Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.265
      1  1.265   nathanw /* $NetBSD: machdep.c,v 1.265 2003/04/17 00:15:19 nathanw Exp $ */
      2  1.110   thorpej 
      3  1.110   thorpej /*-
      4  1.211   thorpej  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      5  1.110   thorpej  * All rights reserved.
      6  1.110   thorpej  *
      7  1.110   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.110   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.110   thorpej  * NASA Ames Research Center and by Chris G. Demetriou.
     10  1.110   thorpej  *
     11  1.110   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.110   thorpej  * modification, are permitted provided that the following conditions
     13  1.110   thorpej  * are met:
     14  1.110   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.110   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.110   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.110   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.110   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.110   thorpej  * 3. All advertising materials mentioning features or use of this software
     20  1.110   thorpej  *    must display the following acknowledgement:
     21  1.110   thorpej  *	This product includes software developed by the NetBSD
     22  1.110   thorpej  *	Foundation, Inc. and its contributors.
     23  1.110   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.110   thorpej  *    contributors may be used to endorse or promote products derived
     25  1.110   thorpej  *    from this software without specific prior written permission.
     26  1.110   thorpej  *
     27  1.110   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.110   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.110   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.110   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.110   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.110   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.110   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.110   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.110   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.110   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.110   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38  1.110   thorpej  */
     39    1.1       cgd 
     40    1.1       cgd /*
     41   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42    1.1       cgd  * All rights reserved.
     43    1.1       cgd  *
     44    1.1       cgd  * Author: Chris G. Demetriou
     45    1.1       cgd  *
     46    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     47    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     48    1.1       cgd  * notice and this permission notice appear in all copies of the
     49    1.1       cgd  * software, derivative works or modified versions, and any portions
     50    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     51    1.1       cgd  *
     52    1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53    1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55    1.1       cgd  *
     56    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     57    1.1       cgd  *
     58    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59    1.1       cgd  *  School of Computer Science
     60    1.1       cgd  *  Carnegie Mellon University
     61    1.1       cgd  *  Pittsburgh PA 15213-3890
     62    1.1       cgd  *
     63    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     64    1.1       cgd  * rights to redistribute these changes.
     65    1.1       cgd  */
     66   1.74       cgd 
     67  1.129  jonathan #include "opt_ddb.h"
     68  1.244     lukem #include "opt_kgdb.h"
     69  1.147   thorpej #include "opt_multiprocessor.h"
     70  1.123   thorpej #include "opt_dec_3000_300.h"
     71  1.123   thorpej #include "opt_dec_3000_500.h"
     72  1.127   thorpej #include "opt_compat_osf1.h"
     73  1.141   thorpej #include "opt_compat_netbsd.h"
     74  1.250  jdolecek #include "opt_execfmt.h"
     75  1.112   thorpej 
     76   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     77   1.75       cgd 
     78  1.265   nathanw __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.265 2003/04/17 00:15:19 nathanw Exp $");
     79    1.1       cgd 
     80    1.1       cgd #include <sys/param.h>
     81    1.1       cgd #include <sys/systm.h>
     82    1.1       cgd #include <sys/signalvar.h>
     83    1.1       cgd #include <sys/kernel.h>
     84    1.1       cgd #include <sys/proc.h>
     85  1.264   nathanw #include <sys/ras.h>
     86  1.261   thorpej #include <sys/sa.h>
     87  1.261   thorpej #include <sys/savar.h>
     88  1.207   thorpej #include <sys/sched.h>
     89    1.1       cgd #include <sys/buf.h>
     90    1.1       cgd #include <sys/reboot.h>
     91   1.28       cgd #include <sys/device.h>
     92    1.1       cgd #include <sys/file.h>
     93    1.1       cgd #include <sys/malloc.h>
     94    1.1       cgd #include <sys/mbuf.h>
     95  1.110   thorpej #include <sys/mman.h>
     96    1.1       cgd #include <sys/msgbuf.h>
     97    1.1       cgd #include <sys/ioctl.h>
     98    1.1       cgd #include <sys/tty.h>
     99    1.1       cgd #include <sys/user.h>
    100    1.1       cgd #include <sys/exec.h>
    101    1.1       cgd #include <sys/exec_ecoff.h>
    102   1.43       cgd #include <sys/core.h>
    103   1.43       cgd #include <sys/kcore.h>
    104  1.261   thorpej #include <sys/ucontext.h>
    105  1.258   gehenna #include <sys/conf.h>
    106   1.43       cgd #include <machine/kcore.h>
    107  1.241      ross #include <machine/fpu.h>
    108    1.1       cgd 
    109    1.1       cgd #include <sys/mount.h>
    110  1.261   thorpej #include <sys/sa.h>
    111    1.1       cgd #include <sys/syscallargs.h>
    112    1.1       cgd 
    113  1.112   thorpej #include <uvm/uvm_extern.h>
    114  1.217       mrg #include <sys/sysctl.h>
    115  1.112   thorpej 
    116    1.1       cgd #include <dev/cons.h>
    117    1.1       cgd 
    118   1.81   thorpej #include <machine/autoconf.h>
    119    1.1       cgd #include <machine/cpu.h>
    120    1.1       cgd #include <machine/reg.h>
    121    1.1       cgd #include <machine/rpb.h>
    122    1.1       cgd #include <machine/prom.h>
    123  1.258   gehenna #include <machine/cpuconf.h>
    124  1.172      ross #include <machine/ieeefp.h>
    125  1.148   thorpej 
    126   1.81   thorpej #ifdef DDB
    127   1.81   thorpej #include <machine/db_machdep.h>
    128   1.81   thorpej #include <ddb/db_access.h>
    129   1.81   thorpej #include <ddb/db_sym.h>
    130   1.81   thorpej #include <ddb/db_extern.h>
    131   1.81   thorpej #include <ddb/db_interface.h>
    132  1.233   thorpej #endif
    133  1.233   thorpej 
    134  1.233   thorpej #ifdef KGDB
    135  1.233   thorpej #include <sys/kgdb.h>
    136   1.81   thorpej #endif
    137   1.81   thorpej 
    138  1.229  sommerfe #ifdef DEBUG
    139  1.229  sommerfe #include <machine/sigdebug.h>
    140  1.229  sommerfe #endif
    141  1.229  sommerfe 
    142  1.155      ross #include <machine/alpha.h>
    143  1.143      matt 
    144  1.245       chs struct vm_map *exec_map = NULL;
    145  1.245       chs struct vm_map *mb_map = NULL;
    146  1.245       chs struct vm_map *phys_map = NULL;
    147    1.1       cgd 
    148   1.86       leo caddr_t msgbufaddr;
    149   1.86       leo 
    150    1.1       cgd int	maxmem;			/* max memory per process */
    151    1.7       cgd 
    152    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    153    1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    154    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    155    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    156    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    157    1.1       cgd 
    158    1.1       cgd int	cputype;		/* system type, from the RPB */
    159  1.210   thorpej 
    160  1.210   thorpej int	bootdev_debug = 0;	/* patchable, or from DDB */
    161    1.1       cgd 
    162    1.1       cgd /*
    163    1.1       cgd  * XXX We need an address to which we can assign things so that they
    164    1.1       cgd  * won't be optimized away because we didn't use the value.
    165    1.1       cgd  */
    166    1.1       cgd u_int32_t no_optimize;
    167    1.1       cgd 
    168    1.1       cgd /* the following is used externally (sysctl_hw) */
    169   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    170   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    171   1.29       cgd char	cpu_model[128];
    172    1.1       cgd 
    173    1.1       cgd struct	user *proc0paddr;
    174    1.1       cgd 
    175    1.1       cgd /* Number of machine cycles per microsecond */
    176    1.1       cgd u_int64_t	cycles_per_usec;
    177    1.1       cgd 
    178    1.7       cgd /* number of cpus in the box.  really! */
    179    1.7       cgd int		ncpus;
    180    1.7       cgd 
    181  1.102       cgd struct bootinfo_kernel bootinfo;
    182   1.81   thorpej 
    183  1.123   thorpej /* For built-in TCDS */
    184  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    185  1.123   thorpej u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    186  1.123   thorpej #endif
    187  1.123   thorpej 
    188   1.89    mjacob struct platform platform;
    189   1.89    mjacob 
    190   1.81   thorpej #ifdef DDB
    191   1.81   thorpej /* start and end of kernel symbol table */
    192   1.81   thorpej void	*ksym_start, *ksym_end;
    193   1.81   thorpej #endif
    194   1.81   thorpej 
    195   1.30       cgd /* for cpu_sysctl() */
    196   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    197   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    198   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    199  1.241      ross int	alpha_fp_sync_complete = 0;	/* fp fixup if sync even without /s */
    200   1.30       cgd 
    201  1.110   thorpej /*
    202  1.110   thorpej  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    203  1.110   thorpej  * XXX it should also be larger than it is, because not all of the mddt
    204  1.110   thorpej  * XXX clusters end up being used for VM.
    205  1.110   thorpej  */
    206  1.110   thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    207  1.110   thorpej int	mem_cluster_cnt;
    208  1.110   thorpej 
    209   1.55       cgd int	cpu_dump __P((void));
    210   1.55       cgd int	cpu_dumpsize __P((void));
    211  1.110   thorpej u_long	cpu_dump_mempagecnt __P((void));
    212   1.55       cgd void	dumpsys __P((void));
    213   1.55       cgd void	identifycpu __P((void));
    214   1.55       cgd void	printregs __P((struct reg *));
    215   1.33       cgd 
    216   1.55       cgd void
    217  1.102       cgd alpha_init(pfn, ptb, bim, bip, biv)
    218    1.1       cgd 	u_long pfn;		/* first free PFN number */
    219    1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    220   1.81   thorpej 	u_long bim;		/* bootinfo magic */
    221   1.81   thorpej 	u_long bip;		/* bootinfo pointer */
    222  1.102       cgd 	u_long biv;		/* bootinfo version */
    223    1.1       cgd {
    224   1.95   thorpej 	extern char kernel_text[], _end[];
    225    1.1       cgd 	struct mddt *mddtp;
    226  1.110   thorpej 	struct mddt_cluster *memc;
    227    1.7       cgd 	int i, mddtweird;
    228  1.110   thorpej 	struct vm_physseg *vps;
    229  1.140   thorpej 	vaddr_t kernstart, kernend;
    230  1.140   thorpej 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    231  1.140   thorpej 	vsize_t size;
    232  1.211   thorpej 	cpuid_t cpu_id;
    233  1.211   thorpej 	struct cpu_info *ci;
    234    1.1       cgd 	char *p;
    235   1.95   thorpej 	caddr_t v;
    236  1.209   thorpej 	const char *bootinfo_msg;
    237  1.209   thorpej 	const struct cpuinit *c;
    238  1.106       cgd 
    239  1.106       cgd 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    240    1.1       cgd 
    241    1.1       cgd 	/*
    242   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    243    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    244    1.1       cgd 	 */
    245   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    246   1.32       cgd 	alpha_pal_wrfen(0);
    247   1.37       cgd 	ALPHA_TBIA();
    248   1.32       cgd 	alpha_pal_imb();
    249  1.248   thorpej 
    250  1.248   thorpej 	/* Initialize the SCB. */
    251  1.248   thorpej 	scb_init();
    252    1.1       cgd 
    253  1.211   thorpej 	cpu_id = cpu_number();
    254  1.211   thorpej 
    255  1.189   thorpej #if defined(MULTIPROCESSOR)
    256  1.189   thorpej 	/*
    257  1.189   thorpej 	 * Set our SysValue to the address of our cpu_info structure.
    258  1.189   thorpej 	 * Secondary processors do this in their spinup trampoline.
    259  1.189   thorpej 	 */
    260  1.237   thorpej 	alpha_pal_wrval((u_long)&cpu_info_primary);
    261  1.237   thorpej 	cpu_info[cpu_id] = &cpu_info_primary;
    262  1.189   thorpej #endif
    263  1.189   thorpej 
    264  1.211   thorpej 	ci = curcpu();
    265  1.211   thorpej 	ci->ci_cpuid = cpu_id;
    266  1.211   thorpej 
    267    1.1       cgd 	/*
    268  1.106       cgd 	 * Get critical system information (if possible, from the
    269  1.106       cgd 	 * information provided by the boot program).
