Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.304
      1  1.304        ad /* $NetBSD: machdep.c,v 1.304 2008/04/24 18:39:20 ad Exp $ */
      2  1.110   thorpej 
      3  1.110   thorpej /*-
      4  1.211   thorpej  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      5  1.110   thorpej  * All rights reserved.
      6  1.110   thorpej  *
      7  1.110   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.110   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.110   thorpej  * NASA Ames Research Center and by Chris G. Demetriou.
     10  1.110   thorpej  *
     11  1.110   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.110   thorpej  * modification, are permitted provided that the following conditions
     13  1.110   thorpej  * are met:
     14  1.110   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.110   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.110   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.110   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.110   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.110   thorpej  * 3. All advertising materials mentioning features or use of this software
     20  1.110   thorpej  *    must display the following acknowledgement:
     21  1.110   thorpej  *	This product includes software developed by the NetBSD
     22  1.110   thorpej  *	Foundation, Inc. and its contributors.
     23  1.110   thorpej  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  1.110   thorpej  *    contributors may be used to endorse or promote products derived
     25  1.110   thorpej  *    from this software without specific prior written permission.
     26  1.110   thorpej  *
     27  1.110   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  1.110   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  1.110   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  1.110   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  1.110   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  1.110   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  1.110   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  1.110   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  1.110   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  1.110   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  1.110   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     38  1.110   thorpej  */
     39    1.1       cgd 
     40    1.1       cgd /*
     41   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     42    1.1       cgd  * All rights reserved.
     43    1.1       cgd  *
     44    1.1       cgd  * Author: Chris G. Demetriou
     45    1.1       cgd  *
     46    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     47    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     48    1.1       cgd  * notice and this permission notice appear in all copies of the
     49    1.1       cgd  * software, derivative works or modified versions, and any portions
     50    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     51    1.1       cgd  *
     52    1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     53    1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     54    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     55    1.1       cgd  *
     56    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     57    1.1       cgd  *
     58    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     59    1.1       cgd  *  School of Computer Science
     60    1.1       cgd  *  Carnegie Mellon University
     61    1.1       cgd  *  Pittsburgh PA 15213-3890
     62    1.1       cgd  *
     63    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     64    1.1       cgd  * rights to redistribute these changes.
     65    1.1       cgd  */
     66   1.74       cgd 
     67  1.129  jonathan #include "opt_ddb.h"
     68  1.244     lukem #include "opt_kgdb.h"
     69  1.147   thorpej #include "opt_multiprocessor.h"
     70  1.123   thorpej #include "opt_dec_3000_300.h"
     71  1.123   thorpej #include "opt_dec_3000_500.h"
     72  1.127   thorpej #include "opt_compat_osf1.h"
     73  1.141   thorpej #include "opt_compat_netbsd.h"
     74  1.250  jdolecek #include "opt_execfmt.h"
     75  1.112   thorpej 
     76   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     77   1.75       cgd 
     78  1.304        ad __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.304 2008/04/24 18:39:20 ad Exp $");
     79    1.1       cgd 
     80    1.1       cgd #include <sys/param.h>
     81    1.1       cgd #include <sys/systm.h>
     82    1.1       cgd #include <sys/signalvar.h>
     83    1.1       cgd #include <sys/kernel.h>
     84  1.297      yamt #include <sys/cpu.h>
     85    1.1       cgd #include <sys/proc.h>
     86  1.264   nathanw #include <sys/ras.h>
     87  1.207   thorpej #include <sys/sched.h>
     88    1.1       cgd #include <sys/reboot.h>
     89   1.28       cgd #include <sys/device.h>
     90    1.1       cgd #include <sys/malloc.h>
     91  1.110   thorpej #include <sys/mman.h>
     92    1.1       cgd #include <sys/msgbuf.h>
     93    1.1       cgd #include <sys/ioctl.h>
     94    1.1       cgd #include <sys/tty.h>
     95    1.1       cgd #include <sys/user.h>
     96    1.1       cgd #include <sys/exec.h>
     97    1.1       cgd #include <sys/exec_ecoff.h>
     98   1.43       cgd #include <sys/core.h>
     99   1.43       cgd #include <sys/kcore.h>
    100  1.261   thorpej #include <sys/ucontext.h>
    101  1.258   gehenna #include <sys/conf.h>
    102  1.266     ragge #include <sys/ksyms.h>
    103  1.290      elad #include <sys/kauth.h>
    104  1.303        ad #include <sys/atomic.h>
    105  1.303        ad #include <sys/cpu.h>
    106  1.303        ad 
    107   1.43       cgd #include <machine/kcore.h>
    108  1.241      ross #include <machine/fpu.h>
    109    1.1       cgd 
    110    1.1       cgd #include <sys/mount.h>
    111    1.1       cgd #include <sys/syscallargs.h>
    112    1.1       cgd 
    113  1.112   thorpej #include <uvm/uvm_extern.h>
    114  1.217       mrg #include <sys/sysctl.h>
    115  1.112   thorpej 
    116    1.1       cgd #include <dev/cons.h>
    117    1.1       cgd 
    118   1.81   thorpej #include <machine/autoconf.h>
    119    1.1       cgd #include <machine/reg.h>
    120    1.1       cgd #include <machine/rpb.h>
    121    1.1       cgd #include <machine/prom.h>
    122  1.258   gehenna #include <machine/cpuconf.h>
    123  1.172      ross #include <machine/ieeefp.h>
    124  1.148   thorpej 
    125   1.81   thorpej #ifdef DDB
    126   1.81   thorpej #include <machine/db_machdep.h>
    127   1.81   thorpej #include <ddb/db_access.h>
    128   1.81   thorpej #include <ddb/db_sym.h>
    129   1.81   thorpej #include <ddb/db_extern.h>
    130   1.81   thorpej #include <ddb/db_interface.h>
    131  1.233   thorpej #endif
    132  1.233   thorpej 
    133  1.233   thorpej #ifdef KGDB
    134  1.233   thorpej #include <sys/kgdb.h>
    135   1.81   thorpej #endif
    136   1.81   thorpej 
    137  1.229  sommerfe #ifdef DEBUG
    138  1.229  sommerfe #include <machine/sigdebug.h>
    139  1.229  sommerfe #endif
    140  1.229  sommerfe 
    141  1.155      ross #include <machine/alpha.h>
    142  1.143      matt 
    143  1.266     ragge #include "ksyms.h"
    144  1.266     ragge 
    145  1.245       chs struct vm_map *exec_map = NULL;
    146  1.245       chs struct vm_map *mb_map = NULL;
    147  1.245       chs struct vm_map *phys_map = NULL;
    148    1.1       cgd 
    149  1.295  christos void *msgbufaddr;
    150   1.86       leo 
    151    1.1       cgd int	maxmem;			/* max memory per process */
    152    1.7       cgd 
    153    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    154    1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    155    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    156    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    157    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    158    1.1       cgd 
    159    1.1       cgd int	cputype;		/* system type, from the RPB */
    160  1.210   thorpej 
    161  1.210   thorpej int	bootdev_debug = 0;	/* patchable, or from DDB */
    162    1.1       cgd 
    163    1.1       cgd /*
    164    1.1       cgd  * XXX We need an address to which we can assign things so that they
    165    1.1       cgd  * won't be optimized away because we didn't use the value.
    166    1.1       cgd  */
    167    1.1       cgd u_int32_t no_optimize;
    168    1.1       cgd 
    169    1.1       cgd /* the following is used externally (sysctl_hw) */
    170   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    171   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    172   1.29       cgd char	cpu_model[128];
    173    1.1       cgd 
    174    1.1       cgd struct	user *proc0paddr;
    175    1.1       cgd 
    176    1.1       cgd /* Number of machine cycles per microsecond */
    177    1.1       cgd u_int64_t	cycles_per_usec;
    178    1.1       cgd 
    179  1.280       wiz /* number of CPUs in the box.  really! */
    180    1.7       cgd int		ncpus;
    181    1.7       cgd 
    182  1.102       cgd struct bootinfo_kernel bootinfo;
    183   1.81   thorpej 
    184  1.123   thorpej /* For built-in TCDS */
    185  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    186  1.123   thorpej u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    187  1.123   thorpej #endif
    188  1.123   thorpej 
    189   1.89    mjacob struct platform platform;
    190   1.89    mjacob 
    191  1.266     ragge #if NKSYMS || defined(DDB) || defined(LKM)
    192   1.81   thorpej /* start and end of kernel symbol table */
    193   1.81   thorpej void	*ksym_start, *ksym_end;
    194   1.81   thorpej #endif
    195   1.81   thorpej 
    196   1.30       cgd /* for cpu_sysctl() */
    197   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    198   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    199   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    200  1.241      ross int	alpha_fp_sync_complete = 0;	/* fp fixup if sync even without /s */
    201   1.30       cgd 
    202  1.110   thorpej /*
    203  1.110   thorpej  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    204  1.110   thorpej  * XXX it should also be larger than it is, because not all of the mddt
    205  1.110   thorpej  * XXX clusters end up being used for VM.
    206  1.110   thorpej  */
    207  1.110   thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    208  1.110   thorpej int	mem_cluster_cnt;
    209  1.110   thorpej 
    210   1.55       cgd int	cpu_dump __P((void));
    211   1.55       cgd int	cpu_dumpsize __P((void));
    212  1.110   thorpej u_long	cpu_dump_mempagecnt __P((void));
    213   1.55       cgd void	dumpsys __P((void));
    214   1.55       cgd void	identifycpu __P((void));
    215   1.55       cgd void	printregs __P((struct reg *));
    216   1.33       cgd 
    217   1.55       cgd void
    218  1.102       cgd alpha_init(pfn, ptb, bim, bip, biv)
    219    1.1       cgd 	u_long pfn;		/* first free PFN number */
    220    1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    221   1.81   thorpej 	u_long bim;		/* bootinfo magic */
    222   1.81   thorpej 	u_long bip;		/* bootinfo pointer */
    223  1.102       cgd 	u_long biv;		/* bootinfo version */
    224    1.1       cgd {
    225   1.95   thorpej 	extern char kernel_text[], _end[];
    226    1.1       cgd 	struct mddt *mddtp;
    227  1.110   thorpej 	struct mddt_cluster *memc;
    228    1.7       cgd 	int i, mddtweird;
    229  1.110   thorpej 	struct vm_physseg *vps;
    230  1.140   thorpej 	vaddr_t kernstart, kernend;
    231  1.140   thorpej 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    232  1.211   thorpej 	cpuid_t cpu_id;
    233  1.211   thorpej 	struct cpu_info *ci;
    234    1.1       cgd 	char *p;
    235  1.209   thorpej 	const char *bootinfo_msg;
    236  1.209   thorpej 	const struct cpuinit *c;
    237  1.106       cgd 
    238  1.106       cgd 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    239    1.1       cgd 
    240    1.1       cgd 	/*
    241   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    242    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    243    1.1       cgd 	 */
    244   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    245   1.32       cgd 	alpha_pal_wrfen(0);
    246   1.37       cgd 	ALPHA_TBIA();
    247   1.32       cgd 	alpha_pal_imb();
    248  1.248   thorpej 
    249  1.248   thorpej 	/* Initialize the SCB. */
    250  1.248   thorpej 	scb_init();
    251    1.1       cgd 
    252  1.211   thorpej 	cpu_id = cpu_number();
    253  1.211   thorpej 
    254  1.189   thorpej #if defined(MULTIPROCESSOR)
    255  1.189   thorpej 	/*
    256  1.189   thorpej 	 * Set our SysValue to the address of our cpu_info structure.
    257  1.189   thorpej 	 * Secondary processors do this in their spinup trampoline.
    258  1.189   thorpej 	 */
    259  1.237   thorpej 	alpha_pal_wrval((u_long)&cpu_info_primary);
    260  1.237   thorpej 	cpu_info[cpu_id] = &cpu_info_primary;
    261  1.189   thorpej #endif
    262  1.189   thorpej 
    263  1.211   thorpej 	ci = curcpu();
    264  1.211   thorpej 	ci->ci_cpuid = cpu_id;
    265  1.211   thorpej 
    266    1.1       cgd 	/*
    267  1.106       cgd 	 * Get critical system information (if possible, from the
    268  1.106       cgd 	 * information provided by the boot program).
