machdep.c revision 1.314 1 1.314 he /* $NetBSD: machdep.c,v 1.314 2009/01/21 16:24:34 he Exp $ */
2 1.110 thorpej
3 1.110 thorpej /*-
4 1.211 thorpej * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 1.110 thorpej * All rights reserved.
6 1.110 thorpej *
7 1.110 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.110 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.110 thorpej * NASA Ames Research Center and by Chris G. Demetriou.
10 1.110 thorpej *
11 1.110 thorpej * Redistribution and use in source and binary forms, with or without
12 1.110 thorpej * modification, are permitted provided that the following conditions
13 1.110 thorpej * are met:
14 1.110 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.110 thorpej * notice, this list of conditions and the following disclaimer.
16 1.110 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.110 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.110 thorpej * documentation and/or other materials provided with the distribution.
19 1.110 thorpej *
20 1.110 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.110 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.110 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.110 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.110 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.110 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.110 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.110 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.110 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.110 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.110 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.110 thorpej */
32 1.1 cgd
33 1.1 cgd /*
34 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35 1.1 cgd * All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Author: Chris G. Demetriou
38 1.1 cgd *
39 1.1 cgd * Permission to use, copy, modify and distribute this software and
40 1.1 cgd * its documentation is hereby granted, provided that both the copyright
41 1.1 cgd * notice and this permission notice appear in all copies of the
42 1.1 cgd * software, derivative works or modified versions, and any portions
43 1.1 cgd * thereof, and that both notices appear in supporting documentation.
44 1.1 cgd *
45 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 1.1 cgd *
49 1.1 cgd * Carnegie Mellon requests users of this software to return to
50 1.1 cgd *
51 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
52 1.1 cgd * School of Computer Science
53 1.1 cgd * Carnegie Mellon University
54 1.1 cgd * Pittsburgh PA 15213-3890
55 1.1 cgd *
56 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
57 1.1 cgd * rights to redistribute these changes.
58 1.1 cgd */
59 1.74 cgd
60 1.129 jonathan #include "opt_ddb.h"
61 1.244 lukem #include "opt_kgdb.h"
62 1.147 thorpej #include "opt_multiprocessor.h"
63 1.123 thorpej #include "opt_dec_3000_300.h"
64 1.123 thorpej #include "opt_dec_3000_500.h"
65 1.127 thorpej #include "opt_compat_osf1.h"
66 1.250 jdolecek #include "opt_execfmt.h"
67 1.112 thorpej
68 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
69 1.75 cgd
70 1.314 he __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.314 2009/01/21 16:24:34 he Exp $");
71 1.1 cgd
72 1.1 cgd #include <sys/param.h>
73 1.1 cgd #include <sys/systm.h>
74 1.1 cgd #include <sys/signalvar.h>
75 1.1 cgd #include <sys/kernel.h>
76 1.297 yamt #include <sys/cpu.h>
77 1.1 cgd #include <sys/proc.h>
78 1.264 nathanw #include <sys/ras.h>
79 1.307 wrstuden #include <sys/sa.h>
80 1.307 wrstuden #include <sys/savar.h>
81 1.207 thorpej #include <sys/sched.h>
82 1.1 cgd #include <sys/reboot.h>
83 1.28 cgd #include <sys/device.h>
84 1.1 cgd #include <sys/malloc.h>
85 1.110 thorpej #include <sys/mman.h>
86 1.1 cgd #include <sys/msgbuf.h>
87 1.1 cgd #include <sys/ioctl.h>
88 1.1 cgd #include <sys/tty.h>
89 1.1 cgd #include <sys/user.h>
90 1.1 cgd #include <sys/exec.h>
91 1.1 cgd #include <sys/exec_ecoff.h>
92 1.43 cgd #include <sys/core.h>
93 1.43 cgd #include <sys/kcore.h>
94 1.261 thorpej #include <sys/ucontext.h>
95 1.258 gehenna #include <sys/conf.h>
96 1.266 ragge #include <sys/ksyms.h>
97 1.290 elad #include <sys/kauth.h>
98 1.303 ad #include <sys/atomic.h>
99 1.303 ad #include <sys/cpu.h>
100 1.303 ad
101 1.43 cgd #include <machine/kcore.h>
102 1.241 ross #include <machine/fpu.h>
103 1.1 cgd
104 1.1 cgd #include <sys/mount.h>
105 1.1 cgd #include <sys/syscallargs.h>
106 1.1 cgd
107 1.112 thorpej #include <uvm/uvm_extern.h>
108 1.217 mrg #include <sys/sysctl.h>
109 1.112 thorpej
110 1.1 cgd #include <dev/cons.h>
111 1.1 cgd
112 1.81 thorpej #include <machine/autoconf.h>
113 1.1 cgd #include <machine/reg.h>
114 1.1 cgd #include <machine/rpb.h>
115 1.1 cgd #include <machine/prom.h>
116 1.258 gehenna #include <machine/cpuconf.h>
117 1.172 ross #include <machine/ieeefp.h>
118 1.148 thorpej
119 1.81 thorpej #ifdef DDB
120 1.81 thorpej #include <machine/db_machdep.h>
121 1.81 thorpej #include <ddb/db_access.h>
122 1.81 thorpej #include <ddb/db_sym.h>
123 1.81 thorpej #include <ddb/db_extern.h>
124 1.81 thorpej #include <ddb/db_interface.h>
125 1.233 thorpej #endif
126 1.233 thorpej
127 1.233 thorpej #ifdef KGDB
128 1.233 thorpej #include <sys/kgdb.h>
129 1.81 thorpej #endif
130 1.81 thorpej
131 1.229 sommerfe #ifdef DEBUG
132 1.229 sommerfe #include <machine/sigdebug.h>
133 1.229 sommerfe #endif
134 1.229 sommerfe
135 1.155 ross #include <machine/alpha.h>
136 1.143 matt
137 1.266 ragge #include "ksyms.h"
138 1.266 ragge
139 1.245 chs struct vm_map *mb_map = NULL;
140 1.245 chs struct vm_map *phys_map = NULL;
141 1.1 cgd
142 1.295 christos void *msgbufaddr;
143 1.86 leo
144 1.1 cgd int maxmem; /* max memory per process */
145 1.7 cgd
146 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
147 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
148 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
149 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
150 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
151 1.1 cgd
152 1.1 cgd int cputype; /* system type, from the RPB */
153 1.210 thorpej
154 1.210 thorpej int bootdev_debug = 0; /* patchable, or from DDB */
155 1.1 cgd
156 1.1 cgd /*
157 1.1 cgd * XXX We need an address to which we can assign things so that they
158 1.1 cgd * won't be optimized away because we didn't use the value.
159 1.1 cgd */
160 1.1 cgd u_int32_t no_optimize;
161 1.1 cgd
162 1.1 cgd /* the following is used externally (sysctl_hw) */
163 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
164 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
165 1.29 cgd char cpu_model[128];
166 1.1 cgd
167 1.1 cgd struct user *proc0paddr;
168 1.1 cgd
169 1.1 cgd /* Number of machine cycles per microsecond */
170 1.1 cgd u_int64_t cycles_per_usec;
171 1.1 cgd
172 1.280 wiz /* number of CPUs in the box. really! */
173 1.7 cgd int ncpus;
174 1.7 cgd
175 1.102 cgd struct bootinfo_kernel bootinfo;
176 1.81 thorpej
177 1.123 thorpej /* For built-in TCDS */
178 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
179 1.123 thorpej u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
180 1.123 thorpej #endif
181 1.123 thorpej
182 1.89 mjacob struct platform platform;
183 1.89 mjacob
184 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR)
185 1.81 thorpej /* start and end of kernel symbol table */
186 1.81 thorpej void *ksym_start, *ksym_end;
187 1.81 thorpej #endif
188 1.81 thorpej
189 1.30 cgd /* for cpu_sysctl() */
190 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
191 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
192 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
193 1.241 ross int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
194 1.30 cgd
195 1.110 thorpej /*
196 1.110 thorpej * XXX This should be dynamically sized, but we have the chicken-egg problem!
197 1.110 thorpej * XXX it should also be larger than it is, because not all of the mddt
198 1.110 thorpej * XXX clusters end up being used for VM.
199 1.110 thorpej */
200 1.110 thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
201 1.110 thorpej int mem_cluster_cnt;
202 1.110 thorpej
203 1.55 cgd int cpu_dump __P((void));
204 1.55 cgd int cpu_dumpsize __P((void));
205 1.110 thorpej u_long cpu_dump_mempagecnt __P((void));
206 1.55 cgd void dumpsys __P((void));
207 1.55 cgd void identifycpu __P((void));
208 1.55 cgd void printregs __P((struct reg *));
209 1.33 cgd
210 1.55 cgd void
211 1.102 cgd alpha_init(pfn, ptb, bim, bip, biv)
212 1.1 cgd u_long pfn; /* first free PFN number */
213 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
214 1.81 thorpej u_long bim; /* bootinfo magic */
215 1.81 thorpej u_long bip; /* bootinfo pointer */
216 1.102 cgd u_long biv; /* bootinfo version */
217 1.1 cgd {
218 1.95 thorpej extern char kernel_text[], _end[];
219 1.1 cgd struct mddt *mddtp;
220 1.110 thorpej struct mddt_cluster *memc;
221 1.7 cgd int i, mddtweird;
222 1.110 thorpej struct vm_physseg *vps;
223 1.140 thorpej vaddr_t kernstart, kernend;
224 1.140 thorpej paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
225 1.211 thorpej cpuid_t cpu_id;
226 1.211 thorpej struct cpu_info *ci;
227 1.1 cgd char *p;
228 1.209 thorpej const char *bootinfo_msg;
229 1.209 thorpej const struct cpuinit *c;
230 1.106 cgd
231 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
232 1.1 cgd
233 1.1 cgd /*
234 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
235 1.1 cgd * Make sure the instruction and data streams are consistent.
236 1.1 cgd */
237 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
238 1.32 cgd alpha_pal_wrfen(0);
239 1.37 cgd ALPHA_TBIA();
240 1.32 cgd alpha_pal_imb();
241 1.248 thorpej
242 1.248 thorpej /* Initialize the SCB. */
243 1.248 thorpej scb_init();
244 1.1 cgd
245 1.211 thorpej cpu_id = cpu_number();
246 1.211 thorpej
247 1.189 thorpej #if defined(MULTIPROCESSOR)
248 1.189 thorpej /*
249 1.189 thorpej * Set our SysValue to the address of our cpu_info structure.
