machdep.c revision 1.291 1 1.291 elad /* $NetBSD: machdep.c,v 1.291 2006/12/26 10:43:43 elad Exp $ */
2 1.110 thorpej
3 1.110 thorpej /*-
4 1.211 thorpej * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 1.110 thorpej * All rights reserved.
6 1.110 thorpej *
7 1.110 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.110 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.110 thorpej * NASA Ames Research Center and by Chris G. Demetriou.
10 1.110 thorpej *
11 1.110 thorpej * Redistribution and use in source and binary forms, with or without
12 1.110 thorpej * modification, are permitted provided that the following conditions
13 1.110 thorpej * are met:
14 1.110 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.110 thorpej * notice, this list of conditions and the following disclaimer.
16 1.110 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.110 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.110 thorpej * documentation and/or other materials provided with the distribution.
19 1.110 thorpej * 3. All advertising materials mentioning features or use of this software
20 1.110 thorpej * must display the following acknowledgement:
21 1.110 thorpej * This product includes software developed by the NetBSD
22 1.110 thorpej * Foundation, Inc. and its contributors.
23 1.110 thorpej * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.110 thorpej * contributors may be used to endorse or promote products derived
25 1.110 thorpej * from this software without specific prior written permission.
26 1.110 thorpej *
27 1.110 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.110 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.110 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.110 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.110 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.110 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.110 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.110 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.110 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.110 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.110 thorpej * POSSIBILITY OF SUCH DAMAGE.
38 1.110 thorpej */
39 1.1 cgd
40 1.1 cgd /*
41 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
42 1.1 cgd * All rights reserved.
43 1.1 cgd *
44 1.1 cgd * Author: Chris G. Demetriou
45 1.1 cgd *
46 1.1 cgd * Permission to use, copy, modify and distribute this software and
47 1.1 cgd * its documentation is hereby granted, provided that both the copyright
48 1.1 cgd * notice and this permission notice appear in all copies of the
49 1.1 cgd * software, derivative works or modified versions, and any portions
50 1.1 cgd * thereof, and that both notices appear in supporting documentation.
51 1.1 cgd *
52 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55 1.1 cgd *
56 1.1 cgd * Carnegie Mellon requests users of this software to return to
57 1.1 cgd *
58 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
59 1.1 cgd * School of Computer Science
60 1.1 cgd * Carnegie Mellon University
61 1.1 cgd * Pittsburgh PA 15213-3890
62 1.1 cgd *
63 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
64 1.1 cgd * rights to redistribute these changes.
65 1.1 cgd */
66 1.74 cgd
67 1.129 jonathan #include "opt_ddb.h"
68 1.244 lukem #include "opt_kgdb.h"
69 1.147 thorpej #include "opt_multiprocessor.h"
70 1.123 thorpej #include "opt_dec_3000_300.h"
71 1.123 thorpej #include "opt_dec_3000_500.h"
72 1.127 thorpej #include "opt_compat_osf1.h"
73 1.141 thorpej #include "opt_compat_netbsd.h"
74 1.250 jdolecek #include "opt_execfmt.h"
75 1.112 thorpej
76 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
77 1.75 cgd
78 1.291 elad __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.291 2006/12/26 10:43:43 elad Exp $");
79 1.1 cgd
80 1.1 cgd #include <sys/param.h>
81 1.1 cgd #include <sys/systm.h>
82 1.1 cgd #include <sys/signalvar.h>
83 1.1 cgd #include <sys/kernel.h>
84 1.1 cgd #include <sys/proc.h>
85 1.264 nathanw #include <sys/ras.h>
86 1.261 thorpej #include <sys/sa.h>
87 1.261 thorpej #include <sys/savar.h>
88 1.207 thorpej #include <sys/sched.h>
89 1.1 cgd #include <sys/buf.h>
90 1.1 cgd #include <sys/reboot.h>
91 1.28 cgd #include <sys/device.h>
92 1.1 cgd #include <sys/file.h>
93 1.1 cgd #include <sys/malloc.h>
94 1.1 cgd #include <sys/mbuf.h>
95 1.110 thorpej #include <sys/mman.h>
96 1.1 cgd #include <sys/msgbuf.h>
97 1.1 cgd #include <sys/ioctl.h>
98 1.1 cgd #include <sys/tty.h>
99 1.1 cgd #include <sys/user.h>
100 1.1 cgd #include <sys/exec.h>
101 1.1 cgd #include <sys/exec_ecoff.h>
102 1.43 cgd #include <sys/core.h>
103 1.43 cgd #include <sys/kcore.h>
104 1.261 thorpej #include <sys/ucontext.h>
105 1.258 gehenna #include <sys/conf.h>
106 1.266 ragge #include <sys/ksyms.h>
107 1.290 elad #include <sys/kauth.h>
108 1.43 cgd #include <machine/kcore.h>
109 1.241 ross #include <machine/fpu.h>
110 1.1 cgd
111 1.1 cgd #include <sys/mount.h>
112 1.261 thorpej #include <sys/sa.h>
113 1.1 cgd #include <sys/syscallargs.h>
114 1.1 cgd
115 1.112 thorpej #include <uvm/uvm_extern.h>
116 1.217 mrg #include <sys/sysctl.h>
117 1.112 thorpej
118 1.1 cgd #include <dev/cons.h>
119 1.1 cgd
120 1.81 thorpej #include <machine/autoconf.h>
121 1.1 cgd #include <machine/cpu.h>
122 1.1 cgd #include <machine/reg.h>
123 1.1 cgd #include <machine/rpb.h>
124 1.1 cgd #include <machine/prom.h>
125 1.258 gehenna #include <machine/cpuconf.h>
126 1.172 ross #include <machine/ieeefp.h>
127 1.148 thorpej
128 1.81 thorpej #ifdef DDB
129 1.81 thorpej #include <machine/db_machdep.h>
130 1.81 thorpej #include <ddb/db_access.h>
131 1.81 thorpej #include <ddb/db_sym.h>
132 1.81 thorpej #include <ddb/db_extern.h>
133 1.81 thorpej #include <ddb/db_interface.h>
134 1.233 thorpej #endif
135 1.233 thorpej
136 1.233 thorpej #ifdef KGDB
137 1.233 thorpej #include <sys/kgdb.h>
138 1.81 thorpej #endif
139 1.81 thorpej
140 1.229 sommerfe #ifdef DEBUG
141 1.229 sommerfe #include <machine/sigdebug.h>
142 1.229 sommerfe #endif
143 1.229 sommerfe
144 1.155 ross #include <machine/alpha.h>
145 1.143 matt
146 1.266 ragge #include "ksyms.h"
147 1.266 ragge
148 1.245 chs struct vm_map *exec_map = NULL;
149 1.245 chs struct vm_map *mb_map = NULL;
150 1.245 chs struct vm_map *phys_map = NULL;
151 1.1 cgd
152 1.86 leo caddr_t msgbufaddr;
153 1.86 leo
154 1.1 cgd int maxmem; /* max memory per process */
155 1.7 cgd
156 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
157 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
158 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
159 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
160 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
161 1.1 cgd
162 1.1 cgd int cputype; /* system type, from the RPB */
163 1.210 thorpej
164 1.210 thorpej int bootdev_debug = 0; /* patchable, or from DDB */
165 1.1 cgd
166 1.1 cgd /*
167 1.1 cgd * XXX We need an address to which we can assign things so that they
168 1.1 cgd * won't be optimized away because we didn't use the value.
169 1.1 cgd */
170 1.1 cgd u_int32_t no_optimize;
171 1.1 cgd
172 1.1 cgd /* the following is used externally (sysctl_hw) */
173 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
174 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
175 1.29 cgd char cpu_model[128];
176 1.1 cgd
177 1.1 cgd struct user *proc0paddr;
178 1.1 cgd
179 1.1 cgd /* Number of machine cycles per microsecond */
180 1.1 cgd u_int64_t cycles_per_usec;
181 1.1 cgd
182 1.280 wiz /* number of CPUs in the box. really! */
183 1.7 cgd int ncpus;
184 1.7 cgd
185 1.102 cgd struct bootinfo_kernel bootinfo;
186 1.81 thorpej
187 1.123 thorpej /* For built-in TCDS */
188 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
189 1.123 thorpej u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
190 1.123 thorpej #endif
191 1.123 thorpej
192 1.89 mjacob struct platform platform;
193 1.89 mjacob
194 1.266 ragge #if NKSYMS || defined(DDB) || defined(LKM)
195 1.81 thorpej /* start and end of kernel symbol table */
196 1.81 thorpej void *ksym_start, *ksym_end;
197 1.81 thorpej #endif
198 1.81 thorpej
199 1.30 cgd /* for cpu_sysctl() */
200 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
201 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
202 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
203 1.241 ross int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
204 1.30 cgd
205 1.110 thorpej /*
206 1.110 thorpej * XXX This should be dynamically sized, but we have the chicken-egg problem!
207 1.110 thorpej * XXX it should also be larger than it is, because not all of the mddt
208 1.110 thorpej * XXX clusters end up being used for VM.
209 1.110 thorpej */
210 1.110 thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
211 1.110 thorpej int mem_cluster_cnt;
212 1.110 thorpej
213 1.55 cgd int cpu_dump __P((void));
214 1.55 cgd int cpu_dumpsize __P((void));
215 1.110 thorpej u_long cpu_dump_mempagecnt __P((void));
216 1.55 cgd void dumpsys __P((void));
217 1.55 cgd void identifycpu __P((void));
218 1.55 cgd void printregs __P((struct reg *));
219 1.33 cgd
220 1.55 cgd void
221 1.102 cgd alpha_init(pfn, ptb, bim, bip, biv)
222 1.1 cgd u_long pfn; /* first free PFN number */
223 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
224 1.81 thorpej u_long bim; /* bootinfo magic */
225 1.81 thorpej u_long bip; /* bootinfo pointer */
226 1.102 cgd u_long biv; /* bootinfo version */
227 1.1 cgd {
228 1.95 thorpej extern char kernel_text[], _end[];
229 1.1 cgd struct mddt *mddtp;
230 1.110 thorpej struct mddt_cluster *memc;
231 1.7 cgd int i, mddtweird;
232 1.110 thorpej struct vm_physseg *vps;
233 1.140 thorpej vaddr_t kernstart, kernend;
234 1.140 thorpej paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
235 1.211 thorpej cpuid_t cpu_id;
236 1.211 thorpej struct cpu_info *ci;
237 1.1 cgd char *p;
238 1.209 thorpej const char *bootinfo_msg;
239 1.209 thorpej const struct cpuinit *c;
240 1.106 cgd
241 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
242 1.1 cgd
243 1.1 cgd /*
244 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
245 1.1 cgd * Make sure the instruction and data streams are consistent.
246 1.1 cgd */
247 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
248 1.32 cgd alpha_pal_wrfen(0);
249 1.37 cgd ALPHA_TBIA();
250 1.32 cgd alpha_pal_imb();
251 1.248 thorpej
252 1.248 thorpej /* Initialize the SCB. */
253 1.248 thorpej scb_init();
254 1.1 cgd
255 1.211 thorpej cpu_id = cpu_number();
256 1.211 thorpej
257 1.189 thorpej #if defined(MULTIPROCESSOR)
258 1.189 thorpej /*
259 1.189 thorpej * Set our SysValue to the address of our cpu_info structure.