    270   1.81   thorpej 	 */
    271  1.106       cgd 	bootinfo_msg = NULL;
    272   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    273  1.102       cgd 		if (biv == 0) {		/* backward compat */
    274  1.102       cgd 			biv = *(u_long *)bip;
    275  1.102       cgd 			bip += 8;
    276  1.102       cgd 		}
    277  1.102       cgd 		switch (biv) {
    278  1.102       cgd 		case 1: {
    279  1.102       cgd 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    280  1.102       cgd 
    281  1.102       cgd 			bootinfo.ssym = v1p->ssym;
    282  1.102       cgd 			bootinfo.esym = v1p->esym;
    283  1.106       cgd 			/* hwrpb may not be provided by boot block in v1 */
    284  1.106       cgd 			if (v1p->hwrpb != NULL) {
    285  1.106       cgd 				bootinfo.hwrpb_phys =
    286  1.106       cgd 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    287  1.106       cgd 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    288  1.106       cgd 			} else {
    289  1.106       cgd 				bootinfo.hwrpb_phys =
    290  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    291  1.106       cgd 				bootinfo.hwrpb_size =
    292  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    293  1.106       cgd 			}
    294  1.247   thorpej 			memcpy(bootinfo.boot_flags, v1p->boot_flags,
    295  1.102       cgd 			    min(sizeof v1p->boot_flags,
    296  1.102       cgd 			      sizeof bootinfo.boot_flags));
    297  1.247   thorpej 			memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
    298  1.102       cgd 			    min(sizeof v1p->booted_kernel,
    299  1.102       cgd 			      sizeof bootinfo.booted_kernel));
    300  1.106       cgd 			/* booted dev not provided in bootinfo */
    301  1.106       cgd 			init_prom_interface((struct rpb *)
    302  1.106       cgd 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    303  1.102       cgd                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    304  1.102       cgd 			    sizeof bootinfo.booted_dev);
    305   1.81   thorpej 			break;
    306  1.102       cgd 		}
    307   1.81   thorpej 		default:
    308  1.106       cgd 			bootinfo_msg = "unknown bootinfo version";
    309  1.102       cgd 			goto nobootinfo;
    310   1.81   thorpej 		}
    311  1.102       cgd 	} else {
    312  1.106       cgd 		bootinfo_msg = "boot program did not pass bootinfo";
    313  1.102       cgd nobootinfo:
    314  1.102       cgd 		bootinfo.ssym = (u_long)_end;
    315  1.102       cgd 		bootinfo.esym = (u_long)_end;
    316  1.106       cgd 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    317  1.106       cgd 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    318  1.106       cgd 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    319  1.102       cgd 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    320  1.102       cgd 		    sizeof bootinfo.boot_flags);
    321  1.102       cgd 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    322  1.102       cgd 		    sizeof bootinfo.booted_kernel);
    323  1.102       cgd 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    324  1.102       cgd 		    sizeof bootinfo.booted_dev);
    325  1.102       cgd 	}
    326  1.102       cgd 
    327   1.81   thorpej 	/*
    328  1.106       cgd 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    329  1.106       cgd 	 * lots of things.
    330  1.106       cgd 	 */
    331  1.106       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    332  1.123   thorpej 
    333  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    334  1.123   thorpej 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    335  1.123   thorpej 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    336  1.123   thorpej 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    337  1.123   thorpej 		    sizeof(dec_3000_scsiid));
    338  1.123   thorpej 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    339  1.123   thorpej 		    sizeof(dec_3000_scsifast));
    340  1.123   thorpej 	}
    341  1.123   thorpej #endif
    342  1.106       cgd 
    343  1.106       cgd 	/*
    344  1.106       cgd 	 * Remember how many cycles there are per microsecond,
    345  1.106       cgd 	 * so that we can use delay().  Round up, for safety.
    346  1.106       cgd 	 */
    347  1.106       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    348  1.106       cgd 
    349  1.106       cgd 	/*
    350  1.251       wiz 	 * Initialize the (temporary) bootstrap console interface, so
    351  1.106       cgd 	 * we can use printf until the VM system starts being setup.
    352  1.106       cgd 	 * The real console is initialized before then.
    353  1.106       cgd 	 */
    354  1.106       cgd 	init_bootstrap_console();
    355  1.106       cgd 
    356  1.106       cgd 	/* OUTPUT NOW ALLOWED */
    357  1.106       cgd 
    358  1.106       cgd 	/* delayed from above */
    359  1.106       cgd 	if (bootinfo_msg)
    360  1.106       cgd 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    361  1.106       cgd 		    bootinfo_msg, bim, bip, biv);
    362  1.106       cgd 
    363  1.147   thorpej 	/* Initialize the trap vectors on the primary processor. */
    364  1.147   thorpej 	trap_init();
    365    1.1       cgd 
    366    1.1       cgd 	/*
    367  1.263   thorpej 	 * Find out this system's page size, and initialize
    368  1.263   thorpej 	 * PAGE_SIZE-dependent variables.
    369  1.243   thorpej 	 */
    370  1.263   thorpej 	if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
    371  1.263   thorpej 		panic("page size %lu != %d?!", hwrpb->rpb_page_size,
    372  1.263   thorpej 		    ALPHA_PGBYTES);
    373  1.263   thorpej 	uvmexp.pagesize = hwrpb->rpb_page_size;
    374  1.243   thorpej 	uvm_setpagesize();
    375  1.243   thorpej 
    376  1.243   thorpej 	/*
    377  1.106       cgd 	 * Find out what hardware we're on, and do basic initialization.
    378  1.106       cgd 	 */
    379  1.106       cgd 	cputype = hwrpb->rpb_type;
    380  1.167       cgd 	if (cputype < 0) {
    381  1.167       cgd 		/*
    382  1.167       cgd 		 * At least some white-box systems have SRM which
    383  1.167       cgd 		 * reports a systype that's the negative of their
    384  1.167       cgd 		 * blue-box counterpart.
    385  1.167       cgd 		 */
    386  1.167       cgd 		cputype = -cputype;
    387  1.167       cgd 	}
    388  1.209   thorpej 	c = platform_lookup(cputype);
    389  1.209   thorpej 	if (c == NULL) {
    390  1.106       cgd 		platform_not_supported();
    391  1.106       cgd 		/* NOTREACHED */
    392  1.106       cgd 	}
    393  1.209   thorpej 	(*c->init)();
    394  1.106       cgd 	strcpy(cpu_model, platform.model);
    395  1.106       cgd 
    396  1.106       cgd 	/*
    397  1.251       wiz 	 * Initialize the real console, so that the bootstrap console is
    398  1.106       cgd 	 * no longer necessary.
    399  1.106       cgd 	 */
    400  1.169   thorpej 	(*platform.cons_init)();
    401  1.106       cgd 
    402  1.106       cgd #ifdef DIAGNOSTIC
    403  1.106       cgd 	/* Paranoid sanity checking */
    404  1.106       cgd 
    405  1.199     soren 	/* We should always be running on the primary. */
    406  1.211   thorpej 	assert(hwrpb->rpb_primary_cpu_id == cpu_id);
    407  1.106       cgd 
    408  1.116    mjacob 	/*
    409  1.116    mjacob 	 * On single-CPU systypes, the primary should always be CPU 0,
    410  1.116    mjacob 	 * except on Alpha 8200 systems where the CPU id is related
    411  1.116    mjacob 	 * to the VID, which is related to the Turbo Laser node id.
    412  1.116    mjacob 	 */
    413  1.106       cgd 	if (cputype != ST_DEC_21000)
    414  1.106       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);
    415  1.106       cgd #endif
    416  1.106       cgd 
    417  1.106       cgd 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    418  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    419  1.106       cgd 	/*
    420  1.106       cgd 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    421  1.106       cgd 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    422  1.106       cgd 	 */
    423  1.106       cgd #endif
    424   1.95   thorpej 
    425   1.95   thorpej 	/*
    426  1.101       cgd 	 * Find the beginning and end of the kernel (and leave a
    427  1.101       cgd 	 * bit of space before the beginning for the bootstrap
    428  1.101       cgd 	 * stack).
    429   1.95   thorpej 	 */
    430  1.201    kleink 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
    431   1.95   thorpej #ifdef DDB
    432  1.102       cgd 	ksym_start = (void *)bootinfo.ssym;
    433  1.102       cgd 	ksym_end   = (void *)bootinfo.esym;
    434  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
    435  1.102       cgd #else
    436  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)_end);
    437   1.95   thorpej #endif
    438   1.95   thorpej 
    439  1.110   thorpej 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    440  1.110   thorpej 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    441  1.110   thorpej 
    442   1.95   thorpej 	/*
    443    1.1       cgd 	 * Find out how much memory is available, by looking at
    444    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    445    1.7       cgd 	 * its best to detect things things that have never been seen
    446    1.7       cgd 	 * before...
    447    1.1       cgd 	 */
    448    1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    449    1.7       cgd 
    450  1.110   thorpej 	/* MDDT SANITY CHECKING */
    451    1.7       cgd 	mddtweird = 0;
    452  1.110   thorpej 	if (mddtp->mddt_cluster_cnt < 2) {
    453    1.7       cgd 		mddtweird = 1;
    454  1.160   thorpej 		printf("WARNING: weird number of mem clusters: %lu\n",
    455  1.110   thorpej 		    mddtp->mddt_cluster_cnt);
    456    1.7       cgd 	}
    457    1.7       cgd 
    458  1.110   thorpej #if 0
    459  1.110   thorpej 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    460  1.110   thorpej #endif
    461  1.110   thorpej 
    462  1.110   thorpej 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    463  1.110   thorpej 		memc = &mddtp->mddt_clusters[i];
    464  1.110   thorpej #if 0
    465  1.110   thorpej 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    466  1.110   thorpej 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    467  1.110   thorpej #endif
    468  1.110   thorpej 		totalphysmem += memc->mddt_pg_cnt;
    469  1.110   thorpej 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    470  1.110   thorpej 			mem_clusters[mem_cluster_cnt].start =
    471  1.110   thorpej 			    ptoa(memc->mddt_pfn);
    472  1.110   thorpej 			mem_clusters[mem_cluster_cnt].size =
    473  1.110   thorpej 			    ptoa(memc->mddt_pg_cnt);
    474  1.110   thorpej 			if (memc->mddt_usage & MDDT_mbz ||
    475  1.110   thorpej 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    476  1.110   thorpej 			    memc->mddt_usage & MDDT_PALCODE)
    477  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    478  1.110   thorpej 				    PROT_READ;
    479  1.110   thorpej 			else
    480  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    481  1.110   thorpej 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    482  1.110   thorpej 			mem_cluster_cnt++;
    483  1.110   thorpej 		}
    484  1.110   thorpej 
    485  1.110   thorpej 		if (memc->mddt_usage & MDDT_mbz) {
    486    1.7       cgd 			mddtweird = 1;
    487  1.110   thorpej 			printf("WARNING: mem cluster %d has weird "
    488  1.110   thorpej 			    "usage 0x%lx\n", i, memc->mddt_usage);
    489  1.110   thorpej 			unknownmem += memc->mddt_pg_cnt;
    490  1.110   thorpej 			continue;
    491    1.7       cgd 		}
    492  1.110   thorpej 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    493  1.110   thorpej 			/* XXX should handle these... */
    494  1.110   thorpej 			printf("WARNING: skipping non-volatile mem "
    495  1.110   thorpej 			    "cluster %d\n", i);
    496  1.110   thorpej 			unusedmem += memc->mddt_pg_cnt;
    497  1.110   thorpej 			continue;
    498  1.110   thorpej 		}
    499  1.110   thorpej 		if (memc->mddt_usage & MDDT_PALCODE) {
    500  1.110   thorpej 			resvmem += memc->mddt_pg_cnt;
    501  1.110   thorpej 			continue;
    502  1.110   thorpej 		}
    503  1.110   thorpej 
    504  1.110   thorpej 		/*
    505  1.110   thorpej 		 * We have a memory cluster available for system
    506  1.110   thorpej 		 * software use.  We must determine if this cluster
    507  1.110   thorpej 		 * holds the kernel.
    508  1.110   thorpej 		 */
    509  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    510  1.110   thorpej 		/*
    511  1.110   thorpej 		 * XXX If the kernel uses the PROM console, we only use the
    512  1.110   thorpej 		 * XXX memory after the kernel in the first system segment,
    513  1.110   thorpej 		 * XXX to avoid clobbering prom mapping, data, etc.
    514  1.110   thorpej 		 */
    515  1.110   thorpej 	    if (!pmap_uses_prom_console() || physmem == 0) {
    516  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    517  1.110   thorpej 		physmem += memc->mddt_pg_cnt;
    518  1.110   thorpej 		pfn0 = memc->mddt_pfn;
    519  1.110   thorpej 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    520  1.110   thorpej 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    521  1.110   thorpej 			/*
    522  1.110   thorpej 			 * Must compute the location of the kernel
    523  1.110   thorpej 			 * within the segment.
    524  1.110   thorpej 			 */
    525  1.110   thorpej #if 0
    526  1.110   thorpej 			printf("Cluster %d contains kernel\n", i);
    527  1.110   thorpej #endif
    528  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    529  1.110   thorpej 		    if (!pmap_uses_prom_console()) {
    530  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    531  1.110   thorpej 			if (pfn0 < kernstartpfn) {
    532  1.110   thorpej 				/*
    533  1.110   thorpej 				 * There is a chunk before the kernel.
    534  1.110   thorpej 				 */
    535  1.110   thorpej #if 0
    536  1.110   thorpej 				printf("Loading chunk before kernel: "
    537  1.110   thorpej 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    538  1.110   thorpej #endif
    539  1.112   thorpej 				uvm_page_physload(pfn0, kernstartpfn,
    540  1.135   thorpej 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    541  1.110   thorpej 			}
    542  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    543  1.110   thorpej 		    }
    544  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    545  1.110   thorpej 			if (kernendpfn < pfn1) {
    546  1.110   thorpej 				/*
    547  1.110   thorpej 				 * There is a chunk after the kernel.