250 1.189 thorpej * Secondary processors do this in their spinup trampoline.
251 1.189 thorpej */
252 1.237 thorpej alpha_pal_wrval((u_long)&cpu_info_primary);
253 1.237 thorpej cpu_info[cpu_id] = &cpu_info_primary;
254 1.189 thorpej #endif
255 1.189 thorpej
256 1.211 thorpej ci = curcpu();
257 1.211 thorpej ci->ci_cpuid = cpu_id;
258 1.211 thorpej
259 1.1 cgd /*
260 1.106 cgd * Get critical system information (if possible, from the
261 1.106 cgd * information provided by the boot program).
262 1.81 thorpej */
263 1.106 cgd bootinfo_msg = NULL;
264 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
265 1.102 cgd if (biv == 0) { /* backward compat */
266 1.102 cgd biv = *(u_long *)bip;
267 1.102 cgd bip += 8;
268 1.102 cgd }
269 1.102 cgd switch (biv) {
270 1.102 cgd case 1: {
271 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
272 1.102 cgd
273 1.102 cgd bootinfo.ssym = v1p->ssym;
274 1.102 cgd bootinfo.esym = v1p->esym;
275 1.106 cgd /* hwrpb may not be provided by boot block in v1 */
276 1.106 cgd if (v1p->hwrpb != NULL) {
277 1.106 cgd bootinfo.hwrpb_phys =
278 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys;
279 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize;
280 1.106 cgd } else {
281 1.106 cgd bootinfo.hwrpb_phys =
282 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys;
283 1.106 cgd bootinfo.hwrpb_size =
284 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size;
285 1.106 cgd }
286 1.247 thorpej memcpy(bootinfo.boot_flags, v1p->boot_flags,
287 1.102 cgd min(sizeof v1p->boot_flags,
288 1.102 cgd sizeof bootinfo.boot_flags));
289 1.247 thorpej memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
290 1.102 cgd min(sizeof v1p->booted_kernel,
291 1.102 cgd sizeof bootinfo.booted_kernel));
292 1.106 cgd /* booted dev not provided in bootinfo */
293 1.106 cgd init_prom_interface((struct rpb *)
294 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
295 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
296 1.102 cgd sizeof bootinfo.booted_dev);
297 1.81 thorpej break;
298 1.102 cgd }
299 1.81 thorpej default:
300 1.106 cgd bootinfo_msg = "unknown bootinfo version";
301 1.102 cgd goto nobootinfo;
302 1.81 thorpej }
303 1.102 cgd } else {
304 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo";
305 1.102 cgd nobootinfo:
306 1.102 cgd bootinfo.ssym = (u_long)_end;
307 1.102 cgd bootinfo.esym = (u_long)_end;
308 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
309 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
310 1.106 cgd init_prom_interface((struct rpb *)HWRPB_ADDR);
311 1.102 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
312 1.102 cgd sizeof bootinfo.boot_flags);
313 1.102 cgd prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
314 1.102 cgd sizeof bootinfo.booted_kernel);
315 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
316 1.102 cgd sizeof bootinfo.booted_dev);
317 1.102 cgd }
318 1.102 cgd
319 1.81 thorpej /*
320 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for
321 1.106 cgd * lots of things.
322 1.106 cgd */
323 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
324 1.123 thorpej
325 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
326 1.123 thorpej if (hwrpb->rpb_type == ST_DEC_3000_300 ||
327 1.123 thorpej hwrpb->rpb_type == ST_DEC_3000_500) {
328 1.123 thorpej prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
329 1.123 thorpej sizeof(dec_3000_scsiid));
330 1.123 thorpej prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
331 1.123 thorpej sizeof(dec_3000_scsifast));
332 1.123 thorpej }
333 1.123 thorpej #endif
334 1.106 cgd
335 1.106 cgd /*
336 1.106 cgd * Remember how many cycles there are per microsecond,
337 1.106 cgd * so that we can use delay(). Round up, for safety.
338 1.106 cgd */
339 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
340 1.106 cgd
341 1.106 cgd /*
342 1.251 wiz * Initialize the (temporary) bootstrap console interface, so
343 1.106 cgd * we can use printf until the VM system starts being setup.
344 1.106 cgd * The real console is initialized before then.
345 1.106 cgd */
346 1.106 cgd init_bootstrap_console();
347 1.106 cgd
348 1.106 cgd /* OUTPUT NOW ALLOWED */
349 1.106 cgd
350 1.106 cgd /* delayed from above */
351 1.106 cgd if (bootinfo_msg)
352 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
353 1.106 cgd bootinfo_msg, bim, bip, biv);
354 1.106 cgd
355 1.147 thorpej /* Initialize the trap vectors on the primary processor. */
356 1.147 thorpej trap_init();
357 1.1 cgd
358 1.1 cgd /*
359 1.263 thorpej * Find out this system's page size, and initialize
360 1.263 thorpej * PAGE_SIZE-dependent variables.
361 1.243 thorpej */
362 1.263 thorpej if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
363 1.263 thorpej panic("page size %lu != %d?!", hwrpb->rpb_page_size,
364 1.263 thorpej ALPHA_PGBYTES);
365 1.263 thorpej uvmexp.pagesize = hwrpb->rpb_page_size;
366 1.243 thorpej uvm_setpagesize();
367 1.243 thorpej
368 1.243 thorpej /*
369 1.106 cgd * Find out what hardware we're on, and do basic initialization.
370 1.106 cgd */
371 1.106 cgd cputype = hwrpb->rpb_type;
372 1.167 cgd if (cputype < 0) {
373 1.167 cgd /*
374 1.167 cgd * At least some white-box systems have SRM which
375 1.167 cgd * reports a systype that's the negative of their
376 1.167 cgd * blue-box counterpart.
377 1.167 cgd */
378 1.167 cgd cputype = -cputype;
379 1.167 cgd }
380 1.209 thorpej c = platform_lookup(cputype);
381 1.209 thorpej if (c == NULL) {
382 1.106 cgd platform_not_supported();
383 1.106 cgd /* NOTREACHED */
384 1.106 cgd }
385 1.209 thorpej (*c->init)();
386 1.106 cgd strcpy(cpu_model, platform.model);
387 1.106 cgd
388 1.106 cgd /*
389 1.251 wiz * Initialize the real console, so that the bootstrap console is
390 1.106 cgd * no longer necessary.
391 1.106 cgd */
392 1.169 thorpej (*platform.cons_init)();
393 1.106 cgd
394 1.106 cgd #ifdef DIAGNOSTIC
395 1.106 cgd /* Paranoid sanity checking */
396 1.106 cgd
397 1.199 soren /* We should always be running on the primary. */
398 1.211 thorpej assert(hwrpb->rpb_primary_cpu_id == cpu_id);
399 1.106 cgd
400 1.116 mjacob /*
401 1.116 mjacob * On single-CPU systypes, the primary should always be CPU 0,
402 1.116 mjacob * except on Alpha 8200 systems where the CPU id is related
403 1.116 mjacob * to the VID, which is related to the Turbo Laser node id.
404 1.116 mjacob */
405 1.106 cgd if (cputype != ST_DEC_21000)
406 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0);
407 1.106 cgd #endif
408 1.106 cgd
409 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */
410 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
411 1.106 cgd /*
412 1.106 cgd * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
413 1.106 cgd * XXX pmap_uses_prom_console() evaluates to non-zero.)
414 1.106 cgd */
415 1.106 cgd #endif
416 1.95 thorpej
417 1.95 thorpej /*
418 1.101 cgd * Find the beginning and end of the kernel (and leave a
419 1.101 cgd * bit of space before the beginning for the bootstrap
420 1.101 cgd * stack).
421 1.95 thorpej */
422 1.201 kleink kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
423 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR)
424 1.102 cgd ksym_start = (void *)bootinfo.ssym;
425 1.102 cgd ksym_end = (void *)bootinfo.esym;
426 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
427 1.102 cgd #else
428 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)_end);
429 1.95 thorpej #endif
430 1.95 thorpej
431 1.110 thorpej kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
432 1.110 thorpej kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
433 1.110 thorpej
434 1.95 thorpej /*
435 1.1 cgd * Find out how much memory is available, by looking at
436 1.7 cgd * the memory cluster descriptors. This also tries to do
437 1.7 cgd * its best to detect things things that have never been seen
438 1.7 cgd * before...
439 1.1 cgd */
440 1.296 yamt mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
441 1.7 cgd
442 1.110 thorpej /* MDDT SANITY CHECKING */
443 1.7 cgd mddtweird = 0;
444 1.110 thorpej if (mddtp->mddt_cluster_cnt < 2) {
445 1.7 cgd mddtweird = 1;
446 1.160 thorpej printf("WARNING: weird number of mem clusters: %lu\n",
447 1.110 thorpej mddtp->mddt_cluster_cnt);
448 1.7 cgd }
449 1.7 cgd
450 1.110 thorpej #if 0
451 1.110 thorpej printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
452 1.110 thorpej #endif
453 1.110 thorpej
454 1.110 thorpej for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
455 1.110 thorpej memc = &mddtp->mddt_clusters[i];
456 1.110 thorpej #if 0
457 1.110 thorpej printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
458 1.110 thorpej memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
459 1.110 thorpej #endif
460 1.110 thorpej totalphysmem += memc->mddt_pg_cnt;
461 1.110 thorpej if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
462 1.110 thorpej mem_clusters[mem_cluster_cnt].start =
463 1.110 thorpej ptoa(memc->mddt_pfn);
464 1.110 thorpej mem_clusters[mem_cluster_cnt].size =
465 1.110 thorpej ptoa(memc->mddt_pg_cnt);
466 1.110 thorpej if (memc->mddt_usage & MDDT_mbz ||
467 1.110 thorpej memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
468 1.110 thorpej memc->mddt_usage & MDDT_PALCODE)
469 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
470 1.110 thorpej PROT_READ;
471 1.110 thorpej else
472 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
473 1.110 thorpej PROT_READ | PROT_WRITE | PROT_EXEC;
474 1.110 thorpej mem_cluster_cnt++;
475 1.110 thorpej }
476 1.110 thorpej
477 1.110 thorpej if (memc->mddt_usage & MDDT_mbz) {
478 1.7 cgd mddtweird = 1;
479 1.110 thorpej printf("WARNING: mem cluster %d has weird "
480 1.110 thorpej "usage 0x%lx\n", i, memc->mddt_usage);
481 1.110 thorpej unknownmem += memc->mddt_pg_cnt;
482 1.110 thorpej continue;
483 1.7 cgd }
484 1.110 thorpej if (memc->mddt_usage & MDDT_NONVOLATILE) {
485 1.110 thorpej /* XXX should handle these... */
486 1.110 thorpej printf("WARNING: skipping non-volatile mem "
487 1.110 thorpej "cluster %d\n", i);
488 1.110 thorpej unusedmem += memc->mddt_pg_cnt;
489 1.110 thorpej continue;
490 1.110 thorpej }
491 1.110 thorpej if (memc->mddt_usage & MDDT_PALCODE) {
492 1.110 thorpej resvmem += memc->mddt_pg_cnt;
493 1.110 thorpej continue;
494 1.110 thorpej }
495 1.110 thorpej
496 1.110 thorpej /*
497 1.110 thorpej * We have a memory cluster available for system
498 1.110 thorpej * software use. We must determine if this cluster
499 1.110 thorpej * holds the kernel.