260 1.189 thorpej * Secondary processors do this in their spinup trampoline.
261 1.189 thorpej */
262 1.237 thorpej alpha_pal_wrval((u_long)&cpu_info_primary);
263 1.237 thorpej cpu_info[cpu_id] = &cpu_info_primary;
264 1.189 thorpej #endif
265 1.189 thorpej
266 1.211 thorpej ci = curcpu();
267 1.211 thorpej ci->ci_cpuid = cpu_id;
268 1.211 thorpej
269 1.1 cgd /*
270 1.106 cgd * Get critical system information (if possible, from the
271 1.106 cgd * information provided by the boot program).
272 1.81 thorpej */
273 1.106 cgd bootinfo_msg = NULL;
274 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
275 1.102 cgd if (biv == 0) { /* backward compat */
276 1.102 cgd biv = *(u_long *)bip;
277 1.102 cgd bip += 8;
278 1.102 cgd }
279 1.102 cgd switch (biv) {
280 1.102 cgd case 1: {
281 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
282 1.102 cgd
283 1.102 cgd bootinfo.ssym = v1p->ssym;
284 1.102 cgd bootinfo.esym = v1p->esym;
285 1.106 cgd /* hwrpb may not be provided by boot block in v1 */
286 1.106 cgd if (v1p->hwrpb != NULL) {
287 1.106 cgd bootinfo.hwrpb_phys =
288 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys;
289 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize;
290 1.106 cgd } else {
291 1.106 cgd bootinfo.hwrpb_phys =
292 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys;
293 1.106 cgd bootinfo.hwrpb_size =
294 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size;
295 1.106 cgd }
296 1.247 thorpej memcpy(bootinfo.boot_flags, v1p->boot_flags,
297 1.102 cgd min(sizeof v1p->boot_flags,
298 1.102 cgd sizeof bootinfo.boot_flags));
299 1.247 thorpej memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
300 1.102 cgd min(sizeof v1p->booted_kernel,
301 1.102 cgd sizeof bootinfo.booted_kernel));
302 1.106 cgd /* booted dev not provided in bootinfo */
303 1.106 cgd init_prom_interface((struct rpb *)
304 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
305 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
306 1.102 cgd sizeof bootinfo.booted_dev);
307 1.81 thorpej break;
308 1.102 cgd }
309 1.81 thorpej default:
310 1.106 cgd bootinfo_msg = "unknown bootinfo version";
311 1.102 cgd goto nobootinfo;
312 1.81 thorpej }
313 1.102 cgd } else {
314 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo";
315 1.102 cgd nobootinfo:
316 1.102 cgd bootinfo.ssym = (u_long)_end;
317 1.102 cgd bootinfo.esym = (u_long)_end;
318 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
319 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
320 1.106 cgd init_prom_interface((struct rpb *)HWRPB_ADDR);
321 1.102 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
322 1.102 cgd sizeof bootinfo.boot_flags);
323 1.102 cgd prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
324 1.102 cgd sizeof bootinfo.booted_kernel);
325 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
326 1.102 cgd sizeof bootinfo.booted_dev);
327 1.102 cgd }
328 1.102 cgd
329 1.81 thorpej /*
330 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for
331 1.106 cgd * lots of things.
332 1.106 cgd */
333 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
334 1.123 thorpej
335 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
336 1.123 thorpej if (hwrpb->rpb_type == ST_DEC_3000_300 ||
337 1.123 thorpej hwrpb->rpb_type == ST_DEC_3000_500) {
338 1.123 thorpej prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
339 1.123 thorpej sizeof(dec_3000_scsiid));
340 1.123 thorpej prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
341 1.123 thorpej sizeof(dec_3000_scsifast));
342 1.123 thorpej }
343 1.123 thorpej #endif
344 1.106 cgd
345 1.106 cgd /*
346 1.106 cgd * Remember how many cycles there are per microsecond,
347 1.106 cgd * so that we can use delay(). Round up, for safety.
348 1.106 cgd */
349 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
350 1.106 cgd
351 1.106 cgd /*
352 1.251 wiz * Initialize the (temporary) bootstrap console interface, so
353 1.106 cgd * we can use printf until the VM system starts being setup.
354 1.106 cgd * The real console is initialized before then.
355 1.106 cgd */
356 1.106 cgd init_bootstrap_console();
357 1.106 cgd
358 1.106 cgd /* OUTPUT NOW ALLOWED */
359 1.106 cgd
360 1.106 cgd /* delayed from above */
361 1.106 cgd if (bootinfo_msg)
362 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
363 1.106 cgd bootinfo_msg, bim, bip, biv);
364 1.106 cgd
365 1.147 thorpej /* Initialize the trap vectors on the primary processor. */
366 1.147 thorpej trap_init();
367 1.1 cgd
368 1.1 cgd /*
369 1.263 thorpej * Find out this system's page size, and initialize
370 1.263 thorpej * PAGE_SIZE-dependent variables.
371 1.243 thorpej */
372 1.263 thorpej if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
373 1.263 thorpej panic("page size %lu != %d?!", hwrpb->rpb_page_size,
374 1.263 thorpej ALPHA_PGBYTES);
375 1.263 thorpej uvmexp.pagesize = hwrpb->rpb_page_size;
376 1.243 thorpej uvm_setpagesize();
377 1.243 thorpej
378 1.243 thorpej /*
379 1.106 cgd * Find out what hardware we're on, and do basic initialization.
380 1.106 cgd */
381 1.106 cgd cputype = hwrpb->rpb_type;
382 1.167 cgd if (cputype < 0) {
383 1.167 cgd /*
384 1.167 cgd * At least some white-box systems have SRM which
385 1.167 cgd * reports a systype that's the negative of their
386 1.167 cgd * blue-box counterpart.
387 1.167 cgd */
388 1.167 cgd cputype = -cputype;
389 1.167 cgd }
390 1.209 thorpej c = platform_lookup(cputype);
391 1.209 thorpej if (c == NULL) {
392 1.106 cgd platform_not_supported();
393 1.106 cgd /* NOTREACHED */
394 1.106 cgd }
395 1.209 thorpej (*c->init)();
396 1.106 cgd strcpy(cpu_model, platform.model);
397 1.106 cgd
398 1.106 cgd /*
399 1.251 wiz * Initialize the real console, so that the bootstrap console is
400 1.106 cgd * no longer necessary.
401 1.106 cgd */
402 1.169 thorpej (*platform.cons_init)();
403 1.106 cgd
404 1.106 cgd #ifdef DIAGNOSTIC
405 1.106 cgd /* Paranoid sanity checking */
406 1.106 cgd
407 1.199 soren /* We should always be running on the primary. */
408 1.211 thorpej assert(hwrpb->rpb_primary_cpu_id == cpu_id);
409 1.106 cgd
410 1.116 mjacob /*
411 1.116 mjacob * On single-CPU systypes, the primary should always be CPU 0,
412 1.116 mjacob * except on Alpha 8200 systems where the CPU id is related
413 1.116 mjacob * to the VID, which is related to the Turbo Laser node id.
414 1.116 mjacob */
415 1.106 cgd if (cputype != ST_DEC_21000)
416 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0);
417 1.106 cgd #endif
418 1.106 cgd
419 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */
420 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
421 1.106 cgd /*
422 1.106 cgd * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
423 1.106 cgd * XXX pmap_uses_prom_console() evaluates to non-zero.)
424 1.106 cgd */
425 1.106 cgd #endif
426 1.95 thorpej
427 1.95 thorpej /*
428 1.101 cgd * Find the beginning and end of the kernel (and leave a
429 1.101 cgd * bit of space before the beginning for the bootstrap
430 1.101 cgd * stack).
431 1.95 thorpej */
432 1.201 kleink kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
433 1.266 ragge #if NKSYMS || defined(DDB) || defined(LKM)
434 1.102 cgd ksym_start = (void *)bootinfo.ssym;
435 1.102 cgd ksym_end = (void *)bootinfo.esym;
436 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
437 1.102 cgd #else
438 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)_end);
439 1.95 thorpej #endif
440 1.95 thorpej
441 1.110 thorpej kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
442 1.110 thorpej kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
443 1.110 thorpej
444 1.95 thorpej /*
445 1.1 cgd * Find out how much memory is available, by looking at
446 1.7 cgd * the memory cluster descriptors. This also tries to do
447 1.7 cgd * its best to detect things things that have never been seen
448 1.7 cgd * before...
449 1.1 cgd */
450 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
451 1.7 cgd
452 1.110 thorpej /* MDDT SANITY CHECKING */
453 1.7 cgd mddtweird = 0;
454 1.110 thorpej if (mddtp->mddt_cluster_cnt < 2) {
455 1.7 cgd mddtweird = 1;
456 1.160 thorpej printf("WARNING: weird number of mem clusters: %lu\n",
457 1.110 thorpej mddtp->mddt_cluster_cnt);
458 1.7 cgd }
459 1.7 cgd
460 1.110 thorpej #if 0
461 1.110 thorpej printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
462 1.110 thorpej #endif
463 1.110 thorpej
464 1.110 thorpej for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
465 1.110 thorpej memc = &mddtp->mddt_clusters[i];
466 1.110 thorpej #if 0
467 1.110 thorpej printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
468 1.110 thorpej memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
469 1.110 thorpej #endif
470 1.110 thorpej totalphysmem += memc->mddt_pg_cnt;
471 1.110 thorpej if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
472 1.110 thorpej mem_clusters[mem_cluster_cnt].start =
473 1.110 thorpej ptoa(memc->mddt_pfn);
474 1.110 thorpej mem_clusters[mem_cluster_cnt].size =
475 1.110 thorpej ptoa(memc->mddt_pg_cnt);
476 1.110 thorpej if (memc->mddt_usage & MDDT_mbz ||
477 1.110 thorpej memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
478 1.110 thorpej memc->mddt_usage & MDDT_PALCODE)
479 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
480 1.110 thorpej PROT_READ;
481 1.110 thorpej else
482 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
483 1.110 thorpej PROT_READ | PROT_WRITE | PROT_EXEC;
484 1.110 thorpej mem_cluster_cnt++;
485 1.110 thorpej }
486 1.110 thorpej
487 1.110 thorpej if (memc->mddt_usage & MDDT_mbz) {
488 1.7 cgd mddtweird = 1;
489 1.110 thorpej printf("WARNING: mem cluster %d has weird "
490 1.110 thorpej "usage 0x%lx\n", i, memc->mddt_usage);
491 1.110 thorpej unknownmem += memc->mddt_pg_cnt;
492 1.110 thorpej continue;
493 1.7 cgd }
494 1.110 thorpej if (memc->mddt_usage & MDDT_NONVOLATILE) {
495 1.110 thorpej /* XXX should handle these... */
496 1.110 thorpej printf("WARNING: skipping non-volatile mem "
497 1.110 thorpej "cluster %d\n", i);
498 1.110 thorpej unusedmem += memc->mddt_pg_cnt;
499 1.110 thorpej continue;
500 1.110 thorpej }
501 1.110 thorpej if (memc->mddt_usage & MDDT_PALCODE) {
502 1.110 thorpej resvmem += memc->mddt_pg_cnt;
503 1.110 thorpej continue;
504 1.110 thorpej }
505 1.110 thorpej
506 1.110 thorpej /*
507 1.110 thorpej * We have a memory cluster available for system
508 1.110 thorpej * software use. We must determine if this cluster
509 1.110 thorpej * holds the kernel.