    269   1.81   thorpej 	 */
    270  1.106       cgd 	bootinfo_msg = NULL;
    271   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    272  1.102       cgd 		if (biv == 0) {		/* backward compat */
    273  1.102       cgd 			biv = *(u_long *)bip;
    274  1.102       cgd 			bip += 8;
    275  1.102       cgd 		}
    276  1.102       cgd 		switch (biv) {
    277  1.102       cgd 		case 1: {
    278  1.102       cgd 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    279  1.102       cgd 
    280  1.102       cgd 			bootinfo.ssym = v1p->ssym;
    281  1.102       cgd 			bootinfo.esym = v1p->esym;
    282  1.106       cgd 			/* hwrpb may not be provided by boot block in v1 */
    283  1.106       cgd 			if (v1p->hwrpb != NULL) {
    284  1.106       cgd 				bootinfo.hwrpb_phys =
    285  1.106       cgd 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    286  1.106       cgd 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    287  1.106       cgd 			} else {
    288  1.106       cgd 				bootinfo.hwrpb_phys =
    289  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    290  1.106       cgd 				bootinfo.hwrpb_size =
    291  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    292  1.106       cgd 			}
    293  1.247   thorpej 			memcpy(bootinfo.boot_flags, v1p->boot_flags,
    294  1.102       cgd 			    min(sizeof v1p->boot_flags,
    295  1.102       cgd 			      sizeof bootinfo.boot_flags));
    296  1.247   thorpej 			memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
    297  1.102       cgd 			    min(sizeof v1p->booted_kernel,
    298  1.102       cgd 			      sizeof bootinfo.booted_kernel));
    299  1.106       cgd 			/* booted dev not provided in bootinfo */
    300  1.106       cgd 			init_prom_interface((struct rpb *)
    301  1.106       cgd 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    302  1.102       cgd                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    303  1.102       cgd 			    sizeof bootinfo.booted_dev);
    304   1.81   thorpej 			break;
    305  1.102       cgd 		}
    306   1.81   thorpej 		default:
    307  1.106       cgd 			bootinfo_msg = "unknown bootinfo version";
    308  1.102       cgd 			goto nobootinfo;
    309   1.81   thorpej 		}
    310  1.102       cgd 	} else {
    311  1.106       cgd 		bootinfo_msg = "boot program did not pass bootinfo";
    312  1.102       cgd nobootinfo:
    313  1.102       cgd 		bootinfo.ssym = (u_long)_end;
    314  1.102       cgd 		bootinfo.esym = (u_long)_end;
    315  1.106       cgd 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    316  1.106       cgd 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    317  1.106       cgd 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    318  1.102       cgd 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    319  1.102       cgd 		    sizeof bootinfo.boot_flags);
    320  1.102       cgd 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    321  1.102       cgd 		    sizeof bootinfo.booted_kernel);
    322  1.102       cgd 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    323  1.102       cgd 		    sizeof bootinfo.booted_dev);
    324  1.102       cgd 	}
    325  1.102       cgd 
    326   1.81   thorpej 	/*
    327  1.106       cgd 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    328  1.106       cgd 	 * lots of things.
    329  1.106       cgd 	 */
    330  1.106       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    331  1.123   thorpej 
    332  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    333  1.123   thorpej 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    334  1.123   thorpej 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    335  1.123   thorpej 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    336  1.123   thorpej 		    sizeof(dec_3000_scsiid));
    337  1.123   thorpej 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    338  1.123   thorpej 		    sizeof(dec_3000_scsifast));
    339  1.123   thorpej 	}
    340  1.123   thorpej #endif
    341  1.106       cgd 
    342  1.106       cgd 	/*
    343  1.106       cgd 	 * Remember how many cycles there are per microsecond,
    344  1.106       cgd 	 * so that we can use delay().  Round up, for safety.
    345  1.106       cgd 	 */
    346  1.106       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    347  1.106       cgd 
    348  1.106       cgd 	/*
    349  1.251       wiz 	 * Initialize the (temporary) bootstrap console interface, so
    350  1.106       cgd 	 * we can use printf until the VM system starts being setup.
    351  1.106       cgd 	 * The real console is initialized before then.
    352  1.106       cgd 	 */
    353  1.106       cgd 	init_bootstrap_console();
    354  1.106       cgd 
    355  1.106       cgd 	/* OUTPUT NOW ALLOWED */
    356  1.106       cgd 
    357  1.106       cgd 	/* delayed from above */
    358  1.106       cgd 	if (bootinfo_msg)
    359  1.106       cgd 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    360  1.106       cgd 		    bootinfo_msg, bim, bip, biv);
    361  1.106       cgd 
    362  1.147   thorpej 	/* Initialize the trap vectors on the primary processor. */
    363  1.147   thorpej 	trap_init();
    364    1.1       cgd 
    365    1.1       cgd 	/*
    366  1.263   thorpej 	 * Find out this system's page size, and initialize
    367  1.263   thorpej 	 * PAGE_SIZE-dependent variables.
    368  1.243   thorpej 	 */
    369  1.263   thorpej 	if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
    370  1.263   thorpej 		panic("page size %lu != %d?!", hwrpb->rpb_page_size,
    371  1.263   thorpej 		    ALPHA_PGBYTES);
    372  1.263   thorpej 	uvmexp.pagesize = hwrpb->rpb_page_size;
    373  1.243   thorpej 	uvm_setpagesize();
    374  1.243   thorpej 
    375  1.243   thorpej 	/*
    376  1.106       cgd 	 * Find out what hardware we're on, and do basic initialization.
    377  1.106       cgd 	 */
    378  1.106       cgd 	cputype = hwrpb->rpb_type;
    379  1.167       cgd 	if (cputype < 0) {
    380  1.167       cgd 		/*
    381  1.167       cgd 		 * At least some white-box systems have SRM which
    382  1.167       cgd 		 * reports a systype that's the negative of their
    383  1.167       cgd 		 * blue-box counterpart.
    384  1.167       cgd 		 */
    385  1.167       cgd 		cputype = -cputype;
    386  1.167       cgd 	}
    387  1.209   thorpej 	c = platform_lookup(cputype);
    388  1.209   thorpej 	if (c == NULL) {
    389  1.106       cgd 		platform_not_supported();
    390  1.106       cgd 		/* NOTREACHED */
    391  1.106       cgd 	}
    392  1.209   thorpej 	(*c->init)();
    393  1.106       cgd 	strcpy(cpu_model, platform.model);
    394  1.106       cgd 
    395  1.106       cgd 	/*
    396  1.251       wiz 	 * Initialize the real console, so that the bootstrap console is
    397  1.106       cgd 	 * no longer necessary.
    398  1.106       cgd 	 */
    399  1.169   thorpej 	(*platform.cons_init)();
    400  1.106       cgd 
    401  1.106       cgd #ifdef DIAGNOSTIC
    402  1.106       cgd 	/* Paranoid sanity checking */
    403  1.106       cgd 
    404  1.199     soren 	/* We should always be running on the primary. */
    405  1.211   thorpej 	assert(hwrpb->rpb_primary_cpu_id == cpu_id);
    406  1.106       cgd 
    407  1.116    mjacob 	/*
    408  1.116    mjacob 	 * On single-CPU systypes, the primary should always be CPU 0,
    409  1.116    mjacob 	 * except on Alpha 8200 systems where the CPU id is related
    410  1.116    mjacob 	 * to the VID, which is related to the Turbo Laser node id.
    411  1.116    mjacob 	 */
    412  1.106       cgd 	if (cputype != ST_DEC_21000)
    413  1.106       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);
    414  1.106       cgd #endif
    415  1.106       cgd 
    416  1.106       cgd 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    417  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    418  1.106       cgd 	/*
    419  1.106       cgd 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    420  1.106       cgd 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    421  1.106       cgd 	 */
    422  1.106       cgd #endif
    423   1.95   thorpej 
    424   1.95   thorpej 	/*
    425  1.101       cgd 	 * Find the beginning and end of the kernel (and leave a
    426  1.101       cgd 	 * bit of space before the beginning for the bootstrap
    427  1.101       cgd 	 * stack).
    428   1.95   thorpej 	 */
    429  1.201    kleink 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
    430  1.266     ragge #if NKSYMS || defined(DDB) || defined(LKM)
    431  1.102       cgd 	ksym_start = (void *)bootinfo.ssym;
    432  1.102       cgd 	ksym_end   = (void *)bootinfo.esym;
    433  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
    434  1.102       cgd #else
    435  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)_end);
    436   1.95   thorpej #endif
    437   1.95   thorpej 
    438  1.110   thorpej 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    439  1.110   thorpej 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    440  1.110   thorpej 
    441   1.95   thorpej 	/*
    442    1.1       cgd 	 * Find out how much memory is available, by looking at
    443    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    444    1.7       cgd 	 * its best to detect things things that have never been seen
    445    1.7       cgd 	 * before...
    446    1.1       cgd 	 */
    447  1.296      yamt 	mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
    448    1.7       cgd 
    449  1.110   thorpej 	/* MDDT SANITY CHECKING */
    450    1.7       cgd 	mddtweird = 0;
    451  1.110   thorpej 	if (mddtp->mddt_cluster_cnt < 2) {
    452    1.7       cgd 		mddtweird = 1;
    453  1.160   thorpej 		printf("WARNING: weird number of mem clusters: %lu\n",
    454  1.110   thorpej 		    mddtp->mddt_cluster_cnt);
    455    1.7       cgd 	}
    456    1.7       cgd 
    457  1.110   thorpej #if 0
    458  1.110   thorpej 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    459  1.110   thorpej #endif
    460  1.110   thorpej 
    461  1.110   thorpej 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    462  1.110   thorpej 		memc = &mddtp->mddt_clusters[i];
    463  1.110   thorpej #if 0
    464  1.110   thorpej 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    465  1.110   thorpej 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    466  1.110   thorpej #endif
    467  1.110   thorpej 		totalphysmem += memc->mddt_pg_cnt;
    468  1.110   thorpej 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    469  1.110   thorpej 			mem_clusters[mem_cluster_cnt].start =
    470  1.110   thorpej 			    ptoa(memc->mddt_pfn);
    471  1.110   thorpej 			mem_clusters[mem_cluster_cnt].size =
    472  1.110   thorpej 			    ptoa(memc->mddt_pg_cnt);
    473  1.110   thorpej 			if (memc->mddt_usage & MDDT_mbz ||
    474  1.110   thorpej 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    475  1.110   thorpej 			    memc->mddt_usage & MDDT_PALCODE)
    476  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    477  1.110   thorpej 				    PROT_READ;
    478  1.110   thorpej 			else
    479  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    480  1.110   thorpej 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    481  1.110   thorpej 			mem_cluster_cnt++;
    482  1.110   thorpej 		}
    483  1.110   thorpej 
    484  1.110   thorpej 		if (memc->mddt_usage & MDDT_mbz) {
    485    1.7       cgd 			mddtweird = 1;
    486  1.110   thorpej 			printf("WARNING: mem cluster %d has weird "
    487  1.110   thorpej 			    "usage 0x%lx\n", i, memc->mddt_usage);
    488  1.110   thorpej 			unknownmem += memc->mddt_pg_cnt;
    489  1.110   thorpej 			continue;
    490    1.7       cgd 		}
    491  1.110   thorpej 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    492  1.110   thorpej 			/* XXX should handle these... */
    493  1.110   thorpej 			printf("WARNING: skipping non-volatile mem "
    494  1.110   thorpej 			    "cluster %d\n", i);
    495  1.110   thorpej 			unusedmem += memc->mddt_pg_cnt;
    496  1.110   thorpej 			continue;
    497  1.110   thorpej 		}
    498  1.110   thorpej 		if (memc->mddt_usage & MDDT_PALCODE) {
    499  1.110   thorpej 			resvmem += memc->mddt_pg_cnt;
    500  1.110   thorpej 			continue;
    501  1.110   thorpej 		}
    502  1.110   thorpej 
    503  1.110   thorpej 		/*
    504  1.110   thorpej 		 * We have a memory cluster available for system
    505  1.110   thorpej 		 * software use.  We must determine if this cluster
    506  1.110   thorpej 		 * holds the kernel.