500 1.110 thorpej */
501 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
502 1.110 thorpej /*
503 1.110 thorpej * XXX If the kernel uses the PROM console, we only use the
504 1.110 thorpej * XXX memory after the kernel in the first system segment,
505 1.110 thorpej * XXX to avoid clobbering prom mapping, data, etc.
506 1.110 thorpej */
507 1.110 thorpej if (!pmap_uses_prom_console() || physmem == 0) {
508 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
509 1.110 thorpej physmem += memc->mddt_pg_cnt;
510 1.110 thorpej pfn0 = memc->mddt_pfn;
511 1.110 thorpej pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
512 1.110 thorpej if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
513 1.110 thorpej /*
514 1.110 thorpej * Must compute the location of the kernel
515 1.110 thorpej * within the segment.
516 1.110 thorpej */
517 1.110 thorpej #if 0
518 1.110 thorpej printf("Cluster %d contains kernel\n", i);
519 1.110 thorpej #endif
520 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
521 1.110 thorpej if (!pmap_uses_prom_console()) {
522 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
523 1.110 thorpej if (pfn0 < kernstartpfn) {
524 1.110 thorpej /*
525 1.110 thorpej * There is a chunk before the kernel.
526 1.110 thorpej */
527 1.110 thorpej #if 0
528 1.110 thorpej printf("Loading chunk before kernel: "
529 1.110 thorpej "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
530 1.110 thorpej #endif
531 1.112 thorpej uvm_page_physload(pfn0, kernstartpfn,
532 1.135 thorpej pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
533 1.110 thorpej }
534 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
535 1.110 thorpej }
536 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
537 1.110 thorpej if (kernendpfn < pfn1) {
538 1.110 thorpej /*
539 1.110 thorpej * There is a chunk after the kernel.
540 1.110 thorpej */
541 1.110 thorpej #if 0
542 1.110 thorpej printf("Loading chunk after kernel: "
543 1.110 thorpej "0x%lx / 0x%lx\n", kernendpfn, pfn1);
544 1.110 thorpej #endif
545 1.112 thorpej uvm_page_physload(kernendpfn, pfn1,
546 1.135 thorpej kernendpfn, pfn1, VM_FREELIST_DEFAULT);
547 1.110 thorpej }
548 1.110 thorpej } else {
549 1.110 thorpej /*
550 1.110 thorpej * Just load this cluster as one chunk.
551 1.110 thorpej */
552 1.110 thorpej #if 0
553 1.110 thorpej printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
554 1.110 thorpej pfn0, pfn1);
555 1.110 thorpej #endif
556 1.135 thorpej uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
557 1.135 thorpej VM_FREELIST_DEFAULT);
558 1.7 cgd }
559 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
560 1.110 thorpej }
561 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
562 1.7 cgd }
563 1.7 cgd
564 1.110 thorpej /*
565 1.110 thorpej * Dump out the MDDT if it looks odd...
566 1.110 thorpej */
567 1.7 cgd if (mddtweird) {
568 1.46 christos printf("\n");
569 1.46 christos printf("complete memory cluster information:\n");
570 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
571 1.46 christos printf("mddt %d:\n", i);
572 1.46 christos printf("\tpfn %lx\n",
573 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
574 1.46 christos printf("\tcnt %lx\n",
575 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
576 1.46 christos printf("\ttest %lx\n",
577 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
578 1.46 christos printf("\tbva %lx\n",
579 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
580 1.46 christos printf("\tbpa %lx\n",
581 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
582 1.46 christos printf("\tbcksum %lx\n",
583 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
584 1.46 christos printf("\tusage %lx\n",
585 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
586 1.2 cgd }
587 1.46 christos printf("\n");
588 1.2 cgd }
589 1.2 cgd
590 1.7 cgd if (totalphysmem == 0)
591 1.1 cgd panic("can't happen: system seems to have no memory!");
592 1.1 cgd maxmem = physmem;
593 1.7 cgd #if 0
594 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
595 1.46 christos printf("physmem = %d\n", physmem);
596 1.46 christos printf("resvmem = %d\n", resvmem);
597 1.46 christos printf("unusedmem = %d\n", unusedmem);
598 1.46 christos printf("unknownmem = %d\n", unknownmem);
599 1.7 cgd #endif
600 1.7 cgd
601 1.1 cgd /*
602 1.1 cgd * Initialize error message buffer (at end of core).
603 1.1 cgd */
604 1.110 thorpej {
605 1.204 enami vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
606 1.203 enami vsize_t reqsz = sz;
607 1.110 thorpej
608 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
609 1.110 thorpej
610 1.110 thorpej /* shrink so that it'll fit in the last segment */
611 1.110 thorpej if ((vps->avail_end - vps->avail_start) < atop(sz))
612 1.110 thorpej sz = ptoa(vps->avail_end - vps->avail_start);
613 1.110 thorpej
614 1.110 thorpej vps->end -= atop(sz);
615 1.110 thorpej vps->avail_end -= atop(sz);
616 1.295 christos msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
617 1.110 thorpej initmsgbuf(msgbufaddr, sz);
618 1.110 thorpej
619 1.110 thorpej /* Remove the last segment if it now has no pages. */
620 1.110 thorpej if (vps->start == vps->end)
621 1.110 thorpej vm_nphysseg--;
622 1.110 thorpej
623 1.110 thorpej /* warn if the message buffer had to be shrunk */
624 1.203 enami if (sz != reqsz)
625 1.203 enami printf("WARNING: %ld bytes not available for msgbuf "
626 1.203 enami "in last cluster (%ld used)\n", reqsz, sz);
627 1.268 thorpej
628 1.110 thorpej }
629 1.239 thorpej
630 1.239 thorpej /*
631 1.268 thorpej * NOTE: It is safe to use uvm_pageboot_alloc() before
632 1.268 thorpej * pmap_bootstrap() because our pmap_virtual_space()
633 1.268 thorpej * returns compile-time constants.
634 1.268 thorpej */
635 1.268 thorpej
636 1.268 thorpej /*
637 1.95 thorpej * Init mapping for u page(s) for proc 0
638 1.1 cgd */
639 1.261 thorpej lwp0.l_addr = proc0paddr =
640 1.268 thorpej (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
641 1.1 cgd
642 1.1 cgd /*
643 1.1 cgd * Initialize the virtual memory system, and set the
644 1.1 cgd * page table base register in proc 0's PCB.
645 1.1 cgd */
646 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
647 1.144 thorpej hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
648 1.1 cgd
649 1.1 cgd /*
650 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
651 1.3 cgd * address.
652 1.3 cgd */
653 1.261 thorpej lwp0.l_md.md_pcbpaddr =
654 1.140 thorpej (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
655 1.3 cgd
656 1.3 cgd /*
657 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
658 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
659 1.3 cgd */
660 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
661 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
662 1.261 thorpej lwp0.l_md.md_tf =
663 1.81 thorpej (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
664 1.235 thorpej simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
665 1.189 thorpej
666 1.208 thorpej /* Indicate that proc0 has a CPU. */
667 1.261 thorpej lwp0.l_cpu = ci;
668 1.1 cgd
669 1.1 cgd /*
670 1.25 cgd * Look at arguments passed to us and compute boothowto.
671 1.8 cgd */
672 1.1 cgd
673 1.8 cgd boothowto = RB_SINGLE;
674 1.1 cgd #ifdef KADB
675 1.1 cgd boothowto |= RB_KDB;
676 1.1 cgd #endif
677 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
678 1.26 cgd /*
679 1.26 cgd * Note that we'd really like to differentiate case here,
680 1.26 cgd * but the Alpha AXP Architecture Reference Manual
681 1.26 cgd * says that we shouldn't.
682 1.26 cgd */
683 1.8 cgd switch (*p) {
684 1.26 cgd case 'a': /* autoboot */
685 1.26 cgd case 'A':
686 1.26 cgd boothowto &= ~RB_SINGLE;
687 1.21 cgd break;
688 1.21 cgd
689 1.43 cgd #ifdef DEBUG
690 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
691 1.43 cgd case 'C':
692 1.43 cgd boothowto |= RB_DUMP;
693 1.43 cgd break;
694 1.43 cgd #endif
695 1.43 cgd
696 1.81 thorpej #if defined(KGDB) || defined(DDB)
697 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
698 1.81 thorpej case 'D':
699 1.81 thorpej boothowto |= RB_KDB;
700 1.81 thorpej break;
701 1.81 thorpej #endif
702 1.81 thorpej
703 1.36 cgd case 'h': /* always halt, never reboot */
704 1.36 cgd case 'H':
705 1.36 cgd boothowto |= RB_HALT;
706 1.8 cgd break;
707 1.8 cgd
708 1.21 cgd #if 0
709 1.8 cgd case 'm': /* mini root present in memory */
710 1.26 cgd case 'M':
711 1.8 cgd boothowto |= RB_MINIROOT;
712 1.8 cgd break;
713 1.21 cgd #endif
714 1.36 cgd
715 1.36 cgd case 'n': /* askname */
716 1.36 cgd case 'N':
717 1.36 cgd boothowto |= RB_ASKNAME;
718 1.65 cgd break;
719 1.65 cgd
720 1.65 cgd case 's': /* single-user (default, supported for sanity) */
721 1.65 cgd case 'S':
722 1.65 cgd boothowto |= RB_SINGLE;
723 1.221 jdolecek break;
724 1.221 jdolecek
725 1.221 jdolecek case 'q': /* quiet boot */
726 1.221 jdolecek case 'Q':
727 1.221 jdolecek boothowto |= AB_QUIET;
728 1.221 jdolecek break;
729 1.221 jdolecek
730 1.221 jdolecek case 'v': /* verbose boot */
731 1.221 jdolecek case 'V':
732 1.221 jdolecek boothowto |= AB_VERBOSE;
733 1.119 thorpej break;
734 1.119 thorpej
735 1.119 thorpej case '-':
736 1.119 thorpej /*
737 1.119 thorpej * Just ignore this. It's not required, but it's
738 1.119 thorpej * common for it to be passed regardless.