510 1.110 thorpej */
511 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
512 1.110 thorpej /*
513 1.110 thorpej * XXX If the kernel uses the PROM console, we only use the
514 1.110 thorpej * XXX memory after the kernel in the first system segment,
515 1.110 thorpej * XXX to avoid clobbering prom mapping, data, etc.
516 1.110 thorpej */
517 1.110 thorpej if (!pmap_uses_prom_console() || physmem == 0) {
518 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
519 1.110 thorpej physmem += memc->mddt_pg_cnt;
520 1.110 thorpej pfn0 = memc->mddt_pfn;
521 1.110 thorpej pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
522 1.110 thorpej if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
523 1.110 thorpej /*
524 1.110 thorpej * Must compute the location of the kernel
525 1.110 thorpej * within the segment.
526 1.110 thorpej */
527 1.110 thorpej #if 0
528 1.110 thorpej printf("Cluster %d contains kernel\n", i);
529 1.110 thorpej #endif
530 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
531 1.110 thorpej if (!pmap_uses_prom_console()) {
532 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
533 1.110 thorpej if (pfn0 < kernstartpfn) {
534 1.110 thorpej /*
535 1.110 thorpej * There is a chunk before the kernel.
536 1.110 thorpej */
537 1.110 thorpej #if 0
538 1.110 thorpej printf("Loading chunk before kernel: "
539 1.110 thorpej "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
540 1.110 thorpej #endif
541 1.112 thorpej uvm_page_physload(pfn0, kernstartpfn,
542 1.135 thorpej pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
543 1.110 thorpej }
544 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
545 1.110 thorpej }
546 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
547 1.110 thorpej if (kernendpfn < pfn1) {
548 1.110 thorpej /*
549 1.110 thorpej * There is a chunk after the kernel.
550 1.110 thorpej */
551 1.110 thorpej #if 0
552 1.110 thorpej printf("Loading chunk after kernel: "
553 1.110 thorpej "0x%lx / 0x%lx\n", kernendpfn, pfn1);
554 1.110 thorpej #endif
555 1.112 thorpej uvm_page_physload(kernendpfn, pfn1,
556 1.135 thorpej kernendpfn, pfn1, VM_FREELIST_DEFAULT);
557 1.110 thorpej }
558 1.110 thorpej } else {
559 1.110 thorpej /*
560 1.110 thorpej * Just load this cluster as one chunk.
561 1.110 thorpej */
562 1.110 thorpej #if 0
563 1.110 thorpej printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
564 1.110 thorpej pfn0, pfn1);
565 1.110 thorpej #endif
566 1.135 thorpej uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
567 1.135 thorpej VM_FREELIST_DEFAULT);
568 1.7 cgd }
569 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
570 1.110 thorpej }
571 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
572 1.7 cgd }
573 1.7 cgd
574 1.110 thorpej /*
575 1.110 thorpej * Dump out the MDDT if it looks odd...
576 1.110 thorpej */
577 1.7 cgd if (mddtweird) {
578 1.46 christos printf("\n");
579 1.46 christos printf("complete memory cluster information:\n");
580 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
581 1.46 christos printf("mddt %d:\n", i);
582 1.46 christos printf("\tpfn %lx\n",
583 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
584 1.46 christos printf("\tcnt %lx\n",
585 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
586 1.46 christos printf("\ttest %lx\n",
587 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
588 1.46 christos printf("\tbva %lx\n",
589 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
590 1.46 christos printf("\tbpa %lx\n",
591 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
592 1.46 christos printf("\tbcksum %lx\n",
593 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
594 1.46 christos printf("\tusage %lx\n",
595 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
596 1.2 cgd }
597 1.46 christos printf("\n");
598 1.2 cgd }
599 1.2 cgd
600 1.7 cgd if (totalphysmem == 0)
601 1.1 cgd panic("can't happen: system seems to have no memory!");
602 1.1 cgd maxmem = physmem;
603 1.7 cgd #if 0
604 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
605 1.46 christos printf("physmem = %d\n", physmem);
606 1.46 christos printf("resvmem = %d\n", resvmem);
607 1.46 christos printf("unusedmem = %d\n", unusedmem);
608 1.46 christos printf("unknownmem = %d\n", unknownmem);
609 1.7 cgd #endif
610 1.7 cgd
611 1.1 cgd /*
612 1.1 cgd * Initialize error message buffer (at end of core).
613 1.1 cgd */
614 1.110 thorpej {
615 1.204 enami vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
616 1.203 enami vsize_t reqsz = sz;
617 1.110 thorpej
618 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
619 1.110 thorpej
620 1.110 thorpej /* shrink so that it'll fit in the last segment */
621 1.110 thorpej if ((vps->avail_end - vps->avail_start) < atop(sz))
622 1.110 thorpej sz = ptoa(vps->avail_end - vps->avail_start);
623 1.110 thorpej
624 1.110 thorpej vps->end -= atop(sz);
625 1.110 thorpej vps->avail_end -= atop(sz);
626 1.110 thorpej msgbufaddr = (caddr_t) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
627 1.110 thorpej initmsgbuf(msgbufaddr, sz);
628 1.110 thorpej
629 1.110 thorpej /* Remove the last segment if it now has no pages. */
630 1.110 thorpej if (vps->start == vps->end)
631 1.110 thorpej vm_nphysseg--;
632 1.110 thorpej
633 1.110 thorpej /* warn if the message buffer had to be shrunk */
634 1.203 enami if (sz != reqsz)
635 1.203 enami printf("WARNING: %ld bytes not available for msgbuf "
636 1.203 enami "in last cluster (%ld used)\n", reqsz, sz);
637 1.268 thorpej
638 1.110 thorpej }
639 1.239 thorpej
640 1.239 thorpej /*
641 1.268 thorpej * NOTE: It is safe to use uvm_pageboot_alloc() before
642 1.268 thorpej * pmap_bootstrap() because our pmap_virtual_space()
643 1.268 thorpej * returns compile-time constants.
644 1.268 thorpej */
645 1.268 thorpej
646 1.268 thorpej /*
647 1.95 thorpej * Init mapping for u page(s) for proc 0
648 1.1 cgd */
649 1.261 thorpej lwp0.l_addr = proc0paddr =
650 1.268 thorpej (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
651 1.1 cgd
652 1.1 cgd /*
653 1.1 cgd * Initialize the virtual memory system, and set the
654 1.1 cgd * page table base register in proc 0's PCB.
655 1.1 cgd */
656 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
657 1.144 thorpej hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
658 1.1 cgd
659 1.1 cgd /*
660 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
661 1.3 cgd * address.
662 1.3 cgd */
663 1.261 thorpej lwp0.l_md.md_pcbpaddr =
664 1.140 thorpej (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
665 1.3 cgd
666 1.3 cgd /*
667 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
668 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
669 1.3 cgd */
670 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
671 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
672 1.261 thorpej lwp0.l_md.md_tf =
673 1.81 thorpej (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
674 1.235 thorpej simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
675 1.189 thorpej
676 1.189 thorpej /*
677 1.208 thorpej * Initialize the primary CPU's idle PCB to proc0's. In a
678 1.208 thorpej * MULTIPROCESSOR configuration, each CPU will later get
679 1.208 thorpej * its own idle PCB when autoconfiguration runs.
680 1.189 thorpej */
681 1.211 thorpej ci->ci_idle_pcb = &proc0paddr->u_pcb;
682 1.261 thorpej ci->ci_idle_pcb_paddr = (u_long)lwp0.l_md.md_pcbpaddr;
683 1.208 thorpej
684 1.208 thorpej /* Indicate that proc0 has a CPU. */
685 1.261 thorpej lwp0.l_cpu = ci;
686 1.1 cgd
687 1.1 cgd /*
688 1.25 cgd * Look at arguments passed to us and compute boothowto.
689 1.8 cgd */
690 1.1 cgd
691 1.8 cgd boothowto = RB_SINGLE;
692 1.1 cgd #ifdef KADB
693 1.1 cgd boothowto |= RB_KDB;
694 1.1 cgd #endif
695 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
696 1.26 cgd /*
697 1.26 cgd * Note that we'd really like to differentiate case here,
698 1.26 cgd * but the Alpha AXP Architecture Reference Manual
699 1.26 cgd * says that we shouldn't.
700 1.26 cgd */
701 1.8 cgd switch (*p) {
702 1.26 cgd case 'a': /* autoboot */
703 1.26 cgd case 'A':
704 1.26 cgd boothowto &= ~RB_SINGLE;
705 1.21 cgd break;
706 1.21 cgd
707 1.43 cgd #ifdef DEBUG
708 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
709 1.43 cgd case 'C':
710 1.43 cgd boothowto |= RB_DUMP;
711 1.43 cgd break;
712 1.43 cgd #endif
713 1.43 cgd
714 1.81 thorpej #if defined(KGDB) || defined(DDB)
715 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
716 1.81 thorpej case 'D':
717 1.81 thorpej boothowto |= RB_KDB;
718 1.81 thorpej break;
719 1.81 thorpej #endif
720 1.81 thorpej
721 1.36 cgd case 'h': /* always halt, never reboot */
722 1.36 cgd case 'H':
723 1.36 cgd boothowto |= RB_HALT;
724 1.8 cgd break;
725 1.8 cgd
726 1.21 cgd #if 0
727 1.8 cgd case 'm': /* mini root present in memory */
728 1.26 cgd case 'M':
729 1.8 cgd boothowto |= RB_MINIROOT;
730 1.8 cgd break;
731 1.21 cgd #endif
732 1.36 cgd
733 1.36 cgd case 'n': /* askname */
734 1.36 cgd case 'N':
735 1.36 cgd boothowto |= RB_ASKNAME;
736 1.65 cgd break;
737 1.65 cgd
738 1.65 cgd case 's': /* single-user (default, supported for sanity) */
739 1.65 cgd case 'S':
740 1.65 cgd boothowto |= RB_SINGLE;
741 1.221 jdolecek break;
742 1.221 jdolecek
743 1.221 jdolecek case 'q': /* quiet boot */
744 1.221 jdolecek case 'Q':
745 1.221 jdolecek boothowto |= AB_QUIET;
746 1.221 jdolecek break;
747 1.221 jdolecek
748 1.221 jdolecek case 'v': /* verbose boot */
749 1.221 jdolecek case 'V':
750 1.221 jdolecek boothowto |= AB_VERBOSE;
751 1.119 thorpej break;
752 1.119 thorpej
753 1.119 thorpej case '-':
754 1.119 thorpej /*
755 1.119 thorpej * Just ignore this. It's not required, but it's
756 1.119 thorpej * common for it to be passed regardless.