    507  1.110   thorpej 		 */
    508  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    509  1.110   thorpej 		/*
    510  1.110   thorpej 		 * XXX If the kernel uses the PROM console, we only use the
    511  1.110   thorpej 		 * XXX memory after the kernel in the first system segment,
    512  1.110   thorpej 		 * XXX to avoid clobbering prom mapping, data, etc.
    513  1.110   thorpej 		 */
    514  1.110   thorpej 	    if (!pmap_uses_prom_console() || physmem == 0) {
    515  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    516  1.110   thorpej 		physmem += memc->mddt_pg_cnt;
    517  1.110   thorpej 		pfn0 = memc->mddt_pfn;
    518  1.110   thorpej 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    519  1.110   thorpej 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    520  1.110   thorpej 			/*
    521  1.110   thorpej 			 * Must compute the location of the kernel
    522  1.110   thorpej 			 * within the segment.
    523  1.110   thorpej 			 */
    524  1.110   thorpej #if 0
    525  1.110   thorpej 			printf("Cluster %d contains kernel\n", i);
    526  1.110   thorpej #endif
    527  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    528  1.110   thorpej 		    if (!pmap_uses_prom_console()) {
    529  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    530  1.110   thorpej 			if (pfn0 < kernstartpfn) {
    531  1.110   thorpej 				/*
    532  1.110   thorpej 				 * There is a chunk before the kernel.
    533  1.110   thorpej 				 */
    534  1.110   thorpej #if 0
    535  1.110   thorpej 				printf("Loading chunk before kernel: "
    536  1.110   thorpej 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    537  1.110   thorpej #endif
    538  1.112   thorpej 				uvm_page_physload(pfn0, kernstartpfn,
    539  1.135   thorpej 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    540  1.110   thorpej 			}
    541  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    542  1.110   thorpej 		    }
    543  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    544  1.110   thorpej 			if (kernendpfn < pfn1) {
    545  1.110   thorpej 				/*
    546  1.110   thorpej 				 * There is a chunk after the kernel.
    547  1.110   thorpej 				 */
    548  1.110   thorpej #if 0
    549  1.110   thorpej 				printf("Loading chunk after kernel: "
    550  1.110   thorpej 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    551  1.110   thorpej #endif
    552  1.112   thorpej 				uvm_page_physload(kernendpfn, pfn1,
    553  1.135   thorpej 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    554  1.110   thorpej 			}
    555  1.110   thorpej 		} else {
    556  1.110   thorpej 			/*
    557  1.110   thorpej 			 * Just load this cluster as one chunk.
    558  1.110   thorpej 			 */
    559  1.110   thorpej #if 0
    560  1.110   thorpej 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    561  1.110   thorpej 			    pfn0, pfn1);
    562  1.110   thorpej #endif
    563  1.135   thorpej 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    564  1.135   thorpej 			    VM_FREELIST_DEFAULT);
    565    1.7       cgd 		}
    566  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    567  1.110   thorpej 	    }
    568  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    569    1.7       cgd 	}
    570    1.7       cgd 
    571  1.110   thorpej 	/*
    572  1.110   thorpej 	 * Dump out the MDDT if it looks odd...
    573  1.110   thorpej 	 */
    574    1.7       cgd 	if (mddtweird) {
    575   1.46  christos 		printf("\n");
    576   1.46  christos 		printf("complete memory cluster information:\n");
    577    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    578   1.46  christos 			printf("mddt %d:\n", i);
    579   1.46  christos 			printf("\tpfn %lx\n",
    580    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    581   1.46  christos 			printf("\tcnt %lx\n",
    582    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    583   1.46  christos 			printf("\ttest %lx\n",
    584    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    585   1.46  christos 			printf("\tbva %lx\n",
    586    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    587   1.46  christos 			printf("\tbpa %lx\n",
    588    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    589   1.46  christos 			printf("\tbcksum %lx\n",
    590    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    591   1.46  christos 			printf("\tusage %lx\n",
    592    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    593    1.2       cgd 		}
    594   1.46  christos 		printf("\n");
    595    1.2       cgd 	}
    596    1.2       cgd 
    597    1.7       cgd 	if (totalphysmem == 0)
    598    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    599    1.1       cgd 	maxmem = physmem;
    600    1.7       cgd #if 0
    601   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    602   1.46  christos 	printf("physmem = %d\n", physmem);
    603   1.46  christos 	printf("resvmem = %d\n", resvmem);
    604   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    605   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    606    1.7       cgd #endif
    607    1.7       cgd 
    608    1.1       cgd 	/*
    609    1.1       cgd 	 * Initialize error message buffer (at end of core).
    610    1.1       cgd 	 */
    611  1.110   thorpej 	{
    612  1.204     enami 		vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
    613  1.203     enami 		vsize_t reqsz = sz;
    614  1.110   thorpej 
    615  1.110   thorpej 		vps = &vm_physmem[vm_nphysseg - 1];
    616  1.110   thorpej 
    617  1.110   thorpej 		/* shrink so that it'll fit in the last segment */
    618  1.110   thorpej 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    619  1.110   thorpej 			sz = ptoa(vps->avail_end - vps->avail_start);
    620  1.110   thorpej 
    621  1.110   thorpej 		vps->end -= atop(sz);
    622  1.110   thorpej 		vps->avail_end -= atop(sz);
    623  1.295  christos 		msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    624  1.110   thorpej 		initmsgbuf(msgbufaddr, sz);
    625  1.110   thorpej 
    626  1.110   thorpej 		/* Remove the last segment if it now has no pages. */
    627  1.110   thorpej 		if (vps->start == vps->end)
    628  1.110   thorpej 			vm_nphysseg--;
    629  1.110   thorpej 
    630  1.110   thorpej 		/* warn if the message buffer had to be shrunk */
    631  1.203     enami 		if (sz != reqsz)
    632  1.203     enami 			printf("WARNING: %ld bytes not available for msgbuf "
    633  1.203     enami 			    "in last cluster (%ld used)\n", reqsz, sz);
    634  1.268   thorpej 
    635  1.110   thorpej 	}
    636  1.239   thorpej 
    637  1.239   thorpej 	/*
    638  1.268   thorpej 	 * NOTE: It is safe to use uvm_pageboot_alloc() before
    639  1.268   thorpej 	 * pmap_bootstrap() because our pmap_virtual_space()
    640  1.268   thorpej 	 * returns compile-time constants.
    641  1.268   thorpej 	 */
    642  1.268   thorpej 
    643  1.268   thorpej 	/*
    644   1.95   thorpej 	 * Init mapping for u page(s) for proc 0
    645    1.1       cgd 	 */
    646  1.261   thorpej 	lwp0.l_addr = proc0paddr =
    647  1.268   thorpej 	    (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
    648    1.1       cgd 
    649    1.1       cgd 	/*
    650    1.1       cgd 	 * Initialize the virtual memory system, and set the
    651    1.1       cgd 	 * page table base register in proc 0's PCB.
    652    1.1       cgd 	 */
    653  1.110   thorpej 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    654  1.144   thorpej 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    655    1.1       cgd 
    656    1.1       cgd 	/*
    657    1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    658    1.3       cgd 	 * address.
    659    1.3       cgd 	 */
    660  1.261   thorpej 	lwp0.l_md.md_pcbpaddr =
    661  1.140   thorpej 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
    662    1.3       cgd 
    663    1.3       cgd 	/*
    664    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    665    1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    666    1.3       cgd 	 */
    667   1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    668    1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    669  1.261   thorpej 	lwp0.l_md.md_tf =
    670   1.81   thorpej 	    (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    671  1.235   thorpej 	simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
    672  1.189   thorpej 
    673  1.208   thorpej 	/* Indicate that proc0 has a CPU. */
    674  1.261   thorpej 	lwp0.l_cpu = ci;
    675    1.1       cgd 
    676    1.1       cgd 	/*
    677   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    678    1.8       cgd 	 */
    679    1.1       cgd 
    680    1.8       cgd 	boothowto = RB_SINGLE;
    681    1.1       cgd #ifdef KADB
    682    1.1       cgd 	boothowto |= RB_KDB;
    683    1.1       cgd #endif
    684  1.102       cgd 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    685   1.26       cgd 		/*
    686   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    687   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    688   1.26       cgd 		 * says that we shouldn't.
    689   1.26       cgd 		 */
    690    1.8       cgd 		switch (*p) {
    691   1.26       cgd 		case 'a': /* autoboot */
    692   1.26       cgd 		case 'A':
    693   1.26       cgd 			boothowto &= ~RB_SINGLE;
    694   1.21       cgd 			break;
    695   1.21       cgd 
    696   1.43       cgd #ifdef DEBUG
    697   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    698   1.43       cgd 		case 'C':
    699   1.43       cgd 			boothowto |= RB_DUMP;
    700   1.43       cgd 			break;
    701   1.43       cgd #endif
    702   1.43       cgd 
    703   1.81   thorpej #if defined(KGDB) || defined(DDB)
    704   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    705   1.81   thorpej 		case 'D':
    706   1.81   thorpej 			boothowto |= RB_KDB;
    707   1.81   thorpej 			break;
    708   1.81   thorpej #endif
    709   1.81   thorpej 
    710   1.36       cgd 		case 'h': /* always halt, never reboot */
    711   1.36       cgd 		case 'H':
    712   1.36       cgd 			boothowto |= RB_HALT;
    713    1.8       cgd 			break;
    714    1.8       cgd 
    715   1.21       cgd #if 0
    716    1.8       cgd 		case 'm': /* mini root present in memory */
    717   1.26       cgd 		case 'M':
    718    1.8       cgd 			boothowto |= RB_MINIROOT;
    719    1.8       cgd 			break;
    720   1.21       cgd #endif
    721   1.36       cgd 
    722   1.36       cgd 		case 'n': /* askname */
    723   1.36       cgd 		case 'N':
    724   1.36       cgd 			boothowto |= RB_ASKNAME;
    725   1.65       cgd 			break;
    726   1.65       cgd 
    727   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    728   1.65       cgd 		case 'S':
    729   1.65       cgd 			boothowto |= RB_SINGLE;
    730  1.221  jdolecek 			break;
    731  1.221  jdolecek 
    732  1.221  jdolecek 		case 'q': /* quiet boot */
    733  1.221  jdolecek 		case 'Q':
    734  1.221  jdolecek 			boothowto |= AB_QUIET;
    735  1.221  jdolecek 			break;
    736  1.221  jdolecek 
    737  1.221  jdolecek 		case 'v': /* verbose boot */
    738  1.221  jdolecek 		case 'V':
    739  1.221  jdolecek 			boothowto |= AB_VERBOSE;
    740  1.119   thorpej 			break;
    741  1.119   thorpej 
    742  1.119   thorpej 		case '-':
    743  1.119   thorpej 			/*
    744  1.119   thorpej 			 * Just ignore this.  It's not required, but it's
    745  1.119   thorpej 			 * common for it to be passed regardless.
    746  1.119   thorpej 			 */
    747   1.65       cgd 			break;
    748   1.65       cgd 
    749   1.65       cgd 		default:
    750   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    751   1.36       cgd 			break;
    752    1.1       cgd 		}
    753    1.1       cgd 	}
    754    1.1       cgd 
    755  1.302        ad 	/*
    756  1.302        ad 	 * Perform any initial kernel patches based on the running system.
    757  1.302        ad 	 * We may perform more later if we attach additional CPUs.
    758  1.302        ad 	 */
    759  1.302        ad 	alpha_patch(false);
    760  1.136    mjacob 
    761  1.136    mjacob 	/*
    762  1.280       wiz 	 * Figure out the number of CPUs in the box, from RPB fields.
    763  1.136    mjacob 	 * Really.  We mean it.