739 1.119 thorpej */
740 1.65 cgd break;
741 1.65 cgd
742 1.65 cgd default:
743 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
744 1.36 cgd break;
745 1.1 cgd }
746 1.1 cgd }
747 1.1 cgd
748 1.302 ad /*
749 1.302 ad * Perform any initial kernel patches based on the running system.
750 1.302 ad * We may perform more later if we attach additional CPUs.
751 1.302 ad */
752 1.302 ad alpha_patch(false);
753 1.136 mjacob
754 1.136 mjacob /*
755 1.280 wiz * Figure out the number of CPUs in the box, from RPB fields.
756 1.136 mjacob * Really. We mean it.
757 1.136 mjacob */
758 1.136 mjacob for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
759 1.136 mjacob struct pcs *pcsp;
760 1.136 mjacob
761 1.144 thorpej pcsp = LOCATE_PCS(hwrpb, i);
762 1.136 mjacob if ((pcsp->pcs_flags & PCS_PP) != 0)
763 1.136 mjacob ncpus++;
764 1.136 mjacob }
765 1.136 mjacob
766 1.7 cgd /*
767 1.106 cgd * Initialize debuggers, and break into them if appropriate.
768 1.106 cgd */
769 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR)
770 1.312 martin ksyms_addsyms_elf((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
771 1.159 mjacob ksym_start, ksym_end);
772 1.234 thorpej #endif
773 1.234 thorpej
774 1.234 thorpej if (boothowto & RB_KDB) {
775 1.234 thorpej #if defined(KGDB)
776 1.234 thorpej kgdb_debug_init = 1;
777 1.234 thorpej kgdb_connect(1);
778 1.234 thorpej #elif defined(DDB)
779 1.106 cgd Debugger();
780 1.106 cgd #endif
781 1.234 thorpej }
782 1.234 thorpej
783 1.298 tsutsui #ifdef DIAGNOSTIC
784 1.106 cgd /*
785 1.298 tsutsui * Check our clock frequency, from RPB fields.
786 1.106 cgd */
787 1.298 tsutsui if ((hwrpb->rpb_intr_freq >> 12) != 1024)
788 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
789 1.106 cgd hwrpb->rpb_intr_freq, hz);
790 1.106 cgd #endif
791 1.95 thorpej }
792 1.95 thorpej
793 1.18 cgd void
794 1.1 cgd consinit()
795 1.1 cgd {
796 1.81 thorpej
797 1.106 cgd /*
798 1.106 cgd * Everything related to console initialization is done
799 1.106 cgd * in alpha_init().
800 1.106 cgd */
801 1.106 cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
802 1.106 cgd printf("consinit: %susing prom console\n",
803 1.106 cgd pmap_uses_prom_console() ? "" : "not ");
804 1.81 thorpej #endif
805 1.1 cgd }
806 1.118 thorpej
807 1.18 cgd void
808 1.1 cgd cpu_startup()
809 1.1 cgd {
810 1.140 thorpej vaddr_t minaddr, maxaddr;
811 1.173 lukem char pbuf[9];
812 1.40 cgd #if defined(DEBUG)
813 1.1 cgd extern int pmapdebug;
814 1.1 cgd int opmapdebug = pmapdebug;
815 1.1 cgd
816 1.1 cgd pmapdebug = 0;
817 1.1 cgd #endif
818 1.1 cgd
819 1.1 cgd /*
820 1.1 cgd * Good {morning,afternoon,evening,night}.
821 1.1 cgd */
822 1.284 lukem printf("%s%s", copyright, version);
823 1.1 cgd identifycpu();
824 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
825 1.173 lukem printf("total memory = %s\n", pbuf);
826 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
827 1.173 lukem printf("(%s reserved for PROM, ", pbuf);
828 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
829 1.173 lukem printf("%s used by NetBSD)\n", pbuf);
830 1.173 lukem if (unusedmem) {
831 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
832 1.173 lukem printf("WARNING: unused memory = %s\n", pbuf);
833 1.173 lukem }
834 1.173 lukem if (unknownmem) {
835 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
836 1.173 lukem printf("WARNING: %s of memory with unknown purpose\n", pbuf);
837 1.173 lukem }
838 1.1 cgd
839 1.279 pk minaddr = 0;
840 1.240 thorpej
841 1.1 cgd /*
842 1.1 cgd * Allocate a submap for physio
843 1.1 cgd */
844 1.112 thorpej phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
845 1.294 thorpej VM_PHYS_SIZE, 0, false, NULL);
846 1.1 cgd
847 1.1 cgd /*
848 1.164 thorpej * No need to allocate an mbuf cluster submap. Mbuf clusters
849 1.164 thorpej * are allocated via the pool allocator, and we use K0SEG to
850 1.164 thorpej * map those pages.
851 1.1 cgd */
852 1.1 cgd
853 1.40 cgd #if defined(DEBUG)
854 1.1 cgd pmapdebug = opmapdebug;
855 1.1 cgd #endif
856 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
857 1.173 lukem printf("avail memory = %s\n", pbuf);
858 1.139 thorpej #if 0
859 1.139 thorpej {
860 1.139 thorpej extern u_long pmap_pages_stolen;
861 1.173 lukem
862 1.173 lukem format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
863 1.173 lukem printf("stolen memory for VM structures = %s\n", pbuf);
864 1.139 thorpej }
865 1.112 thorpej #endif
866 1.151 thorpej
867 1.151 thorpej /*
868 1.151 thorpej * Set up the HWPCB so that it's safe to configure secondary
869 1.151 thorpej * CPUs.
870 1.151 thorpej */
871 1.151 thorpej hwrpb_primary_init();
872 1.104 thorpej }
873 1.104 thorpej
874 1.104 thorpej /*
875 1.104 thorpej * Retrieve the platform name from the DSR.
876 1.104 thorpej */
877 1.104 thorpej const char *
878 1.104 thorpej alpha_dsr_sysname()
879 1.104 thorpej {
880 1.104 thorpej struct dsrdb *dsr;
881 1.104 thorpej const char *sysname;
882 1.104 thorpej
883 1.104 thorpej /*
884 1.104 thorpej * DSR does not exist on early HWRPB versions.
885 1.104 thorpej */
886 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
887 1.104 thorpej return (NULL);
888 1.104 thorpej
889 1.296 yamt dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
890 1.296 yamt sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
891 1.104 thorpej sizeof(u_int64_t)));
892 1.104 thorpej return (sysname);
893 1.104 thorpej }
894 1.104 thorpej
895 1.104 thorpej /*
896 1.104 thorpej * Lookup the system specified system variation in the provided table,
897 1.104 thorpej * returning the model string on match.
898 1.104 thorpej */
899 1.104 thorpej const char *
900 1.104 thorpej alpha_variation_name(variation, avtp)
901 1.104 thorpej u_int64_t variation;
902 1.104 thorpej const struct alpha_variation_table *avtp;
903 1.104 thorpej {
904 1.104 thorpej int i;
905 1.104 thorpej
906 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++)
907 1.104 thorpej if (avtp[i].avt_variation == variation)
908 1.104 thorpej return (avtp[i].avt_model);
909 1.104 thorpej return (NULL);
910 1.104 thorpej }
911 1.104 thorpej
912 1.104 thorpej /*
913 1.104 thorpej * Generate a default platform name based for unknown system variations.
914 1.104 thorpej */
915 1.104 thorpej const char *
916 1.104 thorpej alpha_unknown_sysname()
917 1.104 thorpej {
918 1.105 thorpej static char s[128]; /* safe size */
919 1.104 thorpej
920 1.105 thorpej sprintf(s, "%s family, unknown model variation 0x%lx",
921 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK);
922 1.104 thorpej return ((const char *)s);
923 1.1 cgd }
924 1.1 cgd
925 1.33 cgd void
926 1.1 cgd identifycpu()
927 1.1 cgd {
928 1.177 ross char *s;
929 1.218 thorpej int i;
930 1.1 cgd
931 1.7 cgd /*
932 1.7 cgd * print out CPU identification information.
