machdep.c revision 1.30 1 1.30 cgd /* $NetBSD: machdep.c,v 1.30 1996/06/14 20:40:47 cgd Exp $ */
2 1.1 cgd
3 1.1 cgd /*
4 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 1.1 cgd * All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Author: Chris G. Demetriou
8 1.1 cgd *
9 1.1 cgd * Permission to use, copy, modify and distribute this software and
10 1.1 cgd * its documentation is hereby granted, provided that both the copyright
11 1.1 cgd * notice and this permission notice appear in all copies of the
12 1.1 cgd * software, derivative works or modified versions, and any portions
13 1.1 cgd * thereof, and that both notices appear in supporting documentation.
14 1.1 cgd *
15 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 1.1 cgd *
19 1.1 cgd * Carnegie Mellon requests users of this software to return to
20 1.1 cgd *
21 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 1.1 cgd * School of Computer Science
23 1.1 cgd * Carnegie Mellon University
24 1.1 cgd * Pittsburgh PA 15213-3890
25 1.1 cgd *
26 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
27 1.1 cgd * rights to redistribute these changes.
28 1.1 cgd */
29 1.1 cgd
30 1.1 cgd #include <sys/param.h>
31 1.1 cgd #include <sys/systm.h>
32 1.1 cgd #include <sys/signalvar.h>
33 1.1 cgd #include <sys/kernel.h>
34 1.1 cgd #include <sys/map.h>
35 1.1 cgd #include <sys/proc.h>
36 1.1 cgd #include <sys/buf.h>
37 1.1 cgd #include <sys/reboot.h>
38 1.28 cgd #include <sys/device.h>
39 1.1 cgd #include <sys/conf.h>
40 1.1 cgd #include <sys/file.h>
41 1.1 cgd #ifdef REAL_CLISTS
42 1.1 cgd #include <sys/clist.h>
43 1.1 cgd #endif
44 1.1 cgd #include <sys/callout.h>
45 1.1 cgd #include <sys/malloc.h>
46 1.1 cgd #include <sys/mbuf.h>
47 1.1 cgd #include <sys/msgbuf.h>
48 1.1 cgd #include <sys/ioctl.h>
49 1.1 cgd #include <sys/tty.h>
50 1.1 cgd #include <sys/user.h>
51 1.1 cgd #include <sys/exec.h>
52 1.1 cgd #include <sys/exec_ecoff.h>
53 1.1 cgd #include <sys/sysctl.h>
54 1.1 cgd #ifdef SYSVMSG
55 1.1 cgd #include <sys/msg.h>
56 1.1 cgd #endif
57 1.1 cgd #ifdef SYSVSEM
58 1.1 cgd #include <sys/sem.h>
59 1.1 cgd #endif
60 1.1 cgd #ifdef SYSVSHM
61 1.1 cgd #include <sys/shm.h>
62 1.1 cgd #endif
63 1.1 cgd
64 1.1 cgd #include <sys/mount.h>
65 1.1 cgd #include <sys/syscallargs.h>
66 1.1 cgd
67 1.1 cgd #include <vm/vm_kern.h>
68 1.1 cgd
69 1.1 cgd #include <dev/cons.h>
70 1.1 cgd
71 1.1 cgd #include <machine/cpu.h>
72 1.1 cgd #include <machine/reg.h>
73 1.1 cgd #include <machine/rpb.h>
74 1.1 cgd #include <machine/prom.h>
75 1.1 cgd
76 1.8 cgd #ifdef DEC_3000_500
77 1.8 cgd #include <alpha/alpha/dec_3000_500.h>
78 1.8 cgd #endif
79 1.8 cgd #ifdef DEC_3000_300
80 1.8 cgd #include <alpha/alpha/dec_3000_300.h>
81 1.8 cgd #endif
82 1.8 cgd #ifdef DEC_2100_A50
83 1.8 cgd #include <alpha/alpha/dec_2100_a50.h>
84 1.8 cgd #endif
85 1.12 cgd #ifdef DEC_KN20AA
86 1.12 cgd #include <alpha/alpha/dec_kn20aa.h>
87 1.12 cgd #endif
88 1.12 cgd #ifdef DEC_AXPPCI_33
89 1.12 cgd #include <alpha/alpha/dec_axppci_33.h>
90 1.12 cgd #endif
91 1.12 cgd #ifdef DEC_21000
92 1.12 cgd #include <alpha/alpha/dec_21000.h>
93 1.12 cgd #endif
94 1.8 cgd
95 1.1 cgd #include <net/netisr.h>
96 1.1 cgd #include "ether.h"
97 1.1 cgd
98 1.17 cgd #include "le_ioasic.h" /* for le_iomem creation */
99 1.1 cgd
100 1.1 cgd vm_map_t buffer_map;
101 1.1 cgd
102 1.7 cgd void dumpsys __P((void));
103 1.7 cgd
104 1.1 cgd /*
105 1.1 cgd * Declare these as initialized data so we can patch them.
106 1.1 cgd */
107 1.1 cgd int nswbuf = 0;
108 1.1 cgd #ifdef NBUF
109 1.1 cgd int nbuf = NBUF;
110 1.1 cgd #else
111 1.1 cgd int nbuf = 0;
112 1.1 cgd #endif
113 1.1 cgd #ifdef BUFPAGES
114 1.1 cgd int bufpages = BUFPAGES;
115 1.1 cgd #else
116 1.1 cgd int bufpages = 0;
117 1.1 cgd #endif
118 1.1 cgd int msgbufmapped = 0; /* set when safe to use msgbuf */
119 1.1 cgd int maxmem; /* max memory per process */
120 1.7 cgd
121 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
122 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
123 1.7 cgd int firstusablepage; /* first usable memory page */
124 1.7 cgd int lastusablepage; /* last usable memory page */
125 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
126 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
127 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
128 1.1 cgd
129 1.1 cgd int cputype; /* system type, from the RPB */
130 1.1 cgd
131 1.1 cgd /*
132 1.1 cgd * XXX We need an address to which we can assign things so that they
133 1.1 cgd * won't be optimized away because we didn't use the value.
134 1.1 cgd */
135 1.1 cgd u_int32_t no_optimize;
136 1.1 cgd
137 1.1 cgd /* the following is used externally (sysctl_hw) */
138 1.1 cgd char machine[] = "alpha";
139 1.29 cgd char cpu_model[128];
140 1.1 cgd char *model_names[] = {
141 1.2 cgd "UNKNOWN (0)",
142 1.2 cgd "Alpha Demonstration Unit",
143 1.2 cgd "DEC 4000 (\"Cobra\")",
144 1.2 cgd "DEC 7000 (\"Ruby\")",
145 1.2 cgd "DEC 3000/500 (\"Flamingo\") family",
146 1.2 cgd "UNKNOWN (5)",
147 1.2 cgd "DEC 2000/300 (\"Jensen\")",
148 1.2 cgd "DEC 3000/300 (\"Pelican\")",
149 1.2 cgd "UNKNOWN (8)",
150 1.2 cgd "DEC 2100/A500 (\"Sable\")",
151 1.2 cgd "AXPvme 64",
152 1.2 cgd "AXPpci 33 (\"NoName\")",
153 1.12 cgd "DEC 21000 (\"TurboLaser\")",
154 1.7 cgd "DEC 2100/A50 (\"Avanti\") family",
155 1.2 cgd "Mustang",
156 1.12 cgd "DEC KN20AA",
157 1.12 cgd "UNKNOWN (16)",
158 1.2 cgd "DEC 1000 (\"Mikasa\")",
159 1.1 cgd };
160 1.1 cgd int nmodel_names = sizeof model_names/sizeof model_names[0];
161 1.1 cgd
162 1.1 cgd struct user *proc0paddr;
163 1.1 cgd
164 1.1 cgd /* Number of machine cycles per microsecond */
165 1.1 cgd u_int64_t cycles_per_usec;
166 1.1 cgd
167 1.1 cgd /* some memory areas for device DMA. "ick." */
168 1.1 cgd caddr_t le_iomem; /* XXX iomem for LANCE DMA */
169 1.1 cgd
170 1.1 cgd /* Interrupt vectors (in locore) */
171 1.1 cgd extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
172 1.1 cgd
173 1.7 cgd /* number of cpus in the box. really! */
174 1.7 cgd int ncpus;
175 1.7 cgd
176 1.8 cgd /* various CPU-specific functions. */
177 1.8 cgd char *(*cpu_modelname) __P((void));
178 1.24 cgd void (*cpu_consinit) __P((void));
179 1.28 cgd void (*cpu_device_register) __P((struct device *dev, void *aux));
180 1.8 cgd char *cpu_iobus;
181 1.8 cgd
182 1.25 cgd char boot_flags[64];
183 1.8 cgd
184 1.30 cgd /* for cpu_sysctl() */
185 1.30 cgd char root_device[17];
186 1.30 cgd
187 1.1 cgd int
188 1.25 cgd alpha_init(pfn, ptb)
189 1.1 cgd u_long pfn; /* first free PFN number */
190 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
191 1.1 cgd {
192 1.2 cgd extern char _end[];
193 1.1 cgd caddr_t start, v;
194 1.1 cgd struct mddt *mddtp;
195 1.7 cgd int i, mddtweird;
196 1.1 cgd char *p;
197 1.1 cgd
198 1.1 cgd /*
199 1.1 cgd * Turn off interrupts and floating point.