757 1.119 thorpej */
758 1.65 cgd break;
759 1.65 cgd
760 1.65 cgd default:
761 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
762 1.36 cgd break;
763 1.1 cgd }
764 1.1 cgd }
765 1.1 cgd
766 1.136 mjacob
767 1.136 mjacob /*
768 1.280 wiz * Figure out the number of CPUs in the box, from RPB fields.
769 1.136 mjacob * Really. We mean it.
770 1.136 mjacob */
771 1.136 mjacob for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
772 1.136 mjacob struct pcs *pcsp;
773 1.136 mjacob
774 1.144 thorpej pcsp = LOCATE_PCS(hwrpb, i);
775 1.136 mjacob if ((pcsp->pcs_flags & PCS_PP) != 0)
776 1.136 mjacob ncpus++;
777 1.136 mjacob }
778 1.136 mjacob
779 1.7 cgd /*
780 1.106 cgd * Initialize debuggers, and break into them if appropriate.
781 1.106 cgd */
782 1.266 ragge #if NKSYMS || defined(DDB) || defined(LKM)
783 1.266 ragge ksyms_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
784 1.159 mjacob ksym_start, ksym_end);
785 1.234 thorpej #endif
786 1.234 thorpej
787 1.234 thorpej if (boothowto & RB_KDB) {
788 1.234 thorpej #if defined(KGDB)
789 1.234 thorpej kgdb_debug_init = 1;
790 1.234 thorpej kgdb_connect(1);
791 1.234 thorpej #elif defined(DDB)
792 1.106 cgd Debugger();
793 1.106 cgd #endif
794 1.234 thorpej }
795 1.234 thorpej
796 1.106 cgd /*
797 1.106 cgd * Figure out our clock frequency, from RPB fields.
798 1.106 cgd */
799 1.106 cgd hz = hwrpb->rpb_intr_freq >> 12;
800 1.106 cgd if (!(60 <= hz && hz <= 10240)) {
801 1.106 cgd hz = 1024;
802 1.106 cgd #ifdef DIAGNOSTIC
803 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
804 1.106 cgd hwrpb->rpb_intr_freq, hz);
805 1.106 cgd #endif
806 1.106 cgd }
807 1.95 thorpej }
808 1.95 thorpej
809 1.18 cgd void
810 1.1 cgd consinit()
811 1.1 cgd {
812 1.81 thorpej
813 1.106 cgd /*
814 1.106 cgd * Everything related to console initialization is done
815 1.106 cgd * in alpha_init().
816 1.106 cgd */
817 1.106 cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
818 1.106 cgd printf("consinit: %susing prom console\n",
819 1.106 cgd pmap_uses_prom_console() ? "" : "not ");
820 1.81 thorpej #endif
821 1.1 cgd }
822 1.118 thorpej
823 1.18 cgd void
824 1.1 cgd cpu_startup()
825 1.1 cgd {
826 1.140 thorpej vaddr_t minaddr, maxaddr;
827 1.173 lukem char pbuf[9];
828 1.40 cgd #if defined(DEBUG)
829 1.1 cgd extern int pmapdebug;
830 1.1 cgd int opmapdebug = pmapdebug;
831 1.1 cgd
832 1.1 cgd pmapdebug = 0;
833 1.1 cgd #endif
834 1.1 cgd
835 1.1 cgd /*
836 1.1 cgd * Good {morning,afternoon,evening,night}.
837 1.1 cgd */
838 1.284 lukem printf("%s%s", copyright, version);
839 1.1 cgd identifycpu();
840 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
841 1.173 lukem printf("total memory = %s\n", pbuf);
842 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
843 1.173 lukem printf("(%s reserved for PROM, ", pbuf);
844 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
845 1.173 lukem printf("%s used by NetBSD)\n", pbuf);
846 1.173 lukem if (unusedmem) {
847 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
848 1.173 lukem printf("WARNING: unused memory = %s\n", pbuf);
849 1.173 lukem }
850 1.173 lukem if (unknownmem) {
851 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
852 1.173 lukem printf("WARNING: %s of memory with unknown purpose\n", pbuf);
853 1.173 lukem }
854 1.1 cgd
855 1.279 pk minaddr = 0;
856 1.240 thorpej
857 1.1 cgd /*
858 1.1 cgd * Allocate a submap for exec arguments. This map effectively
859 1.1 cgd * limits the number of processes exec'ing at any time.
860 1.1 cgd */
861 1.112 thorpej exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
862 1.175 thorpej 16 * NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
863 1.1 cgd
864 1.1 cgd /*
865 1.1 cgd * Allocate a submap for physio
866 1.1 cgd */
867 1.112 thorpej phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
868 1.175 thorpej VM_PHYS_SIZE, 0, FALSE, NULL);
869 1.1 cgd
870 1.1 cgd /*
871 1.164 thorpej * No need to allocate an mbuf cluster submap. Mbuf clusters
872 1.164 thorpej * are allocated via the pool allocator, and we use K0SEG to
873 1.164 thorpej * map those pages.
874 1.1 cgd */
875 1.1 cgd
876 1.40 cgd #if defined(DEBUG)
877 1.1 cgd pmapdebug = opmapdebug;
878 1.1 cgd #endif
879 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
880 1.173 lukem printf("avail memory = %s\n", pbuf);
881 1.139 thorpej #if 0
882 1.139 thorpej {
883 1.139 thorpej extern u_long pmap_pages_stolen;
884 1.173 lukem
885 1.173 lukem format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
886 1.173 lukem printf("stolen memory for VM structures = %s\n", pbuf);
887 1.139 thorpej }
888 1.112 thorpej #endif
889 1.151 thorpej
890 1.151 thorpej /*
891 1.151 thorpej * Set up the HWPCB so that it's safe to configure secondary
892 1.151 thorpej * CPUs.
893 1.151 thorpej */
894 1.151 thorpej hwrpb_primary_init();
895 1.104 thorpej }
896 1.104 thorpej
897 1.104 thorpej /*
898 1.104 thorpej * Retrieve the platform name from the DSR.
899 1.104 thorpej */
900 1.104 thorpej const char *
901 1.104 thorpej alpha_dsr_sysname()
902 1.104 thorpej {
903 1.104 thorpej struct dsrdb *dsr;
904 1.104 thorpej const char *sysname;
905 1.104 thorpej
906 1.104 thorpej /*
907 1.104 thorpej * DSR does not exist on early HWRPB versions.
908 1.104 thorpej */
909 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
910 1.104 thorpej return (NULL);
911 1.104 thorpej
912 1.104 thorpej dsr = (struct dsrdb *)(((caddr_t)hwrpb) + hwrpb->rpb_dsrdb_off);
913 1.104 thorpej sysname = (const char *)((caddr_t)dsr + (dsr->dsr_sysname_off +
914 1.104 thorpej sizeof(u_int64_t)));
915 1.104 thorpej return (sysname);
916 1.104 thorpej }
917 1.104 thorpej
918 1.104 thorpej /*
919 1.104 thorpej * Lookup the system specified system variation in the provided table,
920 1.104 thorpej * returning the model string on match.
921 1.104 thorpej */
922 1.104 thorpej const char *
923 1.104 thorpej alpha_variation_name(variation, avtp)
924 1.104 thorpej u_int64_t variation;
925 1.104 thorpej const struct alpha_variation_table *avtp;
926 1.104 thorpej {
927 1.104 thorpej int i;
928 1.104 thorpej
929 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++)
930 1.104 thorpej if (avtp[i].avt_variation == variation)
931 1.104 thorpej return (avtp[i].avt_model);
932 1.104 thorpej return (NULL);
933 1.104 thorpej }
934 1.104 thorpej
935 1.104 thorpej /*
936 1.104 thorpej * Generate a default platform name based for unknown system variations.
937 1.104 thorpej */
938 1.104 thorpej const char *
939 1.104 thorpej alpha_unknown_sysname()
940 1.104 thorpej {
941 1.105 thorpej static char s[128]; /* safe size */
942 1.104 thorpej
943 1.105 thorpej sprintf(s, "%s family, unknown model variation 0x%lx",
944 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK);
945 1.104 thorpej return ((const char *)s);
946 1.1 cgd }
947 1.1 cgd
948 1.33 cgd void
949 1.1 cgd identifycpu()
950 1.1 cgd {
951 1.177 ross char *s;
952 1.218 thorpej int i;
953 1.1 cgd
954 1.7 cgd /*
955 1.7 cgd * print out CPU identification information.
956 1.7 cgd */
957 1.177 ross printf("%s", cpu_model);
958 1.177 ross for(s = cpu_model; *s; ++s)
959 1.177 ross if(strncasecmp(s, "MHz", 3) == 0)
960 1.177 ross goto skipMHz;
961 1.177 ross printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
962 1.177 ross skipMHz:
963 1.218 thorpej printf(", s/n ");
964 1.218 thorpej for (i = 0; i < 10; i++)
965 1.218 thorpej printf("%c", hwrpb->rpb_ssn[i]);
966 1.177 ross printf("\n");
967 1.46 christos printf("%ld byte page size, %d processor%s.\n",
968 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
969 1.7 cgd #if 0
970 1.7 cgd /* this isn't defined for any systems that we run on? */
971 1.46 christos printf("serial number 0x%lx 0x%lx\n",
972 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
973 1.7 cgd
974 1.7 cgd /* and these aren't particularly useful! */
975 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
976 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
977 1.7 cgd #endif
978 1.1 cgd }
979 1.1 cgd
980 1.1 cgd int waittime = -1;
981 1.7 cgd struct pcb dumppcb;
982 1.1 cgd
983 1.18 cgd void
984 1.68 gwr cpu_reboot(howto, bootstr)
985 1.1 cgd int howto;
986 1.39 mrg char *bootstr;
987 1.1 cgd {
988 1.148 thorpej #if defined(MULTIPROCESSOR)
989 1.225 thorpej u_long cpu_id = cpu_number();
990 1.225 thorpej u_long wait_mask = (1UL << cpu_id) |
991 1.225 thorpej (1UL << hwrpb->rpb_primary_cpu_id);
992 1.225 thorpej int i;
993 1.148 thorpej #endif
994 1.148 thorpej
995 1.225 thorpej /* If "always halt" was specified as a boot flag, obey. */
996 1.225 thorpej if ((boothowto & RB_HALT) != 0)
997 1.225 thorpej howto |= RB_HALT;
998 1.225 thorpej
999 1.225 thorpej boothowto = howto;
1000 1.1 cgd
1001 1.1 cgd /* If system is cold, just halt. */
1002 1.1 cgd if (cold) {
1003 1.225 thorpej boothowto |= RB_HALT;
1004 1.1 cgd goto haltsys;
1005 1.1 cgd }
1006 1.1 cgd
1007 1.225 thorpej if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1008 1.1 cgd waittime = 0;
1009 1.7 cgd vfs_shutdown();
1010 1.1 cgd /*
1011 1.1 cgd * If we've been adjusting the clock, the todr
1012 1.1 cgd * will be out of synch; adjust it now.