933 1.7 cgd */
934 1.177 ross printf("%s", cpu_model);
935 1.177 ross for(s = cpu_model; *s; ++s)
936 1.177 ross if(strncasecmp(s, "MHz", 3) == 0)
937 1.177 ross goto skipMHz;
938 1.177 ross printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
939 1.177 ross skipMHz:
940 1.218 thorpej printf(", s/n ");
941 1.218 thorpej for (i = 0; i < 10; i++)
942 1.218 thorpej printf("%c", hwrpb->rpb_ssn[i]);
943 1.177 ross printf("\n");
944 1.46 christos printf("%ld byte page size, %d processor%s.\n",
945 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
946 1.7 cgd #if 0
947 1.7 cgd /* this isn't defined for any systems that we run on? */
948 1.46 christos printf("serial number 0x%lx 0x%lx\n",
949 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
950 1.7 cgd
951 1.7 cgd /* and these aren't particularly useful! */
952 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
953 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
954 1.7 cgd #endif
955 1.1 cgd }
956 1.1 cgd
957 1.1 cgd int waittime = -1;
958 1.7 cgd struct pcb dumppcb;
959 1.1 cgd
960 1.18 cgd void
961 1.68 gwr cpu_reboot(howto, bootstr)
962 1.1 cgd int howto;
963 1.39 mrg char *bootstr;
964 1.1 cgd {
965 1.148 thorpej #if defined(MULTIPROCESSOR)
966 1.225 thorpej u_long cpu_id = cpu_number();
967 1.225 thorpej u_long wait_mask = (1UL << cpu_id) |
968 1.225 thorpej (1UL << hwrpb->rpb_primary_cpu_id);
969 1.225 thorpej int i;
970 1.148 thorpej #endif
971 1.148 thorpej
972 1.225 thorpej /* If "always halt" was specified as a boot flag, obey. */
973 1.225 thorpej if ((boothowto & RB_HALT) != 0)
974 1.225 thorpej howto |= RB_HALT;
975 1.225 thorpej
976 1.225 thorpej boothowto = howto;
977 1.1 cgd
978 1.1 cgd /* If system is cold, just halt. */
979 1.1 cgd if (cold) {
980 1.225 thorpej boothowto |= RB_HALT;
981 1.1 cgd goto haltsys;
982 1.1 cgd }
983 1.1 cgd
984 1.225 thorpej if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
985 1.1 cgd waittime = 0;
986 1.7 cgd vfs_shutdown();
987 1.1 cgd /*
988 1.1 cgd * If we've been adjusting the clock, the todr
989 1.1 cgd * will be out of synch; adjust it now.
990 1.1 cgd */
991 1.1 cgd resettodr();
992 1.1 cgd }
993 1.1 cgd
994 1.1 cgd /* Disable interrupts. */
995 1.1 cgd splhigh();
996 1.1 cgd
997 1.225 thorpej #if defined(MULTIPROCESSOR)
998 1.225 thorpej /*
999 1.225 thorpej * Halt all other CPUs. If we're not the primary, the
1000 1.225 thorpej * primary will spin, waiting for us to halt.
1001 1.225 thorpej */
1002 1.225 thorpej alpha_broadcast_ipi(ALPHA_IPI_HALT);
1003 1.225 thorpej
1004 1.283 mhitch /* Ensure any CPUs paused by DDB resume execution so they can halt */
1005 1.283 mhitch cpus_paused = 0;
1006 1.283 mhitch
1007 1.225 thorpej for (i = 0; i < 10000; i++) {
1008 1.225 thorpej alpha_mb();
1009 1.225 thorpej if (cpus_running == wait_mask)
1010 1.225 thorpej break;
1011 1.225 thorpej delay(1000);
1012 1.225 thorpej }
1013 1.225 thorpej alpha_mb();
1014 1.225 thorpej if (cpus_running != wait_mask)
1015 1.225 thorpej printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1016 1.225 thorpej cpus_running);
1017 1.225 thorpej #endif /* MULTIPROCESSOR */
1018 1.225 thorpej
1019 1.7 cgd /* If rebooting and a dump is requested do it. */
1020 1.42 cgd #if 0
1021 1.225 thorpej if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1022 1.42 cgd #else
1023 1.225 thorpej if (boothowto & RB_DUMP)
1024 1.42 cgd #endif
1025 1.1 cgd dumpsys();
1026 1.6 cgd
1027 1.12 cgd haltsys:
1028 1.12 cgd
1029 1.6 cgd /* run any shutdown hooks */
1030 1.6 cgd doshutdownhooks();
1031 1.148 thorpej
1032 1.308 dyoung pmf_system_shutdown(boothowto);
1033 1.308 dyoung
1034 1.7 cgd #ifdef BOOTKEY
1035 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1036 1.117 drochner cnpollc(1); /* for proper keyboard command handling */
1037 1.7 cgd cngetc();
1038 1.117 drochner cnpollc(0);
1039 1.46 christos printf("\n");
1040 1.7 cgd #endif
1041 1.7 cgd
1042 1.124 thorpej /* Finally, powerdown/halt/reboot the system. */
1043 1.225 thorpej if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1044 1.124 thorpej platform.powerdown != NULL) {
1045 1.124 thorpej (*platform.powerdown)();
1046 1.124 thorpej printf("WARNING: powerdown failed!\n");
1047 1.124 thorpej }
1048 1.225 thorpej printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1049 1.225 thorpej #if defined(MULTIPROCESSOR)
1050 1.225 thorpej if (cpu_id != hwrpb->rpb_primary_cpu_id)
1051 1.225 thorpej cpu_halt();
1052 1.225 thorpej else
1053 1.225 thorpej #endif
1054 1.225 thorpej prom_halt(boothowto & RB_HALT);
1055 1.1 cgd /*NOTREACHED*/
1056 1.1 cgd }
1057 1.1 cgd
1058 1.7 cgd /*
1059 1.7 cgd * These variables are needed by /sbin/savecore
1060 1.7 cgd */
1061 1.253 tsutsui u_int32_t dumpmag = 0x8fca0101; /* magic number */
1062 1.7 cgd int dumpsize = 0; /* pages */
1063 1.7 cgd long dumplo = 0; /* blocks */
1064 1.7 cgd
1065 1.7 cgd /*
1066 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1067 1.43 cgd */
1068 1.43 cgd int
1069 1.43 cgd cpu_dumpsize()
1070 1.43 cgd {
1071 1.43 cgd int size;
1072 1.43 cgd
1073 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1074 1.110 thorpej ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1075 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
1076 1.43 cgd return -1;
1077 1.43 cgd
1078 1.43 cgd return (1);
1079 1.43 cgd }
1080 1.43 cgd
1081 1.43 cgd /*
1082 1.110 thorpej * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1083 1.110 thorpej */
1084 1.110 thorpej u_long
1085 1.110 thorpej cpu_dump_mempagecnt()
1086 1.110 thorpej {
1087 1.110 thorpej u_long i, n;
1088 1.110 thorpej
1089 1.110 thorpej n = 0;
1090 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++)
1091 1.110 thorpej n += atop(mem_clusters[i].size);
1092 1.110 thorpej return (n);
1093 1.110 thorpej }
1094 1.110 thorpej
1095 1.110 thorpej /*
1096 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
1097 1.43 cgd */
1098 1.43 cgd int
1099 1.43 cgd cpu_dump()
1100 1.43 cgd {
1101 1.295 christos int (*dump) __P((dev_t, daddr_t, void *, size_t));
1102 1.107 cgd char buf[dbtob(1)];
1103 1.107 cgd kcore_seg_t *segp;
1104 1.107 cgd cpu_kcore_hdr_t *cpuhdrp;
1105 1.107 cgd phys_ram_seg_t *memsegp;
1106 1.258 gehenna const struct bdevsw *bdev;
1107 1.110 thorpej int i;
1108 1.43 cgd
1109 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1110 1.258 gehenna if (bdev == NULL)
1111 1.258 gehenna return (ENXIO);
1112 1.258 gehenna dump = bdev->d_dump;
1113 1.43 cgd
1114 1.246 thorpej memset(buf, 0, sizeof buf);
1115 1.43 cgd segp = (kcore_seg_t *)buf;
1116 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1117 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1118 1.107 cgd ALIGN(sizeof(*cpuhdrp))];
1119 1.43 cgd
1120 1.43 cgd /*
1121 1.43 cgd * Generate a segment header.
1122 1.43 cgd */
1123 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1124 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1125 1.43 cgd
1126 1.43 cgd /*
1127 1.107 cgd * Add the machine-dependent header info.
1128 1.43 cgd */
1129 1.140 thorpej cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1130 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
1131 1.110 thorpej cpuhdrp->nmemsegs = mem_cluster_cnt;
1132 1.107 cgd
1133 1.107 cgd /*
1134 1.107 cgd * Fill in the memory segment descriptors.
1135 1.107 cgd */
1136 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1137 1.110 thorpej memsegp[i].start = mem_clusters[i].start;
1138 1.110 thorpej memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1139 1.110 thorpej }
1140 1.43 cgd
1141 1.295 christos return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1142 1.43 cgd }
1143 1.43 cgd
1144 1.43 cgd /*
1145 1.68 gwr * This is called by main to set dumplo and dumpsize.
1146 1.262 thorpej * Dumps always skip the first PAGE_SIZE of disk space
1147 1.7 cgd * in case there might be a disk label stored there.
1148 1.7 cgd * If there is extra space, put dump at the end to
1149 1.7 cgd * reduce the chance that swapping trashes it.
1150 1.7 cgd */
1151 1.7 cgd void
1152 1.68 gwr cpu_dumpconf()
1153 1.7 cgd {
1154 1.258 gehenna const struct bdevsw *bdev;
1155 1.43 cgd int nblks, dumpblks; /* size of dump area */
1156 1.7 cgd
1157 1.7 cgd if (dumpdev == NODEV)
1158 1.43 cgd goto bad;
1159 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1160 1.289 mrg if (bdev == NULL) {
1161 1.289 mrg dumpdev = NODEV;
1162 1.289 mrg goto bad;
1163 1.289 mrg }
1164 1.258 gehenna if (bdev->d_psize == NULL)
1165 1.43 cgd goto bad;
1166 1.258 gehenna nblks = (*bdev->d_psize)(dumpdev);
1167 1.7 cgd if (nblks <= ctod(1))
1168 1.43 cgd goto bad;
1169 1.43 cgd
1170 1.43 cgd dumpblks = cpu_dumpsize();
1171 1.43 cgd if (dumpblks < 0)
1172 1.43 cgd goto bad;
1173 1.110 thorpej dumpblks += ctod(cpu_dump_mempagecnt());
1174 1.43 cgd
1175 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
1176 1.43 cgd if (dumpblks > (nblks - ctod(1)))
1177 1.43 cgd goto bad;
1178 1.43 cgd
1179 1.43 cgd /* Put dump at end of partition */
1180 1.43 cgd dumplo = nblks - dumpblks;
1181 1.7 cgd
1182 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1183 1.110 thorpej dumpsize = cpu_dump_mempagecnt();
1184 1.43 cgd return;
1185 1.7 cgd
1186 1.43 cgd bad:
1187 1.43 cgd dumpsize = 0;
1188 1.43 cgd return;
1189 1.7 cgd }
1190 1.7 cgd
1191 1.7 cgd /*
1192 1.42 cgd * Dump the kernel's image to the swap partition.