200 1.1 cgd * Make sure the instruction and data streams are consistent.
201 1.1 cgd */
202 1.1 cgd (void)splhigh();
203 1.1 cgd pal_wrfen(0);
204 1.1 cgd TBIA();
205 1.1 cgd IMB();
206 1.1 cgd
207 1.1 cgd /*
208 1.1 cgd * get address of the restart block, while we the bootstrap
209 1.1 cgd * mapping is still around.
210 1.1 cgd */
211 1.1 cgd hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
212 1.1 cgd
213 1.1 cgd /*
214 1.1 cgd * Remember how many cycles there are per microsecond,
215 1.7 cgd * so that we can use delay(). Round up, for safety.
216 1.1 cgd */
217 1.7 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
218 1.1 cgd
219 1.1 cgd /*
220 1.1 cgd * Init the PROM interface, so we can use printf
221 1.1 cgd * until PROM mappings go away in consinit.
222 1.1 cgd */
223 1.1 cgd init_prom_interface();
224 1.1 cgd
225 1.1 cgd /*
226 1.1 cgd * Point interrupt/exception vectors to our own.
227 1.1 cgd */
228 1.1 cgd pal_wrent(XentInt, 0);
229 1.1 cgd pal_wrent(XentArith, 1);
230 1.1 cgd pal_wrent(XentMM, 2);
231 1.1 cgd pal_wrent(XentIF, 3);
232 1.1 cgd pal_wrent(XentUna, 4);
233 1.1 cgd pal_wrent(XentSys, 5);
234 1.1 cgd
235 1.1 cgd /*
236 1.1 cgd * Find out how much memory is available, by looking at
237 1.7 cgd * the memory cluster descriptors. This also tries to do
238 1.7 cgd * its best to detect things things that have never been seen
239 1.7 cgd * before...
240 1.7 cgd *
241 1.1 cgd * XXX Assumes that the first "system" cluster is the
242 1.7 cgd * only one we can use. Is the second (etc.) system cluster
243 1.7 cgd * (if one happens to exist) guaranteed to be contiguous? or...?
244 1.1 cgd */
245 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
246 1.7 cgd
247 1.7 cgd /*
248 1.7 cgd * BEGIN MDDT WEIRDNESS CHECKING
249 1.7 cgd */
250 1.7 cgd mddtweird = 0;
251 1.7 cgd
252 1.7 cgd #define cnt mddtp->mddt_cluster_cnt
253 1.7 cgd #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
254 1.7 cgd if (cnt != 2 && cnt != 3) {
255 1.7 cgd printf("WARNING: weird number (%d) of mem clusters\n", cnt);
256 1.7 cgd mddtweird = 1;
257 1.7 cgd } else if (usage(0) != MDDT_PALCODE ||
258 1.7 cgd usage(1) != MDDT_SYSTEM ||
259 1.7 cgd (cnt == 3 && usage(2) != MDDT_PALCODE)) {
260 1.7 cgd mddtweird = 1;
261 1.7 cgd printf("WARNING: %d mem clusters, but weird config\n", cnt);
262 1.7 cgd }
263 1.7 cgd
264 1.7 cgd for (i = 0; i < cnt; i++) {
265 1.7 cgd if ((usage(i) & MDDT_mbz) != 0) {
266 1.7 cgd printf("WARNING: mem cluster %d has weird usage %lx\n",
267 1.7 cgd i, usage(i));
268 1.7 cgd mddtweird = 1;
269 1.7 cgd }
270 1.7 cgd if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
271 1.7 cgd printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
272 1.7 cgd mddtweird = 1;
273 1.7 cgd }
274 1.7 cgd /* XXX other things to check? */
275 1.7 cgd }
276 1.7 cgd #undef cnt
277 1.7 cgd #undef usage
278 1.7 cgd
279 1.7 cgd if (mddtweird) {
280 1.7 cgd printf("\n");
281 1.7 cgd printf("complete memory cluster information:\n");
282 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
283 1.2 cgd printf("mddt %d:\n", i);
284 1.2 cgd printf("\tpfn %lx\n",
285 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
286 1.2 cgd printf("\tcnt %lx\n",
287 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
288 1.2 cgd printf("\ttest %lx\n",
289 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
290 1.2 cgd printf("\tbva %lx\n",
291 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
292 1.2 cgd printf("\tbpa %lx\n",
293 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
294 1.2 cgd printf("\tbcksum %lx\n",
295 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
296 1.2 cgd printf("\tusage %lx\n",
297 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
298 1.2 cgd }
299 1.7 cgd printf("\n");
300 1.2 cgd }
301 1.7 cgd /*
302 1.7 cgd * END MDDT WEIRDNESS CHECKING
303 1.7 cgd */
304 1.2 cgd
305 1.1 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
306 1.7 cgd totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
307 1.7 cgd #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
308 1.7 cgd #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
309 1.7 cgd if ((usage(i) & MDDT_mbz) != 0)
310 1.7 cgd unknownmem += pgcnt(i);
311 1.7 cgd else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
312 1.7 cgd resvmem += pgcnt(i);
313 1.7 cgd else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
314 1.7 cgd /*
315 1.7 cgd * assumes that the system cluster listed is
316 1.7 cgd * one we're in...
317 1.7 cgd */
318 1.7 cgd if (physmem != resvmem) {
319 1.7 cgd physmem += pgcnt(i);
320 1.7 cgd firstusablepage =
321 1.7 cgd mddtp->mddt_clusters[i].mddt_pfn;
322 1.7 cgd lastusablepage = firstusablepage + pgcnt(i) - 1;
323 1.7 cgd } else
324 1.7 cgd unusedmem += pgcnt(i);
325 1.7 cgd }
326 1.7 cgd #undef usage
327 1.7 cgd #undef pgcnt
328 1.1 cgd }
329 1.7 cgd if (totalphysmem == 0)
330 1.1 cgd panic("can't happen: system seems to have no memory!");
331 1.1 cgd maxmem = physmem;
332 1.1 cgd
333 1.7 cgd #if 0
334 1.7 cgd printf("totalphysmem = %d\n", totalphysmem);
335 1.7 cgd printf("physmem = %d\n", physmem);
336 1.7 cgd printf("firstusablepage = %d\n", firstusablepage);
337 1.7 cgd printf("lastusablepage = %d\n", lastusablepage);
338 1.7 cgd printf("resvmem = %d\n", resvmem);
339 1.7 cgd printf("unusedmem = %d\n", unusedmem);
340 1.7 cgd printf("unknownmem = %d\n", unknownmem);
341 1.7 cgd #endif
342 1.7 cgd
343 1.1 cgd /*
344 1.1 cgd * find out this CPU's page size
345 1.1 cgd */
346 1.1 cgd PAGE_SIZE = hwrpb->rpb_page_size;
347 1.12 cgd if (PAGE_SIZE != 8192)
348 1.12 cgd panic("page size %d != 8192?!", PAGE_SIZE);
349 1.1 cgd
350 1.2 cgd v = (caddr_t)alpha_round_page(_end);
351 1.1 cgd /*
352 1.1 cgd * Init mapping for u page(s) for proc 0
353 1.1 cgd */
354 1.1 cgd start = v;
355 1.1 cgd curproc->p_addr = proc0paddr = (struct user *)v;
356 1.1 cgd v += UPAGES * NBPG;
357 1.1 cgd
358 1.1 cgd /*
359 1.1 cgd * Find out what hardware we're on, and remember its type name.