1013 1.1 cgd */
1014 1.1 cgd resettodr();
1015 1.1 cgd }
1016 1.1 cgd
1017 1.1 cgd /* Disable interrupts. */
1018 1.1 cgd splhigh();
1019 1.1 cgd
1020 1.225 thorpej #if defined(MULTIPROCESSOR)
1021 1.225 thorpej /*
1022 1.225 thorpej * Halt all other CPUs. If we're not the primary, the
1023 1.225 thorpej * primary will spin, waiting for us to halt.
1024 1.225 thorpej */
1025 1.225 thorpej alpha_broadcast_ipi(ALPHA_IPI_HALT);
1026 1.225 thorpej
1027 1.283 mhitch /* Ensure any CPUs paused by DDB resume execution so they can halt */
1028 1.283 mhitch cpus_paused = 0;
1029 1.283 mhitch
1030 1.225 thorpej for (i = 0; i < 10000; i++) {
1031 1.225 thorpej alpha_mb();
1032 1.225 thorpej if (cpus_running == wait_mask)
1033 1.225 thorpej break;
1034 1.225 thorpej delay(1000);
1035 1.225 thorpej }
1036 1.225 thorpej alpha_mb();
1037 1.225 thorpej if (cpus_running != wait_mask)
1038 1.225 thorpej printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1039 1.225 thorpej cpus_running);
1040 1.225 thorpej #endif /* MULTIPROCESSOR */
1041 1.225 thorpej
1042 1.7 cgd /* If rebooting and a dump is requested do it. */
1043 1.42 cgd #if 0
1044 1.225 thorpej if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1045 1.42 cgd #else
1046 1.225 thorpej if (boothowto & RB_DUMP)
1047 1.42 cgd #endif
1048 1.1 cgd dumpsys();
1049 1.6 cgd
1050 1.12 cgd haltsys:
1051 1.12 cgd
1052 1.6 cgd /* run any shutdown hooks */
1053 1.6 cgd doshutdownhooks();
1054 1.148 thorpej
1055 1.7 cgd #ifdef BOOTKEY
1056 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1057 1.117 drochner cnpollc(1); /* for proper keyboard command handling */
1058 1.7 cgd cngetc();
1059 1.117 drochner cnpollc(0);
1060 1.46 christos printf("\n");
1061 1.7 cgd #endif
1062 1.7 cgd
1063 1.124 thorpej /* Finally, powerdown/halt/reboot the system. */
1064 1.225 thorpej if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1065 1.124 thorpej platform.powerdown != NULL) {
1066 1.124 thorpej (*platform.powerdown)();
1067 1.124 thorpej printf("WARNING: powerdown failed!\n");
1068 1.124 thorpej }
1069 1.225 thorpej printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1070 1.225 thorpej #if defined(MULTIPROCESSOR)
1071 1.225 thorpej if (cpu_id != hwrpb->rpb_primary_cpu_id)
1072 1.225 thorpej cpu_halt();
1073 1.225 thorpej else
1074 1.225 thorpej #endif
1075 1.225 thorpej prom_halt(boothowto & RB_HALT);
1076 1.1 cgd /*NOTREACHED*/
1077 1.1 cgd }
1078 1.1 cgd
1079 1.7 cgd /*
1080 1.7 cgd * These variables are needed by /sbin/savecore
1081 1.7 cgd */
1082 1.253 tsutsui u_int32_t dumpmag = 0x8fca0101; /* magic number */
1083 1.7 cgd int dumpsize = 0; /* pages */
1084 1.7 cgd long dumplo = 0; /* blocks */
1085 1.7 cgd
1086 1.7 cgd /*
1087 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1088 1.43 cgd */
1089 1.43 cgd int
1090 1.43 cgd cpu_dumpsize()
1091 1.43 cgd {
1092 1.43 cgd int size;
1093 1.43 cgd
1094 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1095 1.110 thorpej ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1096 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
1097 1.43 cgd return -1;
1098 1.43 cgd
1099 1.43 cgd return (1);
1100 1.43 cgd }
1101 1.43 cgd
1102 1.43 cgd /*
1103 1.110 thorpej * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1104 1.110 thorpej */
1105 1.110 thorpej u_long
1106 1.110 thorpej cpu_dump_mempagecnt()
1107 1.110 thorpej {
1108 1.110 thorpej u_long i, n;
1109 1.110 thorpej
1110 1.110 thorpej n = 0;
1111 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++)
1112 1.110 thorpej n += atop(mem_clusters[i].size);
1113 1.110 thorpej return (n);
1114 1.110 thorpej }
1115 1.110 thorpej
1116 1.110 thorpej /*
1117 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
1118 1.43 cgd */
1119 1.43 cgd int
1120 1.43 cgd cpu_dump()
1121 1.43 cgd {
1122 1.43 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1123 1.107 cgd char buf[dbtob(1)];
1124 1.107 cgd kcore_seg_t *segp;
1125 1.107 cgd cpu_kcore_hdr_t *cpuhdrp;
1126 1.107 cgd phys_ram_seg_t *memsegp;
1127 1.258 gehenna const struct bdevsw *bdev;
1128 1.110 thorpej int i;
1129 1.43 cgd
1130 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1131 1.258 gehenna if (bdev == NULL)
1132 1.258 gehenna return (ENXIO);
1133 1.258 gehenna dump = bdev->d_dump;
1134 1.43 cgd
1135 1.246 thorpej memset(buf, 0, sizeof buf);
1136 1.43 cgd segp = (kcore_seg_t *)buf;
1137 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1138 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1139 1.107 cgd ALIGN(sizeof(*cpuhdrp))];
1140 1.43 cgd
1141 1.43 cgd /*
1142 1.43 cgd * Generate a segment header.
1143 1.43 cgd */
1144 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1145 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1146 1.43 cgd
1147 1.43 cgd /*
1148 1.107 cgd * Add the machine-dependent header info.
1149 1.43 cgd */
1150 1.140 thorpej cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1151 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
1152 1.110 thorpej cpuhdrp->nmemsegs = mem_cluster_cnt;
1153 1.107 cgd
1154 1.107 cgd /*
1155 1.107 cgd * Fill in the memory segment descriptors.
1156 1.107 cgd */
1157 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1158 1.110 thorpej memsegp[i].start = mem_clusters[i].start;
1159 1.110 thorpej memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1160 1.110 thorpej }
1161 1.43 cgd
1162 1.43 cgd return (dump(dumpdev, dumplo, (caddr_t)buf, dbtob(1)));
1163 1.43 cgd }
1164 1.43 cgd
1165 1.43 cgd /*
1166 1.68 gwr * This is called by main to set dumplo and dumpsize.
1167 1.262 thorpej * Dumps always skip the first PAGE_SIZE of disk space
1168 1.7 cgd * in case there might be a disk label stored there.
1169 1.7 cgd * If there is extra space, put dump at the end to
1170 1.7 cgd * reduce the chance that swapping trashes it.
1171 1.7 cgd */
1172 1.7 cgd void
1173 1.68 gwr cpu_dumpconf()
1174 1.7 cgd {
1175 1.258 gehenna const struct bdevsw *bdev;
1176 1.43 cgd int nblks, dumpblks; /* size of dump area */
1177 1.7 cgd
1178 1.7 cgd if (dumpdev == NODEV)
1179 1.43 cgd goto bad;
1180 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1181 1.289 mrg if (bdev == NULL) {
1182 1.289 mrg dumpdev = NODEV;
1183 1.289 mrg goto bad;
1184 1.289 mrg }
1185 1.258 gehenna if (bdev->d_psize == NULL)
1186 1.43 cgd goto bad;
1187 1.258 gehenna nblks = (*bdev->d_psize)(dumpdev);
1188 1.7 cgd if (nblks <= ctod(1))
1189 1.43 cgd goto bad;
1190 1.43 cgd
1191 1.43 cgd dumpblks = cpu_dumpsize();
1192 1.43 cgd if (dumpblks < 0)
1193 1.43 cgd goto bad;
1194 1.110 thorpej dumpblks += ctod(cpu_dump_mempagecnt());
1195 1.43 cgd
1196 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
1197 1.43 cgd if (dumpblks > (nblks - ctod(1)))
1198 1.43 cgd goto bad;
1199 1.43 cgd
1200 1.43 cgd /* Put dump at end of partition */
1201 1.43 cgd dumplo = nblks - dumpblks;
1202 1.7 cgd
1203 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1204 1.110 thorpej dumpsize = cpu_dump_mempagecnt();
1205 1.43 cgd return;
1206 1.7 cgd
1207 1.43 cgd bad:
1208 1.43 cgd dumpsize = 0;
1209 1.43 cgd return;
1210 1.7 cgd }
1211 1.7 cgd
1212 1.7 cgd /*
1213 1.42 cgd * Dump the kernel's image to the swap partition.
1214 1.7 cgd */
1215 1.262 thorpej #define BYTES_PER_DUMP PAGE_SIZE
1216 1.42 cgd
1217 1.7 cgd void
1218 1.7 cgd dumpsys()
1219 1.7 cgd {
1220 1.258 gehenna const struct bdevsw *bdev;
1221 1.110 thorpej u_long totalbytesleft, bytes, i, n, memcl;
1222 1.110 thorpej u_long maddr;
1223 1.110 thorpej int psize;
1224 1.42 cgd daddr_t blkno;
1225 1.42 cgd int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
1226 1.42 cgd int error;
1227 1.42 cgd
1228 1.42 cgd /* Save registers. */
1229 1.42 cgd savectx(&dumppcb);
1230 1.7 cgd
1231 1.7 cgd if (dumpdev == NODEV)
1232 1.7 cgd return;
1233 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1234 1.258 gehenna if (bdev == NULL || bdev->d_psize == NULL)
1235 1.258 gehenna return;
1236 1.42 cgd
1237 1.42 cgd /*
1238 1.42 cgd * For dumps during autoconfiguration,
1239 1.42 cgd * if dump device has already configured...
