.235 thorpej
1867 1.235 thorpej out:
1868 1.219 thorpej #if defined(MULTIPROCESSOR)
1869 1.235 thorpej atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1870 1.219 thorpej #endif
1871 1.235 thorpej return;
1872 1.219 thorpej }
1873 1.219 thorpej
1874 1.219 thorpej /*
1875 1.219 thorpej * Synchronize FP state for this process.
1876 1.219 thorpej */
1877 1.219 thorpej void
1878 1.225 thorpej fpusave_proc(struct proc *p, int save)
1879 1.219 thorpej {
1880 1.225 thorpej struct cpu_info *ci = curcpu();
1881 1.225 thorpej struct cpu_info *oci;
1882 1.235 thorpej #if defined(MULTIPROCESSOR)
1883 1.235 thorpej u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1884 1.236 thorpej int s, spincount;
1885 1.235 thorpej #endif
1886 1.219 thorpej
1887 1.225 thorpej KDASSERT(p->p_addr != NULL);
1888 1.225 thorpej KDASSERT(p->p_flag & P_INMEM);
1889 1.225 thorpej
1890 1.235 thorpej FPCPU_LOCK(&p->p_addr->u_pcb, s);
1891 1.235 thorpej
1892 1.225 thorpej oci = p->p_addr->u_pcb.pcb_fpcpu;
1893 1.235 thorpej if (oci == NULL) {
1894 1.235 thorpej FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1895 1.219 thorpej return;
1896 1.235 thorpej }
1897 1.219 thorpej
1898 1.219 thorpej #if defined(MULTIPROCESSOR)
1899 1.225 thorpej if (oci == ci) {
1900 1.225 thorpej KASSERT(ci->ci_fpcurproc == p);
1901 1.235 thorpej FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1902 1.225 thorpej fpusave_cpu(ci, save);
1903 1.235 thorpej return;
1904 1.235 thorpej }
1905 1.235 thorpej
1906 1.235 thorpej KASSERT(oci->ci_fpcurproc == p);
1907 1.235 thorpej alpha_send_ipi(oci->ci_cpuid, ipi);
1908 1.235 thorpej FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1909 1.235 thorpej
1910 1.235 thorpej spincount = 0;
1911 1.235 thorpej while (p->p_addr->u_pcb.pcb_fpcpu != NULL) {
1912 1.235 thorpej spincount++;
1913 1.235 thorpej delay(1000); /* XXX */
1914 1.235 thorpej if (spincount > 10000)
1915 1.235 thorpej panic("fpsave ipi didn't");
1916 1.219 thorpej }
1917 1.219 thorpej #else
1918 1.225 thorpej KASSERT(ci->ci_fpcurproc == p);
1919 1.235 thorpej FPCPU_UNLOCK(&p->p_addr->u_pcb, s);
1920 1.225 thorpej fpusave_cpu(ci, save);
1921 1.219 thorpej #endif /* MULTIPROCESSOR */
1922 1.1 cgd }
1923 1.1 cgd
1924 1.1 cgd /*
1925 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
1926 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1927 1.52 cgd * into queues, Remrunqueue removes them from queues. The running process is
1928 1.52 cgd * on no queue, other processes are on a queue related to p->p_priority,
1929 1.52 cgd * divided by 4 actually to shrink the 0-127 range of priorities into the 32
1930 1.52 cgd * available queues.