360 1.1 cgd */
361 1.1 cgd cputype = hwrpb->rpb_type;
362 1.1 cgd switch (cputype) {
363 1.2 cgd #ifdef DEC_3000_500 /* and 400, [6-9]00 */
364 1.1 cgd case ST_DEC_3000_500:
365 1.8 cgd cpu_modelname = dec_3000_500_modelname;
366 1.8 cgd cpu_consinit = dec_3000_500_consinit;
367 1.28 cgd cpu_device_register = dec_3000_500_device_register;
368 1.13 cgd cpu_iobus = "tcasic";
369 1.2 cgd break;
370 1.2 cgd #endif
371 1.2 cgd
372 1.2 cgd #ifdef DEC_3000_300
373 1.2 cgd case ST_DEC_3000_300:
374 1.8 cgd cpu_modelname = dec_3000_300_modelname;
375 1.8 cgd cpu_consinit = dec_3000_300_consinit;
376 1.28 cgd cpu_device_register = dec_3000_300_device_register;
377 1.13 cgd cpu_iobus = "tcasic";
378 1.2 cgd break;
379 1.2 cgd #endif
380 1.2 cgd
381 1.2 cgd #ifdef DEC_2100_A50
382 1.2 cgd case ST_DEC_2100_A50:
383 1.8 cgd cpu_modelname = dec_2100_a50_modelname;
384 1.8 cgd cpu_consinit = dec_2100_a50_consinit;
385 1.28 cgd cpu_device_register = dec_2100_a50_device_register;
386 1.8 cgd cpu_iobus = "apecs";
387 1.2 cgd break;
388 1.2 cgd #endif
389 1.2 cgd
390 1.12 cgd #ifdef DEC_KN20AA
391 1.12 cgd case ST_DEC_KN20AA:
392 1.12 cgd cpu_modelname = dec_kn20aa_modelname;
393 1.12 cgd cpu_consinit = dec_kn20aa_consinit;
394 1.28 cgd cpu_device_register = dec_kn20aa_device_register;
395 1.12 cgd cpu_iobus = "cia";
396 1.12 cgd break;
397 1.12 cgd #endif
398 1.12 cgd
399 1.12 cgd #ifdef DEC_AXPPCI_33
400 1.12 cgd case ST_DEC_AXPPCI_33:
401 1.12 cgd cpu_modelname = dec_axppci_33_modelname;
402 1.12 cgd cpu_consinit = dec_axppci_33_consinit;
403 1.28 cgd cpu_device_register = dec_axppci_33_device_register;
404 1.12 cgd cpu_iobus = "lca";
405 1.12 cgd break;
406 1.12 cgd #endif
407 1.12 cgd
408 1.8 cgd #ifdef DEC_2000_300
409 1.8 cgd case ST_DEC_2000_300:
410 1.8 cgd cpu_modelname = dec_2000_300_modelname;
411 1.8 cgd cpu_consinit = dec_2000_300_consinit;
412 1.28 cgd cpu_device_register = dec_2000_300_device_register;
413 1.8 cgd cpu_iobus = "ibus";
414 1.8 cgd XXX DEC 2000/300 NOT SUPPORTED
415 1.12 cgd break;
416 1.2 cgd #endif
417 1.2 cgd
418 1.12 cgd #ifdef DEC_21000
419 1.12 cgd case ST_DEC_21000:
420 1.12 cgd cpu_modelname = dec_21000_modelname;
421 1.12 cgd cpu_consinit = dec_21000_consinit;
422 1.28 cgd cpu_device_register = dec_21000_device_register;
423 1.12 cgd cpu_iobus = "tlsb";
424 1.27 cgd XXX DEC 21000 NOT SUPPORTED
425 1.12 cgd break;
426 1.2 cgd #endif
427 1.2 cgd
428 1.1 cgd default:
429 1.1 cgd if (cputype > nmodel_names)
430 1.1 cgd panic("Unknown system type %d", cputype);
431 1.1 cgd else
432 1.1 cgd panic("Support for %s system type not in kernel.",
433 1.1 cgd model_names[cputype]);
434 1.1 cgd }
435 1.8 cgd
436 1.29 cgd if ((*cpu_modelname)() != NULL)
437 1.29 cgd strncpy(cpu_model, (*cpu_modelname)(), sizeof cpu_model - 1);
438 1.29 cgd else
439 1.29 cgd strncpy(cpu_model, model_names[cputype], sizeof cpu_model - 1);
440 1.29 cgd cpu_model[sizeof cpu_model - 1] = '\0';
441 1.1 cgd
442 1.17 cgd #if NLE_IOASIC > 0
443 1.1 cgd /*
444 1.1 cgd * Grab 128K at the top of physical memory for the lance chip
445 1.1 cgd * on machines where it does dma through the I/O ASIC.
446 1.1 cgd * It must be physically contiguous and aligned on a 128K boundary.
447 1.17 cgd *
448 1.17 cgd * Note that since this is conditional on the presence of
449 1.17 cgd * IOASIC-attached 'le' units in the kernel config, the
450 1.17 cgd * message buffer may move on these systems. This shouldn't
451 1.17 cgd * be a problem, because once people have a kernel config that
452 1.17 cgd * they use, they're going to stick with it.
453 1.1 cgd */
454 1.1 cgd if (cputype == ST_DEC_3000_500 ||
455 1.1 cgd cputype == ST_DEC_3000_300) { /* XXX possibly others? */
456 1.7 cgd lastusablepage -= btoc(128 * 1024);
457 1.7 cgd le_iomem = (caddr_t)phystok0seg(ctob(lastusablepage + 1));
458 1.1 cgd }
459 1.17 cgd #endif /* NLE_IOASIC */
460 1.1 cgd
461 1.1 cgd /*
462 1.1 cgd * Initialize error message buffer (at end of core).
463 1.1 cgd */
464 1.7 cgd lastusablepage -= btoc(sizeof (struct msgbuf));
465 1.7 cgd msgbufp = (struct msgbuf *)phystok0seg(ctob(lastusablepage + 1));
466 1.1 cgd msgbufmapped = 1;
467 1.1 cgd
468 1.1 cgd /*
469 1.1 cgd * Allocate space for system data structures.
470 1.1 cgd * The first available kernel virtual address is in "v".
471 1.1 cgd * As pages of kernel virtual memory are allocated, "v" is incremented.
472 1.1 cgd *
473 1.1 cgd * These data structures are allocated here instead of cpu_startup()
474 1.1 cgd * because physical memory is directly addressable. We don't have
475 1.1 cgd * to map these into virtual address space.
476 1.1 cgd */
477 1.1 cgd #define valloc(name, type, num) \
478 1.12 cgd (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
479 1.1 cgd #define valloclim(name, type, num, lim) \
480 1.12 cgd (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
481 1.1 cgd #ifdef REAL_CLISTS
482 1.1 cgd valloc(cfree, struct cblock, nclist);
483 1.1 cgd #endif
484 1.1 cgd valloc(callout, struct callout, ncallout);
485 1.1 cgd valloc(swapmap, struct map, nswapmap = maxproc * 2);
486 1.1 cgd #ifdef SYSVSHM
487 1.1 cgd valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
488 1.1 cgd #endif
489 1.1 cgd #ifdef SYSVSEM
490 1.1 cgd valloc(sema, struct semid_ds, seminfo.semmni);
491 1.1 cgd valloc(sem, struct sem, seminfo.semmns);
492 1.1 cgd /* This is pretty disgusting! */
493 1.1 cgd valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
494 1.1 cgd #endif
495 1.1 cgd #ifdef SYSVMSG
496 1.1 cgd valloc(msgpool, char, msginfo.msgmax);
497 1.1 cgd valloc(msgmaps, struct msgmap, msginfo.msgseg);
498 1.1 cgd valloc(msghdrs, struct msg, msginfo.msgtql);
499 1.1 cgd valloc(msqids, struct msqid_ds, msginfo.msgmni);
500 1.1 cgd #endif
501 1.1 cgd
502 1.1 cgd /*
503 1.1 cgd * Determine how many buffers to allocate.
504 1.1 cgd * We allocate the BSD standard of 10% of memory for the first
505 1.1 cgd * 2 Meg, and 5% of remaining memory for buffer space. Insure a
506 1.1 cgd * minimum of 16 buffers. We allocate 1/2 as many swap buffer
507 1.1 cgd * headers as file i/o buffers.