    764  1.136    mjacob 	 */
    765  1.136    mjacob 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    766  1.136    mjacob 		struct pcs *pcsp;
    767  1.136    mjacob 
    768  1.144   thorpej 		pcsp = LOCATE_PCS(hwrpb, i);
    769  1.136    mjacob 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    770  1.136    mjacob 			ncpus++;
    771  1.136    mjacob 	}
    772  1.136    mjacob 
    773    1.7       cgd 	/*
    774  1.106       cgd 	 * Initialize debuggers, and break into them if appropriate.
    775  1.106       cgd 	 */
    776  1.266     ragge #if NKSYMS || defined(DDB) || defined(LKM)
    777  1.266     ragge 	ksyms_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    778  1.159    mjacob 	    ksym_start, ksym_end);
    779  1.234   thorpej #endif
    780  1.234   thorpej 
    781  1.234   thorpej 	if (boothowto & RB_KDB) {
    782  1.234   thorpej #if defined(KGDB)
    783  1.234   thorpej 		kgdb_debug_init = 1;
    784  1.234   thorpej 		kgdb_connect(1);
    785  1.234   thorpej #elif defined(DDB)
    786  1.106       cgd 		Debugger();
    787  1.106       cgd #endif
    788  1.234   thorpej 	}
    789  1.234   thorpej 
    790  1.298   tsutsui #ifdef DIAGNOSTIC
    791  1.106       cgd 	/*
    792  1.298   tsutsui 	 * Check our clock frequency, from RPB fields.
    793  1.106       cgd 	 */
    794  1.298   tsutsui 	if ((hwrpb->rpb_intr_freq >> 12) != 1024)
    795  1.106       cgd 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    796  1.106       cgd 			hwrpb->rpb_intr_freq, hz);
    797  1.106       cgd #endif
    798   1.95   thorpej }
    799   1.95   thorpej 
    800   1.18       cgd void
    801    1.1       cgd consinit()
    802    1.1       cgd {
    803   1.81   thorpej 
    804  1.106       cgd 	/*
    805  1.106       cgd 	 * Everything related to console initialization is done
    806  1.106       cgd 	 * in alpha_init().
    807  1.106       cgd 	 */
    808  1.106       cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    809  1.106       cgd 	printf("consinit: %susing prom console\n",
    810  1.106       cgd 	    pmap_uses_prom_console() ? "" : "not ");
    811   1.81   thorpej #endif
    812    1.1       cgd }
    813  1.118   thorpej 
    814   1.18       cgd void
    815    1.1       cgd cpu_startup()
    816    1.1       cgd {
    817  1.140   thorpej 	vaddr_t minaddr, maxaddr;
    818  1.173     lukem 	char pbuf[9];
    819   1.40       cgd #if defined(DEBUG)
    820    1.1       cgd 	extern int pmapdebug;
    821    1.1       cgd 	int opmapdebug = pmapdebug;
    822    1.1       cgd 
    823    1.1       cgd 	pmapdebug = 0;
    824    1.1       cgd #endif
    825    1.1       cgd 
    826    1.1       cgd 	/*
    827    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    828    1.1       cgd 	 */
    829  1.284     lukem 	printf("%s%s", copyright, version);
    830    1.1       cgd 	identifycpu();
    831  1.185   thorpej 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
    832  1.173     lukem 	printf("total memory = %s\n", pbuf);
    833  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    834  1.173     lukem 	printf("(%s reserved for PROM, ", pbuf);
    835  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    836  1.173     lukem 	printf("%s used by NetBSD)\n", pbuf);
    837  1.173     lukem 	if (unusedmem) {
    838  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
    839  1.173     lukem 		printf("WARNING: unused memory = %s\n", pbuf);
    840  1.173     lukem 	}
    841  1.173     lukem 	if (unknownmem) {
    842  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
    843  1.173     lukem 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    844  1.173     lukem 	}
    845    1.1       cgd 
    846  1.279        pk 	minaddr = 0;
    847  1.240   thorpej 
    848    1.1       cgd 	/*
    849    1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    850    1.1       cgd 	 * limits the number of processes exec'ing at any time.
    851    1.1       cgd 	 */
    852  1.112   thorpej 	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    853  1.294   thorpej 				   16 * NCARGS, VM_MAP_PAGEABLE, false, NULL);
    854    1.1       cgd 
    855    1.1       cgd 	/*
    856    1.1       cgd 	 * Allocate a submap for physio
    857    1.1       cgd 	 */
    858  1.112   thorpej 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    859  1.294   thorpej 				   VM_PHYS_SIZE, 0, false, NULL);
    860    1.1       cgd 
    861    1.1       cgd 	/*
    862  1.164   thorpej 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    863  1.164   thorpej 	 * are allocated via the pool allocator, and we use K0SEG to
    864  1.164   thorpej 	 * map those pages.
    865    1.1       cgd 	 */
    866    1.1       cgd 
    867   1.40       cgd #if defined(DEBUG)
    868    1.1       cgd 	pmapdebug = opmapdebug;
    869    1.1       cgd #endif
    870  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
    871  1.173     lukem 	printf("avail memory = %s\n", pbuf);
    872  1.139   thorpej #if 0
    873  1.139   thorpej 	{
    874  1.139   thorpej 		extern u_long pmap_pages_stolen;
    875  1.173     lukem 
    876  1.173     lukem 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
    877  1.173     lukem 		printf("stolen memory for VM structures = %s\n", pbuf);
    878  1.139   thorpej 	}
    879  1.112   thorpej #endif
    880  1.151   thorpej 
    881  1.151   thorpej 	/*
    882  1.151   thorpej 	 * Set up the HWPCB so that it's safe to configure secondary
    883  1.151   thorpej 	 * CPUs.
    884  1.151   thorpej 	 */
    885  1.151   thorpej 	hwrpb_primary_init();
    886  1.104   thorpej }
    887  1.104   thorpej 
    888  1.104   thorpej /*
    889  1.104   thorpej  * Retrieve the platform name from the DSR.
    890  1.104   thorpej  */
    891  1.104   thorpej const char *
    892  1.104   thorpej alpha_dsr_sysname()
    893  1.104   thorpej {
    894  1.104   thorpej 	struct dsrdb *dsr;
    895  1.104   thorpej 	const char *sysname;
    896  1.104   thorpej 
    897  1.104   thorpej 	/*
    898  1.104   thorpej 	 * DSR does not exist on early HWRPB versions.
    899  1.104   thorpej 	 */
    900  1.104   thorpej 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
    901  1.104   thorpej 		return (NULL);
    902  1.104   thorpej 
    903  1.296      yamt 	dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
    904  1.296      yamt 	sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
    905  1.104   thorpej 	    sizeof(u_int64_t)));
    906  1.104   thorpej 	return (sysname);
    907  1.104   thorpej }
    908  1.104   thorpej 
    909  1.104   thorpej /*
    910  1.104   thorpej  * Lookup the system specified system variation in the provided table,
    911  1.104   thorpej  * returning the model string on match.
    912  1.104   thorpej  */
    913  1.104   thorpej const char *
    914  1.104   thorpej alpha_variation_name(variation, avtp)
    915  1.104   thorpej 	u_int64_t variation;
    916  1.104   thorpej 	const struct alpha_variation_table *avtp;
    917  1.104   thorpej {
    918  1.104   thorpej 	int i;
    919  1.104   thorpej 
    920  1.104   thorpej 	for (i = 0; avtp[i].avt_model != NULL; i++)
    921  1.104   thorpej 		if (avtp[i].avt_variation == variation)
    922  1.104   thorpej 			return (avtp[i].avt_model);
    923  1.104   thorpej 	return (NULL);
    924  1.104   thorpej }
    925  1.104   thorpej 
    926  1.104   thorpej /*
    927  1.104   thorpej  * Generate a default platform name based for unknown system variations.
    928  1.104   thorpej  */
    929  1.104   thorpej const char *
    930  1.104   thorpej alpha_unknown_sysname()
    931  1.104   thorpej {
    932  1.105   thorpej 	static char s[128];		/* safe size */
    933  1.104   thorpej 
    934  1.105   thorpej 	sprintf(s, "%s family, unknown model variation 0x%lx",
    935  1.105   thorpej 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
    936  1.104   thorpej 	return ((const char *)s);
    937    1.1       cgd }
    938    1.1       cgd 
    939   1.33       cgd void
    940    1.1       cgd identifycpu()
    941    1.1       cgd {
    942  1.177      ross 	char *s;
    943  1.218   thorpej 	int i;
    944    1.1       cgd 
    945    1.7       cgd 	/*
    946    1.7       cgd 	 * print out CPU identification information.
    947    1.7       cgd 	 */
    948  1.177      ross 	printf("%s", cpu_model);
    949  1.177      ross 	for(s = cpu_model; *s; ++s)
    950  1.177      ross 		if(strncasecmp(s, "MHz", 3) == 0)
    951  1.177      ross 			goto skipMHz;
    952  1.177      ross 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
    953  1.177      ross skipMHz:
    954  1.218   thorpej 	printf(", s/n ");
    955  1.218   thorpej 	for (i = 0; i < 10; i++)
    956  1.218   thorpej 		printf("%c", hwrpb->rpb_ssn[i]);
    957  1.177      ross 	printf("\n");
    958   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
    959    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    960    1.7       cgd #if 0
    961    1.7       cgd 	/* this isn't defined for any systems that we run on? */
    962   1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
    963    1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    964    1.7       cgd 
    965    1.7       cgd 	/* and these aren't particularly useful! */
    966   1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
    967    1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    968    1.7       cgd #endif
    969    1.1       cgd }
    970    1.1       cgd 
    971    1.1       cgd int	waittime = -1;
    972    1.7       cgd struct pcb dumppcb;
    973    1.1       cgd 
    974   1.18       cgd void
    975   1.68       gwr cpu_reboot(howto, bootstr)
    976    1.1       cgd 	int howto;
    977   1.39       mrg 	char *bootstr;
    978    1.1       cgd {
    979  1.148   thorpej #if defined(MULTIPROCESSOR)
    980  1.225   thorpej 	u_long cpu_id = cpu_number();
    981  1.225   thorpej 	u_long wait_mask = (1UL << cpu_id) |
    982  1.225   thorpej 			   (1UL << hwrpb->rpb_primary_cpu_id);
    983  1.225   thorpej 	int i;
    984  1.148   thorpej #endif
    985  1.148   thorpej 
    986  1.225   thorpej 	/* If "always halt" was specified as a boot flag, obey. */
    987  1.225   thorpej 	if ((boothowto & RB_HALT) != 0)
    988  1.225   thorpej 		howto |= RB_HALT;
    989  1.225   thorpej 
    990  1.225   thorpej 	boothowto = howto;
    991    1.1       cgd 
    992    1.1       cgd 	/* If system is cold, just halt. */
    993    1.1       cgd 	if (cold) {
    994  1.225   thorpej 		boothowto |= RB_HALT;
    995    1.1       cgd 		goto haltsys;
    996    1.1       cgd 	}
    997    1.1       cgd 
    998  1.225   thorpej 	if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
    999    1.1       cgd 		waittime = 0;
   1000    1.7       cgd 		vfs_shutdown();
   1001    1.1       cgd 		/*
   1002    1.1       cgd 		 * If we've been adjusting the clock, the todr
   1003    1.1       cgd 		 * will be out of synch; adjust it now.
   1004    1.1       cgd 		 */
   1005    1.1       cgd 		resettodr();
   1006    1.1       cgd 	}
   1007    1.1       cgd 
   1008    1.1       cgd 	/* Disable interrupts. */
   1009    1.1       cgd 	splhigh();
   1010    1.1       cgd 
   1011  1.225   thorpej #if defined(MULTIPROCESSOR)
   1012  1.225   thorpej 	/*
   1013  1.225   thorpej 	 * Halt all other CPUs.  If we're not the primary, the
   1014  1.225   thorpej 	 * primary will spin, waiting for us to halt.