    548  1.110   thorpej 				 */
    549  1.110   thorpej #if 0
    550  1.110   thorpej 				printf("Loading chunk after kernel: "
    551  1.110   thorpej 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    552  1.110   thorpej #endif
    553  1.112   thorpej 				uvm_page_physload(kernendpfn, pfn1,
    554  1.135   thorpej 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    555  1.110   thorpej 			}
    556  1.110   thorpej 		} else {
    557  1.110   thorpej 			/*
    558  1.110   thorpej 			 * Just load this cluster as one chunk.
    559  1.110   thorpej 			 */
    560  1.110   thorpej #if 0
    561  1.110   thorpej 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    562  1.110   thorpej 			    pfn0, pfn1);
    563  1.110   thorpej #endif
    564  1.135   thorpej 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    565  1.135   thorpej 			    VM_FREELIST_DEFAULT);
    566    1.7       cgd 		}
    567  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    568  1.110   thorpej 	    }
    569  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    570    1.7       cgd 	}
    571    1.7       cgd 
    572  1.110   thorpej 	/*
    573  1.110   thorpej 	 * Dump out the MDDT if it looks odd...
    574  1.110   thorpej 	 */
    575    1.7       cgd 	if (mddtweird) {
    576   1.46  christos 		printf("\n");
    577   1.46  christos 		printf("complete memory cluster information:\n");
    578    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    579   1.46  christos 			printf("mddt %d:\n", i);
    580   1.46  christos 			printf("\tpfn %lx\n",
    581    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    582   1.46  christos 			printf("\tcnt %lx\n",
    583    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    584   1.46  christos 			printf("\ttest %lx\n",
    585    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    586   1.46  christos 			printf("\tbva %lx\n",
    587    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    588   1.46  christos 			printf("\tbpa %lx\n",
    589    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    590   1.46  christos 			printf("\tbcksum %lx\n",
    591    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    592   1.46  christos 			printf("\tusage %lx\n",
    593    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    594    1.2       cgd 		}
    595   1.46  christos 		printf("\n");
    596    1.2       cgd 	}
    597    1.2       cgd 
    598    1.7       cgd 	if (totalphysmem == 0)
    599    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    600    1.1       cgd 	maxmem = physmem;
    601    1.7       cgd #if 0
    602   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    603   1.46  christos 	printf("physmem = %d\n", physmem);
    604   1.46  christos 	printf("resvmem = %d\n", resvmem);
    605   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    606   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    607    1.7       cgd #endif
    608    1.7       cgd 
    609    1.1       cgd 	/*
    610    1.1       cgd 	 * Initialize error message buffer (at end of core).
    611    1.1       cgd 	 */
    612  1.110   thorpej 	{
    613  1.204     enami 		vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
    614  1.203     enami 		vsize_t reqsz = sz;
    615  1.110   thorpej 
    616  1.110   thorpej 		vps = &vm_physmem[vm_nphysseg - 1];
    617  1.110   thorpej 
    618  1.110   thorpej 		/* shrink so that it'll fit in the last segment */
    619  1.110   thorpej 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    620  1.110   thorpej 			sz = ptoa(vps->avail_end - vps->avail_start);
    621  1.110   thorpej 
    622  1.110   thorpej 		vps->end -= atop(sz);
    623  1.110   thorpej 		vps->avail_end -= atop(sz);
    624  1.110   thorpej 		msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    625  1.110   thorpej 		initmsgbuf(msgbufaddr, sz);
    626  1.110   thorpej 
    627  1.110   thorpej 		/* Remove the last segment if it now has no pages. */
    628  1.110   thorpej 		if (vps->start == vps->end)
    629  1.110   thorpej 			vm_nphysseg--;
    630  1.110   thorpej 
    631  1.110   thorpej 		/* warn if the message buffer had to be shrunk */
    632  1.203     enami 		if (sz != reqsz)
    633  1.203     enami 			printf("WARNING: %ld bytes not available for msgbuf "
    634  1.203     enami 			    "in last cluster (%ld used)\n", reqsz, sz);
    635  1.110   thorpej 
    636  1.110   thorpej 	}
    637  1.239   thorpej 
    638  1.239   thorpej 	/*
    639  1.239   thorpej 	 * NOTE: It is safe to use uvm_pageboot_alloc() before
    640  1.239   thorpej 	 * pmap_bootstrap() because our pmap_virtual_space()
    641  1.239   thorpej 	 * returns compile-time constants.
    642  1.239   thorpej 	 */
    643    1.1       cgd 
    644    1.1       cgd 	/*
    645   1.95   thorpej 	 * Init mapping for u page(s) for proc 0
    646    1.1       cgd 	 */
    647  1.261   thorpej 	lwp0.l_addr = proc0paddr =
    648  1.238   thorpej 	    (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
    649    1.1       cgd 
    650    1.1       cgd 	/*
    651   1.95   thorpej 	 * Allocate space for system data structures.  These data structures
    652   1.95   thorpej 	 * are allocated here instead of cpu_startup() because physical
    653   1.95   thorpej 	 * memory is directly addressable.  We don't have to map these into
    654   1.95   thorpej 	 * virtual address space.
    655   1.95   thorpej 	 */
    656  1.198   thorpej 	size = (vsize_t)allocsys(NULL, NULL);
    657  1.238   thorpej 	v = (caddr_t)uvm_pageboot_alloc(size);
    658  1.198   thorpej 	if ((allocsys(v, NULL) - v) != size)
    659   1.95   thorpej 		panic("alpha_init: table size inconsistency");
    660    1.1       cgd 
    661    1.1       cgd 	/*
    662    1.1       cgd 	 * Initialize the virtual memory system, and set the
    663    1.1       cgd 	 * page table base register in proc 0's PCB.
    664    1.1       cgd 	 */
    665  1.110   thorpej 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    666  1.144   thorpej 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    667    1.1       cgd 
    668    1.1       cgd 	/*
    669    1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    670    1.3       cgd 	 * address.
    671    1.3       cgd 	 */
    672  1.261   thorpej 	lwp0.l_md.md_pcbpaddr =
    673  1.140   thorpej 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
    674    1.3       cgd 
    675    1.3       cgd 	/*
    676    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    677    1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    678    1.3       cgd 	 */
    679   1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    680    1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    681  1.261   thorpej 	lwp0.l_md.md_tf =
    682   1.81   thorpej 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    683  1.235   thorpej 	simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
    684  1.189   thorpej 
    685  1.189   thorpej 	/*
    686  1.208   thorpej 	 * Initialize the primary CPU's idle PCB to proc0's.  In a
    687  1.208   thorpej 	 * MULTIPROCESSOR configuration, each CPU will later get
    688  1.208   thorpej 	 * its own idle PCB when autoconfiguration runs.
    689  1.189   thorpej 	 */
    690  1.211   thorpej 	ci->ci_idle_pcb = &proc0paddr->u_pcb;
    691  1.261   thorpej 	ci->ci_idle_pcb_paddr = (u_long)lwp0.l_md.md_pcbpaddr;
    692  1.208   thorpej 
    693  1.208   thorpej 	/* Indicate that proc0 has a CPU. */
    694  1.261   thorpej 	lwp0.l_cpu = ci;
    695    1.1       cgd 
    696    1.1       cgd 	/*
    697   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    698    1.8       cgd 	 */
    699    1.1       cgd 
    700    1.8       cgd 	boothowto = RB_SINGLE;
    701    1.1       cgd #ifdef KADB
    702    1.1       cgd 	boothowto |= RB_KDB;
    703    1.1       cgd #endif
    704  1.102       cgd 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    705   1.26       cgd 		/*
    706   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    707   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    708   1.26       cgd 		 * says that we shouldn't.
    709   1.26       cgd 		 */
    710    1.8       cgd 		switch (*p) {
    711   1.26       cgd 		case 'a': /* autoboot */
    712   1.26       cgd 		case 'A':
    713   1.26       cgd 			boothowto &= ~RB_SINGLE;
    714   1.21       cgd 			break;
    715   1.21       cgd 
    716   1.43       cgd #ifdef DEBUG
    717   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    718   1.43       cgd 		case 'C':
    719   1.43       cgd 			boothowto |= RB_DUMP;
    720   1.43       cgd 			break;
    721   1.43       cgd #endif
    722   1.43       cgd 
    723   1.81   thorpej #if defined(KGDB) || defined(DDB)
    724   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    725   1.81   thorpej 		case 'D':
    726   1.81   thorpej 			boothowto |= RB_KDB;
    727   1.81   thorpej 			break;
    728   1.81   thorpej #endif
    729   1.81   thorpej 
    730   1.36       cgd 		case 'h': /* always halt, never reboot */
    731   1.36       cgd 		case 'H':
    732   1.36       cgd 			boothowto |= RB_HALT;
    733    1.8       cgd 			break;
    734    1.8       cgd 
    735   1.21       cgd #if 0
    736    1.8       cgd 		case 'm': /* mini root present in memory */
    737   1.26       cgd 		case 'M':
    738    1.8       cgd 			boothowto |= RB_MINIROOT;
    739    1.8       cgd 			break;
    740   1.21       cgd #endif
    741   1.36       cgd 
    742   1.36       cgd 		case 'n': /* askname */
    743   1.36       cgd 		case 'N':
    744   1.36       cgd 			boothowto |= RB_ASKNAME;
    745   1.65       cgd 			break;
    746   1.65       cgd 
    747   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    748   1.65       cgd 		case 'S':
    749   1.65       cgd 			boothowto |= RB_SINGLE;
    750  1.221  jdolecek 			break;
    751  1.221  jdolecek 
    752  1.221  jdolecek 		case 'q': /* quiet boot */
    753  1.221  jdolecek 		case 'Q':
    754  1.221  jdolecek 			boothowto |= AB_QUIET;
    755  1.221  jdolecek 			break;
    756  1.221  jdolecek 
    757  1.221  jdolecek 		case 'v': /* verbose boot */
    758  1.221  jdolecek 		case 'V':
    759  1.221  jdolecek 			boothowto |= AB_VERBOSE;
    760  1.119   thorpej 			break;
    761  1.119   thorpej 
    762  1.119   thorpej 		case '-':
    763  1.119   thorpej 			/*
    764  1.119   thorpej 			 * Just ignore this.  It's not required, but it's
    765  1.119   thorpej 			 * common for it to be passed regardless.
    766  1.119   thorpej 			 */
    767   1.65       cgd 			break;
    768   1.65       cgd 
    769   1.65       cgd 		default:
    770   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    771   1.36       cgd 			break;
    772    1.1       cgd 		}
    773    1.1       cgd 	}
    774    1.1       cgd 
    775  1.136    mjacob 
    776  1.136    mjacob 	/*
    777  1.136    mjacob 	 * Figure out the number of cpus in the box, from RPB fields.
    778  1.136    mjacob 	 * Really.  We mean it.
    779  1.136    mjacob 	 */
    780  1.136    mjacob 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    781  1.136    mjacob 		struct pcs *pcsp;
    782  1.136    mjacob 
    783  1.144   thorpej 		pcsp = LOCATE_PCS(hwrpb, i);
    784  1.136    mjacob 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    785  1.136    mjacob 			ncpus++;
    786  1.136    mjacob 	}
    787  1.136    mjacob 
    788    1.7       cgd 	/*
    789  1.106       cgd 	 * Initialize debuggers, and break into them if appropriate.
    790  1.106       cgd 	 */
    791  1.106       cgd #ifdef DDB
    792  1.159    mjacob 	ddb_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    793  1.159    mjacob 	    ksym_start, ksym_end);
    794  1.234   thorpej #endif
    795  1.234   thorpej 
    796  1.234   thorpej 	if (boothowto & RB_KDB) {
    797  1.234   thorpej #if defined(KGDB)
    798  1.234   thorpej 		kgdb_debug_init = 1;
    799  1.234   thorpej 		kgdb_connect(1);
    800  1.234   thorpej #elif defined(DDB)
    801  1.106       cgd 		Debugger();
    802  1.106       cgd #endif
    803  1.234   thorpej 	}
    804  1.234   thorpej 
    805  1.106       cgd 	/*
    806  1.106       cgd 	 * Figure out our clock frequency, from RPB fields.
    807  1.106       cgd 	 */
    808  1.106       cgd 	hz = hwrpb->rpb_intr_freq >> 12;
    809  1.106       cgd 	if (!(60 <= hz && hz <= 10240)) {
    810  1.106       cgd 		hz = 1024;
    811  1.106       cgd #ifdef DIAGNOSTIC
    812  1.106       cgd 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    813  1.106       cgd 			hwrpb->rpb_intr_freq, hz);
    814  1.106       cgd #endif
    815  1.106       cgd 	}
    816   1.95   thorpej }
    817   1.95   thorpej 
    818   1.18       cgd void
    819    1.1       cgd consinit()
    820    1.1       cgd {
    821   1.81   thorpej 
    822  1.106       cgd 	/*
    823  1.106       cgd 	 * Everything related to console initialization is done
    824  1.106       cgd 	 * in alpha_init().
    825  1.106       cgd 	 */
    826  1.106       cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    827  1.106       cgd 	printf("consinit: %susing prom console\n",
    828  1.106       cgd 	    pmap_uses_prom_console() ? "" : "not ");
    829   1.81   thorpej #endif
    830    1.1       cgd }
    831  1.118   thorpej 
    832  1.118   thorpej #include "pckbc.h"
    833  1.118   thorpej #include "pckbd.h"
    834  1.118   thorpej #if (NPCKBC > 0) && (NPCKBD == 0)
    835  1.118   thorpej 
    836  1.187   thorpej #include <dev/ic/pckbcvar.h>
    837  1.118   thorpej 
    838  1.118   thorpej /*
    839  1.118   thorpej  * This is called by the pbkbc driver if no pckbd is configured.