508 1.1 cgd */
509 1.1 cgd if (bufpages == 0)
510 1.7 cgd bufpages = (btoc(2 * 1024 * 1024) + physmem) /
511 1.1 cgd (20 * CLSIZE);
512 1.1 cgd if (nbuf == 0) {
513 1.1 cgd nbuf = bufpages;
514 1.1 cgd if (nbuf < 16)
515 1.1 cgd nbuf = 16;
516 1.1 cgd }
517 1.1 cgd if (nswbuf == 0) {
518 1.1 cgd nswbuf = (nbuf / 2) &~ 1; /* force even */
519 1.1 cgd if (nswbuf > 256)
520 1.1 cgd nswbuf = 256; /* sanity */
521 1.1 cgd }
522 1.1 cgd valloc(swbuf, struct buf, nswbuf);
523 1.1 cgd valloc(buf, struct buf, nbuf);
524 1.1 cgd
525 1.1 cgd /*
526 1.1 cgd * Clear allocated memory.
527 1.1 cgd */
528 1.1 cgd bzero(start, v - start);
529 1.1 cgd
530 1.1 cgd /*
531 1.1 cgd * Initialize the virtual memory system, and set the
532 1.1 cgd * page table base register in proc 0's PCB.
533 1.1 cgd */
534 1.1 cgd pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
535 1.1 cgd
536 1.1 cgd /*
537 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
538 1.3 cgd * address.
539 1.3 cgd */
540 1.3 cgd proc0.p_md.md_pcbpaddr =
541 1.3 cgd (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
542 1.3 cgd
543 1.3 cgd /*
544 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
545 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
546 1.3 cgd */
547 1.3 cgd proc0paddr->u_pcb.pcb_ksp =
548 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
549 1.3 cgd proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
550 1.1 cgd
551 1.1 cgd /*
552 1.25 cgd * Look at arguments passed to us and compute boothowto.
553 1.8 cgd */
554 1.25 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
555 1.25 cgd #if 0
556 1.25 cgd printf("boot flags = \"%s\"\n", boot_flags);
557 1.25 cgd #endif
558 1.1 cgd
559 1.8 cgd boothowto = RB_SINGLE;
560 1.1 cgd #ifdef KADB
561 1.1 cgd boothowto |= RB_KDB;
562 1.1 cgd #endif
563 1.8 cgd for (p = boot_flags; p && *p != '\0'; p++) {
564 1.26 cgd /*
565 1.26 cgd * Note that we'd really like to differentiate case here,
566 1.26 cgd * but the Alpha AXP Architecture Reference Manual
567 1.26 cgd * says that we shouldn't.
568 1.26 cgd */
569 1.8 cgd switch (*p) {
570 1.26 cgd case 'a': /* autoboot */
571 1.26 cgd case 'A':
572 1.26 cgd boothowto &= ~RB_SINGLE;
573 1.21 cgd break;
574 1.21 cgd
575 1.26 cgd case 'n': /* askname */
576 1.26 cgd case 'N':
577 1.26 cgd boothowto |= RB_ASKNAME;
578 1.8 cgd break;
579 1.8 cgd
580 1.21 cgd #if 0
581 1.8 cgd case 'm': /* mini root present in memory */
582 1.26 cgd case 'M':
583 1.8 cgd boothowto |= RB_MINIROOT;
584 1.8 cgd break;
585 1.21 cgd #endif
586 1.1 cgd }
587 1.1 cgd }
588 1.1 cgd
589 1.7 cgd /*
590 1.7 cgd * Figure out the number of cpus in the box, from RPB fields.
591 1.7 cgd * Really. We mean it.
592 1.7 cgd */
593 1.7 cgd for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
594 1.7 cgd struct pcs *pcsp;
595 1.7 cgd
596 1.7 cgd pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
597 1.7 cgd (i * hwrpb->rpb_pcs_size));
598 1.7 cgd if ((pcsp->pcs_flags & PCS_PP) != 0)
599 1.7 cgd ncpus++;
600 1.7 cgd }
601 1.7 cgd
602 1.1 cgd return (0);
603 1.1 cgd }
604 1.1 cgd
605 1.18 cgd void
606 1.1 cgd consinit()
607 1.1 cgd {
608 1.1 cgd
609 1.24 cgd (*cpu_consinit)();
610 1.1 cgd pmap_unmap_prom();
611 1.1 cgd }
612 1.1 cgd
613 1.18 cgd void
614 1.1 cgd cpu_startup()
615 1.1 cgd {
616 1.1 cgd register unsigned i;
617 1.1 cgd register caddr_t v;
618 1.1 cgd int base, residual;
619 1.1 cgd vm_offset_t minaddr, maxaddr;
620 1.1 cgd vm_size_t size;
621 1.1 cgd #ifdef DEBUG
622 1.1 cgd extern int pmapdebug;
623 1.1 cgd int opmapdebug = pmapdebug;
624 1.1 cgd
625 1.1 cgd pmapdebug = 0;
626 1.1 cgd #endif
627 1.1 cgd
628 1.1 cgd /*
629 1.1 cgd * Good {morning,afternoon,evening,night}.
630 1.1 cgd */
631 1.1 cgd printf(version);
632 1.1 cgd identifycpu();
633 1.7 cgd printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
634 1.7 cgd ctob(totalphysmem), ctob(resvmem), ctob(physmem));
635 1.7 cgd if (unusedmem)
636 1.7 cgd printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
637 1.7 cgd if (unknownmem)
638 1.7 cgd printf("WARNING: %d bytes of memory with unknown purpose\n",
639 1.7 cgd ctob(unknownmem));
640 1.1 cgd
641 1.1 cgd /*
642 1.1 cgd * Allocate virtual address space for file I/O buffers.
643 1.1 cgd * Note they are different than the array of headers, 'buf',
644 1.1 cgd * and usually occupy more virtual memory than physical.
645 1.1 cgd */
646 1.1 cgd size = MAXBSIZE * nbuf;
647 1.1 cgd buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
648 1.1 cgd &maxaddr, size, TRUE);
649 1.1 cgd minaddr = (vm_offset_t)buffers;
650 1.1 cgd if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
651 1.1 cgd &minaddr, size, FALSE) != KERN_SUCCESS)
652 1.1 cgd panic("startup: cannot allocate buffers");
653 1.1 cgd base = bufpages / nbuf;
654 1.1 cgd residual = bufpages % nbuf;
655 1.1 cgd for (i = 0; i < nbuf; i++) {
656 1.1 cgd vm_size_t curbufsize;
657 1.1 cgd vm_offset_t curbuf;
658 1.1 cgd
659 1.1 cgd /*
660 1.1 cgd * First <residual> buffers get (base+1) physical pages
661 1.1 cgd * allocated for them. The rest get (base) physical pages.
662 1.1 cgd *
663 1.1 cgd * The rest of each buffer occupies virtual space,
664 1.1 cgd * but has no physical memory allocated for it.
665 1.1 cgd */
666 1.1 cgd curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
667 1.1 cgd curbufsize = CLBYTES * (i < residual ? base+1 : base);
668 1.1 cgd vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
669 1.1 cgd vm_map_simplify(buffer_map, curbuf);
670 1.1 cgd }
671 1.1 cgd /*
672 1.1 cgd * Allocate a submap for exec arguments. This map effectively
673 1.1 cgd * limits the number of processes exec'ing at any time.
674 1.1 cgd */
675 1.1 cgd exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
676 1.1 cgd 16 * NCARGS, TRUE);
677 1.1 cgd
678 1.1 cgd /*
679 1.1 cgd * Allocate a submap for physio
680 1.1 cgd */
681 1.1 cgd phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
682 1.1 cgd VM_PHYS_SIZE, TRUE);
683 1.1 cgd
684 1.1 cgd /*
685 1.1 cgd * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
686 1.1 cgd * we use the more space efficient malloc in place of kmem_alloc.
687 1.1 cgd */
688 1.1 cgd mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
689 1.1 cgd M_MBUF, M_NOWAIT);
690 1.1 cgd bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
691 1.1 cgd mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
692 1.1 cgd VM_MBUF_SIZE, FALSE);
693 1.1 cgd /*
694 1.1 cgd * Initialize callouts
695 1.1 cgd */
696 1.1 cgd callfree = callout;
697 1.1 cgd for (i = 1; i < ncallout; i++)
698 1.1 cgd callout[i-1].c_next = &callout[i];
699 1.1 cgd callout[i-1].c_next = NULL;
700 1.1 cgd
701 1.1 cgd #ifdef DEBUG
702 1.1 cgd pmapdebug = opmapdebug;
703 1.1 cgd #endif
704 1.1 cgd printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
705 1.1 cgd printf("using %ld buffers containing %ld bytes of memory\n",
706 1.1 cgd (long)nbuf, (long)(bufpages * CLBYTES));
707 1.1 cgd
708 1.1 cgd /*
709 1.1 cgd * Set up buffers, so they can be used to read disk labels.