   1015  1.225   thorpej 	 */
   1016  1.225   thorpej 	alpha_broadcast_ipi(ALPHA_IPI_HALT);
   1017  1.225   thorpej 
   1018  1.283    mhitch 	/* Ensure any CPUs paused by DDB resume execution so they can halt */
   1019  1.283    mhitch 	cpus_paused = 0;
   1020  1.283    mhitch 
   1021  1.225   thorpej 	for (i = 0; i < 10000; i++) {
   1022  1.225   thorpej 		alpha_mb();
   1023  1.225   thorpej 		if (cpus_running == wait_mask)
   1024  1.225   thorpej 			break;
   1025  1.225   thorpej 		delay(1000);
   1026  1.225   thorpej 	}
   1027  1.225   thorpej 	alpha_mb();
   1028  1.225   thorpej 	if (cpus_running != wait_mask)
   1029  1.225   thorpej 		printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
   1030  1.225   thorpej 		    cpus_running);
   1031  1.225   thorpej #endif /* MULTIPROCESSOR */
   1032  1.225   thorpej 
   1033    1.7       cgd 	/* If rebooting and a dump is requested do it. */
   1034   1.42       cgd #if 0
   1035  1.225   thorpej 	if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1036   1.42       cgd #else
   1037  1.225   thorpej 	if (boothowto & RB_DUMP)
   1038   1.42       cgd #endif
   1039    1.1       cgd 		dumpsys();
   1040    1.6       cgd 
   1041   1.12       cgd haltsys:
   1042   1.12       cgd 
   1043    1.6       cgd 	/* run any shutdown hooks */
   1044    1.6       cgd 	doshutdownhooks();
   1045  1.148   thorpej 
   1046    1.7       cgd #ifdef BOOTKEY
   1047   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1048  1.117  drochner 	cnpollc(1);	/* for proper keyboard command handling */
   1049    1.7       cgd 	cngetc();
   1050  1.117  drochner 	cnpollc(0);
   1051   1.46  christos 	printf("\n");
   1052    1.7       cgd #endif
   1053    1.7       cgd 
   1054  1.124   thorpej 	/* Finally, powerdown/halt/reboot the system. */
   1055  1.225   thorpej 	if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
   1056  1.124   thorpej 	    platform.powerdown != NULL) {
   1057  1.124   thorpej 		(*platform.powerdown)();
   1058  1.124   thorpej 		printf("WARNING: powerdown failed!\n");
   1059  1.124   thorpej 	}
   1060  1.225   thorpej 	printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
   1061  1.225   thorpej #if defined(MULTIPROCESSOR)
   1062  1.225   thorpej 	if (cpu_id != hwrpb->rpb_primary_cpu_id)
   1063  1.225   thorpej 		cpu_halt();
   1064  1.225   thorpej 	else
   1065  1.225   thorpej #endif
   1066  1.225   thorpej 		prom_halt(boothowto & RB_HALT);
   1067    1.1       cgd 	/*NOTREACHED*/
   1068    1.1       cgd }
   1069    1.1       cgd 
   1070    1.7       cgd /*
   1071    1.7       cgd  * These variables are needed by /sbin/savecore
   1072    1.7       cgd  */
   1073  1.253   tsutsui u_int32_t dumpmag = 0x8fca0101;	/* magic number */
   1074    1.7       cgd int 	dumpsize = 0;		/* pages */
   1075    1.7       cgd long	dumplo = 0; 		/* blocks */
   1076    1.7       cgd 
   1077    1.7       cgd /*
   1078   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1079   1.43       cgd  */
   1080   1.43       cgd int
   1081   1.43       cgd cpu_dumpsize()
   1082   1.43       cgd {
   1083   1.43       cgd 	int size;
   1084   1.43       cgd 
   1085  1.108       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1086  1.110   thorpej 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1087   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
   1088   1.43       cgd 		return -1;
   1089   1.43       cgd 
   1090   1.43       cgd 	return (1);
   1091   1.43       cgd }
   1092   1.43       cgd 
   1093   1.43       cgd /*
   1094  1.110   thorpej  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1095  1.110   thorpej  */
   1096  1.110   thorpej u_long
   1097  1.110   thorpej cpu_dump_mempagecnt()
   1098  1.110   thorpej {
   1099  1.110   thorpej 	u_long i, n;
   1100  1.110   thorpej 
   1101  1.110   thorpej 	n = 0;
   1102  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++)
   1103  1.110   thorpej 		n += atop(mem_clusters[i].size);
   1104  1.110   thorpej 	return (n);
   1105  1.110   thorpej }
   1106  1.110   thorpej 
   1107  1.110   thorpej /*
   1108   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
   1109   1.43       cgd  */
   1110   1.43       cgd int
   1111   1.43       cgd cpu_dump()
   1112   1.43       cgd {
   1113  1.295  christos 	int (*dump) __P((dev_t, daddr_t, void *, size_t));
   1114  1.107       cgd 	char buf[dbtob(1)];
   1115  1.107       cgd 	kcore_seg_t *segp;
   1116  1.107       cgd 	cpu_kcore_hdr_t *cpuhdrp;
   1117  1.107       cgd 	phys_ram_seg_t *memsegp;
   1118  1.258   gehenna 	const struct bdevsw *bdev;
   1119  1.110   thorpej 	int i;
   1120   1.43       cgd 
   1121  1.258   gehenna 	bdev = bdevsw_lookup(dumpdev);
   1122  1.258   gehenna 	if (bdev == NULL)
   1123  1.258   gehenna 		return (ENXIO);
   1124  1.258   gehenna 	dump = bdev->d_dump;
   1125   1.43       cgd 
   1126  1.246   thorpej 	memset(buf, 0, sizeof buf);
   1127   1.43       cgd 	segp = (kcore_seg_t *)buf;
   1128  1.107       cgd 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1129  1.107       cgd 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1130  1.107       cgd 	    ALIGN(sizeof(*cpuhdrp))];
   1131   1.43       cgd 
   1132   1.43       cgd 	/*
   1133   1.43       cgd 	 * Generate a segment header.
   1134   1.43       cgd 	 */
   1135   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1136   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1137   1.43       cgd 
   1138   1.43       cgd 	/*
   1139  1.107       cgd 	 * Add the machine-dependent header info.
   1140   1.43       cgd 	 */
   1141  1.140   thorpej 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1142   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
   1143  1.110   thorpej 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1144  1.107       cgd 
   1145  1.107       cgd 	/*
   1146  1.107       cgd 	 * Fill in the memory segment descriptors.
   1147  1.107       cgd 	 */
   1148  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1149  1.110   thorpej 		memsegp[i].start = mem_clusters[i].start;
   1150  1.110   thorpej 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1151  1.110   thorpej 	}
   1152   1.43       cgd 
   1153  1.295  christos 	return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
   1154   1.43       cgd }
   1155   1.43       cgd 
   1156   1.43       cgd /*
   1157   1.68       gwr  * This is called by main to set dumplo and dumpsize.
   1158  1.262   thorpej  * Dumps always skip the first PAGE_SIZE of disk space
   1159    1.7       cgd  * in case there might be a disk label stored there.
   1160    1.7       cgd  * If there is extra space, put dump at the end to
   1161    1.7       cgd  * reduce the chance that swapping trashes it.
   1162    1.7       cgd  */
   1163    1.7       cgd void
   1164   1.68       gwr cpu_dumpconf()
   1165    1.7       cgd {
   1166  1.258   gehenna 	const struct bdevsw *bdev;
   1167   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
   1168    1.7       cgd 
   1169    1.7       cgd 	if (dumpdev == NODEV)
   1170   1.43       cgd 		goto bad;
   1171  1.258   gehenna 	bdev = bdevsw_lookup(dumpdev);
   1172  1.289       mrg 	if (bdev == NULL) {
   1173  1.289       mrg 		dumpdev = NODEV;
   1174  1.289       mrg 		goto bad;
   1175  1.289       mrg 	}
   1176  1.258   gehenna 	if (bdev->d_psize == NULL)
   1177   1.43       cgd 		goto bad;
   1178  1.258   gehenna 	nblks = (*bdev->d_psize)(dumpdev);
   1179    1.7       cgd 	if (nblks <= ctod(1))
   1180   1.43       cgd 		goto bad;
   1181   1.43       cgd 
   1182   1.43       cgd 	dumpblks = cpu_dumpsize();
   1183   1.43       cgd 	if (dumpblks < 0)
   1184   1.43       cgd 		goto bad;
   1185  1.110   thorpej 	dumpblks += ctod(cpu_dump_mempagecnt());
   1186   1.43       cgd 
   1187   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1188   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1189   1.43       cgd 		goto bad;
   1190   1.43       cgd 
   1191   1.43       cgd 	/* Put dump at end of partition */
   1192   1.43       cgd 	dumplo = nblks - dumpblks;
   1193    1.7       cgd 
   1194   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1195  1.110   thorpej 	dumpsize = cpu_dump_mempagecnt();
   1196   1.43       cgd 	return;
   1197    1.7       cgd 
   1198   1.43       cgd bad:
   1199   1.43       cgd 	dumpsize = 0;
   1200   1.43       cgd 	return;
   1201    1.7       cgd }
   1202    1.7       cgd 
   1203    1.7       cgd /*
   1204   1.42       cgd  * Dump the kernel's image to the swap partition.
   1205    1.7       cgd  */
   1206  1.262   thorpej #define	BYTES_PER_DUMP	PAGE_SIZE
   1207   1.42       cgd 
   1208    1.7       cgd void
   1209    1.7       cgd dumpsys()
   1210    1.7       cgd {
   1211  1.258   gehenna 	const struct bdevsw *bdev;
   1212  1.110   thorpej 	u_long totalbytesleft, bytes, i, n, memcl;
   1213  1.110   thorpej 	u_long maddr;
   1214  1.110   thorpej 	int psize;
   1215   1.42       cgd 	daddr_t blkno;
   1216  1.295  christos 	int (*dump) __P((dev_t, daddr_t, void *, size_t));
   1217   1.42       cgd 	int error;
   1218   1.42       cgd 
   1219   1.42       cgd 	/* Save registers. */
   1220   1.42       cgd 	savectx(&dumppcb);
   1221    1.7       cgd 
   1222    1.7       cgd 	if (dumpdev == NODEV)
   1223    1.7       cgd 		return;
   1224  1.258   gehenna 	bdev = bdevsw_lookup(dumpdev);
   1225  1.258   gehenna 	if (bdev == NULL || bdev->d_psize == NULL)
   1226  1.258   gehenna 		return;
   1227   1.42       cgd 
   1228   1.42       cgd 	/*
   1229   1.42       cgd 	 * For dumps during autoconfiguration,
   1230   1.42       cgd 	 * if dump device has already configured...