    840  1.118   thorpej  * On the i386, it is used to glue in the old, deprecated console
    841  1.118   thorpej  * code.  On the Alpha, it does nothing.
    842  1.118   thorpej  */
    843  1.118   thorpej int
    844  1.118   thorpej pckbc_machdep_cnattach(kbctag, kbcslot)
    845  1.118   thorpej 	pckbc_tag_t kbctag;
    846  1.118   thorpej 	pckbc_slot_t kbcslot;
    847  1.118   thorpej {
    848  1.118   thorpej 
    849  1.118   thorpej 	return (ENXIO);
    850  1.118   thorpej }
    851  1.118   thorpej #endif /* NPCKBC > 0 && NPCKBD == 0 */
    852    1.1       cgd 
    853   1.18       cgd void
    854    1.1       cgd cpu_startup()
    855    1.1       cgd {
    856  1.257   thorpej 	u_int i, base, residual;
    857  1.140   thorpej 	vaddr_t minaddr, maxaddr;
    858  1.140   thorpej 	vsize_t size;
    859  1.173     lukem 	char pbuf[9];
    860   1.40       cgd #if defined(DEBUG)
    861    1.1       cgd 	extern int pmapdebug;
    862    1.1       cgd 	int opmapdebug = pmapdebug;
    863    1.1       cgd 
    864    1.1       cgd 	pmapdebug = 0;
    865    1.1       cgd #endif
    866    1.1       cgd 
    867    1.1       cgd 	/*
    868    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    869    1.1       cgd 	 */
    870   1.46  christos 	printf(version);
    871    1.1       cgd 	identifycpu();
    872  1.185   thorpej 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
    873  1.173     lukem 	printf("total memory = %s\n", pbuf);
    874  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    875  1.173     lukem 	printf("(%s reserved for PROM, ", pbuf);
    876  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    877  1.173     lukem 	printf("%s used by NetBSD)\n", pbuf);
    878  1.173     lukem 	if (unusedmem) {
    879  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
    880  1.173     lukem 		printf("WARNING: unused memory = %s\n", pbuf);
    881  1.173     lukem 	}
    882  1.173     lukem 	if (unknownmem) {
    883  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
    884  1.173     lukem 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    885  1.173     lukem 	}
    886    1.1       cgd 
    887    1.1       cgd 	/*
    888    1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    889    1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    890    1.1       cgd 	 * and usually occupy more virtual memory than physical.
    891    1.1       cgd 	 */
    892    1.1       cgd 	size = MAXBSIZE * nbuf;
    893  1.140   thorpej 	if (uvm_map(kernel_map, (vaddr_t *) &buffers, round_page(size),
    894  1.220   thorpej 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    895  1.112   thorpej 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
    896  1.231       chs 				UVM_ADV_NORMAL, 0)) != 0)
    897  1.112   thorpej 		panic("startup: cannot allocate VM for buffers");
    898    1.1       cgd 	base = bufpages / nbuf;
    899    1.1       cgd 	residual = bufpages % nbuf;
    900    1.1       cgd 	for (i = 0; i < nbuf; i++) {
    901  1.140   thorpej 		vsize_t curbufsize;
    902  1.140   thorpej 		vaddr_t curbuf;
    903  1.112   thorpej 		struct vm_page *pg;
    904  1.112   thorpej 
    905  1.112   thorpej 		/*
    906  1.112   thorpej 		 * Each buffer has MAXBSIZE bytes of VM space allocated.  Of
    907  1.112   thorpej 		 * that MAXBSIZE space, we allocate and map (base+1) pages
    908  1.112   thorpej 		 * for the first "residual" buffers, and then we allocate
    909  1.112   thorpej 		 * "base" pages for the rest.
    910  1.112   thorpej 		 */
    911  1.140   thorpej 		curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
    912  1.262   thorpej 		curbufsize = PAGE_SIZE * ((i < residual) ? (base+1) : base);
    913  1.112   thorpej 
    914  1.112   thorpej 		while (curbufsize) {
    915  1.168       chs 			pg = uvm_pagealloc(NULL, 0, NULL, 0);
    916  1.112   thorpej 			if (pg == NULL)
    917  1.112   thorpej 				panic("cpu_startup: not enough memory for "
    918  1.112   thorpej 				    "buffer cache");
    919  1.182       chs 			pmap_kenter_pa(curbuf, VM_PAGE_TO_PHYS(pg),
    920  1.182       chs 					VM_PROT_READ|VM_PROT_WRITE);
    921  1.112   thorpej 			curbuf += PAGE_SIZE;
    922  1.112   thorpej 			curbufsize -= PAGE_SIZE;
    923  1.112   thorpej 		}
    924    1.1       cgd 	}
    925  1.249     chris 	pmap_update(pmap_kernel());
    926  1.240   thorpej 
    927    1.1       cgd 	/*
    928    1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    929    1.1       cgd 	 * limits the number of processes exec'ing at any time.
    930    1.1       cgd 	 */
    931  1.112   thorpej 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    932  1.175   thorpej 				   16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
    933    1.1       cgd 
    934    1.1       cgd 	/*
    935    1.1       cgd 	 * Allocate a submap for physio
    936    1.1       cgd 	 */
    937  1.112   thorpej 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    938  1.175   thorpej 				   VM_PHYS_SIZE, 0, FALSE, NULL);
    939    1.1       cgd 
    940    1.1       cgd 	/*
    941  1.164   thorpej 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    942  1.164   thorpej 	 * are allocated via the pool allocator, and we use K0SEG to
    943  1.164   thorpej 	 * map those pages.
    944    1.1       cgd 	 */
    945    1.1       cgd 
    946   1.40       cgd #if defined(DEBUG)
    947    1.1       cgd 	pmapdebug = opmapdebug;
    948    1.1       cgd #endif
    949  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
    950  1.173     lukem 	printf("avail memory = %s\n", pbuf);
    951  1.139   thorpej #if 0
    952  1.139   thorpej 	{
    953  1.139   thorpej 		extern u_long pmap_pages_stolen;
    954  1.173     lukem 
    955  1.173     lukem 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
    956  1.173     lukem 		printf("stolen memory for VM structures = %s\n", pbuf);
    957  1.139   thorpej 	}
    958  1.112   thorpej #endif
    959  1.262   thorpej 	format_bytes(pbuf, sizeof(pbuf), bufpages * PAGE_SIZE);
    960  1.257   thorpej 	printf("using %u buffers containing %s of memory\n", nbuf, pbuf);
    961    1.1       cgd 
    962    1.1       cgd 	/*
    963    1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
    964    1.1       cgd 	 */
    965    1.1       cgd 	bufinit();
    966  1.151   thorpej 
    967  1.151   thorpej 	/*
    968  1.151   thorpej 	 * Set up the HWPCB so that it's safe to configure secondary
    969  1.151   thorpej 	 * CPUs.
    970  1.151   thorpej 	 */
    971  1.151   thorpej 	hwrpb_primary_init();
    972  1.104   thorpej }
    973  1.104   thorpej 
    974  1.104   thorpej /*
    975  1.104   thorpej  * Retrieve the platform name from the DSR.
    976  1.104   thorpej  */
    977  1.104   thorpej const char *
    978  1.104   thorpej alpha_dsr_sysname()
    979  1.104   thorpej {
    980  1.104   thorpej 	struct dsrdb *dsr;
    981  1.104   thorpej 	const char *sysname;
    982  1.104   thorpej 
    983  1.104   thorpej 	/*
    984  1.104   thorpej 	 * DSR does not exist on early HWRPB versions.
    985  1.104   thorpej 	 */
    986  1.104   thorpej 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
    987  1.104   thorpej 		return (NULL);
    988  1.104   thorpej 
    989  1.104   thorpej 	dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
    990  1.104   thorpej 	sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
    991  1.104   thorpej 	    sizeof(u_int64_t)));
    992  1.104   thorpej 	return (sysname);
    993  1.104   thorpej }
    994  1.104   thorpej 
    995  1.104   thorpej /*
    996  1.104   thorpej  * Lookup the system specified system variation in the provided table,
    997  1.104   thorpej  * returning the model string on match.
    998  1.104   thorpej  */
    999  1.104   thorpej const char *
   1000  1.104   thorpej alpha_variation_name(variation, avtp)
   1001  1.104   thorpej 	u_int64_t variation;
   1002  1.104   thorpej 	const struct alpha_variation_table *avtp;
   1003  1.104   thorpej {
   1004  1.104   thorpej 	int i;
   1005  1.104   thorpej 
   1006  1.104   thorpej 	for (i = 0; avtp[i].avt_model != NULL; i++)
   1007  1.104   thorpej 		if (avtp[i].avt_variation == variation)
   1008  1.104   thorpej 			return (avtp[i].avt_model);
   1009  1.104   thorpej 	return (NULL);
   1010  1.104   thorpej }
   1011  1.104   thorpej 
   1012  1.104   thorpej /*
   1013  1.104   thorpej  * Generate a default platform name based for unknown system variations.
   1014  1.104   thorpej  */
   1015  1.104   thorpej const char *
   1016  1.104   thorpej alpha_unknown_sysname()
   1017  1.104   thorpej {
   1018  1.105   thorpej 	static char s[128];		/* safe size */
   1019  1.104   thorpej 
   1020  1.105   thorpej 	sprintf(s, "%s family, unknown model variation 0x%lx",
   1021  1.105   thorpej 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
   1022  1.104   thorpej 	return ((const char *)s);
   1023    1.1       cgd }
   1024    1.1       cgd 
   1025   1.33       cgd void
   1026    1.1       cgd identifycpu()
   1027    1.1       cgd {
   1028  1.177      ross 	char *s;
   1029  1.218   thorpej 	int i;
   1030    1.1       cgd 
   1031    1.7       cgd 	/*
   1032    1.7       cgd 	 * print out CPU identification information.
   1033    1.7       cgd 	 */
   1034  1.177      ross 	printf("%s", cpu_model);
   1035  1.177      ross 	for(s = cpu_model; *s; ++s)
   1036  1.177      ross 		if(strncasecmp(s, "MHz", 3) == 0)
   1037  1.177      ross 			goto skipMHz;
   1038  1.177      ross 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
   1039  1.177      ross skipMHz:
   1040  1.218   thorpej 	printf(", s/n ");
   1041  1.218   thorpej 	for (i = 0; i < 10; i++)
   1042  1.218   thorpej 		printf("%c", hwrpb->rpb_ssn[i]);
   1043  1.177      ross 	printf("\n");
   1044   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
   1045    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
   1046    1.7       cgd #if 0
   1047    1.7       cgd 	/* this isn't defined for any systems that we run on? */
   1048   1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
   1049    1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
   1050    1.7       cgd 
   1051    1.7       cgd 	/* and these aren't particularly useful! */
   1052   1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
   1053    1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
   1054    1.7       cgd #endif
   1055    1.1       cgd }
   1056    1.1       cgd 
   1057    1.1       cgd int	waittime = -1;
   1058    1.7       cgd struct pcb dumppcb;
   1059    1.1       cgd 
   1060   1.18       cgd void
   1061   1.68       gwr cpu_reboot(howto, bootstr)
   1062    1.1       cgd 	int howto;
   1063   1.39       mrg 	char *bootstr;
   1064    1.1       cgd {
   1065  1.148   thorpej #if defined(MULTIPROCESSOR)
   1066  1.225   thorpej 	u_long cpu_id = cpu_number();
   1067  1.225   thorpej 	u_long wait_mask = (1UL << cpu_id) |
   1068  1.225   thorpej 			   (1UL << hwrpb->rpb_primary_cpu_id);
   1069  1.225   thorpej 	int i;
   1070  1.148   thorpej #endif
   1071  1.148   thorpej 
   1072  1.225   thorpej 	/* If "always halt" was specified as a boot flag, obey. */
   1073  1.225   thorpej 	if ((boothowto & RB_HALT) != 0)
   1074  1.225   thorpej 		howto |= RB_HALT;
   1075  1.225   thorpej 
   1076  1.225   thorpej 	boothowto = howto;
   1077    1.1       cgd 
   1078    1.1       cgd 	/* If system is cold, just halt. */
   1079    1.1       cgd 	if (cold) {
   1080  1.225   thorpej 		boothowto |= RB_HALT;
   1081    1.1       cgd 		goto haltsys;
   1082    1.1       cgd 	}
   1083    1.1       cgd 
   1084  1.225   thorpej 	if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
   1085    1.1       cgd 		waittime = 0;
   1086    1.7       cgd 		vfs_shutdown();
   1087    1.1       cgd 		/*
   1088    1.1       cgd 		 * If we've been adjusting the clock, the todr
   1089    1.1       cgd 		 * will be out of synch; adjust it now.