710 1.1 cgd */
711 1.1 cgd bufinit();
712 1.1 cgd
713 1.1 cgd /*
714 1.1 cgd * Configure the system.
715 1.1 cgd */
716 1.1 cgd configure();
717 1.1 cgd }
718 1.1 cgd
719 1.1 cgd identifycpu()
720 1.1 cgd {
721 1.1 cgd
722 1.7 cgd /*
723 1.7 cgd * print out CPU identification information.
724 1.7 cgd */
725 1.7 cgd printf("%s, %dMHz\n", cpu_model,
726 1.7 cgd hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
727 1.7 cgd printf("%d byte page size, %d processor%s.\n",
728 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
729 1.7 cgd #if 0
730 1.7 cgd /* this isn't defined for any systems that we run on? */
731 1.7 cgd printf("serial number 0x%lx 0x%lx\n",
732 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
733 1.7 cgd
734 1.7 cgd /* and these aren't particularly useful! */
735 1.1 cgd printf("variation: 0x%lx, revision 0x%lx\n",
736 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
737 1.7 cgd #endif
738 1.1 cgd }
739 1.1 cgd
740 1.1 cgd int waittime = -1;
741 1.7 cgd struct pcb dumppcb;
742 1.1 cgd
743 1.18 cgd void
744 1.1 cgd boot(howto)
745 1.1 cgd int howto;
746 1.1 cgd {
747 1.1 cgd extern int cold;
748 1.1 cgd
749 1.1 cgd /* If system is cold, just halt. */
750 1.1 cgd if (cold) {
751 1.1 cgd howto |= RB_HALT;
752 1.1 cgd goto haltsys;
753 1.1 cgd }
754 1.1 cgd
755 1.7 cgd boothowto = howto;
756 1.7 cgd if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
757 1.1 cgd waittime = 0;
758 1.7 cgd vfs_shutdown();
759 1.1 cgd /*
760 1.1 cgd * If we've been adjusting the clock, the todr
761 1.1 cgd * will be out of synch; adjust it now.
762 1.1 cgd */
763 1.1 cgd resettodr();
764 1.1 cgd }
765 1.1 cgd
766 1.1 cgd /* Disable interrupts. */
767 1.1 cgd splhigh();
768 1.1 cgd
769 1.7 cgd /* If rebooting and a dump is requested do it. */
770 1.7 cgd if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
771 1.7 cgd savectx(&dumppcb, 0);
772 1.1 cgd dumpsys();
773 1.7 cgd }
774 1.6 cgd
775 1.12 cgd haltsys:
776 1.12 cgd
777 1.6 cgd /* run any shutdown hooks */
778 1.6 cgd doshutdownhooks();
779 1.1 cgd
780 1.7 cgd #ifdef BOOTKEY
781 1.7 cgd printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
782 1.7 cgd cngetc();
783 1.7 cgd printf("\n");
784 1.7 cgd #endif
785 1.7 cgd
786 1.1 cgd /* Finally, halt/reboot the system. */
787 1.1 cgd printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
788 1.1 cgd prom_halt(howto & RB_HALT);
789 1.1 cgd /*NOTREACHED*/
790 1.1 cgd }
791 1.1 cgd
792 1.7 cgd /*
793 1.7 cgd * These variables are needed by /sbin/savecore
794 1.7 cgd */
795 1.7 cgd u_long dumpmag = 0x8fca0101; /* magic number */
796 1.7 cgd int dumpsize = 0; /* pages */
797 1.7 cgd long dumplo = 0; /* blocks */
798 1.7 cgd
799 1.7 cgd /*
800 1.7 cgd * This is called by configure to set dumplo and dumpsize.
801 1.7 cgd * Dumps always skip the first CLBYTES of disk space
802 1.7 cgd * in case there might be a disk label stored there.
803 1.7 cgd * If there is extra space, put dump at the end to
804 1.7 cgd * reduce the chance that swapping trashes it.
805 1.7 cgd */
806 1.7 cgd void
807 1.7 cgd dumpconf()
808 1.7 cgd {
809 1.7 cgd int nblks; /* size of dump area */
810 1.7 cgd int maj;
811 1.7 cgd
812 1.7 cgd if (dumpdev == NODEV)
813 1.7 cgd return;
814 1.7 cgd maj = major(dumpdev);
815 1.7 cgd if (maj < 0 || maj >= nblkdev)
816 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
817 1.7 cgd if (bdevsw[maj].d_psize == NULL)
818 1.7 cgd return;
819 1.7 cgd nblks = (*bdevsw[maj].d_psize)(dumpdev);
820 1.7 cgd if (nblks <= ctod(1))
821 1.7 cgd return;
822 1.7 cgd
823 1.7 cgd /* XXX XXX XXX STARTING MEMORY LOCATION */
824 1.7 cgd dumpsize = physmem;
825 1.7 cgd
826 1.7 cgd /* Always skip the first CLBYTES, in case there is a label there. */
827 1.7 cgd if (dumplo < ctod(1))
828 1.7 cgd dumplo = ctod(1);
829 1.7 cgd
830 1.7 cgd /* Put dump at end of partition, and make it fit. */
831 1.7 cgd if (dumpsize > dtoc(nblks - dumplo))
832 1.7 cgd dumpsize = dtoc(nblks - dumplo);
833 1.7 cgd if (dumplo < nblks - ctod(dumpsize))
834 1.7 cgd dumplo = nblks - ctod(dumpsize);
835 1.7 cgd }
836 1.7 cgd
837 1.7 cgd /*
838 1.7 cgd * Doadump comes here after turning off memory management and
839 1.7 cgd * getting on the dump stack, either when called above, or by
840 1.7 cgd * the auto-restart code.
841 1.7 cgd */
842 1.7 cgd void
843 1.7 cgd dumpsys()
844 1.7 cgd {
845 1.7 cgd
846 1.7 cgd msgbufmapped = 0;
847 1.7 cgd if (dumpdev == NODEV)
848 1.7 cgd return;
849 1.7 cgd if (dumpsize == 0) {
850 1.7 cgd dumpconf();
851 1.7 cgd if (dumpsize == 0)
852 1.7 cgd return;
853 1.7 cgd }
854 1.7 cgd printf("\ndumping to dev %x, offset %d\n", dumpdev, dumplo);
855 1.7 cgd
856 1.7 cgd printf("dump ");
857 1.7 cgd switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
858 1.7 cgd
859 1.7 cgd case ENXIO:
860 1.7 cgd printf("device bad\n");
861 1.7 cgd break;
862 1.7 cgd
863 1.7 cgd case EFAULT:
864 1.7 cgd printf("device not ready\n");
865 1.7 cgd break;
866 1.7 cgd
867 1.7 cgd case EINVAL:
868 1.7 cgd printf("area improper\n");
869 1.7 cgd break;
870 1.7 cgd
871 1.7 cgd case EIO:
872 1.7 cgd printf("i/o error\n");
873 1.7 cgd break;
874 1.7 cgd
875 1.7 cgd case EINTR:
876 1.7 cgd printf("aborted from console\n");
877 1.7 cgd break;
878 1.7 cgd
879 1.7 cgd default:
880 1.7 cgd printf("succeeded\n");
881 1.7 cgd break;
882 1.7 cgd }
883 1.7 cgd printf("\n\n");
884 1.7 cgd delay(1000);
885 1.7 cgd }
886 1.7 cgd
887 1.1 cgd void
888 1.1 cgd frametoreg(framep, regp)
889 1.1 cgd struct trapframe *framep;
890 1.1 cgd struct reg *regp;
891 1.1 cgd {
892 1.1 cgd
893 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
894 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
895 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
896 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
897 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
898 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
899 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
900 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
901 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
902 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
903 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
904 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
905 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
906 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
907 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
908 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
909 1.1 cgd regp->r_regs[R_A0] = framep->tf_a0;
910 1.1 cgd regp->r_regs[R_A1] = framep->tf_a1;
911 1.1 cgd regp->r_regs[R_A2] = framep->tf_a2;
912 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
913 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
914 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
915 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
916 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
917 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
918 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
919 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
920 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
921 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
922 1.1 cgd regp->r_regs[R_GP] = framep->tf_gp;
923 1.1 cgd regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
924 1.1 cgd regp->r_regs[R_ZERO] = 0;
925 1.1 cgd }
926 1.1 cgd
927 1.1 cgd void
928 1.1 cgd regtoframe(regp, framep)
929 1.1 cgd struct reg *regp;
930 1.1 cgd struct trapframe *framep;
931 1.1 cgd {
932 1.1 cgd
933 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
934 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
935 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
936 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
937 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
938 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
939 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
940 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
941 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
942 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
943 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
944 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
945 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
946 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
947 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
948 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
949 1.1 cgd framep->tf_a0 = regp->r_regs[R_A0];
950 1.1 cgd framep->tf_a1 = regp->r_regs[R_A1];
951 1.1 cgd framep->tf_a2 = regp->r_regs[R_A2];
952 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
953 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
954 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
955 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
956 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
957 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
958 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
959 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
960 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
961 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
962 1.1 cgd framep->tf_gp = regp->r_regs[R_GP];
963 1.1 cgd framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
964 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
965 1.1 cgd }
966 1.1 cgd
967 1.1 cgd void
968 1.1 cgd printregs(regp)
969 1.1 cgd struct reg *regp;
970 1.1 cgd {
971 1.1 cgd int i;
972 1.1 cgd
973 1.1 cgd for (i = 0; i < 32; i++)
974 1.1 cgd printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
975 1.1 cgd i & 1 ? "\n" : "\t");
976 1.1 cgd }
977 1.1 cgd
978 1.1 cgd void
979 1.1 cgd regdump(framep)
980 1.1 cgd struct trapframe *framep;
981 1.1 cgd {
982 1.1 cgd struct reg reg;
983 1.1 cgd
984 1.1 cgd frametoreg(framep, ®);
985 1.1 cgd printf("REGISTERS:\n");
986 1.1 cgd printregs(®);
987 1.1 cgd }
988 1.1 cgd
989 1.1 cgd #ifdef DEBUG
990 1.1 cgd int sigdebug = 0;
991 1.1 cgd int sigpid = 0;
992 1.1 cgd #define SDB_FOLLOW 0x01
993 1.1 cgd #define SDB_KSTACK 0x02
994 1.1 cgd #endif
995 1.1 cgd
996 1.1 cgd /*
997 1.1 cgd * Send an interrupt to process.