   1231   1.42       cgd 	 */
   1232   1.42       cgd 	if (dumpsize == 0)
   1233   1.68       gwr 		cpu_dumpconf();
   1234   1.47       cgd 	if (dumplo <= 0) {
   1235   1.97   mycroft 		printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
   1236   1.97   mycroft 		    minor(dumpdev));
   1237   1.42       cgd 		return;
   1238   1.43       cgd 	}
   1239   1.97   mycroft 	printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
   1240   1.97   mycroft 	    minor(dumpdev), dumplo);
   1241    1.7       cgd 
   1242  1.258   gehenna 	psize = (*bdev->d_psize)(dumpdev);
   1243   1.46  christos 	printf("dump ");
   1244   1.42       cgd 	if (psize == -1) {
   1245   1.46  christos 		printf("area unavailable\n");
   1246   1.42       cgd 		return;
   1247   1.42       cgd 	}
   1248   1.42       cgd 
   1249   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1250   1.42       cgd 
   1251   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1252   1.43       cgd 		goto err;
   1253   1.43       cgd 
   1254  1.110   thorpej 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1255   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1256  1.258   gehenna 	dump = bdev->d_dump;
   1257   1.42       cgd 	error = 0;
   1258   1.42       cgd 
   1259  1.110   thorpej 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1260  1.110   thorpej 		maddr = mem_clusters[memcl].start;
   1261  1.110   thorpej 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1262  1.110   thorpej 
   1263  1.110   thorpej 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1264  1.110   thorpej 
   1265  1.110   thorpej 			/* Print out how many MBs we to go. */
   1266  1.110   thorpej 			if ((totalbytesleft % (1024*1024)) == 0)
   1267  1.160   thorpej 				printf("%ld ", totalbytesleft / (1024 * 1024));
   1268  1.110   thorpej 
   1269  1.110   thorpej 			/* Limit size for next transfer. */
   1270  1.110   thorpej 			n = bytes - i;
   1271  1.110   thorpej 			if (n > BYTES_PER_DUMP)
   1272  1.110   thorpej 				n =  BYTES_PER_DUMP;
   1273  1.110   thorpej 
   1274  1.110   thorpej 			error = (*dump)(dumpdev, blkno,
   1275  1.295  christos 			    (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1276  1.110   thorpej 			if (error)
   1277  1.110   thorpej 				goto err;
   1278  1.110   thorpej 			maddr += n;
   1279  1.110   thorpej 			blkno += btodb(n);			/* XXX? */
   1280   1.42       cgd 
   1281  1.110   thorpej 			/* XXX should look for keystrokes, to cancel. */
   1282  1.110   thorpej 		}
   1283   1.42       cgd 	}
   1284   1.42       cgd 
   1285   1.43       cgd err:
   1286   1.42       cgd 	switch (error) {
   1287    1.7       cgd 
   1288    1.7       cgd 	case ENXIO:
   1289   1.46  christos 		printf("device bad\n");
   1290    1.7       cgd 		break;
   1291    1.7       cgd 
   1292    1.7       cgd 	case EFAULT:
   1293   1.46  christos 		printf("device not ready\n");
   1294    1.7       cgd 		break;
   1295    1.7       cgd 
   1296    1.7       cgd 	case EINVAL:
   1297   1.46  christos 		printf("area improper\n");
   1298    1.7       cgd 		break;
   1299    1.7       cgd 
   1300    1.7       cgd 	case EIO:
   1301   1.46  christos 		printf("i/o error\n");
   1302    1.7       cgd 		break;
   1303    1.7       cgd 
   1304    1.7       cgd 	case EINTR:
   1305   1.46  christos 		printf("aborted from console\n");
   1306    1.7       cgd 		break;
   1307    1.7       cgd 
   1308   1.42       cgd 	case 0:
   1309   1.46  christos 		printf("succeeded\n");
   1310   1.42       cgd 		break;
   1311   1.42       cgd 
   1312    1.7       cgd 	default:
   1313   1.46  christos 		printf("error %d\n", error);
   1314    1.7       cgd 		break;
   1315    1.7       cgd 	}
   1316   1.46  christos 	printf("\n\n");
   1317    1.7       cgd 	delay(1000);
   1318    1.7       cgd }
   1319    1.7       cgd 
   1320    1.1       cgd void
   1321    1.1       cgd frametoreg(framep, regp)
   1322  1.261   thorpej 	const struct trapframe *framep;
   1323    1.1       cgd 	struct reg *regp;
   1324    1.1       cgd {
   1325    1.1       cgd 
   1326    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1327    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1328    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1329    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1330    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1331    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1332    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1333    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1334    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1335    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1336    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1337    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1338    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1339    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1340    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1341    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1342   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1343   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1344   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1345    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1346    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1347    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1348    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1349    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1350    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1351    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1352    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1353    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1354    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1355   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1356   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1357    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1358    1.1       cgd }
   1359    1.1       cgd 
   1360    1.1       cgd void
   1361    1.1       cgd regtoframe(regp, framep)
   1362  1.261   thorpej 	const struct reg *regp;
   1363    1.1       cgd 	struct trapframe *framep;
   1364    1.1       cgd {
   1365    1.1       cgd 
   1366    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1367    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1368    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1369    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1370    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1371    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1372    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1373    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1374    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1375    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1376    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1377    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1378    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1379    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1380    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1381    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1382   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1383   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1384   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1385    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1386    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1387    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1388    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1389    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1390    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1391    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1392    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1393    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1394    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1395   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1396   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1397    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1398    1.1       cgd }
   1399    1.1       cgd 
   1400    1.1       cgd void
   1401    1.1       cgd printregs(regp)
   1402    1.1       cgd 	struct reg *regp;
   1403    1.1       cgd {
   1404    1.1       cgd 	int i;
   1405    1.1       cgd 
   1406    1.1       cgd 	for (i = 0; i < 32; i++)
   1407   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1408    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1409    1.1       cgd }
   1410    1.1       cgd 
   1411    1.1       cgd void
   1412    1.1       cgd regdump(framep)
   1413    1.1       cgd 	struct trapframe *framep;
   1414    1.1       cgd {
   1415    1.1       cgd 	struct reg reg;
   1416    1.1       cgd 
   1417    1.1       cgd 	frametoreg(framep, &reg);
   1418   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1419   1.35       cgd 
   1420   1.46  christos 	printf("REGISTERS:\n");
   1421    1.1       cgd 	printregs(&reg);
   1422    1.1       cgd }
   1423    1.1       cgd 
   1424    1.1       cgd 
   1425  1.274       skd 
   1426  1.274       skd void *
   1427  1.274       skd getframe(const struct lwp *l, int sig, int *onstack)
   1428  1.274       skd {
   1429  1.295  christos 	void *frame;
   1430  1.274       skd 
   1431  1.274       skd 	/* Do we need to jump onto the signal stack? */
   1432  1.274       skd 	*onstack =
   1433  1.293        ad 	    (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1434  1.293        ad 	    (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
   1435  1.274       skd 
   1436  1.274       skd 	if (*onstack)
   1437  1.296      yamt 		frame = (void *)((char *)l->l_sigstk.ss_sp +
   1438  1.293        ad 					l->l_sigstk.ss_size);
   1439  1.274       skd 	else
   1440  1.274       skd 		frame = (void *)(alpha_pal_rdusp());
   1441  1.274       skd 	return (frame);
   1442  1.274       skd }
   1443  1.274       skd 
   1444  1.274       skd void
   1445  1.274       skd buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
   1446  1.274       skd {
   1447  1.274       skd 	struct trapframe *tf = l->l_md.md_tf;
   1448  1.274       skd 
   1449  1.274       skd 	tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
   1450  1.274       skd 	tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
   1451  1.274       skd 	tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
   1452  1.274       skd 	alpha_pal_wrusp((unsigned long)fp);
   1453  1.274       skd }
   1454  1.274       skd 
   1455  1.274       skd 
   1456    1.1       cgd /*
   1457  1.274       skd  * Send an interrupt to process, new style
   1458    1.1       cgd  */
   1459    1.1       cgd void
   1460  1.274       skd sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
   1461    1.1       cgd {
   1462  1.261   thorpej 	struct lwp *l = curlwp;
   1463  1.261   thorpej 	struct proc *p = l->l_proc;
   1464  1.256   thorpej 	struct sigacts *ps = p->p_sigacts;
   1465  1.293        ad 	int onstack, sig = ksi->ksi_signo, error;
   1466  1.274       skd 	struct sigframe_siginfo *fp, frame;
   1467  1.274       skd 	struct trapframe *tf;
   1468  1.274       skd 	sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
   1469    1.1       cgd 
   1470  1.274       skd 	fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
   1471  1.274       skd 	tf = l->l_md.md_tf;
   1472  1.141   thorpej 
   1473  1.141   thorpej 	/* Allocate space for the signal handler context. */
   1474  1.274       skd 	fp--;
   1475  1.141   thorpej 
   1476  1.274       skd 	/* Build stack frame for signal trampoline. */
   1477  1.274       skd 	switch (ps->sa_sigdesc[sig].sd_vers) {
   1478  1.274       skd 	case 0:		/* handled by sendsig_sigcontext */
   1479  1.274       skd 	case 1:		/* handled by sendsig_sigcontext */
   1480  1.274       skd 	default:	/* unknown version */
   1481  1.274       skd 		printf("nsendsig: bad version %d\n",
   1482  1.274       skd 		    ps->sa_sigdesc[sig].sd_vers);
   1483  1.274       skd 		sigexit(l, SIGILL);
   1484  1.274       skd 	case 2:
   1485  1.274       skd 		break;
   1486  1.274       skd 	}
   1487  1.141   thorpej 
   1488    1.1       cgd #ifdef DEBUG
   1489    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1490  1.274       skd 		printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1491  1.276   nathanw 		    sig, &onstack, fp);
   1492  1.125      ross #endif
   1493    1.1       cgd 
   1494  1.141   thorpej 	/* Build stack frame for signal trampoline. */
   1495    1.1       cgd 
   1496  1.275     enami 	frame.sf_si._info = ksi->ksi_info;
   1497  1.274       skd 	frame.sf_uc.uc_flags = _UC_SIGMASK;
   1498  1.274       skd 	frame.sf_uc.uc_sigmask = *mask;
   1499  1.299     pooka 	frame.sf_uc.uc_link = l->l_ctxlink;
   1500  1.274       skd 	memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
   1501  1.293        ad 	sendsig_reset(l, sig);
   1502  1.304        ad 	mutex_exit(p->p_lock);
   1503  1.274       skd 	cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
   1504  1.293        ad 	error = copyout(&frame, fp, sizeof(frame));
   1505  1.304        ad 	mutex_enter(p->p_lock);
   1506    1.1       cgd 
   1507  1.293        ad 	if (error != 0) {
   1508  1.141   thorpej 		/*
   1509  1.141   thorpej 		 * Process has trashed its stack; give it an illegal
   1510  1.141   thorpej 		 * instruction to halt it in its tracks.
   1511  1.141   thorpej 		 */
   1512  1.141   thorpej #ifdef DEBUG
   1513  1.141   thorpej 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1514  1.274       skd 			printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
   1515  1.141   thorpej 			    p->p_pid, sig);
   1516  1.141   thorpej #endif
   1517  1.261   thorpej 		sigexit(l, SIGILL);
   1518  1.141   thorpej 		/* NOTREACHED */
   1519  1.141   thorpej 	}
   1520  1.274       skd 
   1521    1.1       cgd #ifdef DEBUG
   1522    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1523  1.276   nathanw 		printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
   1524  1.276   nathanw 		       p->p_pid, sig, fp, ksi->ksi_code);
   1525    1.1       cgd #endif
   1526    1.1       cgd 
   1527  1.256   thorpej 	/*
   1528  1.256   thorpej 	 * Set up the registers to directly invoke the signal handler.  The
   1529  1.256   thorpej 	 * signal trampoline is then used to return from the signal.  Note
   1530  1.256   thorpej 	 * the trampoline version numbers are coordinated with machine-
   1531  1.256   thorpej 	 * dependent code in libc.
   1532  1.256   thorpej 	 */
   1533  1.274       skd 
   1534  1.274       skd 	tf->tf_regs[FRAME_A0] = sig;
   1535  1.274       skd 	tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
   1536  1.274       skd 	tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
   1537  1.256   thorpej 
   1538  1.274       skd 	buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
   1539  1.142   mycroft 
   1540  1.142   mycroft 	/* Remember that we're now on the signal stack. */
   1541  1.142   mycroft 	if (onstack)
   1542  1.293        ad 		l->l_sigstk.ss_flags |= SS_ONSTACK;
   1543    1.1       cgd 
   1544    1.1       cgd #ifdef DEBUG
   1545    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1546  1.274       skd 		printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
   1547  1.276   nathanw 		    tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
   1548    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1549  1.274       skd 		printf("sendsig_siginfo(%d): sig %d returns\n",
   1550    1.1       cgd 		    p->p_pid, sig);
   1551    1.1       cgd #endif
   1552    1.1       cgd }
   1553    1.1       cgd 
   1554  1.261   thorpej 
   1555  1.274       skd void
   1556  1.274       skd sendsig(const ksiginfo_t *ksi, const sigset_t *mask)
   1557  1.274       skd {
   1558  1.274       skd #ifdef COMPAT_16
   1559  1.274       skd 	if (curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers < 2) {
   1560  1.274       skd 		sendsig_sigcontext(ksi, mask);
   1561  1.274       skd 	} else {
   1562  1.274       skd #endif
   1563  1.274       skd #ifdef DEBUG
   1564  1.274       skd 	if (sigdebug & SDB_FOLLOW)
   1565  1.274       skd 		printf("sendsig: sendsig called: sig %d vers %d\n",
   1566  1.274       skd 		       ksi->ksi_signo,
   1567  1.274       skd 		       curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers);
   1568  1.274       skd #endif
   1569  1.274       skd 		sendsig_siginfo(ksi, mask);
   1570  1.274       skd #ifdef COMPAT_16
   1571  1.274       skd 	}
   1572  1.274       skd #endif
   1573  1.274       skd }
   1574  1.274       skd 
   1575    1.1       cgd /*
   1576    1.1       cgd  * machine dependent system variables.