   1090    1.1       cgd 		 */
   1091    1.1       cgd 		resettodr();
   1092    1.1       cgd 	}
   1093    1.1       cgd 
   1094    1.1       cgd 	/* Disable interrupts. */
   1095    1.1       cgd 	splhigh();
   1096    1.1       cgd 
   1097  1.225   thorpej #if defined(MULTIPROCESSOR)
   1098  1.225   thorpej 	/*
   1099  1.225   thorpej 	 * Halt all other CPUs.  If we're not the primary, the
   1100  1.225   thorpej 	 * primary will spin, waiting for us to halt.
   1101  1.225   thorpej 	 */
   1102  1.225   thorpej 	alpha_broadcast_ipi(ALPHA_IPI_HALT);
   1103  1.225   thorpej 
   1104  1.225   thorpej 	for (i = 0; i < 10000; i++) {
   1105  1.225   thorpej 		alpha_mb();
   1106  1.225   thorpej 		if (cpus_running == wait_mask)
   1107  1.225   thorpej 			break;
   1108  1.225   thorpej 		delay(1000);
   1109  1.225   thorpej 	}
   1110  1.225   thorpej 	alpha_mb();
   1111  1.225   thorpej 	if (cpus_running != wait_mask)
   1112  1.225   thorpej 		printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
   1113  1.225   thorpej 		    cpus_running);
   1114  1.225   thorpej #endif /* MULTIPROCESSOR */
   1115  1.225   thorpej 
   1116    1.7       cgd 	/* If rebooting and a dump is requested do it. */
   1117   1.42       cgd #if 0
   1118  1.225   thorpej 	if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1119   1.42       cgd #else
   1120  1.225   thorpej 	if (boothowto & RB_DUMP)
   1121   1.42       cgd #endif
   1122    1.1       cgd 		dumpsys();
   1123    1.6       cgd 
   1124   1.12       cgd haltsys:
   1125   1.12       cgd 
   1126    1.6       cgd 	/* run any shutdown hooks */
   1127    1.6       cgd 	doshutdownhooks();
   1128  1.148   thorpej 
   1129    1.7       cgd #ifdef BOOTKEY
   1130   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1131  1.117  drochner 	cnpollc(1);	/* for proper keyboard command handling */
   1132    1.7       cgd 	cngetc();
   1133  1.117  drochner 	cnpollc(0);
   1134   1.46  christos 	printf("\n");
   1135    1.7       cgd #endif
   1136    1.7       cgd 
   1137  1.124   thorpej 	/* Finally, powerdown/halt/reboot the system. */
   1138  1.225   thorpej 	if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
   1139  1.124   thorpej 	    platform.powerdown != NULL) {
   1140  1.124   thorpej 		(*platform.powerdown)();
   1141  1.124   thorpej 		printf("WARNING: powerdown failed!\n");
   1142  1.124   thorpej 	}
   1143  1.225   thorpej 	printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
   1144  1.225   thorpej #if defined(MULTIPROCESSOR)
   1145  1.225   thorpej 	if (cpu_id != hwrpb->rpb_primary_cpu_id)
   1146  1.225   thorpej 		cpu_halt();
   1147  1.225   thorpej 	else
   1148  1.225   thorpej #endif
   1149  1.225   thorpej 		prom_halt(boothowto & RB_HALT);
   1150    1.1       cgd 	/*NOTREACHED*/
   1151    1.1       cgd }
   1152    1.1       cgd 
   1153    1.7       cgd /*
   1154    1.7       cgd  * These variables are needed by /sbin/savecore
   1155    1.7       cgd  */
   1156  1.253   tsutsui u_int32_t dumpmag = 0x8fca0101;	/* magic number */
   1157    1.7       cgd int 	dumpsize = 0;		/* pages */
   1158    1.7       cgd long	dumplo = 0; 		/* blocks */
   1159    1.7       cgd 
   1160    1.7       cgd /*
   1161   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1162   1.43       cgd  */
   1163   1.43       cgd int
   1164   1.43       cgd cpu_dumpsize()
   1165   1.43       cgd {
   1166   1.43       cgd 	int size;
   1167   1.43       cgd 
   1168  1.108       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1169  1.110   thorpej 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1170   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
   1171   1.43       cgd 		return -1;
   1172   1.43       cgd 
   1173   1.43       cgd 	return (1);
   1174   1.43       cgd }
   1175   1.43       cgd 
   1176   1.43       cgd /*
   1177  1.110   thorpej  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1178  1.110   thorpej  */
   1179  1.110   thorpej u_long
   1180  1.110   thorpej cpu_dump_mempagecnt()
   1181  1.110   thorpej {
   1182  1.110   thorpej 	u_long i, n;
   1183  1.110   thorpej 
   1184  1.110   thorpej 	n = 0;
   1185  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++)
   1186  1.110   thorpej 		n += atop(mem_clusters[i].size);
   1187  1.110   thorpej 	return (n);
   1188  1.110   thorpej }
   1189  1.110   thorpej 
   1190  1.110   thorpej /*
   1191   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
   1192   1.43       cgd  */
   1193   1.43       cgd int
   1194   1.43       cgd cpu_dump()
   1195   1.43       cgd {
   1196   1.43       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1197  1.107       cgd 	char buf[dbtob(1)];
   1198  1.107       cgd 	kcore_seg_t *segp;
   1199  1.107       cgd 	cpu_kcore_hdr_t *cpuhdrp;
   1200  1.107       cgd 	phys_ram_seg_t *memsegp;
   1201  1.258   gehenna 	const struct bdevsw *bdev;
   1202  1.110   thorpej 	int i;
   1203   1.43       cgd 
   1204  1.258   gehenna 	bdev = bdevsw_lookup(dumpdev);
   1205  1.258   gehenna 	if (bdev == NULL)
   1206  1.258   gehenna 		return (ENXIO);
   1207  1.258   gehenna 	dump = bdev->d_dump;
   1208   1.43       cgd 
   1209  1.246   thorpej 	memset(buf, 0, sizeof buf);
   1210   1.43       cgd 	segp = (kcore_seg_t *)buf;
   1211  1.107       cgd 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1212  1.107       cgd 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1213  1.107       cgd 	    ALIGN(sizeof(*cpuhdrp))];
   1214   1.43       cgd 
   1215   1.43       cgd 	/*
   1216   1.43       cgd 	 * Generate a segment header.
   1217   1.43       cgd 	 */
   1218   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1219   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1220   1.43       cgd 
   1221   1.43       cgd 	/*
   1222  1.107       cgd 	 * Add the machine-dependent header info.
   1223   1.43       cgd 	 */
   1224  1.140   thorpej 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1225   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
   1226  1.110   thorpej 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1227  1.107       cgd 
   1228  1.107       cgd 	/*
   1229  1.107       cgd 	 * Fill in the memory segment descriptors.
   1230  1.107       cgd 	 */
   1231  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1232  1.110   thorpej 		memsegp[i].start = mem_clusters[i].start;
   1233  1.110   thorpej 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1234  1.110   thorpej 	}
   1235   1.43       cgd 
   1236   1.43       cgd 	return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
   1237   1.43       cgd }
   1238   1.43       cgd 
   1239   1.43       cgd /*
   1240   1.68       gwr  * This is called by main to set dumplo and dumpsize.
   1241  1.262   thorpej  * Dumps always skip the first PAGE_SIZE of disk space
   1242    1.7       cgd  * in case there might be a disk label stored there.
   1243    1.7       cgd  * If there is extra space, put dump at the end to
   1244    1.7       cgd  * reduce the chance that swapping trashes it.
   1245    1.7       cgd  */
   1246    1.7       cgd void
   1247   1.68       gwr cpu_dumpconf()
   1248    1.7       cgd {
   1249  1.258   gehenna 	const struct bdevsw *bdev;
   1250   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
   1251    1.7       cgd 
   1252    1.7       cgd 	if (dumpdev == NODEV)
   1253   1.43       cgd 		goto bad;
   1254  1.258   gehenna 	bdev = bdevsw_lookup(dumpdev);
   1255  1.258   gehenna 	if (bdev == NULL)
   1256    1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
   1257  1.258   gehenna 	if (bdev->d_psize == NULL)
   1258   1.43       cgd 		goto bad;
   1259  1.258   gehenna 	nblks = (*bdev->d_psize)(dumpdev);
   1260    1.7       cgd 	if (nblks <= ctod(1))
   1261   1.43       cgd 		goto bad;
   1262   1.43       cgd 
   1263   1.43       cgd 	dumpblks = cpu_dumpsize();
   1264   1.43       cgd 	if (dumpblks < 0)
   1265   1.43       cgd 		goto bad;
   1266  1.110   thorpej 	dumpblks += ctod(cpu_dump_mempagecnt());
   1267   1.43       cgd 
   1268   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1269   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1270   1.43       cgd 		goto bad;
   1271   1.43       cgd 
   1272   1.43       cgd 	/* Put dump at end of partition */
   1273   1.43       cgd 	dumplo = nblks - dumpblks;
   1274    1.7       cgd 
   1275   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1276  1.110   thorpej 	dumpsize = cpu_dump_mempagecnt();
   1277   1.43       cgd 	return;
   1278    1.7       cgd 
   1279   1.43       cgd bad:
   1280   1.43       cgd 	dumpsize = 0;
   1281   1.43       cgd 	return;
   1282    1.7       cgd }
   1283    1.7       cgd 
   1284    1.7       cgd /*
   1285   1.42       cgd  * Dump the kernel's image to the swap partition.
   1286    1.7       cgd  */
   1287  1.262   thorpej #define	BYTES_PER_DUMP	PAGE_SIZE
   1288   1.42       cgd 
   1289    1.7       cgd void
   1290    1.7       cgd dumpsys()
   1291    1.7       cgd {
   1292  1.258   gehenna 	const struct bdevsw *bdev;
   1293  1.110   thorpej 	u_long totalbytesleft, bytes, i, n, memcl;
   1294  1.110   thorpej 	u_long maddr;
   1295  1.110   thorpej 	int psize;
   1296   1.42       cgd 	daddr_t blkno;
   1297   1.42       cgd 	int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
   1298   1.42       cgd 	int error;
   1299   1.42       cgd 
   1300   1.42       cgd 	/* Save registers. */
   1301   1.42       cgd 	savectx(&dumppcb);
   1302    1.7       cgd 
   1303    1.7       cgd 	if (dumpdev == NODEV)
   1304    1.7       cgd 		return;
   1305  1.258   gehenna 	bdev = bdevsw_lookup(dumpdev);
   1306  1.258   gehenna 	if (bdev == NULL || bdev->d_psize == NULL)
   1307  1.258   gehenna 		return;
   1308   1.42       cgd 
   1309   1.42       cgd 	/*
   1310   1.42       cgd 	 * For dumps during autoconfiguration,
   1311   1.42       cgd 	 * if dump device has already configured...