998 1.1 cgd */
999 1.1 cgd void
1000 1.1 cgd sendsig(catcher, sig, mask, code)
1001 1.1 cgd sig_t catcher;
1002 1.1 cgd int sig, mask;
1003 1.1 cgd u_long code;
1004 1.1 cgd {
1005 1.1 cgd struct proc *p = curproc;
1006 1.1 cgd struct sigcontext *scp, ksc;
1007 1.1 cgd struct trapframe *frame;
1008 1.1 cgd struct sigacts *psp = p->p_sigacts;
1009 1.1 cgd int oonstack, fsize, rndfsize;
1010 1.1 cgd extern char sigcode[], esigcode[];
1011 1.1 cgd extern struct proc *fpcurproc;
1012 1.1 cgd
1013 1.1 cgd frame = p->p_md.md_tf;
1014 1.9 mycroft oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1015 1.1 cgd fsize = sizeof ksc;
1016 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1017 1.1 cgd /*
1018 1.1 cgd * Allocate and validate space for the signal handler
1019 1.1 cgd * context. Note that if the stack is in P0 space, the
1020 1.1 cgd * call to grow() is a nop, and the useracc() check
1021 1.1 cgd * will fail if the process has not already allocated
1022 1.1 cgd * the space with a `brk'.
1023 1.1 cgd */
1024 1.1 cgd if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1025 1.1 cgd (psp->ps_sigonstack & sigmask(sig))) {
1026 1.14 jtc scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1027 1.1 cgd psp->ps_sigstk.ss_size - rndfsize);
1028 1.9 mycroft psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1029 1.1 cgd } else
1030 1.1 cgd scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
1031 1.1 cgd rndfsize);
1032 1.1 cgd if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1033 1.1 cgd (void)grow(p, (u_long)scp);
1034 1.1 cgd #ifdef DEBUG
1035 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1036 1.1 cgd printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
1037 1.1 cgd sig, &oonstack, scp);
1038 1.1 cgd #endif
1039 1.1 cgd if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1040 1.1 cgd #ifdef DEBUG
1041 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1042 1.1 cgd printf("sendsig(%d): useracc failed on sig %d\n",
1043 1.1 cgd p->p_pid, sig);
1044 1.1 cgd #endif
1045 1.1 cgd /*
1046 1.1 cgd * Process has trashed its stack; give it an illegal
1047 1.1 cgd * instruction to halt it in its tracks.
1048 1.1 cgd */
1049 1.1 cgd SIGACTION(p, SIGILL) = SIG_DFL;
1050 1.1 cgd sig = sigmask(SIGILL);
1051 1.1 cgd p->p_sigignore &= ~sig;
1052 1.1 cgd p->p_sigcatch &= ~sig;
1053 1.1 cgd p->p_sigmask &= ~sig;
1054 1.1 cgd psignal(p, SIGILL);
1055 1.1 cgd return;
1056 1.1 cgd }
1057 1.1 cgd
1058 1.1 cgd /*
1059 1.1 cgd * Build the signal context to be used by sigreturn.
1060 1.1 cgd */
1061 1.1 cgd ksc.sc_onstack = oonstack;
1062 1.1 cgd ksc.sc_mask = mask;
1063 1.1 cgd ksc.sc_pc = frame->tf_pc;
1064 1.1 cgd ksc.sc_ps = frame->tf_ps;
1065 1.1 cgd
1066 1.1 cgd /* copy the registers. */
1067 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1068 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1069 1.1 cgd
1070 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1071 1.1 cgd if (p == fpcurproc) {
1072 1.1 cgd pal_wrfen(1);
1073 1.1 cgd savefpstate(&p->p_addr->u_pcb.pcb_fp);
1074 1.1 cgd pal_wrfen(0);
1075 1.1 cgd fpcurproc = NULL;
1076 1.1 cgd }
1077 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1078 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1079 1.1 cgd sizeof(struct fpreg));
1080 1.1 cgd ksc.sc_fp_control = 0; /* XXX ? */
1081 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1082 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1083 1.1 cgd
1084 1.1 cgd
1085 1.1 cgd #ifdef COMPAT_OSF1
1086 1.1 cgd /*
1087 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1088 1.1 cgd */
1089 1.1 cgd #endif
1090 1.1 cgd
1091 1.1 cgd /*
1092 1.1 cgd * copy the frame out to userland.
1093 1.1 cgd */
1094 1.1 cgd (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1095 1.1 cgd #ifdef DEBUG
1096 1.1 cgd if (sigdebug & SDB_FOLLOW)
1097 1.1 cgd printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
1098 1.1 cgd scp, code);
1099 1.1 cgd #endif
1100 1.1 cgd
1101 1.1 cgd /*
1102 1.1 cgd * Set up the registers to return to sigcode.
1103 1.1 cgd */
1104 1.1 cgd frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1105 1.1 cgd frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
1106 1.1 cgd frame->tf_a0 = sig;
1107 1.1 cgd frame->tf_a1 = code;
1108 1.1 cgd frame->tf_a2 = (u_int64_t)scp;
1109 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1110 1.1 cgd
1111 1.1 cgd #ifdef DEBUG
1112 1.1 cgd if (sigdebug & SDB_FOLLOW)
1113 1.1 cgd printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1114 1.1 cgd frame->tf_pc, frame->tf_regs[FRAME_A3]);
1115 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1116 1.1 cgd printf("sendsig(%d): sig %d returns\n",
1117 1.1 cgd p->p_pid, sig);
1118 1.1 cgd #endif
1119 1.1 cgd }
1120 1.1 cgd
1121 1.1 cgd /*
1122 1.1 cgd * System call to cleanup state after a signal
1123 1.1 cgd * has been taken. Reset signal mask and
1124 1.1 cgd * stack state from context left by sendsig (above).
1125 1.1 cgd * Return to previous pc and psl as specified by
1126 1.1 cgd * context left by sendsig. Check carefully to
1127 1.1 cgd * make sure that the user has not modified the
1128 1.1 cgd * psl to gain improper priviledges or to cause
1129 1.1 cgd * a machine fault.