   1577    1.1       cgd  */
   1578  1.278    atatat SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
   1579    1.1       cgd {
   1580  1.241      ross 
   1581  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1582  1.282    atatat 		       CTLFLAG_PERMANENT,
   1583  1.278    atatat 		       CTLTYPE_NODE, "machdep", NULL,
   1584  1.278    atatat 		       NULL, 0, NULL, 0,
   1585  1.278    atatat 		       CTL_MACHDEP, CTL_EOL);
   1586  1.278    atatat 
   1587  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1588  1.282    atatat 		       CTLFLAG_PERMANENT,
   1589  1.278    atatat 		       CTLTYPE_STRUCT, "console_device", NULL,
   1590  1.278    atatat 		       sysctl_consdev, 0, NULL, sizeof(dev_t),
   1591  1.278    atatat 		       CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
   1592  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1593  1.282    atatat 		       CTLFLAG_PERMANENT,
   1594  1.278    atatat 		       CTLTYPE_STRING, "root_device", NULL,
   1595  1.278    atatat 		       sysctl_root_device, 0, NULL, 0,
   1596  1.278    atatat 		       CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
   1597  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1598  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1599  1.278    atatat 		       CTLTYPE_INT, "unaligned_print", NULL,
   1600  1.278    atatat 		       NULL, 0, &alpha_unaligned_print, 0,
   1601  1.278    atatat 		       CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
   1602  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1603  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1604  1.278    atatat 		       CTLTYPE_INT, "unaligned_fix", NULL,
   1605  1.278    atatat 		       NULL, 0, &alpha_unaligned_fix, 0,
   1606  1.278    atatat 		       CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
   1607  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1608  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1609  1.278    atatat 		       CTLTYPE_INT, "unaligned_sigbus", NULL,
   1610  1.278    atatat 		       NULL, 0, &alpha_unaligned_sigbus, 0,
   1611  1.278    atatat 		       CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
   1612  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1613  1.282    atatat 		       CTLFLAG_PERMANENT,
   1614  1.278    atatat 		       CTLTYPE_STRING, "booted_kernel", NULL,
   1615  1.278    atatat 		       NULL, 0, bootinfo.booted_kernel, 0,
   1616  1.278    atatat 		       CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
   1617  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1618  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1619  1.278    atatat 		       CTLTYPE_INT, "fp_sync_complete", NULL,
   1620  1.278    atatat 		       NULL, 0, &alpha_fp_sync_complete, 0,
   1621  1.278    atatat 		       CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
   1622    1.1       cgd }
   1623    1.1       cgd 
   1624    1.1       cgd /*
   1625    1.1       cgd  * Set registers on exec.
   1626    1.1       cgd  */
   1627    1.1       cgd void
   1628  1.261   thorpej setregs(l, pack, stack)
   1629  1.261   thorpej 	register struct lwp *l;
   1630    1.5  christos 	struct exec_package *pack;
   1631    1.1       cgd 	u_long stack;
   1632    1.1       cgd {
   1633  1.261   thorpej 	struct trapframe *tfp = l->l_md.md_tf;
   1634   1.56       cgd #ifdef DEBUG
   1635    1.1       cgd 	int i;
   1636   1.56       cgd #endif
   1637   1.43       cgd 
   1638   1.43       cgd #ifdef DEBUG
   1639   1.43       cgd 	/*
   1640   1.43       cgd 	 * Crash and dump, if the user requested it.
   1641   1.43       cgd 	 */
   1642   1.43       cgd 	if (boothowto & RB_DUMP)
   1643   1.43       cgd 		panic("crash requested by boot flags");
   1644   1.43       cgd #endif
   1645    1.1       cgd 
   1646    1.1       cgd #ifdef DEBUG
   1647   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1648    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1649    1.1       cgd #else
   1650  1.246   thorpej 	memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1651    1.1       cgd #endif
   1652  1.261   thorpej 	memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
   1653   1.35       cgd 	alpha_pal_wrusp(stack);
   1654   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1655   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1656   1.41       cgd 
   1657   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1658   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1659   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1660  1.261   thorpej 	tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr;	/* a3 = ps_strings */
   1661   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1662    1.1       cgd 
   1663  1.261   thorpej 	l->l_md.md_flags &= ~MDP_FPUSED;
   1664  1.261   thorpej 	if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
   1665  1.261   thorpej 		l->l_md.md_flags &= ~MDP_FP_C;
   1666  1.261   thorpej 		l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
   1667  1.241      ross 	}
   1668  1.261   thorpej 	if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
   1669  1.261   thorpej 		fpusave_proc(l, 0);
   1670  1.219   thorpej }
   1671  1.219   thorpej 
   1672  1.219   thorpej /*
   1673  1.219   thorpej  * Release the FPU.
   1674  1.219   thorpej  */
   1675  1.219   thorpej void
   1676  1.225   thorpej fpusave_cpu(struct cpu_info *ci, int save)
   1677  1.219   thorpej {
   1678  1.261   thorpej 	struct lwp *l;
   1679  1.225   thorpej #if defined(MULTIPROCESSOR)
   1680  1.219   thorpej 	int s;
   1681  1.225   thorpej #endif
   1682  1.219   thorpej 
   1683  1.225   thorpej 	KDASSERT(ci == curcpu());
   1684  1.225   thorpej 
   1685  1.235   thorpej #if defined(MULTIPROCESSOR)
   1686  1.287   thorpej 	s = splhigh();		/* block IPIs for the duration */
   1687  1.303        ad 	atomic_or_ulong(&ci->ci_flags, CPUF_FPUSAVE);
   1688  1.235   thorpej #endif
   1689  1.235   thorpej 
   1690  1.261   thorpej 	l = ci->ci_fpcurlwp;
   1691  1.261   thorpej 	if (l == NULL)
   1692  1.235   thorpej 		goto out;
   1693  1.219   thorpej 
   1694  1.219   thorpej 	if (save) {
   1695  1.219   thorpej 		alpha_pal_wrfen(1);
   1696  1.261   thorpej 		savefpstate(&l->l_addr->u_pcb.pcb_fp);
   1697  1.225   thorpej 	}
   1698  1.225   thorpej 
   1699  1.225   thorpej 	alpha_pal_wrfen(0);
   1700  1.225   thorpej 
   1701  1.287   thorpej 	FPCPU_LOCK(&l->l_addr->u_pcb);
   1702  1.235   thorpej 
   1703  1.261   thorpej 	l->l_addr->u_pcb.pcb_fpcpu = NULL;
   1704  1.261   thorpej 	ci->ci_fpcurlwp = NULL;
   1705  1.235   thorpej 
   1706  1.287   thorpej 	FPCPU_UNLOCK(&l->l_addr->u_pcb);
   1707  1.235   thorpej 
   1708  1.235   thorpej  out:
   1709  1.219   thorpej #if defined(MULTIPROCESSOR)
   1710  1.303        ad 	atomic_and_ulong(&ci->ci_flags, ~CPUF_FPUSAVE);
   1711  1.287   thorpej 	splx(s);
   1712  1.219   thorpej #endif
   1713  1.235   thorpej 	return;
   1714  1.219   thorpej }
   1715  1.219   thorpej 
   1716  1.219   thorpej /*
   1717  1.219   thorpej  * Synchronize FP state for this process.
   1718  1.219   thorpej  */
   1719  1.219   thorpej void
   1720  1.261   thorpej fpusave_proc(struct lwp *l, int save)
   1721  1.219   thorpej {
   1722  1.225   thorpej 	struct cpu_info *ci = curcpu();
   1723  1.225   thorpej 	struct cpu_info *oci;
   1724  1.235   thorpej #if defined(MULTIPROCESSOR)
   1725  1.235   thorpej 	u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
   1726  1.236   thorpej 	int s, spincount;
   1727  1.235   thorpej #endif
   1728  1.219   thorpej 
   1729  1.261   thorpej 	KDASSERT(l->l_addr != NULL);
   1730  1.225   thorpej 
   1731  1.287   thorpej #if defined(MULTIPROCESSOR)
   1732  1.287   thorpej 	s = splhigh();		/* block IPIs for the duration */
   1733  1.287   thorpej #endif
   1734  1.287   thorpej 	FPCPU_LOCK(&l->l_addr->u_pcb);
   1735  1.235   thorpej 
   1736  1.261   thorpej 	oci = l->l_addr->u_pcb.pcb_fpcpu;
   1737  1.235   thorpej 	if (oci == NULL) {
   1738  1.287   thorpej 		FPCPU_UNLOCK(&l->l_addr->u_pcb);
   1739  1.287   thorpej #if defined(MULTIPROCESSOR)
   1740  1.287   thorpej 		splx(s);
   1741  1.287   thorpej #endif
   1742  1.219   thorpej 		return;
   1743  1.235   thorpej 	}
   1744  1.219   thorpej 
   1745  1.219   thorpej #if defined(MULTIPROCESSOR)
   1746  1.225   thorpej 	if (oci == ci) {
   1747  1.261   thorpej 		KASSERT(ci->ci_fpcurlwp == l);
   1748  1.287   thorpej 		FPCPU_UNLOCK(&l->l_addr->u_pcb);
   1749  1.287   thorpej 		splx(s);
   1750  1.225   thorpej 		fpusave_cpu(ci, save);
   1751  1.235   thorpej 		return;
   1752  1.235   thorpej 	}
   1753  1.235   thorpej 
   1754  1.261   thorpej 	KASSERT(oci->ci_fpcurlwp == l);
   1755  1.235   thorpej 	alpha_send_ipi(oci->ci_cpuid, ipi);
   1756  1.287   thorpej 	FPCPU_UNLOCK(&l->l_addr->u_pcb);
   1757  1.235   thorpej 
   1758  1.235   thorpej 	spincount = 0;
   1759  1.261   thorpej 	while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
   1760  1.235   thorpej 		spincount++;
   1761  1.235   thorpej 		delay(1000);	/* XXX */
   1762  1.235   thorpej 		if (spincount > 10000)
   1763  1.235   thorpej 			panic("fpsave ipi didn't");
   1764  1.219   thorpej 	}
   1765  1.219   thorpej #else
   1766  1.261   thorpej 	KASSERT(ci->ci_fpcurlwp == l);
   1767  1.287   thorpej 	FPCPU_UNLOCK(&l->l_addr->u_pcb);
   1768  1.225   thorpej 	fpusave_cpu(ci, save);
   1769  1.219   thorpej #endif /* MULTIPROCESSOR */
   1770   1.15       cgd }
   1771   1.15       cgd 
   1772   1.15       cgd /*
   1773   1.15       cgd  * Wait "n" microseconds.
   1774   1.15       cgd  */
   1775   1.32       cgd void
   1776   1.15       cgd delay(n)
   1777   1.32       cgd 	unsigned long n;
   1778   1.15       cgd {
   1779  1.216   thorpej 	unsigned long pcc0, pcc1, curcycle, cycles, usec;
   1780   1.15       cgd 
   1781  1.216   thorpej 	if (n == 0)
   1782  1.216   thorpej 		return;
   1783  1.216   thorpej 
   1784  1.216   thorpej 	pcc0 = alpha_rpcc() & 0xffffffffUL;
   1785  1.216   thorpej 	cycles = 0;
   1786  1.216   thorpej 	usec = 0;
   1787  1.216   thorpej 
   1788  1.216   thorpej 	while (usec <= n) {
   1789  1.216   thorpej 		/*
   1790  1.216   thorpej 		 * Get the next CPU cycle count- assumes that we cannot
   1791  1.216   thorpej 		 * have had more than one 32 bit overflow.