1931 1.1 cgd */
1932 1.1 cgd /*
1933 1.1 cgd * setrunqueue(p)
1934 1.1 cgd * proc *p;
1935 1.1 cgd *
1936 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
1937 1.1 cgd */
1938 1.1 cgd
1939 1.1 cgd void
1940 1.1 cgd setrunqueue(p)
1941 1.1 cgd struct proc *p;
1942 1.1 cgd {
1943 1.1 cgd int bit;
1944 1.1 cgd
1945 1.1 cgd /* firewall: p->p_back must be NULL */
1946 1.1 cgd if (p->p_back != NULL)
1947 1.1 cgd panic("setrunqueue");
1948 1.1 cgd
1949 1.1 cgd bit = p->p_priority >> 2;
1950 1.207 thorpej sched_whichqs |= (1 << bit);
1951 1.207 thorpej p->p_forw = (struct proc *)&sched_qs[bit];
1952 1.207 thorpej p->p_back = sched_qs[bit].ph_rlink;
1953 1.1 cgd p->p_back->p_forw = p;
1954 1.207 thorpej sched_qs[bit].ph_rlink = p;
1955 1.1 cgd }
1956 1.1 cgd
1957 1.1 cgd /*
1958 1.52 cgd * remrunqueue(p)
1959 1.1 cgd *
1960 1.1 cgd * Call should be made at splclock().
1961 1.1 cgd */
1962 1.1 cgd void
1963 1.52 cgd remrunqueue(p)
1964 1.1 cgd struct proc *p;
1965 1.1 cgd {
1966 1.1 cgd int bit;
1967 1.1 cgd
1968 1.1 cgd bit = p->p_priority >> 2;
1969 1.207 thorpej if ((sched_whichqs & (1 << bit)) == 0)
1970 1.52 cgd panic("remrunqueue");
1971 1.1 cgd
1972 1.1 cgd p->p_back->p_forw = p->p_forw;
1973 1.1 cgd p->p_forw->p_back = p->p_back;
1974 1.1 cgd p->p_back = NULL; /* for firewall checking. */
1975 1.1 cgd
1976 1.207 thorpej if ((struct proc *)&sched_qs[bit] == sched_qs[bit].ph_link)
1977 1.207 thorpej sched_whichqs &= ~(1 << bit);
1978 1.15 cgd }
1979 1.15 cgd
1980 1.15 cgd /*
1981 1.15 cgd * Wait "n" microseconds.
1982 1.15 cgd */
1983 1.32 cgd void
1984 1.15 cgd delay(n)
1985 1.32 cgd unsigned long n;
1986 1.15 cgd {
1987 1.216 thorpej unsigned long pcc0, pcc1, curcycle, cycles, usec;
1988 1.15 cgd
1989 1.216 thorpej if (n == 0)
1990 1.216 thorpej return;
1991 1.216 thorpej
1992 1.216 thorpej pcc0 = alpha_rpcc() & 0xffffffffUL;
1993 1.216 thorpej cycles = 0;
1994 1.216 thorpej usec = 0;
1995 1.216 thorpej
1996 1.216 thorpej while (usec <= n) {
1997 1.216 thorpej /*
1998 1.216 thorpej * Get the next CPU cycle count- assumes that we cannot
1999 1.216 thorpej * have had more than one 32 bit overflow.
2000 1.216 thorpej */
2001 1.216 thorpej pcc1 = alpha_rpcc() & 0xffffffffUL;
2002 1.216 thorpej if (pcc1 < pcc0)
2003 1.216 thorpej curcycle = (pcc1 + 0x100000000UL) - pcc0;
2004 1.216 thorpej else
2005 1.216 thorpej curcycle = pcc1 - pcc0;
2006 1.186 thorpej
2007 1.216 thorpej /*
2008 1.216 thorpej * We now have the number of processor cycles since we
2009 1.216 thorpej * last checked. Add the current cycle count to the
2010 1.216 thorpej * running total. If it's over cycles_per_usec, increment
2011 1.216 thorpej * the usec counter.
2012 1.216 thorpej */
2013 1.216 thorpej cycles += curcycle;
2014 1.216 thorpej while (cycles > cycles_per_usec) {
2015 1.216 thorpej usec++;
2016 1.216 thorpej cycles -= cycles_per_usec;
2017 1.216 thorpej }
2018 1.216 thorpej pcc0 = pcc1;
2019 1.216 thorpej }
2020 1.1 cgd }
2021 1.225 thorpej
2022 1.250 jdolecek #ifdef EXEC_ECOFF
2023 1.1 cgd void
2024 1.85 mycroft cpu_exec_ecoff_setregs(p, epp, stack)
2025 1.1 cgd struct proc *p;
2026 1.19 cgd struct exec_package *epp;
2027 1.5 christos u_long stack;
2028 1.1 cgd {
2029 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2030 1.1 cgd
2031 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
2032 1.1 cgd }
2033 1.1 cgd
2034 1.1 cgd /*
2035 1.1 cgd * cpu_exec_ecoff_hook():
2036 1.1 cgd * cpu-dependent ECOFF format hook for execve().