1130 1.1 cgd */
1131 1.1 cgd /* ARGSUSED */
1132 1.11 mycroft int
1133 1.11 mycroft sys_sigreturn(p, v, retval)
1134 1.1 cgd struct proc *p;
1135 1.10 thorpej void *v;
1136 1.10 thorpej register_t *retval;
1137 1.10 thorpej {
1138 1.11 mycroft struct sys_sigreturn_args /* {
1139 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1140 1.10 thorpej } */ *uap = v;
1141 1.1 cgd struct sigcontext *scp, ksc;
1142 1.1 cgd extern struct proc *fpcurproc;
1143 1.1 cgd
1144 1.1 cgd scp = SCARG(uap, sigcntxp);
1145 1.1 cgd #ifdef DEBUG
1146 1.1 cgd if (sigdebug & SDB_FOLLOW)
1147 1.1 cgd printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
1148 1.1 cgd #endif
1149 1.1 cgd
1150 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1151 1.1 cgd return (EINVAL);
1152 1.1 cgd
1153 1.1 cgd /*
1154 1.1 cgd * Test and fetch the context structure.
1155 1.1 cgd * We grab it all at once for speed.
1156 1.1 cgd */
1157 1.1 cgd if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1158 1.1 cgd copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1159 1.1 cgd return (EINVAL);
1160 1.1 cgd
1161 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1162 1.1 cgd return (EINVAL);
1163 1.1 cgd /*
1164 1.1 cgd * Restore the user-supplied information
1165 1.1 cgd */
1166 1.1 cgd if (ksc.sc_onstack)
1167 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1168 1.1 cgd else
1169 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1170 1.1 cgd p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1171 1.1 cgd
1172 1.1 cgd p->p_md.md_tf->tf_pc = ksc.sc_pc;
1173 1.1 cgd p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
1174 1.1 cgd
1175 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1176 1.1 cgd
1177 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1178 1.1 cgd if (p == fpcurproc)
1179 1.1 cgd fpcurproc = NULL;
1180 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1181 1.1 cgd sizeof(struct fpreg));
1182 1.1 cgd /* XXX ksc.sc_fp_control ? */
1183 1.1 cgd
1184 1.1 cgd #ifdef DEBUG
1185 1.1 cgd if (sigdebug & SDB_FOLLOW)
1186 1.1 cgd printf("sigreturn(%d): returns\n", p->p_pid);
1187 1.1 cgd #endif
1188 1.1 cgd return (EJUSTRETURN);
1189 1.1 cgd }
1190 1.1 cgd
1191 1.1 cgd /*
1192 1.1 cgd * machine dependent system variables.
1193 1.1 cgd */
1194 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1195 1.1 cgd int *name;
1196 1.1 cgd u_int namelen;
1197 1.1 cgd void *oldp;
1198 1.1 cgd size_t *oldlenp;
1199 1.1 cgd void *newp;
1200 1.1 cgd size_t newlen;
1201 1.1 cgd struct proc *p;
1202 1.1 cgd {
1203 1.1 cgd dev_t consdev;
1204 1.1 cgd
1205 1.1 cgd /* all sysctl names at this level are terminal */
1206 1.1 cgd if (namelen != 1)
1207 1.1 cgd return (ENOTDIR); /* overloaded */
1208 1.1 cgd
1209 1.1 cgd switch (name[0]) {
1210 1.1 cgd case CPU_CONSDEV:
1211 1.1 cgd if (cn_tab != NULL)
1212 1.1 cgd consdev = cn_tab->cn_dev;
1213 1.1 cgd else
1214 1.1 cgd consdev = NODEV;
1215 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1216 1.1 cgd sizeof consdev));
1217 1.30 cgd
1218 1.30 cgd case CPU_ROOT_DEVICE:
1219 1.30 cgd return (sysctl_rdstring(oldp, oldlenp, newp, root_device));
1220 1.30 cgd
1221 1.1 cgd default:
1222 1.1 cgd return (EOPNOTSUPP);
1223 1.1 cgd }
1224 1.1 cgd /* NOTREACHED */
1225 1.1 cgd }
1226 1.1 cgd
1227 1.1 cgd /*
1228 1.1 cgd * Set registers on exec.
1229 1.1 cgd */
1230 1.1 cgd void
1231 1.5 christos setregs(p, pack, stack, retval)
1232 1.1 cgd register struct proc *p;
1233 1.5 christos struct exec_package *pack;
1234 1.1 cgd u_long stack;
1235 1.1 cgd register_t *retval;
1236 1.1 cgd {
1237 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1238 1.1 cgd int i;
1239 1.1 cgd extern struct proc *fpcurproc;
1240 1.1 cgd
1241 1.1 cgd #ifdef DEBUG
1242 1.1 cgd for (i = 0; i < FRAME_NSAVEREGS; i++)
1243 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1244 1.1 cgd tfp->tf_gp = 0xbabefacedeadbeef;
1245 1.1 cgd tfp->tf_a0 = 0xbabefacedeadbeef;
1246 1.1 cgd tfp->tf_a1 = 0xbabefacedeadbeef;
1247 1.1 cgd tfp->tf_a2 = 0xbabefacedeadbeef;
1248 1.1 cgd #else
1249 1.1 cgd bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
1250 1.1 cgd tfp->tf_gp = 0;
1251 1.1 cgd tfp->tf_a0 = 0;
1252 1.1 cgd tfp->tf_a1 = 0;
1253 1.1 cgd tfp->tf_a2 = 0;
1254 1.1 cgd #endif
1255 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1256 1.7 cgd #define FP_RN 2 /* XXX */
1257 1.7 cgd p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1258 1.1 cgd tfp->tf_regs[FRAME_SP] = stack; /* restored to usp in trap return */
1259 1.1 cgd tfp->tf_ps = PSL_USERSET;
1260 1.5 christos tfp->tf_pc = pack->ep_entry & ~3;
1261 1.1 cgd
1262 1.1 cgd p->p_md.md_flags & ~MDP_FPUSED;
1263 1.1 cgd if (fpcurproc == p)
1264 1.1 cgd fpcurproc = NULL;
1265 1.1 cgd
1266 1.1 cgd retval[0] = retval[1] = 0;
1267 1.1 cgd }
1268 1.1 cgd
1269 1.1 cgd void
1270 1.1 cgd netintr()
1271 1.1 cgd {
1272 1.1 cgd #ifdef INET
1273 1.1 cgd #if NETHER > 0
1274 1.1 cgd if (netisr & (1 << NETISR_ARP)) {
1275 1.1 cgd netisr &= ~(1 << NETISR_ARP);
1276 1.1 cgd arpintr();
1277 1.1 cgd }
1278 1.1 cgd #endif
1279 1.1 cgd if (netisr & (1 << NETISR_IP)) {
1280 1.1 cgd netisr &= ~(1 << NETISR_IP);
1281 1.1 cgd ipintr();
1282 1.1 cgd }
1283 1.1 cgd #endif
1284 1.1 cgd #ifdef NS
1285 1.1 cgd if (netisr & (1 << NETISR_NS)) {
1286 1.1 cgd netisr &= ~(1 << NETISR_NS);
1287 1.1 cgd nsintr();
1288 1.1 cgd }
1289 1.1 cgd #endif
1290 1.1 cgd #ifdef ISO
1291 1.1 cgd if (netisr & (1 << NETISR_ISO)) {
1292 1.1 cgd netisr &= ~(1 << NETISR_ISO);
1293 1.1 cgd clnlintr();
1294 1.1 cgd }
1295 1.1 cgd #endif
1296 1.1 cgd #ifdef CCITT
1297 1.1 cgd if (netisr & (1 << NETISR_CCITT)) {
1298 1.1 cgd netisr &= ~(1 << NETISR_CCITT);
1299 1.1 cgd ccittintr();
1300 1.1 cgd }
1301 1.1 cgd #endif
1302 1.8 cgd #ifdef PPP
1303 1.8 cgd if (netisr & (1 << NETISR_PPP)) {
1304 1.20 cgd netisr &= ~(1 << NETISR_PPP);
1305 1.8 cgd pppintr();
1306 1.8 cgd }
1307 1.8 cgd #endif
1308 1.1 cgd }
1309 1.1 cgd
1310 1.1 cgd void
1311 1.1 cgd do_sir()
1312 1.1 cgd {
1313 1.1 cgd
1314 1.1 cgd if (ssir & SIR_NET) {
1315 1.1 cgd siroff(SIR_NET);
1316 1.1 cgd cnt.v_soft++;
1317 1.1 cgd netintr();
1318 1.1 cgd }
1319 1.1 cgd if (ssir & SIR_CLOCK) {
1320 1.1 cgd siroff(SIR_CLOCK);
1321 1.1 cgd cnt.v_soft++;
1322 1.1 cgd softclock();
1323 1.1 cgd }
1324 1.1 cgd }
1325 1.1 cgd
1326 1.1 cgd int
1327 1.1 cgd spl0()
1328 1.1 cgd {
1329 1.1 cgd
1330 1.1 cgd if (ssir) {
1331 1.1 cgd splsoft();
1332 1.1 cgd do_sir();
1333 1.1 cgd }
1334 1.1 cgd
1335 1.1 cgd return (pal_swpipl(PSL_IPL_0));
1336 1.1 cgd }
1337 1.1 cgd
1338 1.1 cgd /*
1339 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
1340 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1341 1.1 cgd * into queues, Remrq removes them from queues. The running process is on
1342 1.1 cgd * no queue, other processes are on a queue related to p->p_priority, divided
1343 1.1 cgd * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1344 1.1 cgd * queues.