   1312   1.42       cgd 	 */
   1313   1.42       cgd 	if (dumpsize == 0)
   1314   1.68       gwr 		cpu_dumpconf();
   1315   1.47       cgd 	if (dumplo <= 0) {
   1316   1.97   mycroft 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1317   1.97   mycroft 		    minor(dumpdev));
   1318   1.42       cgd 		return;
   1319   1.43       cgd 	}
   1320   1.97   mycroft 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1321   1.97   mycroft 	    minor(dumpdev), dumplo);
   1322    1.7       cgd 
   1323  1.258   gehenna 	psize = (*bdev->d_psize)(dumpdev);
   1324   1.46  christos 	printf("dump ");
   1325   1.42       cgd 	if (psize == -1) {
   1326   1.46  christos 		printf("area unavailable\n");
   1327   1.42       cgd 		return;
   1328   1.42       cgd 	}
   1329   1.42       cgd 
   1330   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1331   1.42       cgd 
   1332   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1333   1.43       cgd 		goto err;
   1334   1.43       cgd 
   1335  1.110   thorpej 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1336   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1337  1.258   gehenna 	dump = bdev->d_dump;
   1338   1.42       cgd 	error = 0;
   1339   1.42       cgd 
   1340  1.110   thorpej 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1341  1.110   thorpej 		maddr = mem_clusters[memcl].start;
   1342  1.110   thorpej 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1343  1.110   thorpej 
   1344  1.110   thorpej 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1345  1.110   thorpej 
   1346  1.110   thorpej 			/* Print out how many MBs we to go. */
   1347  1.110   thorpej 			if ((totalbytesleft % (1024*1024)) == 0)
   1348  1.160   thorpej 				printf("%ld ", totalbytesleft / (1024 * 1024));
   1349  1.110   thorpej 
   1350  1.110   thorpej 			/* Limit size for next transfer. */
   1351  1.110   thorpej 			n = bytes - i;
   1352  1.110   thorpej 			if (n > BYTES_PER_DUMP)
   1353  1.110   thorpej 				n =  BYTES_PER_DUMP;
   1354  1.110   thorpej 
   1355  1.110   thorpej 			error = (*dump)(dumpdev, blkno,
   1356  1.110   thorpej 			    (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1357  1.110   thorpej 			if (error)
   1358  1.110   thorpej 				goto err;
   1359  1.110   thorpej 			maddr += n;
   1360  1.110   thorpej 			blkno += btodb(n);			/* XXX? */
   1361   1.42       cgd 
   1362  1.110   thorpej 			/* XXX should look for keystrokes, to cancel. */
   1363  1.110   thorpej 		}
   1364   1.42       cgd 	}
   1365   1.42       cgd 
   1366   1.43       cgd err:
   1367   1.42       cgd 	switch (error) {
   1368    1.7       cgd 
   1369    1.7       cgd 	case ENXIO:
   1370   1.46  christos 		printf("device bad\n");
   1371    1.7       cgd 		break;
   1372    1.7       cgd 
   1373    1.7       cgd 	case EFAULT:
   1374   1.46  christos 		printf("device not ready\n");
   1375    1.7       cgd 		break;
   1376    1.7       cgd 
   1377    1.7       cgd 	case EINVAL:
   1378   1.46  christos 		printf("area improper\n");
   1379    1.7       cgd 		break;
   1380    1.7       cgd 
   1381    1.7       cgd 	case EIO:
   1382   1.46  christos 		printf("i/o error\n");
   1383    1.7       cgd 		break;
   1384    1.7       cgd 
   1385    1.7       cgd 	case EINTR:
   1386   1.46  christos 		printf("aborted from console\n");
   1387    1.7       cgd 		break;
   1388    1.7       cgd 
   1389   1.42       cgd 	case 0:
   1390   1.46  christos 		printf("succeeded\n");
   1391   1.42       cgd 		break;
   1392   1.42       cgd 
   1393    1.7       cgd 	default:
   1394   1.46  christos 		printf("error %d\n", error);
   1395    1.7       cgd 		break;
   1396    1.7       cgd 	}
   1397   1.46  christos 	printf("\n\n");
   1398    1.7       cgd 	delay(1000);
   1399    1.7       cgd }
   1400    1.7       cgd 
   1401    1.1       cgd void
   1402    1.1       cgd frametoreg(framep, regp)
   1403  1.261   thorpej 	const struct trapframe *framep;
   1404    1.1       cgd 	struct reg *regp;
   1405    1.1       cgd {
   1406    1.1       cgd 
   1407    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1408    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1409    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1410    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1411    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1412    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1413    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1414    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1415    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1416    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1417    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1418    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1419    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1420    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1421    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1422    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1423   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1424   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1425   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1426    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1427    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1428    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1429    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1430    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1431    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1432    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1433    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1434    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1435    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1436   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1437   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1438    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1439    1.1       cgd }
   1440    1.1       cgd 
   1441    1.1       cgd void
   1442    1.1       cgd regtoframe(regp, framep)
   1443  1.261   thorpej 	const struct reg *regp;
   1444    1.1       cgd 	struct trapframe *framep;
   1445    1.1       cgd {
   1446    1.1       cgd 
   1447    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1448    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1449    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1450    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1451    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1452    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1453    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1454    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1455    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1456    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1457    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1458    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1459    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1460    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1461    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1462    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1463   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1464   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1465   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1466    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1467    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1468    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1469    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1470    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1471    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1472    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1473    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1474    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1475    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1476   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1477   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1478    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1479    1.1       cgd }
   1480    1.1       cgd 
   1481    1.1       cgd void
   1482    1.1       cgd printregs(regp)
   1483    1.1       cgd 	struct reg *regp;
   1484    1.1       cgd {
   1485    1.1       cgd 	int i;
   1486    1.1       cgd 
   1487    1.1       cgd 	for (i = 0; i < 32; i++)
   1488   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1489    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1490    1.1       cgd }
   1491    1.1       cgd 
   1492    1.1       cgd void
   1493    1.1       cgd regdump(framep)
   1494    1.1       cgd 	struct trapframe *framep;
   1495    1.1       cgd {
   1496    1.1       cgd 	struct reg reg;
   1497    1.1       cgd 
   1498    1.1       cgd 	frametoreg(framep, &reg);
   1499   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1500   1.35       cgd 
   1501   1.46  christos 	printf("REGISTERS:\n");
   1502    1.1       cgd 	printregs(&reg);
   1503    1.1       cgd }
   1504    1.1       cgd 
   1505    1.1       cgd 
   1506    1.1       cgd /*
   1507    1.1       cgd  * Send an interrupt to process.
   1508    1.1       cgd  */
   1509    1.1       cgd void
   1510  1.256   thorpej sendsig(sig, mask, code)
   1511  1.141   thorpej 	int sig;
   1512  1.141   thorpej 	sigset_t *mask;
   1513    1.1       cgd 	u_long code;
   1514    1.1       cgd {
   1515  1.261   thorpej 	struct lwp *l = curlwp;
   1516  1.261   thorpej 	struct proc *p = l->l_proc;
   1517  1.256   thorpej 	struct sigacts *ps = p->p_sigacts;
   1518    1.1       cgd 	struct sigcontext *scp, ksc;
   1519    1.1       cgd 	struct trapframe *frame;
   1520  1.141   thorpej 	int onstack, fsize, rndfsize;
   1521  1.256   thorpej 	sig_t catcher = SIGACTION(p, sig).sa_handler;
   1522    1.1       cgd 
   1523  1.261   thorpej 	frame = l->l_md.md_tf;
   1524  1.141   thorpej 
   1525  1.141   thorpej 	/* Do we need to jump onto the signal stack? */
   1526  1.141   thorpej 	onstack =
   1527  1.228  jdolecek 	    (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1528  1.228  jdolecek 	    (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
   1529  1.141   thorpej 
   1530  1.141   thorpej 	/* Allocate space for the signal handler context. */
   1531  1.141   thorpej 	fsize = sizeof(ksc);
   1532    1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1533  1.141   thorpej 
   1534  1.141   thorpej 	if (onstack)
   1535  1.228  jdolecek 		scp = (struct sigcontext *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
   1536  1.228  jdolecek 					p->p_sigctx.ps_sigstk.ss_size);
   1537  1.141   thorpej 	else
   1538  1.142   mycroft 		scp = (struct sigcontext *)(alpha_pal_rdusp());
   1539  1.142   mycroft 	scp = (struct sigcontext *)((caddr_t)scp - rndfsize);
   1540  1.141   thorpej 
   1541    1.1       cgd #ifdef DEBUG
   1542    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1543   1.46  christos 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1544  1.141   thorpej 		    sig, &onstack, scp);
   1545  1.125      ross #endif
   1546    1.1       cgd 
   1547  1.141   thorpej 	/* Build stack frame for signal trampoline. */
   1548   1.34       cgd 	ksc.sc_pc = frame->tf_regs[FRAME_PC];
   1549   1.34       cgd 	ksc.sc_ps = frame->tf_regs[FRAME_PS];
   1550    1.1       cgd 
   1551  1.141   thorpej 	/* Save register context. */
   1552    1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1553    1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1554   1.35       cgd 	ksc.sc_regs[R_SP] = alpha_pal_rdusp();
   1555    1.1       cgd 
   1556  1.261   thorpej  	/* save the floating-point state, if necessary, then copy it. */
   1557  1.261   thorpej 	if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
   1558  1.261   thorpej 		fpusave_proc(l, 1);
   1559  1.261   thorpej 	ksc.sc_ownedfp = l->l_md.md_flags & MDP_FPUSED;
   1560  1.261   thorpej 	memcpy((struct fpreg *)ksc.sc_fpregs, &l->l_addr->u_pcb.pcb_fp,
   1561    1.1       cgd 	    sizeof(struct fpreg));
   1562  1.261   thorpej 	ksc.sc_fp_control = alpha_read_fp_c(l);
   1563  1.246   thorpej 	memset(ksc.sc_reserved, 0, sizeof ksc.sc_reserved);	/* XXX */
   1564  1.246   thorpej 	memset(ksc.sc_xxx, 0, sizeof ksc.sc_xxx);		/* XXX */
   1565    1.1       cgd 
   1566  1.141   thorpej 	/* Save signal stack. */
   1567  1.228  jdolecek 	ksc.sc_onstack = p->p_sigctx.ps_sigstk.ss_flags & SS_ONSTACK;
   1568  1.141   thorpej 
   1569  1.141   thorpej 	/* Save signal mask. */
   1570  1.141   thorpej 	ksc.sc_mask = *mask;
   1571  1.141   thorpej 
   1572  1.141   thorpej #ifdef COMPAT_13
   1573  1.141   thorpej 	/*
   1574  1.141   thorpej 	 * XXX We always have to save an old style signal mask because
   1575  1.141   thorpej 	 * XXX we might be delivering a signal to a process which will
   1576  1.141   thorpej 	 * XXX escape from the signal in a non-standard way and invoke
   1577  1.141   thorpej 	 * XXX sigreturn() directly.
   1578  1.141   thorpej 	 */
   1579  1.141   thorpej 	{
   1580  1.141   thorpej 		/* Note: it's a long in the stack frame. */
   1581  1.141   thorpej 		sigset13_t mask13;
   1582  1.141   thorpej 
   1583  1.141   thorpej 		native_sigset_to_sigset13(mask, &mask13);
   1584  1.141   thorpej 		ksc.__sc_mask13 = mask13;
   1585  1.141   thorpej 	}
   1586  1.141   thorpej #endif
   1587    1.1       cgd 
   1588    1.1       cgd #ifdef COMPAT_OSF1
   1589    1.1       cgd 	/*
   1590    1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1591    1.1       cgd 	 */
   1592    1.1       cgd #endif
   1593    1.1       cgd 
   1594  1.141   thorpej 	if (copyout(&ksc, (caddr_t)scp, fsize) != 0) {
   1595  1.141   thorpej 		/*
   1596  1.141   thorpej 		 * Process has trashed its stack; give it an illegal
   1597  1.141   thorpej 		 * instruction to halt it in its tracks.
   1598  1.141   thorpej 		 */
   1599  1.141   thorpej #ifdef DEBUG
   1600  1.141   thorpej 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1601  1.141   thorpej 			printf("sendsig(%d): copyout failed on sig %d\n",
   1602  1.141   thorpej 			    p->p_pid, sig);
   1603  1.141   thorpej #endif
   1604  1.261   thorpej 		sigexit(l, SIGILL);
   1605  1.141   thorpej 		/* NOTREACHED */
   1606  1.141   thorpej 	}
   1607    1.1       cgd #ifdef DEBUG
   1608    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1609   1.46  christos 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1610    1.1       cgd 		    scp, code);
   1611    1.1       cgd #endif
   1612    1.1       cgd 
   1613  1.256   thorpej 	/*
   1614  1.256   thorpej 	 * Set up the registers to directly invoke the signal handler.  The
   1615  1.256   thorpej 	 * signal trampoline is then used to return from the signal.  Note
   1616  1.256   thorpej 	 * the trampoline version numbers are coordinated with machine-
   1617  1.256   thorpej 	 * dependent code in libc.
   1618  1.256   thorpej 	 */
   1619  1.256   thorpej 	switch (ps->sa_sigdesc[sig].sd_vers) {
   1620  1.256   thorpej #if 1 /* COMPAT_16 */
   1621  1.256   thorpej 	case 0:		/* legacy on-stack sigtramp */
   1622  1.256   thorpej 		frame->tf_regs[FRAME_RA] = (u_int64_t)p->p_sigctx.ps_sigcode;
   1623  1.256   thorpej 		break;
   1624  1.256   thorpej #endif /* COMPAT_16 */
   1625  1.256   thorpej 
   1626  1.256   thorpej 	case 1:
   1627  1.256   thorpej 		frame->tf_regs[FRAME_RA] =
   1628  1.256   thorpej 		    (u_int64_t)ps->sa_sigdesc[sig].sd_tramp;
   1629  1.256   thorpej 		break;
   1630  1.256   thorpej 
   1631  1.256   thorpej 	default:
   1632  1.256   thorpej 		/* Don't know what trampoline version; kill it. */
   1633  1.261   thorpej 		sigexit(l, SIGILL);
   1634  1.256   thorpej 	}
   1635  1.255   thorpej 	frame->tf_regs[FRAME_PC] = (u_int64_t)catcher;
   1636   1.34       cgd 	frame->tf_regs[FRAME_A0] = sig;
   1637   1.34       cgd 	frame->tf_regs[FRAME_A1] = code;
   1638   1.34       cgd 	frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
   1639  1.256   thorpej 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;
   1640   1.35       cgd 	alpha_pal_wrusp((unsigned long)scp);
   1641  1.142   mycroft 
   1642  1.142   mycroft 	/* Remember that we're now on the signal stack. */
   1643  1.142   mycroft 	if (onstack)
   1644  1.228  jdolecek 		p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
   1645    1.1       cgd 
   1646    1.1       cgd #ifdef DEBUG
   1647    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1648   1.46  christos 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1649   1.34       cgd 		    frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
   1650    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1651   1.46  christos 		printf("sendsig(%d): sig %d returns\n",
   1652    1.1       cgd 		    p->p_pid, sig);
   1653    1.1       cgd #endif
   1654    1.1       cgd }
   1655    1.1       cgd 
   1656  1.261   thorpej 
   1657  1.261   thorpej void
   1658  1.261   thorpej cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
   1659  1.261   thorpej {
   1660  1.261   thorpej        	struct trapframe *tf;
   1661  1.261   thorpej 
   1662  1.261   thorpej 	tf = l->l_md.md_tf;
   1663  1.261   thorpej 
   1664  1.261   thorpej 	tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
   1665  1.261   thorpej 	tf->tf_regs[FRAME_RA] = 0;
   1666  1.261   thorpej 	tf->tf_regs[FRAME_A0] = type;
   1667  1.261   thorpej 	tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
   1668  1.261   thorpej 	tf->tf_regs[FRAME_A2] = nevents;
   1669  1.261   thorpej 	tf->tf_regs[FRAME_A3] = ninterrupted;
   1670  1.261   thorpej 	tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
   1671  1.261   thorpej 	tf->tf_regs[FRAME_T12] = (u_int64_t)upcall;  /* t12 is pv */
   1672  1.261   thorpej 	alpha_pal_wrusp((unsigned long)sp);
   1673  1.261   thorpej }
   1674  1.261   thorpej 
   1675    1.1       cgd /*
   1676    1.1       cgd  * System call to cleanup state after a signal
   1677    1.1       cgd  * has been taken.  Reset signal mask and
   1678    1.1       cgd  * stack state from context left by sendsig (above).