1240 1.42 cgd */
1241 1.42 cgd if (dumpsize == 0)
1242 1.68 gwr cpu_dumpconf();
1243 1.47 cgd if (dumplo <= 0) {
1244 1.97 mycroft printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
1245 1.97 mycroft minor(dumpdev));
1246 1.42 cgd return;
1247 1.43 cgd }
1248 1.97 mycroft printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
1249 1.97 mycroft minor(dumpdev), dumplo);
1250 1.7 cgd
1251 1.258 gehenna psize = (*bdev->d_psize)(dumpdev);
1252 1.46 christos printf("dump ");
1253 1.42 cgd if (psize == -1) {
1254 1.46 christos printf("area unavailable\n");
1255 1.42 cgd return;
1256 1.42 cgd }
1257 1.42 cgd
1258 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1259 1.42 cgd
1260 1.43 cgd if ((error = cpu_dump()) != 0)
1261 1.43 cgd goto err;
1262 1.43 cgd
1263 1.110 thorpej totalbytesleft = ptoa(cpu_dump_mempagecnt());
1264 1.43 cgd blkno = dumplo + cpu_dumpsize();
1265 1.258 gehenna dump = bdev->d_dump;
1266 1.42 cgd error = 0;
1267 1.42 cgd
1268 1.110 thorpej for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1269 1.110 thorpej maddr = mem_clusters[memcl].start;
1270 1.110 thorpej bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1271 1.110 thorpej
1272 1.110 thorpej for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1273 1.110 thorpej
1274 1.110 thorpej /* Print out how many MBs we to go. */
1275 1.110 thorpej if ((totalbytesleft % (1024*1024)) == 0)
1276 1.160 thorpej printf("%ld ", totalbytesleft / (1024 * 1024));
1277 1.110 thorpej
1278 1.110 thorpej /* Limit size for next transfer. */
1279 1.110 thorpej n = bytes - i;
1280 1.110 thorpej if (n > BYTES_PER_DUMP)
1281 1.110 thorpej n = BYTES_PER_DUMP;
1282 1.110 thorpej
1283 1.110 thorpej error = (*dump)(dumpdev, blkno,
1284 1.110 thorpej (caddr_t)ALPHA_PHYS_TO_K0SEG(maddr), n);
1285 1.110 thorpej if (error)
1286 1.110 thorpej goto err;
1287 1.110 thorpej maddr += n;
1288 1.110 thorpej blkno += btodb(n); /* XXX? */
1289 1.42 cgd
1290 1.110 thorpej /* XXX should look for keystrokes, to cancel. */
1291 1.110 thorpej }
1292 1.42 cgd }
1293 1.42 cgd
1294 1.43 cgd err:
1295 1.42 cgd switch (error) {
1296 1.7 cgd
1297 1.7 cgd case ENXIO:
1298 1.46 christos printf("device bad\n");
1299 1.7 cgd break;
1300 1.7 cgd
1301 1.7 cgd case EFAULT:
1302 1.46 christos printf("device not ready\n");
1303 1.7 cgd break;
1304 1.7 cgd
1305 1.7 cgd case EINVAL:
1306 1.46 christos printf("area improper\n");
1307 1.7 cgd break;
1308 1.7 cgd
1309 1.7 cgd case EIO:
1310 1.46 christos printf("i/o error\n");
1311 1.7 cgd break;
1312 1.7 cgd
1313 1.7 cgd case EINTR:
1314 1.46 christos printf("aborted from console\n");
1315 1.7 cgd break;
1316 1.7 cgd
1317 1.42 cgd case 0:
1318 1.46 christos printf("succeeded\n");
1319 1.42 cgd break;
1320 1.42 cgd
1321 1.7 cgd default:
1322 1.46 christos printf("error %d\n", error);
1323 1.7 cgd break;
1324 1.7 cgd }
1325 1.46 christos printf("\n\n");
1326 1.7 cgd delay(1000);
1327 1.7 cgd }
1328 1.7 cgd
1329 1.1 cgd void
1330 1.1 cgd frametoreg(framep, regp)
1331 1.261 thorpej const struct trapframe *framep;
1332 1.1 cgd struct reg *regp;
1333 1.1 cgd {
1334 1.1 cgd
1335 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1336 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1337 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1338 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1339 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1340 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1341 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1342 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1343 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1344 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1345 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1346 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1347 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1348 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1349 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1350 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1351 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1352 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1353 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1354 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1355 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1356 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1357 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1358 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1359 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1360 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1361 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1362 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1363 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1364 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1365 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1366 1.1 cgd regp->r_regs[R_ZERO] = 0;
1367 1.1 cgd }
1368 1.1 cgd
1369 1.1 cgd void
1370 1.1 cgd regtoframe(regp, framep)
1371 1.261 thorpej const struct reg *regp;
1372 1.1 cgd struct trapframe *framep;
1373 1.1 cgd {
1374 1.1 cgd
1375 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1376 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1377 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1378 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1379 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1380 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1381 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1382 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1383 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1384 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1385 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1386 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1387 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1388 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1389 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1390 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1391 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1392 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1393 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1394 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1395 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1396 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1397 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1398 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1399 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1400 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1401 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1402 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1403 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1404 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1405 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1406 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1407 1.1 cgd }
1408 1.1 cgd
1409 1.1 cgd void
1410 1.1 cgd printregs(regp)
1411 1.1 cgd struct reg *regp;
1412 1.1 cgd {
1413 1.1 cgd int i;
1414 1.1 cgd
1415 1.1 cgd for (i = 0; i < 32; i++)
1416 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1417 1.1 cgd i & 1 ? "\n" : "\t");
1418 1.1 cgd }
1419 1.1 cgd
1420 1.1 cgd void
1421 1.1 cgd regdump(framep)
1422 1.1 cgd struct trapframe *framep;
1423 1.1 cgd {
1424 1.1 cgd struct reg reg;
1425 1.1 cgd
1426 1.1 cgd frametoreg(framep, ®);
1427 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1428 1.35 cgd
1429 1.46 christos printf("REGISTERS:\n");
1430 1.1 cgd printregs(®);
1431 1.1 cgd }
1432 1.1 cgd
1433 1.1 cgd
1434 1.274 skd
1435 1.274 skd void *
1436 1.274 skd getframe(const struct lwp *l, int sig, int *onstack)
1437 1.274 skd {
1438 1.274 skd void * frame;
1439 1.274 skd struct proc *p;
1440 1.274 skd
1441 1.274 skd p = l->l_proc;
1442 1.274 skd
1443 1.274 skd /* Do we need to jump onto the signal stack? */
1444 1.274 skd *onstack =
1445 1.274 skd (p->p_sigctx.ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1446 1.274 skd (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0;
1447 1.274 skd
1448 1.274 skd if (*onstack)
1449 1.274 skd frame = (void *)((caddr_t)p->p_sigctx.ps_sigstk.ss_sp +
1450 1.274 skd p->p_sigctx.ps_sigstk.ss_size);
1451 1.274 skd else
1452 1.274 skd frame = (void *)(alpha_pal_rdusp());
1453 1.274 skd return (frame);
1454 1.274 skd }
1455 1.274 skd
1456 1.274 skd void
1457 1.274 skd buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1458 1.274 skd {
1459 1.274 skd struct trapframe *tf = l->l_md.md_tf;
1460 1.274 skd
1461 1.274 skd tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1462 1.274 skd tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1463 1.274 skd tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1464 1.274 skd alpha_pal_wrusp((unsigned long)fp);
1465 1.274 skd }
1466 1.274 skd
1467 1.274 skd
1468 1.1 cgd /*
1469 1.274 skd * Send an interrupt to process, new style
1470 1.1 cgd */
1471 1.1 cgd void
1472 1.274 skd sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1473 1.1 cgd {
1474 1.261 thorpej struct lwp *l = curlwp;
1475 1.261 thorpej struct proc *p = l->l_proc;
1476 1.256 thorpej struct sigacts *ps = p->p_sigacts;
1477 1.274 skd int onstack, sig = ksi->ksi_signo;
1478 1.274 skd struct sigframe_siginfo *fp, frame;
1479 1.274 skd struct trapframe *tf;
1480 1.274 skd sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1481 1.1 cgd
1482 1.274 skd fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1483 1.274 skd tf = l->l_md.md_tf;
1484 1.141 thorpej
1485 1.141 thorpej /* Allocate space for the signal handler context. */
1486 1.274 skd fp--;
1487 1.141 thorpej
1488 1.274 skd /* Build stack frame for signal trampoline. */
1489 1.274 skd switch (ps->sa_sigdesc[sig].sd_vers) {
1490 1.274 skd case 0: /* handled by sendsig_sigcontext */
1491 1.274 skd case 1: /* handled by sendsig_sigcontext */
1492 1.274 skd default: /* unknown version */
1493 1.274 skd printf("nsendsig: bad version %d\n",
1494 1.274 skd ps->sa_sigdesc[sig].sd_vers);
1495 1.274 skd sigexit(l, SIGILL);
1496 1.274 skd case 2:
1497 1.274 skd break;
1498 1.274 skd }
1499 1.141 thorpej
1500 1.1 cgd #ifdef DEBUG
1501 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1502 1.274 skd printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1503 1.276 nathanw sig, &onstack, fp);
1504 1.125 ross #endif
1505 1.1 cgd
1506 1.141 thorpej /* Build stack frame for signal trampoline. */
1507 1.1 cgd
1508 1.275 enami frame.sf_si._info = ksi->ksi_info;
1509 1.274 skd frame.sf_uc.uc_flags = _UC_SIGMASK;
1510 1.274 skd frame.sf_uc.uc_sigmask = *mask;
1511 1.274 skd frame.sf_uc.uc_link = NULL;
1512 1.274 skd memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1513 1.274 skd cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1514 1.1 cgd
1515 1.274 skd if (copyout(&frame, fp, sizeof(frame)) != 0) {
1516 1.141 thorpej /*
1517 1.141 thorpej * Process has trashed its stack; give it an illegal
1518 1.141 thorpej * instruction to halt it in its tracks.
1519 1.141 thorpej */
1520 1.141 thorpej #ifdef DEBUG
1521 1.141 thorpej if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1522 1.274 skd printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1523 1.141 thorpej p->p_pid, sig);
1524 1.141 thorpej #endif
1525 1.261 thorpej sigexit(l, SIGILL);
1526 1.141 thorpej /* NOTREACHED */
1527 1.141 thorpej }
1528 1.274 skd
1529 1.1 cgd #ifdef DEBUG
1530 1.1 cgd if (sigdebug & SDB_FOLLOW)
1531 1.276 nathanw printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1532 1.276 nathanw p->p_pid, sig, fp, ksi->ksi_code);
1533 1.1 cgd #endif
1534 1.1 cgd
1535 1.256 thorpej /*
1536 1.256 thorpej * Set up the registers to directly invoke the signal handler. The
1537 1.256 thorpej * signal trampoline is then used to return from the signal. Note
1538 1.256 thorpej * the trampoline version numbers are coordinated with machine-
1539 1.256 thorpej * dependent code in libc.