2037 1.1 cgd *
2038 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
2039 1.1 cgd *
2040 1.1 cgd */
2041 1.1 cgd int
2042 1.224 jdolecek cpu_exec_ecoff_probe(p, epp)
2043 1.1 cgd struct proc *p;
2044 1.1 cgd struct exec_package *epp;
2045 1.1 cgd {
2046 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
2047 1.171 cgd int error;
2048 1.1 cgd
2049 1.224 jdolecek if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
2050 1.171 cgd error = 0;
2051 1.224 jdolecek else
2052 1.224 jdolecek error = ENOEXEC;
2053 1.1 cgd
2054 1.171 cgd return (error);
2055 1.1 cgd }
2056 1.250 jdolecek #endif /* EXEC_ECOFF */
2057 1.110 thorpej
2058 1.110 thorpej int
2059 1.110 thorpej alpha_pa_access(pa)
2060 1.110 thorpej u_long pa;
2061 1.110 thorpej {
2062 1.110 thorpej int i;
2063 1.110 thorpej
2064 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
2065 1.110 thorpej if (pa < mem_clusters[i].start)
2066 1.110 thorpej continue;
2067 1.110 thorpej if ((pa - mem_clusters[i].start) >=
2068 1.110 thorpej (mem_clusters[i].size & ~PAGE_MASK))
2069 1.110 thorpej continue;
2070 1.110 thorpej return (mem_clusters[i].size & PAGE_MASK); /* prot */
2071 1.110 thorpej }
2072 1.197 thorpej
2073 1.197 thorpej /*
2074 1.197 thorpej * Address is not a memory address. If we're secure, disallow
2075 1.197 thorpej * access. Otherwise, grant read/write.
2076 1.197 thorpej */
2077 1.197 thorpej if (securelevel > 0)
2078 1.197 thorpej return (PROT_NONE);
2079 1.197 thorpej else
2080 1.197 thorpej return (PROT_READ | PROT_WRITE);
2081 1.110 thorpej }
2082 1.50 cgd
2083 1.50 cgd /* XXX XXX BEGIN XXX XXX */
2084 1.140 thorpej paddr_t alpha_XXX_dmamap_or; /* XXX */
2085 1.50 cgd /* XXX */
2086 1.140 thorpej paddr_t /* XXX */
2087 1.50 cgd alpha_XXX_dmamap(v) /* XXX */
2088 1.140 thorpej vaddr_t v; /* XXX */
2089 1.50 cgd { /* XXX */
2090 1.50 cgd /* XXX */
2091 1.51 cgd return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
2092 1.50 cgd } /* XXX */
2093 1.50 cgd /* XXX XXX END XXX XXX */
2094 1.177 ross
2095 1.177 ross char *
2096 1.177 ross dot_conv(x)
2097 1.177 ross unsigned long x;
2098 1.177 ross {
2099 1.177 ross int i;
2100 1.177 ross char *xc;
2101 1.177 ross static int next;
2102 1.177 ross static char space[2][20];
2103 1.177 ross
2104 1.177 ross xc = space[next ^= 1] + sizeof space[0];
2105 1.177 ross *--xc = '\0';
2106 1.177 ross for (i = 0;; ++i) {
2107 1.177 ross if (i && (i & 3) == 0)
2108 1.177 ross *--xc = '.';
2109 1.177 ross *--xc = "0123456789abcdef"[x & 0xf];
2110 1.177 ross x >>= 4;
2111 1.177 ross if (x == 0)
2112 1.177 ross break;
2113 1.177 ross }
2114 1.177 ross return xc;
2115 1.138 ross }
2116