   1679    1.1       cgd  * Return to previous pc and psl as specified by
   1680    1.1       cgd  * context left by sendsig. Check carefully to
   1681    1.1       cgd  * make sure that the user has not modified the
   1682  1.180    simonb  * psl to gain improper privileges or to cause
   1683    1.1       cgd  * a machine fault.
   1684    1.1       cgd  */
   1685    1.1       cgd /* ARGSUSED */
   1686   1.11   mycroft int
   1687  1.261   thorpej sys___sigreturn14(l, v, retval)
   1688  1.261   thorpej 	struct lwp *l;
   1689   1.10   thorpej 	void *v;
   1690   1.10   thorpej 	register_t *retval;
   1691   1.10   thorpej {
   1692  1.141   thorpej 	struct sys___sigreturn14_args /* {
   1693    1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1694   1.10   thorpej 	} */ *uap = v;
   1695    1.1       cgd 	struct sigcontext *scp, ksc;
   1696  1.261   thorpej 	struct proc *p = l->l_proc;
   1697    1.1       cgd 
   1698  1.141   thorpej 	/*
   1699  1.141   thorpej 	 * The trampoline code hands us the context.
   1700  1.141   thorpej 	 * It is unsafe to keep track of it ourselves, in the event that a
   1701  1.141   thorpej 	 * program jumps out of a signal handler.
   1702  1.141   thorpej 	 */
   1703    1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1704    1.1       cgd #ifdef DEBUG
   1705    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1706   1.46  christos 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1707    1.1       cgd #endif
   1708    1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1709    1.1       cgd 		return (EINVAL);
   1710    1.1       cgd 
   1711  1.141   thorpej 	if (copyin((caddr_t)scp, &ksc, sizeof(ksc)) != 0)
   1712  1.141   thorpej 		return (EFAULT);
   1713    1.1       cgd 
   1714    1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1715    1.1       cgd 		return (EINVAL);
   1716    1.1       cgd 
   1717  1.141   thorpej 	/* Restore register context. */
   1718  1.261   thorpej 	l->l_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
   1719  1.261   thorpej 	l->l_md.md_tf->tf_regs[FRAME_PS] =
   1720   1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1721    1.1       cgd 
   1722  1.261   thorpej 	regtoframe((struct reg *)ksc.sc_regs, l->l_md.md_tf);
   1723   1.35       cgd 	alpha_pal_wrusp(ksc.sc_regs[R_SP]);
   1724    1.1       cgd 
   1725    1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1726  1.261   thorpej 	if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
   1727  1.261   thorpej 		fpusave_proc(l, 0);
   1728  1.261   thorpej 	memcpy(&l->l_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1729    1.1       cgd 	    sizeof(struct fpreg));
   1730  1.261   thorpej 	l->l_addr->u_pcb.pcb_fp.fpr_cr = ksc.sc_fpcr;
   1731  1.261   thorpej 	l->l_md.md_flags = ksc.sc_fp_control & MDP_FP_C;
   1732  1.141   thorpej 
   1733  1.141   thorpej 	/* Restore signal stack. */
   1734  1.141   thorpej 	if (ksc.sc_onstack & SS_ONSTACK)
   1735  1.228  jdolecek 		p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
   1736  1.141   thorpej 	else
   1737  1.228  jdolecek 		p->p_sigctx.ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1738  1.141   thorpej 
   1739  1.141   thorpej 	/* Restore signal mask. */
   1740  1.141   thorpej 	(void) sigprocmask1(p, SIG_SETMASK, &ksc.sc_mask, 0);
   1741    1.1       cgd 
   1742    1.1       cgd #ifdef DEBUG
   1743    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1744   1.46  christos 		printf("sigreturn(%d): returns\n", p->p_pid);
   1745    1.1       cgd #endif
   1746    1.1       cgd 	return (EJUSTRETURN);
   1747    1.1       cgd }
   1748    1.1       cgd 
   1749    1.1       cgd /*
   1750    1.1       cgd  * machine dependent system variables.
   1751    1.1       cgd  */
   1752   1.33       cgd int
   1753    1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1754    1.1       cgd 	int *name;
   1755    1.1       cgd 	u_int namelen;
   1756    1.1       cgd 	void *oldp;
   1757    1.1       cgd 	size_t *oldlenp;
   1758    1.1       cgd 	void *newp;
   1759    1.1       cgd 	size_t newlen;
   1760    1.1       cgd 	struct proc *p;
   1761    1.1       cgd {
   1762    1.1       cgd 	dev_t consdev;
   1763    1.1       cgd 
   1764    1.1       cgd 	/* all sysctl names at this level are terminal */
   1765    1.1       cgd 	if (namelen != 1)
   1766    1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1767    1.1       cgd 
   1768    1.1       cgd 	switch (name[0]) {
   1769    1.1       cgd 	case CPU_CONSDEV:
   1770    1.1       cgd 		if (cn_tab != NULL)
   1771    1.1       cgd 			consdev = cn_tab->cn_dev;
   1772    1.1       cgd 		else
   1773    1.1       cgd 			consdev = NODEV;
   1774    1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1775    1.1       cgd 			sizeof consdev));
   1776   1.30       cgd 
   1777   1.30       cgd 	case CPU_ROOT_DEVICE:
   1778   1.64   thorpej 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1779   1.64   thorpej 		    root_device->dv_xname));
   1780   1.36       cgd 
   1781   1.36       cgd 	case CPU_UNALIGNED_PRINT:
   1782   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1783   1.36       cgd 		    &alpha_unaligned_print));
   1784   1.36       cgd 
   1785   1.36       cgd 	case CPU_UNALIGNED_FIX:
   1786   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1787   1.36       cgd 		    &alpha_unaligned_fix));
   1788   1.36       cgd 
   1789   1.36       cgd 	case CPU_UNALIGNED_SIGBUS:
   1790   1.36       cgd 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1791   1.36       cgd 		    &alpha_unaligned_sigbus));
   1792   1.61       cgd 
   1793   1.61       cgd 	case CPU_BOOTED_KERNEL:
   1794  1.102       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp,
   1795  1.102       cgd 		    bootinfo.booted_kernel));
   1796   1.30       cgd 
   1797  1.241      ross 	case CPU_FP_SYNC_COMPLETE:
   1798  1.241      ross 		return (sysctl_int(oldp, oldlenp, newp, newlen,
   1799  1.241      ross 		    &alpha_fp_sync_complete));
   1800  1.241      ross 
   1801    1.1       cgd 	default:
   1802    1.1       cgd 		return (EOPNOTSUPP);
   1803    1.1       cgd 	}
   1804    1.1       cgd 	/* NOTREACHED */
   1805    1.1       cgd }
   1806    1.1       cgd 
   1807    1.1       cgd /*
   1808    1.1       cgd  * Set registers on exec.
   1809    1.1       cgd  */
   1810    1.1       cgd void
   1811  1.261   thorpej setregs(l, pack, stack)
   1812  1.261   thorpej 	register struct lwp *l;
   1813    1.5  christos 	struct exec_package *pack;
   1814    1.1       cgd 	u_long stack;
   1815    1.1       cgd {
   1816  1.261   thorpej 	struct trapframe *tfp = l->l_md.md_tf;
   1817   1.56       cgd #ifdef DEBUG
   1818    1.1       cgd 	int i;
   1819   1.56       cgd #endif
   1820   1.43       cgd 
   1821   1.43       cgd #ifdef DEBUG
   1822   1.43       cgd 	/*
   1823   1.43       cgd 	 * Crash and dump, if the user requested it.
   1824   1.43       cgd 	 */
   1825   1.43       cgd 	if (boothowto & RB_DUMP)
   1826   1.43       cgd 		panic("crash requested by boot flags");
   1827   1.43       cgd #endif
   1828    1.1       cgd 
   1829    1.1       cgd #ifdef DEBUG
   1830   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1831    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1832    1.1       cgd #else
   1833  1.246   thorpej 	memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1834    1.1       cgd #endif
   1835  1.261   thorpej 	memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
   1836   1.35       cgd 	alpha_pal_wrusp(stack);
   1837   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1838   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1839   1.41       cgd 
   1840   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1841   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1842   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1843  1.261   thorpej 	tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr;	/* a3 = ps_strings */
   1844   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1845    1.1       cgd 
   1846  1.261   thorpej 	l->l_md.md_flags &= ~MDP_FPUSED;
   1847  1.261   thorpej 	if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
   1848  1.261   thorpej 		l->l_md.md_flags &= ~MDP_FP_C;
   1849  1.261   thorpej 		l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
   1850  1.241      ross 	}
   1851  1.261   thorpej 	if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
   1852  1.261   thorpej 		fpusave_proc(l, 0);
   1853  1.219   thorpej }
   1854  1.219   thorpej 
   1855  1.219   thorpej /*
   1856  1.219   thorpej  * Release the FPU.
   1857  1.219   thorpej  */
   1858  1.219   thorpej void
   1859  1.225   thorpej fpusave_cpu(struct cpu_info *ci, int save)
   1860  1.219   thorpej {
   1861  1.261   thorpej 	struct lwp *l;
   1862  1.225   thorpej #if defined(MULTIPROCESSOR)
   1863  1.219   thorpej 	int s;
   1864  1.225   thorpej #endif
   1865  1.219   thorpej 
   1866  1.225   thorpej 	KDASSERT(ci == curcpu());
   1867  1.225   thorpej 
   1868  1.235   thorpej #if defined(MULTIPROCESSOR)
   1869  1.235   thorpej 	atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
   1870  1.235   thorpej #endif
   1871  1.235   thorpej 
   1872  1.261   thorpej 	l = ci->ci_fpcurlwp;
   1873  1.261   thorpej 	if (l == NULL)
   1874  1.235   thorpej 		goto out;
   1875  1.219   thorpej 
   1876  1.219   thorpej 	if (save) {
   1877  1.219   thorpej 		alpha_pal_wrfen(1);
   1878  1.261   thorpej 		savefpstate(&l->l_addr->u_pcb.pcb_fp);
   1879  1.225   thorpej 	}
   1880  1.225   thorpej 
   1881  1.225   thorpej 	alpha_pal_wrfen(0);
   1882  1.225   thorpej 
   1883  1.261   thorpej 	FPCPU_LOCK(&l->l_addr->u_pcb, s);
   1884  1.235   thorpej 
   1885  1.261   thorpej 	l->l_addr->u_pcb.pcb_fpcpu = NULL;
   1886  1.261   thorpej 	ci->ci_fpcurlwp = NULL;
   1887  1.235   thorpej 
   1888  1.261   thorpej 	FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
   1889  1.235   thorpej 
   1890  1.235   thorpej  out:
   1891  1.219   thorpej #if defined(MULTIPROCESSOR)
   1892  1.235   thorpej 	atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
   1893  1.219   thorpej #endif
   1894  1.235   thorpej 	return;
   1895  1.219   thorpej }
   1896  1.219   thorpej 
   1897  1.219   thorpej /*
   1898  1.219   thorpej  * Synchronize FP state for this process.
   1899  1.219   thorpej  */
   1900  1.219   thorpej void
   1901  1.261   thorpej fpusave_proc(struct lwp *l, int save)
   1902  1.219   thorpej {
   1903  1.225   thorpej 	struct cpu_info *ci = curcpu();
   1904  1.225   thorpej 	struct cpu_info *oci;
   1905  1.235   thorpej #if defined(MULTIPROCESSOR)
   1906  1.235   thorpej 	u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
   1907  1.236   thorpej 	int s, spincount;
   1908  1.235   thorpej #endif
   1909  1.219   thorpej 
   1910  1.261   thorpej 	KDASSERT(l->l_addr != NULL);
   1911  1.261   thorpej 	KDASSERT(l->l_flag & L_INMEM);
   1912  1.225   thorpej 
   1913  1.261   thorpej 	FPCPU_LOCK(&l->l_addr->u_pcb, s);
   1914  1.235   thorpej 
   1915  1.261   thorpej 	oci = l->l_addr->u_pcb.pcb_fpcpu;
   1916  1.235   thorpej 	if (oci == NULL) {
   1917  1.261   thorpej 		FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
   1918  1.219   thorpej 		return;
   1919  1.235   thorpej 	}
   1920  1.219   thorpej 
   1921  1.219   thorpej #if defined(MULTIPROCESSOR)
   1922  1.225   thorpej 	if (oci == ci) {
   1923  1.261   thorpej 		KASSERT(ci->ci_fpcurlwp == l);
   1924  1.261   thorpej 		FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
   1925  1.225   thorpej 		fpusave_cpu(ci, save);
   1926  1.235   thorpej 		return;
   1927  1.235   thorpej 	}
   1928  1.235   thorpej 
   1929  1.261   thorpej 	KASSERT(oci->ci_fpcurlwp == l);
   1930  1.235   thorpej 	alpha_send_ipi(oci->ci_cpuid, ipi);
   1931  1.261   thorpej 	FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
   1932  1.235   thorpej 
   1933  1.235   thorpej 	spincount = 0;
   1934  1.261   thorpej 	while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
   1935  1.235   thorpej 		spincount++;
   1936  1.235   thorpej 		delay(1000);	/* XXX */
   1937  1.235   thorpej 		if (spincount > 10000)
   1938  1.235   thorpej 			panic("fpsave ipi didn't");
   1939  1.219   thorpej 	}
   1940  1.219   thorpej #else
   1941  1.261   thorpej 	KASSERT(ci->ci_fpcurlwp == l);
   1942  1.261   thorpej 	FPCPU_UNLOCK(&l->l_addr->u_pcb, s);
   1943  1.225   thorpej 	fpusave_cpu(ci, save);
   1944  1.219   thorpej #endif /* MULTIPROCESSOR */
   1945   1.15       cgd }
   1946   1.15       cgd 
   1947   1.15       cgd /*
   1948   1.15       cgd  * Wait "n" microseconds.