1540 1.256 thorpej */
1541 1.274 skd
1542 1.274 skd tf->tf_regs[FRAME_A0] = sig;
1543 1.274 skd tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1544 1.274 skd tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1545 1.256 thorpej
1546 1.274 skd buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1547 1.142 mycroft
1548 1.142 mycroft /* Remember that we're now on the signal stack. */
1549 1.142 mycroft if (onstack)
1550 1.228 jdolecek p->p_sigctx.ps_sigstk.ss_flags |= SS_ONSTACK;
1551 1.1 cgd
1552 1.1 cgd #ifdef DEBUG
1553 1.1 cgd if (sigdebug & SDB_FOLLOW)
1554 1.274 skd printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1555 1.276 nathanw tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1556 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1557 1.274 skd printf("sendsig_siginfo(%d): sig %d returns\n",
1558 1.1 cgd p->p_pid, sig);
1559 1.1 cgd #endif
1560 1.1 cgd }
1561 1.1 cgd
1562 1.261 thorpej
1563 1.274 skd void
1564 1.274 skd sendsig(const ksiginfo_t *ksi, const sigset_t *mask)
1565 1.274 skd {
1566 1.274 skd #ifdef COMPAT_16
1567 1.274 skd if (curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers < 2) {
1568 1.274 skd sendsig_sigcontext(ksi, mask);
1569 1.274 skd } else {
1570 1.274 skd #endif
1571 1.274 skd #ifdef DEBUG
1572 1.274 skd if (sigdebug & SDB_FOLLOW)
1573 1.274 skd printf("sendsig: sendsig called: sig %d vers %d\n",
1574 1.274 skd ksi->ksi_signo,
1575 1.274 skd curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers);
1576 1.274 skd #endif
1577 1.274 skd sendsig_siginfo(ksi, mask);
1578 1.274 skd #ifdef COMPAT_16
1579 1.274 skd }
1580 1.274 skd #endif
1581 1.274 skd }
1582 1.274 skd
1583 1.261 thorpej void
1584 1.261 thorpej cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1585 1.261 thorpej {
1586 1.261 thorpej struct trapframe *tf;
1587 1.261 thorpej
1588 1.261 thorpej tf = l->l_md.md_tf;
1589 1.261 thorpej
1590 1.261 thorpej tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1591 1.261 thorpej tf->tf_regs[FRAME_RA] = 0;
1592 1.261 thorpej tf->tf_regs[FRAME_A0] = type;
1593 1.261 thorpej tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1594 1.261 thorpej tf->tf_regs[FRAME_A2] = nevents;
1595 1.261 thorpej tf->tf_regs[FRAME_A3] = ninterrupted;
1596 1.261 thorpej tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1597 1.261 thorpej tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1598 1.261 thorpej alpha_pal_wrusp((unsigned long)sp);
1599 1.1 cgd }
1600 1.1 cgd
1601 1.1 cgd /*
1602 1.1 cgd * machine dependent system variables.
1603 1.1 cgd */
1604 1.278 atatat SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1605 1.1 cgd {
1606 1.241 ross
1607 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1608 1.282 atatat CTLFLAG_PERMANENT,
1609 1.278 atatat CTLTYPE_NODE, "machdep", NULL,
1610 1.278 atatat NULL, 0, NULL, 0,
1611 1.278 atatat CTL_MACHDEP, CTL_EOL);
1612 1.278 atatat
1613 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1614 1.282 atatat CTLFLAG_PERMANENT,
1615 1.278 atatat CTLTYPE_STRUCT, "console_device", NULL,
1616 1.278 atatat sysctl_consdev, 0, NULL, sizeof(dev_t),
1617 1.278 atatat CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1618 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1619 1.282 atatat CTLFLAG_PERMANENT,
1620 1.278 atatat CTLTYPE_STRING, "root_device", NULL,
1621 1.278 atatat sysctl_root_device, 0, NULL, 0,
1622 1.278 atatat CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1623 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1624 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1625 1.278 atatat CTLTYPE_INT, "unaligned_print", NULL,
1626 1.278 atatat NULL, 0, &alpha_unaligned_print, 0,
1627 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1628 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1629 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1630 1.278 atatat CTLTYPE_INT, "unaligned_fix", NULL,
1631 1.278 atatat NULL, 0, &alpha_unaligned_fix, 0,
1632 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1633 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1634 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1635 1.278 atatat CTLTYPE_INT, "unaligned_sigbus", NULL,
1636 1.278 atatat NULL, 0, &alpha_unaligned_sigbus, 0,
1637 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1638 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1639 1.282 atatat CTLFLAG_PERMANENT,
1640 1.278 atatat CTLTYPE_STRING, "booted_kernel", NULL,
1641 1.278 atatat NULL, 0, bootinfo.booted_kernel, 0,
1642 1.278 atatat CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1643 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1644 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1645 1.278 atatat CTLTYPE_INT, "fp_sync_complete", NULL,
1646 1.278 atatat NULL, 0, &alpha_fp_sync_complete, 0,
1647 1.278 atatat CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1648 1.1 cgd }
1649 1.1 cgd
1650 1.1 cgd /*
1651 1.1 cgd * Set registers on exec.
1652 1.1 cgd */
1653 1.1 cgd void
1654 1.261 thorpej setregs(l, pack, stack)
1655 1.261 thorpej register struct lwp *l;
1656 1.5 christos struct exec_package *pack;
1657 1.1 cgd u_long stack;
1658 1.1 cgd {
1659 1.261 thorpej struct trapframe *tfp = l->l_md.md_tf;
1660 1.56 cgd #ifdef DEBUG
1661 1.1 cgd int i;
1662 1.56 cgd #endif
1663 1.43 cgd
1664 1.43 cgd #ifdef DEBUG
1665 1.43 cgd /*
1666 1.43 cgd * Crash and dump, if the user requested it.
1667 1.43 cgd */
1668 1.43 cgd if (boothowto & RB_DUMP)
1669 1.43 cgd panic("crash requested by boot flags");
1670 1.43 cgd #endif
1671 1.1 cgd
1672 1.1 cgd #ifdef DEBUG
1673 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1674 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1675 1.1 cgd #else
1676 1.246 thorpej memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1677 1.1 cgd #endif
1678 1.261 thorpej memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
1679 1.35 cgd alpha_pal_wrusp(stack);
1680 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1681 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1682 1.41 cgd
1683 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1684 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1685 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1686 1.261 thorpej tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1687 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1688 1.1 cgd
1689 1.261 thorpej l->l_md.md_flags &= ~MDP_FPUSED;
1690 1.261 thorpej if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1691 1.261 thorpej l->l_md.md_flags &= ~MDP_FP_C;
1692 1.261 thorpej l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1693 1.241 ross }
1694 1.261 thorpej if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1695 1.261 thorpej fpusave_proc(l, 0);
1696 1.219 thorpej }
1697 1.219 thorpej
1698 1.219 thorpej /*
1699 1.219 thorpej * Release the FPU.
1700 1.219 thorpej */
1701 1.219 thorpej void
1702 1.225 thorpej fpusave_cpu(struct cpu_info *ci, int save)
1703 1.219 thorpej {
1704 1.261 thorpej struct lwp *l;
1705 1.225 thorpej #if defined(MULTIPROCESSOR)
1706 1.219 thorpej int s;
1707 1.225 thorpej #endif
1708 1.219 thorpej
1709 1.225 thorpej KDASSERT(ci == curcpu());
1710 1.225 thorpej
1711 1.235 thorpej #if defined(MULTIPROCESSOR)
1712 1.287 thorpej s = splhigh(); /* block IPIs for the duration */
1713 1.235 thorpej atomic_setbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1714 1.235 thorpej #endif
1715 1.235 thorpej
1716 1.261 thorpej l = ci->ci_fpcurlwp;
1717 1.261 thorpej if (l == NULL)
1718 1.235 thorpej goto out;
1719 1.219 thorpej
1720 1.219 thorpej if (save) {
1721 1.219 thorpej alpha_pal_wrfen(1);
1722 1.261 thorpej savefpstate(&l->l_addr->u_pcb.pcb_fp);
1723 1.225 thorpej }
1724 1.225 thorpej
1725 1.225 thorpej alpha_pal_wrfen(0);
1726 1.225 thorpej
1727 1.287 thorpej FPCPU_LOCK(&l->l_addr->u_pcb);
1728 1.235 thorpej
1729 1.261 thorpej l->l_addr->u_pcb.pcb_fpcpu = NULL;
1730 1.261 thorpej ci->ci_fpcurlwp = NULL;
1731 1.235 thorpej
1732 1.287 thorpej FPCPU_UNLOCK(&l->l_addr->u_pcb);
1733 1.235 thorpej
1734 1.235 thorpej out:
1735 1.219 thorpej #if defined(MULTIPROCESSOR)
1736 1.235 thorpej atomic_clearbits_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1737 1.287 thorpej splx(s);
1738 1.219 thorpej #endif
1739 1.235 thorpej return;
1740 1.219 thorpej }
1741 1.219 thorpej
1742 1.219 thorpej /*
1743 1.219 thorpej * Synchronize FP state for this process.
1744 1.219 thorpej */
1745 1.219 thorpej void
1746 1.261 thorpej fpusave_proc(struct lwp *l, int save)
1747 1.219 thorpej {
1748 1.225 thorpej struct cpu_info *ci = curcpu();
1749 1.225 thorpej struct cpu_info *oci;
1750 1.235 thorpej #if defined(MULTIPROCESSOR)
1751 1.235 thorpej u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1752 1.236 thorpej int s, spincount;
1753 1.235 thorpej #endif
1754 1.219 thorpej
1755 1.261 thorpej KDASSERT(l->l_addr != NULL);
1756 1.225 thorpej
1757 1.287 thorpej #if defined(MULTIPROCESSOR)
1758 1.287 thorpej s = splhigh(); /* block IPIs for the duration */
1759 1.287 thorpej #endif
1760 1.287 thorpej FPCPU_LOCK(&l->l_addr->u_pcb);
1761 1.235 thorpej
1762 1.261 thorpej oci = l->l_addr->u_pcb.pcb_fpcpu;
1763 1.235 thorpej if (oci == NULL) {
1764 1.287 thorpej FPCPU_UNLOCK(&l->l_addr->u_pcb);
1765 1.287 thorpej #if defined(MULTIPROCESSOR)
1766 1.287 thorpej splx(s);
1767 1.287 thorpej #endif
1768 1.219 thorpej return;
1769 1.235 thorpej }
1770 1.219 thorpej
1771 1.219 thorpej #if defined(MULTIPROCESSOR)
1772 1.225 thorpej if (oci == ci) {
1773 1.261 thorpej KASSERT(ci->ci_fpcurlwp == l);
1774 1.287 thorpej FPCPU_UNLOCK(&l->l_addr->u_pcb);
1775 1.287 thorpej splx(s);
1776 1.225 thorpej fpusave_cpu(ci, save);
1777 1.235 thorpej return;
1778 1.235 thorpej }
1779 1.235 thorpej
1780 1.261 thorpej KASSERT(oci->ci_fpcurlwp == l);
1781 1.235 thorpej alpha_send_ipi(oci->ci_cpuid, ipi);
1782 1.287 thorpej FPCPU_UNLOCK(&l->l_addr->u_pcb);
1783 1.235 thorpej
1784 1.235 thorpej spincount = 0;
1785 1.261 thorpej while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
1786 1.235 thorpej spincount++;
1787 1.235 thorpej delay(1000); /* XXX */
1788 1.235 thorpej if (spincount > 10000)
1789 1.235 thorpej panic("fpsave ipi didn't");
1790 1.219 thorpej }
1791 1.219 thorpej #else
1792 1.261 thorpej KASSERT(ci->ci_fpcurlwp == l);
1793 1.287 thorpej FPCPU_UNLOCK(&l->l_addr->u_pcb);
1794 1.225 thorpej fpusave_cpu(ci, save);
1795 1.219 thorpej #endif /* MULTIPROCESSOR */
1796 1.15 cgd }
1797 1.15 cgd
1798 1.15 cgd /*
1799 1.15 cgd * Wait "n" microseconds.