1193 1.7 cgd */
1194 1.262 thorpej #define BYTES_PER_DUMP PAGE_SIZE
1195 1.42 cgd
1196 1.7 cgd void
1197 1.7 cgd dumpsys()
1198 1.7 cgd {
1199 1.258 gehenna const struct bdevsw *bdev;
1200 1.110 thorpej u_long totalbytesleft, bytes, i, n, memcl;
1201 1.110 thorpej u_long maddr;
1202 1.110 thorpej int psize;
1203 1.42 cgd daddr_t blkno;
1204 1.295 christos int (*dump) __P((dev_t, daddr_t, void *, size_t));
1205 1.42 cgd int error;
1206 1.42 cgd
1207 1.42 cgd /* Save registers. */
1208 1.42 cgd savectx(&dumppcb);
1209 1.7 cgd
1210 1.7 cgd if (dumpdev == NODEV)
1211 1.7 cgd return;
1212 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1213 1.258 gehenna if (bdev == NULL || bdev->d_psize == NULL)
1214 1.258 gehenna return;
1215 1.42 cgd
1216 1.42 cgd /*
1217 1.42 cgd * For dumps during autoconfiguration,
1218 1.42 cgd * if dump device has already configured...
1219 1.42 cgd */
1220 1.42 cgd if (dumpsize == 0)
1221 1.68 gwr cpu_dumpconf();
1222 1.47 cgd if (dumplo <= 0) {
1223 1.314 he printf("\ndump to dev %u,%u not possible\n",
1224 1.313 rtr major(dumpdev), minor(dumpdev));
1225 1.42 cgd return;
1226 1.43 cgd }
1227 1.314 he printf("\ndumping to dev %u,%u offset %ld\n",
1228 1.313 rtr major(dumpdev), minor(dumpdev), dumplo);
1229 1.7 cgd
1230 1.258 gehenna psize = (*bdev->d_psize)(dumpdev);
1231 1.46 christos printf("dump ");
1232 1.42 cgd if (psize == -1) {
1233 1.46 christos printf("area unavailable\n");
1234 1.42 cgd return;
1235 1.42 cgd }
1236 1.42 cgd
1237 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1238 1.42 cgd
1239 1.43 cgd if ((error = cpu_dump()) != 0)
1240 1.43 cgd goto err;
1241 1.43 cgd
1242 1.110 thorpej totalbytesleft = ptoa(cpu_dump_mempagecnt());
1243 1.43 cgd blkno = dumplo + cpu_dumpsize();
1244 1.258 gehenna dump = bdev->d_dump;
1245 1.42 cgd error = 0;
1246 1.42 cgd
1247 1.110 thorpej for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1248 1.110 thorpej maddr = mem_clusters[memcl].start;
1249 1.110 thorpej bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1250 1.110 thorpej
1251 1.110 thorpej for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1252 1.110 thorpej
1253 1.110 thorpej /* Print out how many MBs we to go. */
1254 1.110 thorpej if ((totalbytesleft % (1024*1024)) == 0)
1255 1.311 ad printf_nolog("%ld ",
1256 1.311 ad totalbytesleft / (1024 * 1024));
1257 1.110 thorpej
1258 1.110 thorpej /* Limit size for next transfer. */
1259 1.110 thorpej n = bytes - i;
1260 1.110 thorpej if (n > BYTES_PER_DUMP)
1261 1.110 thorpej n = BYTES_PER_DUMP;
1262 1.110 thorpej
1263 1.110 thorpej error = (*dump)(dumpdev, blkno,
1264 1.295 christos (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1265 1.110 thorpej if (error)
1266 1.110 thorpej goto err;
1267 1.110 thorpej maddr += n;
1268 1.110 thorpej blkno += btodb(n); /* XXX? */
1269 1.42 cgd
1270 1.110 thorpej /* XXX should look for keystrokes, to cancel. */
1271 1.110 thorpej }
1272 1.42 cgd }
1273 1.42 cgd
1274 1.43 cgd err:
1275 1.42 cgd switch (error) {
1276 1.7 cgd
1277 1.7 cgd case ENXIO:
1278 1.46 christos printf("device bad\n");
1279 1.7 cgd break;
1280 1.7 cgd
1281 1.7 cgd case EFAULT:
1282 1.46 christos printf("device not ready\n");
1283 1.7 cgd break;
1284 1.7 cgd
1285 1.7 cgd case EINVAL:
1286 1.46 christos printf("area improper\n");
1287 1.7 cgd break;
1288 1.7 cgd
1289 1.7 cgd case EIO:
1290 1.46 christos printf("i/o error\n");
1291 1.7 cgd break;
1292 1.7 cgd
1293 1.7 cgd case EINTR:
1294 1.46 christos printf("aborted from console\n");
1295 1.7 cgd break;
1296 1.7 cgd
1297 1.42 cgd case 0:
1298 1.46 christos printf("succeeded\n");
1299 1.42 cgd break;
1300 1.42 cgd
1301 1.7 cgd default:
1302 1.46 christos printf("error %d\n", error);
1303 1.7 cgd break;
1304 1.7 cgd }
1305 1.46 christos printf("\n\n");
1306 1.7 cgd delay(1000);
1307 1.7 cgd }
1308 1.7 cgd
1309 1.1 cgd void
1310 1.1 cgd frametoreg(framep, regp)
1311 1.261 thorpej const struct trapframe *framep;
1312 1.1 cgd struct reg *regp;
1313 1.1 cgd {
1314 1.1 cgd
1315 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1316 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1317 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1318 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1319 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1320 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1321 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1322 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1323 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1324 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1325 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1326 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1327 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1328 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1329 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1330 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1331 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1332 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1333 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1334 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1335 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1336 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1337 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1338 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1339 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1340 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1341 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1342 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1343 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1344 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1345 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1346 1.1 cgd regp->r_regs[R_ZERO] = 0;
1347 1.1 cgd }
1348 1.1 cgd
1349 1.1 cgd void
1350 1.1 cgd regtoframe(regp, framep)
1351 1.261 thorpej const struct reg *regp;
1352 1.1 cgd struct trapframe *framep;
1353 1.1 cgd {
1354 1.1 cgd
1355 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1356 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1357 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1358 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1359 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1360 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1361 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1362 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1363 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1364 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1365 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1366 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1367 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1368 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1369 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1370 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1371 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1372 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1373 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1374 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1375 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1376 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1377 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1378 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1379 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1380 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1381 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1382 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1383 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1384 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1385 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1386 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1387 1.1 cgd }
1388 1.1 cgd
1389 1.1 cgd void
1390 1.1 cgd printregs(regp)
1391 1.1 cgd struct reg *regp;
1392 1.1 cgd {
1393 1.1 cgd int i;
1394 1.1 cgd
1395 1.1 cgd for (i = 0; i < 32; i++)
1396 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1397 1.1 cgd i & 1 ? "\n" : "\t");
1398 1.1 cgd }
1399 1.1 cgd
1400 1.1 cgd void
1401 1.1 cgd regdump(framep)
1402 1.1 cgd struct trapframe *framep;
1403 1.1 cgd {
1404 1.1 cgd struct reg reg;
1405 1.1 cgd
1406 1.1 cgd frametoreg(framep, ®);
1407 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1408 1.35 cgd
1409 1.46 christos printf("REGISTERS:\n");
1410 1.1 cgd printregs(®);
1411 1.1 cgd }
1412 1.1 cgd
1413 1.1 cgd
1414 1.274 skd
1415 1.274 skd void *
1416 1.274 skd getframe(const struct lwp *l, int sig, int *onstack)
1417 1.274 skd {
1418 1.295 christos void *frame;
1419 1.274 skd
1420 1.274 skd /* Do we need to jump onto the signal stack? */
1421 1.274 skd *onstack =
1422 1.293 ad (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1423 1.293 ad (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1424 1.274 skd
1425 1.274 skd if (*onstack)
1426 1.296 yamt frame = (void *)((char *)l->l_sigstk.ss_sp +
1427 1.293 ad l->l_sigstk.ss_size);
1428 1.274 skd else
1429 1.274 skd frame = (void *)(alpha_pal_rdusp());
1430 1.274 skd return (frame);
1431 1.274 skd }
1432 1.274 skd
1433 1.274 skd void
1434 1.274 skd buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1435 1.274 skd {
1436 1.274 skd struct trapframe *tf = l->l_md.md_tf;
1437 1.274 skd
1438 1.274 skd tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1439 1.274 skd tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1440 1.274 skd tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1441 1.274 skd alpha_pal_wrusp((unsigned long)fp);
1442 1.274 skd }
1443 1.274 skd
1444 1.274 skd
1445 1.1 cgd /*
1446 1.274 skd * Send an interrupt to process, new style
1447 1.1 cgd */
1448 1.1 cgd void
1449 1.274 skd sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1450 1.1 cgd {
1451 1.261 thorpej struct lwp *l = curlwp;
1452 1.261 thorpej struct proc *p = l->l_proc;
1453 1.256 thorpej struct sigacts *ps = p->p_sigacts;
1454 1.293 ad int onstack, sig = ksi->ksi_signo, error;
1455 1.274 skd struct sigframe_siginfo *fp, frame;
1456 1.274 skd struct trapframe *tf;
1457 1.274 skd sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1458 1.1 cgd
1459 1.274 skd fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1460 1.274 skd tf = l->l_md.md_tf;
1461 1.141 thorpej
1462 1.141 thorpej /* Allocate space for the signal handler context. */
1463 1.274 skd fp--;
1464 1.141 thorpej
1465 1.1 cgd #ifdef DEBUG
1466 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1467 1.274 skd printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1468 1.276 nathanw sig, &onstack, fp);
1469 1.125 ross #endif
1470 1.1 cgd
1471 1.141 thorpej /* Build stack frame for signal trampoline. */
1472 1.1 cgd
1473 1.275 enami frame.sf_si._info = ksi->ksi_info;
1474 1.274 skd frame.sf_uc.uc_flags = _UC_SIGMASK;
1475 1.274 skd frame.sf_uc.uc_sigmask = *mask;
1476 1.299 pooka frame.sf_uc.uc_link = l->l_ctxlink;
1477 1.274 skd memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1478 1.293 ad sendsig_reset(l, sig);
1479 1.304 ad mutex_exit(p->p_lock);
1480 1.274 skd cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1481 1.293 ad error = copyout(&frame, fp, sizeof(frame));
1482 1.304 ad mutex_enter(p->p_lock);
1483 1.1 cgd
1484 1.293 ad if (error != 0) {
1485 1.141 thorpej /*
1486 1.141 thorpej * Process has trashed its stack; give it an illegal
1487 1.141 thorpej * instruction to halt it in its tracks.