   1949   1.15       cgd  */
   1950   1.32       cgd void
   1951   1.15       cgd delay(n)
   1952   1.32       cgd 	unsigned long n;
   1953   1.15       cgd {
   1954  1.216   thorpej 	unsigned long pcc0, pcc1, curcycle, cycles, usec;
   1955   1.15       cgd 
   1956  1.216   thorpej 	if (n == 0)
   1957  1.216   thorpej 		return;
   1958  1.216   thorpej 
   1959  1.216   thorpej 	pcc0 = alpha_rpcc() & 0xffffffffUL;
   1960  1.216   thorpej 	cycles = 0;
   1961  1.216   thorpej 	usec = 0;
   1962  1.216   thorpej 
   1963  1.216   thorpej 	while (usec <= n) {
   1964  1.216   thorpej 		/*
   1965  1.216   thorpej 		 * Get the next CPU cycle count- assumes that we cannot
   1966  1.216   thorpej 		 * have had more than one 32 bit overflow.
   1967  1.216   thorpej 		 */
   1968  1.216   thorpej 		pcc1 = alpha_rpcc() & 0xffffffffUL;
   1969  1.216   thorpej 		if (pcc1 < pcc0)
   1970  1.216   thorpej 			curcycle = (pcc1 + 0x100000000UL) - pcc0;
   1971  1.216   thorpej 		else
   1972  1.216   thorpej 			curcycle = pcc1 - pcc0;
   1973  1.186   thorpej 
   1974  1.216   thorpej 		/*
   1975  1.216   thorpej 		 * We now have the number of processor cycles since we
   1976  1.216   thorpej 		 * last checked. Add the current cycle count to the
   1977  1.216   thorpej 		 * running total. If it's over cycles_per_usec, increment
   1978  1.216   thorpej 		 * the usec counter.
   1979  1.216   thorpej 		 */
   1980  1.216   thorpej 		cycles += curcycle;
   1981  1.216   thorpej 		while (cycles > cycles_per_usec) {
   1982  1.216   thorpej 			usec++;
   1983  1.216   thorpej 			cycles -= cycles_per_usec;
   1984  1.216   thorpej 		}
   1985  1.216   thorpej 		pcc0 = pcc1;
   1986  1.216   thorpej 	}
   1987    1.1       cgd }
   1988  1.225   thorpej 
   1989  1.250  jdolecek #ifdef EXEC_ECOFF
   1990    1.1       cgd void
   1991  1.261   thorpej cpu_exec_ecoff_setregs(l, epp, stack)
   1992  1.261   thorpej 	struct lwp *l;
   1993   1.19       cgd 	struct exec_package *epp;
   1994    1.5  christos 	u_long stack;
   1995    1.1       cgd {
   1996   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1997    1.1       cgd 
   1998  1.261   thorpej 	l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1999    1.1       cgd }
   2000    1.1       cgd 
   2001    1.1       cgd /*
   2002    1.1       cgd  * cpu_exec_ecoff_hook():
   2003    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   2004    1.1       cgd  *
   2005    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   2006    1.1       cgd  *
   2007    1.1       cgd  */
   2008    1.1       cgd int
   2009  1.224  jdolecek cpu_exec_ecoff_probe(p, epp)
   2010    1.1       cgd 	struct proc *p;
   2011    1.1       cgd 	struct exec_package *epp;
   2012    1.1       cgd {
   2013   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   2014  1.171       cgd 	int error;
   2015    1.1       cgd 
   2016  1.224  jdolecek 	if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
   2017  1.171       cgd 		error = 0;
   2018  1.224  jdolecek 	else
   2019  1.224  jdolecek 		error = ENOEXEC;
   2020    1.1       cgd 
   2021  1.171       cgd 	return (error);
   2022    1.1       cgd }
   2023  1.250  jdolecek #endif /* EXEC_ECOFF */
   2024  1.110   thorpej 
   2025  1.110   thorpej int
   2026  1.110   thorpej alpha_pa_access(pa)
   2027  1.110   thorpej 	u_long pa;
   2028  1.110   thorpej {
   2029  1.110   thorpej 	int i;
   2030  1.110   thorpej 
   2031  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   2032  1.110   thorpej 		if (pa < mem_clusters[i].start)
   2033  1.110   thorpej 			continue;
   2034  1.110   thorpej 		if ((pa - mem_clusters[i].start) >=
   2035  1.110   thorpej 		    (mem_clusters[i].size & ~PAGE_MASK))
   2036  1.110   thorpej 			continue;
   2037  1.110   thorpej 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   2038  1.110   thorpej 	}
   2039  1.197   thorpej 
   2040  1.197   thorpej 	/*
   2041  1.197   thorpej 	 * Address is not a memory address.  If we're secure, disallow
   2042  1.197   thorpej 	 * access.  Otherwise, grant read/write.
   2043  1.197   thorpej 	 */
   2044  1.197   thorpej 	if (securelevel > 0)
   2045  1.197   thorpej 		return (PROT_NONE);
   2046  1.197   thorpej 	else
   2047  1.197   thorpej 		return (PROT_READ | PROT_WRITE);
   2048  1.110   thorpej }
   2049   1.50       cgd 
   2050   1.50       cgd /* XXX XXX BEGIN XXX XXX */
   2051  1.140   thorpej paddr_t alpha_XXX_dmamap_or;					/* XXX */
   2052   1.50       cgd 								/* XXX */
   2053  1.140   thorpej paddr_t								/* XXX */
   2054   1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   2055  1.140   thorpej 	vaddr_t v;						/* XXX */
   2056   1.50       cgd {								/* XXX */
   2057   1.50       cgd 								/* XXX */
   2058   1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   2059   1.50       cgd }								/* XXX */
   2060   1.50       cgd /* XXX XXX END XXX XXX */
   2061  1.177      ross 
   2062  1.177      ross char *
   2063  1.177      ross dot_conv(x)
   2064  1.177      ross 	unsigned long x;
   2065  1.177      ross {
   2066  1.177      ross 	int i;
   2067  1.177      ross 	char *xc;
   2068  1.177      ross 	static int next;
   2069  1.177      ross 	static char space[2][20];
   2070  1.177      ross 
   2071  1.177      ross 	xc = space[next ^= 1] + sizeof space[0];
   2072  1.177      ross 	*--xc = '\0';
   2073  1.177      ross 	for (i = 0;; ++i) {
   2074  1.177      ross 		if (i && (i & 3) == 0)
   2075  1.177      ross 			*--xc = '.';
   2076  1.177      ross 		*--xc = "0123456789abcdef"[x & 0xf];
   2077  1.177      ross 		x >>= 4;
   2078  1.177      ross 		if (x == 0)
   2079  1.177      ross 			break;
   2080  1.177      ross 	}
   2081  1.177      ross 	return xc;
   2082  1.261   thorpej }
   2083  1.261   thorpej 
   2084  1.261   thorpej void
   2085  1.261   thorpej cpu_getmcontext(l, mcp, flags)
   2086  1.261   thorpej 	struct lwp *l;
   2087  1.261   thorpej 	mcontext_t *mcp;
   2088  1.261   thorpej 	unsigned int *flags;
   2089  1.261   thorpej {
   2090  1.261   thorpej 	struct trapframe *frame = l->l_md.md_tf;
   2091  1.261   thorpej 	__greg_t *gr = mcp->__gregs;
   2092  1.264   nathanw 	__greg_t ras_pc;
   2093  1.261   thorpej 
   2094  1.261   thorpej 	/* Save register context. */
   2095  1.261   thorpej 	frametoreg(frame, (struct reg *)gr);
   2096  1.261   thorpej 	/* XXX if there's a better, general way to get the USP of
   2097  1.261   thorpej 	 * an LWP that might or might not be curlwp, I'd like to know
   2098  1.261   thorpej 	 * about it.
   2099  1.261   thorpej 	 */
   2100  1.261   thorpej 	if (l == curlwp) {
   2101  1.261   thorpej 		gr[_REG_SP] = alpha_pal_rdusp();
   2102  1.261   thorpej 		gr[_REG_UNIQUE] = alpha_pal_rdunique();
   2103  1.261   thorpej 	} else {
   2104  1.261   thorpej 		gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
   2105  1.261   thorpej 		gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
   2106  1.261   thorpej 	}
   2107  1.261   thorpej 	gr[_REG_PC] = frame->tf_regs[FRAME_PC];
   2108  1.261   thorpej 	gr[_REG_PS] = frame->tf_regs[FRAME_PS];
   2109  1.264   nathanw 
   2110  1.264   nathanw 	if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
   2111  1.264   nathanw 	    (caddr_t) gr[_REG_PC])) != -1)
   2112  1.264   nathanw 		gr[_REG_PC] = ras_pc;
   2113  1.264   nathanw 
   2114  1.261   thorpej 	*flags |= _UC_CPU | _UC_UNIQUE;
   2115  1.261   thorpej 
   2116  1.261   thorpej 	/* Save floating point register context, if any, and copy it. */
   2117  1.265   nathanw 	if (l->l_md.md_flags & MDP_FPUSED) {
   2118  1.261   thorpej 		fpusave_proc(l, 1);
   2119  1.261   thorpej 		(void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
   2120  1.261   thorpej 		    sizeof (mcp->__fpregs));
   2121  1.261   thorpej 		mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
   2122  1.261   thorpej 		*flags |= _UC_FPU;
   2123  1.261   thorpej 	}
   2124  1.261   thorpej }
   2125  1.261   thorpej 
   2126  1.261   thorpej 
   2127  1.261   thorpej int
   2128  1.261   thorpej cpu_setmcontext(l, mcp, flags)
   2129  1.261   thorpej 	struct lwp *l;
   2130  1.261   thorpej 	const mcontext_t *mcp;
   2131  1.261   thorpej 	unsigned int flags;
   2132  1.261   thorpej {
   2133  1.261   thorpej 	struct trapframe *frame = l->l_md.md_tf;
   2134  1.261   thorpej 	const __greg_t *gr = mcp->__gregs;
   2135  1.261   thorpej 
   2136  1.261   thorpej 	/* Restore register context, if any. */
   2137  1.261   thorpej 	if (flags & _UC_CPU) {
   2138  1.261   thorpej 		/* Check for security violations first. */
   2139  1.261   thorpej 		if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
   2140  1.261   thorpej 		    (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
   2141  1.261   thorpej 			return (EINVAL);
   2142  1.261   thorpej 
   2143  1.261   thorpej 		regtoframe((struct reg *)gr, l->l_md.md_tf);
   2144  1.261   thorpej 		if (l == curlwp)
   2145  1.261   thorpej 			alpha_pal_wrusp(gr[_REG_SP]);
   2146  1.261   thorpej 		else
   2147  1.261   thorpej 			l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
   2148  1.261   thorpej 		frame->tf_regs[FRAME_PC] = gr[_REG_PC];
   2149  1.261   thorpej 		frame->tf_regs[FRAME_PS] = gr[_REG_PS];
   2150  1.261   thorpej 	}
   2151  1.261   thorpej 	if (flags & _UC_UNIQUE) {
   2152  1.261   thorpej 		if (l == curlwp)
   2153  1.261   thorpej 			alpha_pal_wrunique(gr[_REG_UNIQUE]);
   2154  1.261   thorpej 		else
   2155  1.261   thorpej 			l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
   2156  1.261   thorpej 	}
   2157  1.261   thorpej 	/* Restore floating point register context, if any. */
   2158  1.261   thorpej 	if (flags & _UC_FPU) {
   2159  1.261   thorpej 		/* If we have an FP register context, get rid of it. */
   2160  1.261   thorpej 		if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
   2161  1.261   thorpej 			fpusave_proc(l, 0);
   2162  1.261   thorpej 		(void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
   2163  1.261   thorpej 		    sizeof (l->l_addr->u_pcb.pcb_fp));
   2164  1.261   thorpej 		l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
   2165  1.261   thorpej 	}
   2166  1.261   thorpej 
   2167  1.261   thorpej 	return (0);
   2168  1.138      ross }
   2169