1345 1.1 cgd */
1346 1.1 cgd /*
1347 1.1 cgd * setrunqueue(p)
1348 1.1 cgd * proc *p;
1349 1.1 cgd *
1350 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
1351 1.1 cgd */
1352 1.1 cgd
1353 1.1 cgd void
1354 1.1 cgd setrunqueue(p)
1355 1.1 cgd struct proc *p;
1356 1.1 cgd {
1357 1.1 cgd int bit;
1358 1.1 cgd
1359 1.1 cgd /* firewall: p->p_back must be NULL */
1360 1.1 cgd if (p->p_back != NULL)
1361 1.1 cgd panic("setrunqueue");
1362 1.1 cgd
1363 1.1 cgd bit = p->p_priority >> 2;
1364 1.1 cgd whichqs |= (1 << bit);
1365 1.1 cgd p->p_forw = (struct proc *)&qs[bit];
1366 1.1 cgd p->p_back = qs[bit].ph_rlink;
1367 1.1 cgd p->p_back->p_forw = p;
1368 1.1 cgd qs[bit].ph_rlink = p;
1369 1.1 cgd }
1370 1.1 cgd
1371 1.1 cgd /*
1372 1.1 cgd * Remrq(p)
1373 1.1 cgd *
1374 1.1 cgd * Call should be made at splclock().
1375 1.1 cgd */
1376 1.1 cgd void
1377 1.1 cgd remrq(p)
1378 1.1 cgd struct proc *p;
1379 1.1 cgd {
1380 1.1 cgd int bit;
1381 1.1 cgd
1382 1.1 cgd bit = p->p_priority >> 2;
1383 1.1 cgd if ((whichqs & (1 << bit)) == 0)
1384 1.1 cgd panic("remrq");
1385 1.1 cgd
1386 1.1 cgd p->p_back->p_forw = p->p_forw;
1387 1.1 cgd p->p_forw->p_back = p->p_back;
1388 1.1 cgd p->p_back = NULL; /* for firewall checking. */
1389 1.1 cgd
1390 1.1 cgd if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1391 1.1 cgd whichqs &= ~(1 << bit);
1392 1.1 cgd }
1393 1.1 cgd
1394 1.1 cgd /*
1395 1.1 cgd * Return the best possible estimate of the time in the timeval
1396 1.1 cgd * to which tvp points. Unfortunately, we can't read the hardware registers.
1397 1.1 cgd * We guarantee that the time will be greater than the value obtained by a
1398 1.1 cgd * previous call.
1399 1.1 cgd */
1400 1.1 cgd void
1401 1.1 cgd microtime(tvp)
1402 1.1 cgd register struct timeval *tvp;
1403 1.1 cgd {
1404 1.1 cgd int s = splclock();
1405 1.1 cgd static struct timeval lasttime;
1406 1.1 cgd
1407 1.1 cgd *tvp = time;
1408 1.1 cgd #ifdef notdef
1409 1.1 cgd tvp->tv_usec += clkread();
1410 1.1 cgd while (tvp->tv_usec > 1000000) {
1411 1.1 cgd tvp->tv_sec++;
1412 1.1 cgd tvp->tv_usec -= 1000000;
1413 1.1 cgd }
1414 1.1 cgd #endif
1415 1.1 cgd if (tvp->tv_sec == lasttime.tv_sec &&
1416 1.1 cgd tvp->tv_usec <= lasttime.tv_usec &&
1417 1.1 cgd (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1418 1.1 cgd tvp->tv_sec++;
1419 1.1 cgd tvp->tv_usec -= 1000000;
1420 1.1 cgd }
1421 1.1 cgd lasttime = *tvp;
1422 1.1 cgd splx(s);
1423 1.15 cgd }
1424 1.15 cgd
1425 1.15 cgd /*
1426 1.15 cgd * Wait "n" microseconds.
1427 1.15 cgd */
1428 1.15 cgd int
1429 1.15 cgd delay(n)
1430 1.15 cgd int n;
1431 1.15 cgd {
1432 1.15 cgd long N = cycles_per_usec * (n);
1433 1.15 cgd
1434 1.15 cgd while (N > 0) /* XXX */
1435 1.15 cgd N -= 3; /* XXX */
1436 1.1 cgd }
1437 1.1 cgd
1438 1.8 cgd #if defined(COMPAT_OSF1) || 1 /* XXX */
1439 1.1 cgd void
1440 1.19 cgd cpu_exec_ecoff_setregs(p, epp, stack, retval)
1441 1.1 cgd struct proc *p;
1442 1.19 cgd struct exec_package *epp;
1443 1.5 christos u_long stack;
1444 1.5 christos register_t *retval;
1445 1.1 cgd {
1446 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1447 1.1 cgd
1448 1.19 cgd setregs(p, epp, stack, retval);
1449 1.19 cgd p->p_md.md_tf->tf_gp = execp->a.gp_value;
1450 1.1 cgd }
1451 1.1 cgd
1452 1.1 cgd /*
1453 1.1 cgd * cpu_exec_ecoff_hook():
1454 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1455 1.1 cgd *
1456 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1457 1.1 cgd *
1458 1.1 cgd */
1459 1.1 cgd int
1460 1.19 cgd cpu_exec_ecoff_hook(p, epp)
1461 1.1 cgd struct proc *p;
1462 1.1 cgd struct exec_package *epp;
1463 1.1 cgd {
1464 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1465 1.5 christos extern struct emul emul_netbsd;
1466 1.5 christos #ifdef COMPAT_OSF1
1467 1.5 christos extern struct emul emul_osf1;
1468 1.5 christos #endif
1469 1.1 cgd
1470 1.19 cgd switch (execp->f.f_magic) {
1471 1.5 christos #ifdef COMPAT_OSF1
1472 1.1 cgd case ECOFF_MAGIC_ALPHA:
1473 1.5 christos epp->ep_emul = &emul_osf1;
1474 1.1 cgd break;
1475 1.5 christos #endif
1476 1.1 cgd
1477 1.1 cgd case ECOFF_MAGIC_NETBSD_ALPHA:
1478 1.5 christos epp->ep_emul = &emul_netbsd;
1479 1.1 cgd break;
1480 1.1 cgd
1481 1.1 cgd default:
1482 1.12 cgd return ENOEXEC;
1483 1.1 cgd }
1484 1.1 cgd return 0;
1485 1.1 cgd }
1486 1.1 cgd #endif
1487 1.7 cgd
1488 1.7 cgd vm_offset_t
1489 1.7 cgd vtophys(vaddr)
1490 1.7 cgd vm_offset_t vaddr;
1491 1.7 cgd {
1492 1.7 cgd vm_offset_t paddr;
1493 1.7 cgd
1494 1.7 cgd if (vaddr < K0SEG_BEGIN) {
1495 1.7 cgd printf("vtophys: invalid vaddr 0x%lx", vaddr);
1496 1.7 cgd paddr = vaddr;
1497 1.7 cgd } else if (vaddr < K0SEG_END)
1498 1.7 cgd paddr = k0segtophys(vaddr);
1499 1.7 cgd else
1500 1.7 cgd paddr = vatopa(vaddr);
1501 1.7 cgd
1502 1.7 cgd #if 0
1503 1.7 cgd printf("vtophys(0x%lx) -> %lx\n", vaddr, paddr);
1504 1.7 cgd #endif
1505 1.7 cgd
1506 1.7 cgd return (paddr);
1507 1.7 cgd }
1508