1488 1.141 thorpej */
1489 1.141 thorpej #ifdef DEBUG
1490 1.141 thorpej if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1491 1.274 skd printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1492 1.141 thorpej p->p_pid, sig);
1493 1.141 thorpej #endif
1494 1.261 thorpej sigexit(l, SIGILL);
1495 1.141 thorpej /* NOTREACHED */
1496 1.141 thorpej }
1497 1.274 skd
1498 1.1 cgd #ifdef DEBUG
1499 1.1 cgd if (sigdebug & SDB_FOLLOW)
1500 1.276 nathanw printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1501 1.276 nathanw p->p_pid, sig, fp, ksi->ksi_code);
1502 1.1 cgd #endif
1503 1.1 cgd
1504 1.256 thorpej /*
1505 1.256 thorpej * Set up the registers to directly invoke the signal handler. The
1506 1.256 thorpej * signal trampoline is then used to return from the signal. Note
1507 1.256 thorpej * the trampoline version numbers are coordinated with machine-
1508 1.256 thorpej * dependent code in libc.
1509 1.256 thorpej */
1510 1.274 skd
1511 1.274 skd tf->tf_regs[FRAME_A0] = sig;
1512 1.274 skd tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1513 1.274 skd tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1514 1.256 thorpej
1515 1.274 skd buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1516 1.142 mycroft
1517 1.142 mycroft /* Remember that we're now on the signal stack. */
1518 1.142 mycroft if (onstack)
1519 1.293 ad l->l_sigstk.ss_flags |= SS_ONSTACK;
1520 1.1 cgd
1521 1.1 cgd #ifdef DEBUG
1522 1.1 cgd if (sigdebug & SDB_FOLLOW)
1523 1.274 skd printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1524 1.276 nathanw tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1525 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1526 1.274 skd printf("sendsig_siginfo(%d): sig %d returns\n",
1527 1.1 cgd p->p_pid, sig);
1528 1.1 cgd #endif
1529 1.1 cgd }
1530 1.1 cgd
1531 1.261 thorpej
1532 1.307 wrstuden void
1533 1.307 wrstuden cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1534 1.307 wrstuden {
1535 1.307 wrstuden struct trapframe *tf;
1536 1.307 wrstuden
1537 1.307 wrstuden tf = l->l_md.md_tf;
1538 1.307 wrstuden
1539 1.307 wrstuden tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1540 1.307 wrstuden tf->tf_regs[FRAME_RA] = 0;
1541 1.307 wrstuden tf->tf_regs[FRAME_A0] = type;
1542 1.307 wrstuden tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1543 1.307 wrstuden tf->tf_regs[FRAME_A2] = nevents;
1544 1.307 wrstuden tf->tf_regs[FRAME_A3] = ninterrupted;
1545 1.307 wrstuden tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1546 1.307 wrstuden tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1547 1.307 wrstuden alpha_pal_wrusp((unsigned long)sp);
1548 1.307 wrstuden }
1549 1.307 wrstuden
1550 1.1 cgd /*
1551 1.1 cgd * machine dependent system variables.
1552 1.1 cgd */
1553 1.278 atatat SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1554 1.1 cgd {
1555 1.241 ross
1556 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1557 1.282 atatat CTLFLAG_PERMANENT,
1558 1.278 atatat CTLTYPE_NODE, "machdep", NULL,
1559 1.278 atatat NULL, 0, NULL, 0,
1560 1.278 atatat CTL_MACHDEP, CTL_EOL);
1561 1.278 atatat
1562 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1563 1.282 atatat CTLFLAG_PERMANENT,
1564 1.278 atatat CTLTYPE_STRUCT, "console_device", NULL,
1565 1.278 atatat sysctl_consdev, 0, NULL, sizeof(dev_t),
1566 1.278 atatat CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1567 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1568 1.282 atatat CTLFLAG_PERMANENT,
1569 1.278 atatat CTLTYPE_STRING, "root_device", NULL,
1570 1.278 atatat sysctl_root_device, 0, NULL, 0,
1571 1.278 atatat CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1572 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1573 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1574 1.278 atatat CTLTYPE_INT, "unaligned_print", NULL,
1575 1.278 atatat NULL, 0, &alpha_unaligned_print, 0,
1576 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1577 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1578 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1579 1.278 atatat CTLTYPE_INT, "unaligned_fix", NULL,
1580 1.278 atatat NULL, 0, &alpha_unaligned_fix, 0,
1581 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1582 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1583 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1584 1.278 atatat CTLTYPE_INT, "unaligned_sigbus", NULL,
1585 1.278 atatat NULL, 0, &alpha_unaligned_sigbus, 0,
1586 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1587 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1588 1.282 atatat CTLFLAG_PERMANENT,
1589 1.278 atatat CTLTYPE_STRING, "booted_kernel", NULL,
1590 1.278 atatat NULL, 0, bootinfo.booted_kernel, 0,
1591 1.278 atatat CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1592 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1593 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1594 1.278 atatat CTLTYPE_INT, "fp_sync_complete", NULL,
1595 1.278 atatat NULL, 0, &alpha_fp_sync_complete, 0,
1596 1.278 atatat CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1597 1.1 cgd }
1598 1.1 cgd
1599 1.1 cgd /*
1600 1.1 cgd * Set registers on exec.
1601 1.1 cgd */
1602 1.1 cgd void
1603 1.261 thorpej setregs(l, pack, stack)
1604 1.261 thorpej register struct lwp *l;
1605 1.5 christos struct exec_package *pack;
1606 1.1 cgd u_long stack;
1607 1.1 cgd {
1608 1.261 thorpej struct trapframe *tfp = l->l_md.md_tf;
1609 1.56 cgd #ifdef DEBUG
1610 1.1 cgd int i;
1611 1.56 cgd #endif
1612 1.43 cgd
1613 1.43 cgd #ifdef DEBUG
1614 1.43 cgd /*
1615 1.43 cgd * Crash and dump, if the user requested it.
1616 1.43 cgd */
1617 1.43 cgd if (boothowto & RB_DUMP)
1618 1.43 cgd panic("crash requested by boot flags");
1619 1.43 cgd #endif
1620 1.1 cgd
1621 1.1 cgd #ifdef DEBUG
1622 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1623 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1624 1.1 cgd #else
1625 1.246 thorpej memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1626 1.1 cgd #endif
1627 1.261 thorpej memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
1628 1.35 cgd alpha_pal_wrusp(stack);
1629 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1630 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1631 1.41 cgd
1632 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1633 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1634 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1635 1.261 thorpej tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1636 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1637 1.1 cgd
1638 1.261 thorpej l->l_md.md_flags &= ~MDP_FPUSED;
1639 1.261 thorpej if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1640 1.261 thorpej l->l_md.md_flags &= ~MDP_FP_C;
1641 1.261 thorpej l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1642 1.241 ross }
1643 1.261 thorpej if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1644 1.261 thorpej fpusave_proc(l, 0);
1645 1.219 thorpej }
1646 1.219 thorpej
1647 1.219 thorpej /*
1648 1.219 thorpej * Release the FPU.
1649 1.219 thorpej */
1650 1.219 thorpej void
1651 1.225 thorpej fpusave_cpu(struct cpu_info *ci, int save)
1652 1.219 thorpej {
1653 1.261 thorpej struct lwp *l;
1654 1.225 thorpej #if defined(MULTIPROCESSOR)
1655 1.219 thorpej int s;
1656 1.225 thorpej #endif
1657 1.219 thorpej
1658 1.225 thorpej KDASSERT(ci == curcpu());
1659 1.225 thorpej
1660 1.235 thorpej #if defined(MULTIPROCESSOR)
1661 1.287 thorpej s = splhigh(); /* block IPIs for the duration */
1662 1.303 ad atomic_or_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1663 1.235 thorpej #endif
1664 1.235 thorpej
1665 1.261 thorpej l = ci->ci_fpcurlwp;
1666 1.261 thorpej if (l == NULL)
1667 1.235 thorpej goto out;
1668 1.219 thorpej
1669 1.219 thorpej if (save) {
1670 1.219 thorpej alpha_pal_wrfen(1);
1671 1.261 thorpej savefpstate(&l->l_addr->u_pcb.pcb_fp);
1672 1.225 thorpej }
1673 1.225 thorpej
1674 1.225 thorpej alpha_pal_wrfen(0);
1675 1.225 thorpej
1676 1.287 thorpej FPCPU_LOCK(&l->l_addr->u_pcb);
1677 1.235 thorpej
1678 1.261 thorpej l->l_addr->u_pcb.pcb_fpcpu = NULL;
1679 1.261 thorpej ci->ci_fpcurlwp = NULL;
1680 1.235 thorpej
1681 1.287 thorpej FPCPU_UNLOCK(&l->l_addr->u_pcb);
1682 1.235 thorpej
1683 1.235 thorpej out:
1684 1.219 thorpej #if defined(MULTIPROCESSOR)
1685 1.303 ad atomic_and_ulong(&ci->ci_flags, ~CPUF_FPUSAVE);
1686 1.287 thorpej splx(s);
1687 1.219 thorpej #endif
1688 1.235 thorpej return;
1689 1.219 thorpej }
1690 1.219 thorpej
1691 1.219 thorpej /*
1692 1.219 thorpej * Synchronize FP state for this process.