1800 1.15 cgd */
1801 1.32 cgd void
1802 1.15 cgd delay(n)
1803 1.32 cgd unsigned long n;
1804 1.15 cgd {
1805 1.216 thorpej unsigned long pcc0, pcc1, curcycle, cycles, usec;
1806 1.15 cgd
1807 1.216 thorpej if (n == 0)
1808 1.216 thorpej return;
1809 1.216 thorpej
1810 1.216 thorpej pcc0 = alpha_rpcc() & 0xffffffffUL;
1811 1.216 thorpej cycles = 0;
1812 1.216 thorpej usec = 0;
1813 1.216 thorpej
1814 1.216 thorpej while (usec <= n) {
1815 1.216 thorpej /*
1816 1.216 thorpej * Get the next CPU cycle count- assumes that we cannot
1817 1.216 thorpej * have had more than one 32 bit overflow.
1818 1.216 thorpej */
1819 1.216 thorpej pcc1 = alpha_rpcc() & 0xffffffffUL;
1820 1.216 thorpej if (pcc1 < pcc0)
1821 1.216 thorpej curcycle = (pcc1 + 0x100000000UL) - pcc0;
1822 1.216 thorpej else
1823 1.216 thorpej curcycle = pcc1 - pcc0;
1824 1.186 thorpej
1825 1.216 thorpej /*
1826 1.216 thorpej * We now have the number of processor cycles since we
1827 1.216 thorpej * last checked. Add the current cycle count to the
1828 1.216 thorpej * running total. If it's over cycles_per_usec, increment
1829 1.216 thorpej * the usec counter.
1830 1.216 thorpej */
1831 1.216 thorpej cycles += curcycle;
1832 1.216 thorpej while (cycles > cycles_per_usec) {
1833 1.216 thorpej usec++;
1834 1.216 thorpej cycles -= cycles_per_usec;
1835 1.216 thorpej }
1836 1.216 thorpej pcc0 = pcc1;
1837 1.216 thorpej }
1838 1.1 cgd }
1839 1.225 thorpej
1840 1.250 jdolecek #ifdef EXEC_ECOFF
1841 1.1 cgd void
1842 1.261 thorpej cpu_exec_ecoff_setregs(l, epp, stack)
1843 1.261 thorpej struct lwp *l;
1844 1.19 cgd struct exec_package *epp;
1845 1.5 christos u_long stack;
1846 1.1 cgd {
1847 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1848 1.1 cgd
1849 1.261 thorpej l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1850 1.1 cgd }
1851 1.1 cgd
1852 1.1 cgd /*
1853 1.1 cgd * cpu_exec_ecoff_hook():
1854 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1855 1.1 cgd *
1856 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1857 1.1 cgd *
1858 1.1 cgd */
1859 1.1 cgd int
1860 1.288 christos cpu_exec_ecoff_probe(l, epp)
1861 1.288 christos struct lwp *l;
1862 1.1 cgd struct exec_package *epp;
1863 1.1 cgd {
1864 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1865 1.171 cgd int error;
1866 1.1 cgd
1867 1.224 jdolecek if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1868 1.171 cgd error = 0;
1869 1.224 jdolecek else
1870 1.224 jdolecek error = ENOEXEC;
1871 1.1 cgd
1872 1.171 cgd return (error);
1873 1.1 cgd }
1874 1.250 jdolecek #endif /* EXEC_ECOFF */
1875 1.110 thorpej
1876 1.110 thorpej int
1877 1.110 thorpej alpha_pa_access(pa)
1878 1.110 thorpej u_long pa;
1879 1.110 thorpej {
1880 1.110 thorpej int i;
1881 1.110 thorpej
1882 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1883 1.110 thorpej if (pa < mem_clusters[i].start)
1884 1.110 thorpej continue;
1885 1.110 thorpej if ((pa - mem_clusters[i].start) >=
1886 1.110 thorpej (mem_clusters[i].size & ~PAGE_MASK))
1887 1.110 thorpej continue;
1888 1.110 thorpej return (mem_clusters[i].size & PAGE_MASK); /* prot */
1889 1.110 thorpej }
1890 1.197 thorpej
1891 1.197 thorpej /*
1892 1.197 thorpej * Address is not a memory address. If we're secure, disallow
1893 1.197 thorpej * access. Otherwise, grant read/write.
1894 1.197 thorpej */
1895 1.291 elad if (kauth_authorize_machdep(kauth_cred_get(),
1896 1.291 elad KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
1897 1.197 thorpej return (PROT_NONE);
1898 1.197 thorpej else
1899 1.197 thorpej return (PROT_READ | PROT_WRITE);
1900 1.110 thorpej }
1901 1.50 cgd
1902 1.50 cgd /* XXX XXX BEGIN XXX XXX */
1903 1.140 thorpej paddr_t alpha_XXX_dmamap_or; /* XXX */
1904 1.50 cgd /* XXX */
1905 1.140 thorpej paddr_t /* XXX */
1906 1.50 cgd alpha_XXX_dmamap(v) /* XXX */
1907 1.140 thorpej vaddr_t v; /* XXX */
1908 1.50 cgd { /* XXX */
1909 1.50 cgd /* XXX */
1910 1.51 cgd return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1911 1.50 cgd } /* XXX */
1912 1.50 cgd /* XXX XXX END XXX XXX */
1913 1.177 ross
1914 1.177 ross char *
1915 1.177 ross dot_conv(x)
1916 1.177 ross unsigned long x;
1917 1.177 ross {
1918 1.177 ross int i;
1919 1.177 ross char *xc;
1920 1.177 ross static int next;
1921 1.177 ross static char space[2][20];
1922 1.177 ross
1923 1.177 ross xc = space[next ^= 1] + sizeof space[0];
1924 1.177 ross *--xc = '\0';
1925 1.177 ross for (i = 0;; ++i) {
1926 1.177 ross if (i && (i & 3) == 0)
1927 1.177 ross *--xc = '.';
1928 1.285 christos *--xc = hexdigits[x & 0xf];
1929 1.177 ross x >>= 4;
1930 1.177 ross if (x == 0)
1931 1.177 ross break;
1932 1.177 ross }
1933 1.177 ross return xc;
1934 1.261 thorpej }
1935 1.261 thorpej
1936 1.261 thorpej void
1937 1.261 thorpej cpu_getmcontext(l, mcp, flags)
1938 1.261 thorpej struct lwp *l;
1939 1.261 thorpej mcontext_t *mcp;
1940 1.261 thorpej unsigned int *flags;
1941 1.261 thorpej {
1942 1.261 thorpej struct trapframe *frame = l->l_md.md_tf;
1943 1.261 thorpej __greg_t *gr = mcp->__gregs;
1944 1.264 nathanw __greg_t ras_pc;
1945 1.261 thorpej
1946 1.261 thorpej /* Save register context. */
1947 1.261 thorpej frametoreg(frame, (struct reg *)gr);
1948 1.261 thorpej /* XXX if there's a better, general way to get the USP of
1949 1.261 thorpej * an LWP that might or might not be curlwp, I'd like to know
1950 1.261 thorpej * about it.
1951 1.261 thorpej */
1952 1.261 thorpej if (l == curlwp) {
1953 1.261 thorpej gr[_REG_SP] = alpha_pal_rdusp();
1954 1.261 thorpej gr[_REG_UNIQUE] = alpha_pal_rdunique();
1955 1.261 thorpej } else {
1956 1.261 thorpej gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
1957 1.261 thorpej gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
1958 1.261 thorpej }
1959 1.261 thorpej gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1960 1.261 thorpej gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1961 1.264 nathanw
1962 1.264 nathanw if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1963 1.264 nathanw (caddr_t) gr[_REG_PC])) != -1)
1964 1.264 nathanw gr[_REG_PC] = ras_pc;
1965 1.264 nathanw
1966 1.261 thorpej *flags |= _UC_CPU | _UC_UNIQUE;
1967 1.261 thorpej
1968 1.261 thorpej /* Save floating point register context, if any, and copy it. */
1969 1.265 nathanw if (l->l_md.md_flags & MDP_FPUSED) {
1970 1.261 thorpej fpusave_proc(l, 1);
1971 1.261 thorpej (void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
1972 1.261 thorpej sizeof (mcp->__fpregs));
1973 1.261 thorpej mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1974 1.261 thorpej *flags |= _UC_FPU;
1975 1.261 thorpej }
1976 1.261 thorpej }
1977 1.261 thorpej
1978 1.261 thorpej
1979 1.261 thorpej int
1980 1.261 thorpej cpu_setmcontext(l, mcp, flags)
1981 1.261 thorpej struct lwp *l;
1982 1.261 thorpej const mcontext_t *mcp;
1983 1.261 thorpej unsigned int flags;
1984 1.261 thorpej {
1985 1.261 thorpej struct trapframe *frame = l->l_md.md_tf;
1986 1.261 thorpej const __greg_t *gr = mcp->__gregs;
1987 1.261 thorpej
1988 1.261 thorpej /* Restore register context, if any. */
1989 1.261 thorpej if (flags & _UC_CPU) {
1990 1.261 thorpej /* Check for security violations first. */
1991 1.261 thorpej if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1992 1.261 thorpej (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1993 1.261 thorpej return (EINVAL);
1994 1.261 thorpej
1995 1.286 jdc regtoframe((const struct reg *)gr, l->l_md.md_tf);
1996 1.261 thorpej if (l == curlwp)
1997 1.261 thorpej alpha_pal_wrusp(gr[_REG_SP]);
1998 1.261 thorpej else
1999 1.261 thorpej l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
2000 1.261 thorpej frame->tf_regs[FRAME_PC] = gr[_REG_PC];
2001 1.261 thorpej frame->tf_regs[FRAME_PS] = gr[_REG_PS];
2002 1.261 thorpej }
2003 1.261 thorpej if (flags & _UC_UNIQUE) {
2004 1.261 thorpej if (l == curlwp)
2005 1.261 thorpej alpha_pal_wrunique(gr[_REG_UNIQUE]);
2006 1.261 thorpej else
2007 1.261 thorpej l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
2008 1.261 thorpej }
2009 1.261 thorpej /* Restore floating point register context, if any. */
2010 1.261 thorpej if (flags & _UC_FPU) {
2011 1.261 thorpej /* If we have an FP register context, get rid of it. */
2012 1.261 thorpej if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
2013 1.261 thorpej fpusave_proc(l, 0);
2014 1.261 thorpej (void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
2015 1.261 thorpej sizeof (l->l_addr->u_pcb.pcb_fp));
2016 1.261 thorpej l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
2017 1.271 nathanw l->l_md.md_flags |= MDP_FPUSED;
2018 1.261 thorpej }
2019 1.261 thorpej
2020 1.261 thorpej return (0);
2021 1.138 ross }
2022