   1792  1.216   thorpej 		 */
   1793  1.216   thorpej 		pcc1 = alpha_rpcc() & 0xffffffffUL;
   1794  1.216   thorpej 		if (pcc1 < pcc0)
   1795  1.216   thorpej 			curcycle = (pcc1 + 0x100000000UL) - pcc0;
   1796  1.216   thorpej 		else
   1797  1.216   thorpej 			curcycle = pcc1 - pcc0;
   1798  1.186   thorpej 
   1799  1.216   thorpej 		/*
   1800  1.216   thorpej 		 * We now have the number of processor cycles since we
   1801  1.216   thorpej 		 * last checked. Add the current cycle count to the
   1802  1.216   thorpej 		 * running total. If it's over cycles_per_usec, increment
   1803  1.216   thorpej 		 * the usec counter.
   1804  1.216   thorpej 		 */
   1805  1.216   thorpej 		cycles += curcycle;
   1806  1.216   thorpej 		while (cycles > cycles_per_usec) {
   1807  1.216   thorpej 			usec++;
   1808  1.216   thorpej 			cycles -= cycles_per_usec;
   1809  1.216   thorpej 		}
   1810  1.216   thorpej 		pcc0 = pcc1;
   1811  1.216   thorpej 	}
   1812    1.1       cgd }
   1813  1.225   thorpej 
   1814  1.250  jdolecek #ifdef EXEC_ECOFF
   1815    1.1       cgd void
   1816  1.261   thorpej cpu_exec_ecoff_setregs(l, epp, stack)
   1817  1.261   thorpej 	struct lwp *l;
   1818   1.19       cgd 	struct exec_package *epp;
   1819    1.5  christos 	u_long stack;
   1820    1.1       cgd {
   1821   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1822    1.1       cgd 
   1823  1.261   thorpej 	l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1824    1.1       cgd }
   1825    1.1       cgd 
   1826    1.1       cgd /*
   1827    1.1       cgd  * cpu_exec_ecoff_hook():
   1828    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   1829    1.1       cgd  *
   1830    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1831    1.1       cgd  *
   1832    1.1       cgd  */
   1833    1.1       cgd int
   1834  1.288  christos cpu_exec_ecoff_probe(l, epp)
   1835  1.288  christos 	struct lwp *l;
   1836    1.1       cgd 	struct exec_package *epp;
   1837    1.1       cgd {
   1838   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1839  1.171       cgd 	int error;
   1840    1.1       cgd 
   1841  1.224  jdolecek 	if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
   1842  1.171       cgd 		error = 0;
   1843  1.224  jdolecek 	else
   1844  1.224  jdolecek 		error = ENOEXEC;
   1845    1.1       cgd 
   1846  1.171       cgd 	return (error);
   1847    1.1       cgd }
   1848  1.250  jdolecek #endif /* EXEC_ECOFF */
   1849  1.110   thorpej 
   1850  1.110   thorpej int
   1851  1.110   thorpej alpha_pa_access(pa)
   1852  1.110   thorpej 	u_long pa;
   1853  1.110   thorpej {
   1854  1.110   thorpej 	int i;
   1855  1.110   thorpej 
   1856  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1857  1.110   thorpej 		if (pa < mem_clusters[i].start)
   1858  1.110   thorpej 			continue;
   1859  1.110   thorpej 		if ((pa - mem_clusters[i].start) >=
   1860  1.110   thorpej 		    (mem_clusters[i].size & ~PAGE_MASK))
   1861  1.110   thorpej 			continue;
   1862  1.110   thorpej 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   1863  1.110   thorpej 	}
   1864  1.197   thorpej 
   1865  1.197   thorpej 	/*
   1866  1.197   thorpej 	 * Address is not a memory address.  If we're secure, disallow
   1867  1.197   thorpej 	 * access.  Otherwise, grant read/write.
   1868  1.197   thorpej 	 */
   1869  1.291      elad 	if (kauth_authorize_machdep(kauth_cred_get(),
   1870  1.291      elad 	    KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
   1871  1.197   thorpej 		return (PROT_NONE);
   1872  1.197   thorpej 	else
   1873  1.197   thorpej 		return (PROT_READ | PROT_WRITE);
   1874  1.110   thorpej }
   1875   1.50       cgd 
   1876   1.50       cgd /* XXX XXX BEGIN XXX XXX */
   1877  1.140   thorpej paddr_t alpha_XXX_dmamap_or;					/* XXX */
   1878   1.50       cgd 								/* XXX */
   1879  1.140   thorpej paddr_t								/* XXX */
   1880   1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   1881  1.140   thorpej 	vaddr_t v;						/* XXX */
   1882   1.50       cgd {								/* XXX */
   1883   1.50       cgd 								/* XXX */
   1884   1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   1885   1.50       cgd }								/* XXX */
   1886   1.50       cgd /* XXX XXX END XXX XXX */
   1887  1.177      ross 
   1888  1.177      ross char *
   1889  1.177      ross dot_conv(x)
   1890  1.177      ross 	unsigned long x;
   1891  1.177      ross {
   1892  1.177      ross 	int i;
   1893  1.177      ross 	char *xc;
   1894  1.177      ross 	static int next;
   1895  1.177      ross 	static char space[2][20];
   1896  1.177      ross 
   1897  1.177      ross 	xc = space[next ^= 1] + sizeof space[0];
   1898  1.177      ross 	*--xc = '\0';
   1899  1.177      ross 	for (i = 0;; ++i) {
   1900  1.177      ross 		if (i && (i & 3) == 0)
   1901  1.177      ross 			*--xc = '.';
   1902  1.285  christos 		*--xc = hexdigits[x & 0xf];
   1903  1.177      ross 		x >>= 4;
   1904  1.177      ross 		if (x == 0)
   1905  1.177      ross 			break;
   1906  1.177      ross 	}
   1907  1.177      ross 	return xc;
   1908  1.261   thorpej }
   1909  1.261   thorpej 
   1910  1.261   thorpej void
   1911  1.261   thorpej cpu_getmcontext(l, mcp, flags)
   1912  1.261   thorpej 	struct lwp *l;
   1913  1.261   thorpej 	mcontext_t *mcp;
   1914  1.261   thorpej 	unsigned int *flags;
   1915  1.261   thorpej {
   1916  1.261   thorpej 	struct trapframe *frame = l->l_md.md_tf;
   1917  1.261   thorpej 	__greg_t *gr = mcp->__gregs;
   1918  1.264   nathanw 	__greg_t ras_pc;
   1919  1.261   thorpej 
   1920  1.261   thorpej 	/* Save register context. */
   1921  1.261   thorpej 	frametoreg(frame, (struct reg *)gr);
   1922  1.261   thorpej 	/* XXX if there's a better, general way to get the USP of
   1923  1.261   thorpej 	 * an LWP that might or might not be curlwp, I'd like to know
   1924  1.261   thorpej 	 * about it.
   1925  1.261   thorpej 	 */
   1926  1.261   thorpej 	if (l == curlwp) {
   1927  1.261   thorpej 		gr[_REG_SP] = alpha_pal_rdusp();
   1928  1.261   thorpej 		gr[_REG_UNIQUE] = alpha_pal_rdunique();
   1929  1.261   thorpej 	} else {
   1930  1.261   thorpej 		gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
   1931  1.261   thorpej 		gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
   1932  1.261   thorpej 	}
   1933  1.261   thorpej 	gr[_REG_PC] = frame->tf_regs[FRAME_PC];
   1934  1.261   thorpej 	gr[_REG_PS] = frame->tf_regs[FRAME_PS];
   1935  1.264   nathanw 
   1936  1.264   nathanw 	if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
   1937  1.295  christos 	    (void *) gr[_REG_PC])) != -1)
   1938  1.264   nathanw 		gr[_REG_PC] = ras_pc;
   1939  1.264   nathanw 
   1940  1.261   thorpej 	*flags |= _UC_CPU | _UC_UNIQUE;
   1941  1.261   thorpej 
   1942  1.261   thorpej 	/* Save floating point register context, if any, and copy it. */
   1943  1.265   nathanw 	if (l->l_md.md_flags & MDP_FPUSED) {
   1944  1.261   thorpej 		fpusave_proc(l, 1);
   1945  1.261   thorpej 		(void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
   1946  1.261   thorpej 		    sizeof (mcp->__fpregs));
   1947  1.261   thorpej 		mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
   1948  1.261   thorpej 		*flags |= _UC_FPU;
   1949  1.261   thorpej 	}
   1950  1.261   thorpej }
   1951  1.261   thorpej 
   1952  1.261   thorpej 
   1953  1.261   thorpej int
   1954  1.261   thorpej cpu_setmcontext(l, mcp, flags)
   1955  1.261   thorpej 	struct lwp *l;
   1956  1.261   thorpej 	const mcontext_t *mcp;
   1957  1.261   thorpej 	unsigned int flags;
   1958  1.261   thorpej {
   1959  1.261   thorpej 	struct trapframe *frame = l->l_md.md_tf;
   1960  1.261   thorpej 	const __greg_t *gr = mcp->__gregs;
   1961  1.261   thorpej 
   1962  1.261   thorpej 	/* Restore register context, if any. */
   1963  1.261   thorpej 	if (flags & _UC_CPU) {
   1964  1.261   thorpej 		/* Check for security violations first. */
   1965  1.261   thorpej 		if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
   1966  1.261   thorpej 		    (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
   1967  1.261   thorpej 			return (EINVAL);
   1968  1.261   thorpej 
   1969  1.286       jdc 		regtoframe((const struct reg *)gr, l->l_md.md_tf);
   1970  1.261   thorpej 		if (l == curlwp)
   1971  1.261   thorpej 			alpha_pal_wrusp(gr[_REG_SP]);
   1972  1.261   thorpej 		else
   1973  1.261   thorpej 			l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
   1974  1.261   thorpej 		frame->tf_regs[FRAME_PC] = gr[_REG_PC];
   1975  1.261   thorpej 		frame->tf_regs[FRAME_PS] = gr[_REG_PS];
   1976  1.261   thorpej 	}
   1977  1.261   thorpej 	if (flags & _UC_UNIQUE) {
   1978  1.261   thorpej 		if (l == curlwp)
   1979  1.261   thorpej 			alpha_pal_wrunique(gr[_REG_UNIQUE]);
   1980  1.261   thorpej 		else
   1981  1.261   thorpej 			l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
   1982  1.261   thorpej 	}
   1983  1.261   thorpej 	/* Restore floating point register context, if any. */
   1984  1.261   thorpej 	if (flags & _UC_FPU) {
   1985  1.261   thorpej 		/* If we have an FP register context, get rid of it. */
   1986  1.261   thorpej 		if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
   1987  1.261   thorpej 			fpusave_proc(l, 0);
   1988  1.261   thorpej 		(void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
   1989  1.261   thorpej 		    sizeof (l->l_addr->u_pcb.pcb_fp));
   1990  1.261   thorpej 		l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
   1991  1.271   nathanw 		l->l_md.md_flags |= MDP_FPUSED;
   1992  1.261   thorpej 	}
   1993  1.261   thorpej 
   1994  1.261   thorpej 	return (0);
   1995  1.138      ross }
   1996  1.297      yamt 
   1997  1.297      yamt /*
   1998  1.297      yamt  * Preempt the current process if in interrupt from user mode,
   1999  1.297      yamt  * or after the current trap/syscall if in system mode.
   2000  1.297      yamt  */
   2001  1.297      yamt void
   2002  1.297      yamt cpu_need_resched(struct cpu_info *ci, int flags)
   2003  1.297      yamt {
   2004  1.297      yamt #if defined(MULTIPROCESSOR)
   2005  1.297      yamt 	bool immed = (flags & RESCHED_IMMED) != 0;
   2006  1.297      yamt #endif /* defined(MULTIPROCESSOR) */
   2007  1.297      yamt 
   2008  1.301        ad 	aston(ci->ci_data.cpu_onproc);
   2009  1.297      yamt 	ci->ci_want_resched = 1;
   2010  1.301        ad 	if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
   2011  1.297      yamt #if defined(MULTIPROCESSOR)
   2012  1.297      yamt 		if (immed && ci != curcpu()) {
   2013  1.297      yamt 			alpha_send_ipi(ci->ci_cpuid, 0);
   2014  1.297      yamt 		}
   2015  1.297      yamt #endif /* defined(MULTIPROCESSOR) */
   2016  1.297      yamt 	}
   2017  1.297      yamt }
   2018