1693 1.219 thorpej */
1694 1.219 thorpej void
1695 1.261 thorpej fpusave_proc(struct lwp *l, int save)
1696 1.219 thorpej {
1697 1.225 thorpej struct cpu_info *ci = curcpu();
1698 1.225 thorpej struct cpu_info *oci;
1699 1.235 thorpej #if defined(MULTIPROCESSOR)
1700 1.235 thorpej u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1701 1.236 thorpej int s, spincount;
1702 1.235 thorpej #endif
1703 1.219 thorpej
1704 1.261 thorpej KDASSERT(l->l_addr != NULL);
1705 1.225 thorpej
1706 1.287 thorpej #if defined(MULTIPROCESSOR)
1707 1.287 thorpej s = splhigh(); /* block IPIs for the duration */
1708 1.287 thorpej #endif
1709 1.287 thorpej FPCPU_LOCK(&l->l_addr->u_pcb);
1710 1.235 thorpej
1711 1.261 thorpej oci = l->l_addr->u_pcb.pcb_fpcpu;
1712 1.235 thorpej if (oci == NULL) {
1713 1.287 thorpej FPCPU_UNLOCK(&l->l_addr->u_pcb);
1714 1.287 thorpej #if defined(MULTIPROCESSOR)
1715 1.287 thorpej splx(s);
1716 1.287 thorpej #endif
1717 1.219 thorpej return;
1718 1.235 thorpej }
1719 1.219 thorpej
1720 1.219 thorpej #if defined(MULTIPROCESSOR)
1721 1.225 thorpej if (oci == ci) {
1722 1.261 thorpej KASSERT(ci->ci_fpcurlwp == l);
1723 1.287 thorpej FPCPU_UNLOCK(&l->l_addr->u_pcb);
1724 1.287 thorpej splx(s);
1725 1.225 thorpej fpusave_cpu(ci, save);
1726 1.235 thorpej return;
1727 1.235 thorpej }
1728 1.235 thorpej
1729 1.261 thorpej KASSERT(oci->ci_fpcurlwp == l);
1730 1.235 thorpej alpha_send_ipi(oci->ci_cpuid, ipi);
1731 1.287 thorpej FPCPU_UNLOCK(&l->l_addr->u_pcb);
1732 1.235 thorpej
1733 1.235 thorpej spincount = 0;
1734 1.261 thorpej while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
1735 1.235 thorpej spincount++;
1736 1.235 thorpej delay(1000); /* XXX */
1737 1.235 thorpej if (spincount > 10000)
1738 1.235 thorpej panic("fpsave ipi didn't");
1739 1.219 thorpej }
1740 1.219 thorpej #else
1741 1.261 thorpej KASSERT(ci->ci_fpcurlwp == l);
1742 1.287 thorpej FPCPU_UNLOCK(&l->l_addr->u_pcb);
1743 1.225 thorpej fpusave_cpu(ci, save);
1744 1.219 thorpej #endif /* MULTIPROCESSOR */
1745 1.15 cgd }
1746 1.15 cgd
1747 1.15 cgd /*
1748 1.15 cgd * Wait "n" microseconds.
1749 1.15 cgd */
1750 1.32 cgd void
1751 1.15 cgd delay(n)
1752 1.32 cgd unsigned long n;
1753 1.15 cgd {
1754 1.216 thorpej unsigned long pcc0, pcc1, curcycle, cycles, usec;
1755 1.15 cgd
1756 1.216 thorpej if (n == 0)
1757 1.216 thorpej return;
1758 1.216 thorpej
1759 1.216 thorpej pcc0 = alpha_rpcc() & 0xffffffffUL;
1760 1.216 thorpej cycles = 0;
1761 1.216 thorpej usec = 0;
1762 1.216 thorpej
1763 1.216 thorpej while (usec <= n) {
1764 1.216 thorpej /*
1765 1.216 thorpej * Get the next CPU cycle count- assumes that we cannot
1766 1.216 thorpej * have had more than one 32 bit overflow.
1767 1.216 thorpej */
1768 1.216 thorpej pcc1 = alpha_rpcc() & 0xffffffffUL;
1769 1.216 thorpej if (pcc1 < pcc0)
1770 1.216 thorpej curcycle = (pcc1 + 0x100000000UL) - pcc0;
1771 1.216 thorpej else
1772 1.216 thorpej curcycle = pcc1 - pcc0;
1773 1.186 thorpej
1774 1.216 thorpej /*
1775 1.216 thorpej * We now have the number of processor cycles since we
1776 1.216 thorpej * last checked. Add the current cycle count to the
1777 1.216 thorpej * running total. If it's over cycles_per_usec, increment
1778 1.216 thorpej * the usec counter.
1779 1.216 thorpej */
1780 1.216 thorpej cycles += curcycle;
1781 1.216 thorpej while (cycles > cycles_per_usec) {
1782 1.216 thorpej usec++;
1783 1.216 thorpej cycles -= cycles_per_usec;
1784 1.216 thorpej }
1785 1.216 thorpej pcc0 = pcc1;
1786 1.216 thorpej }
1787 1.1 cgd }
1788 1.225 thorpej
1789 1.250 jdolecek #ifdef EXEC_ECOFF
1790 1.1 cgd void
1791 1.261 thorpej cpu_exec_ecoff_setregs(l, epp, stack)
1792 1.261 thorpej struct lwp *l;
1793 1.19 cgd struct exec_package *epp;
1794 1.5 christos u_long stack;
1795 1.1 cgd {
1796 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1797 1.1 cgd
1798 1.261 thorpej l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1799 1.1 cgd }
1800 1.1 cgd
1801 1.1 cgd /*
1802 1.1 cgd * cpu_exec_ecoff_hook():
1803 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1804 1.1 cgd *
1805 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1806 1.1 cgd *
1807 1.1 cgd */
1808 1.1 cgd int
1809 1.288 christos cpu_exec_ecoff_probe(l, epp)
1810 1.288 christos struct lwp *l;
1811 1.1 cgd struct exec_package *epp;
1812 1.1 cgd {
1813 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1814 1.171 cgd int error;
1815 1.1 cgd
1816 1.224 jdolecek if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1817 1.171 cgd error = 0;
1818 1.224 jdolecek else
1819 1.224 jdolecek error = ENOEXEC;
1820 1.1 cgd
1821 1.171 cgd return (error);
1822 1.1 cgd }
1823 1.250 jdolecek #endif /* EXEC_ECOFF */
1824 1.110 thorpej
1825 1.110 thorpej int
1826 1.110 thorpej alpha_pa_access(pa)
1827 1.110 thorpej u_long pa;
1828 1.110 thorpej {
1829 1.110 thorpej int i;
1830 1.110 thorpej
1831 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1832 1.110 thorpej if (pa < mem_clusters[i].start)
1833 1.110 thorpej continue;
1834 1.110 thorpej if ((pa - mem_clusters[i].start) >=
1835 1.110 thorpej (mem_clusters[i].size & ~PAGE_MASK))
1836 1.110 thorpej continue;
1837 1.110 thorpej return (mem_clusters[i].size & PAGE_MASK); /* prot */
1838 1.110 thorpej }
1839 1.197 thorpej
1840 1.197 thorpej /*
1841 1.197 thorpej * Address is not a memory address. If we're secure, disallow
1842 1.197 thorpej * access. Otherwise, grant read/write.
1843 1.197 thorpej */
1844 1.291 elad if (kauth_authorize_machdep(kauth_cred_get(),
1845 1.291 elad KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
1846 1.197 thorpej return (PROT_NONE);
1847 1.197 thorpej else
1848 1.197 thorpej return (PROT_READ | PROT_WRITE);
1849 1.110 thorpej }
1850 1.50 cgd
1851 1.50 cgd /* XXX XXX BEGIN XXX XXX */
1852 1.140 thorpej paddr_t alpha_XXX_dmamap_or; /* XXX */
1853 1.50 cgd /* XXX */
1854 1.140 thorpej paddr_t /* XXX */
1855 1.50 cgd alpha_XXX_dmamap(v) /* XXX */
1856 1.140 thorpej vaddr_t v; /* XXX */
1857 1.50 cgd { /* XXX */
1858 1.50 cgd /* XXX */
1859 1.51 cgd return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1860 1.50 cgd } /* XXX */
1861 1.50 cgd /* XXX XXX END XXX XXX */
1862 1.177 ross
1863 1.177 ross char *
1864 1.177 ross dot_conv(x)
1865 1.177 ross unsigned long x;
1866 1.177 ross {
1867 1.177 ross int i;
1868 1.177 ross char *xc;
1869 1.177 ross static int next;
1870 1.177 ross static char space[2][20];
1871 1.177 ross
1872 1.177 ross xc = space[next ^= 1] + sizeof space[0];
1873 1.177 ross *--xc = '\0';
1874 1.177 ross for (i = 0;; ++i) {
1875 1.177 ross if (i && (i & 3) == 0)
1876 1.177 ross *--xc = '.';
1877 1.285 christos *--xc = hexdigits[x & 0xf];
1878 1.177 ross x >>= 4;
1879 1.177 ross if (x == 0)
1880 1.177 ross break;
1881 1.177 ross }
1882 1.177 ross return xc;
1883 1.261 thorpej }
1884 1.261 thorpej
1885 1.261 thorpej void
1886 1.261 thorpej cpu_getmcontext(l, mcp, flags)
1887 1.261 thorpej struct lwp *l;
1888 1.261 thorpej mcontext_t *mcp;
1889 1.261 thorpej unsigned int *flags;
1890 1.261 thorpej {
1891 1.261 thorpej struct trapframe *frame = l->l_md.md_tf;
1892 1.261 thorpej __greg_t *gr = mcp->__gregs;
1893 1.264 nathanw __greg_t ras_pc;
1894 1.261 thorpej
1895 1.261 thorpej /* Save register context. */
1896 1.261 thorpej frametoreg(frame, (struct reg *)gr);
1897 1.261 thorpej /* XXX if there's a better, general way to get the USP of
1898 1.261 thorpej * an LWP that might or might not be curlwp, I'd like to know
1899 1.261 thorpej * about it.
1900 1.261 thorpej */
1901 1.261 thorpej if (l == curlwp) {
1902 1.261 thorpej gr[_REG_SP] = alpha_pal_rdusp();
1903 1.261 thorpej gr[_REG_UNIQUE] = alpha_pal_rdunique();
1904 1.261 thorpej } else {
1905 1.261 thorpej gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
1906 1.261 thorpej gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
1907 1.261 thorpej }
1908 1.261 thorpej gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1909 1.261 thorpej gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1910 1.264 nathanw
1911 1.264 nathanw if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1912 1.295 christos (void *) gr[_REG_PC])) != -1)
1913 1.264 nathanw gr[_REG_PC] = ras_pc;
1914 1.264 nathanw
1915 1.261 thorpej *flags |= _UC_CPU | _UC_UNIQUE;
1916 1.261 thorpej
1917 1.261 thorpej /* Save floating point register context, if any, and copy it. */
1918 1.265 nathanw if (l->l_md.md_flags & MDP_FPUSED) {
1919 1.261 thorpej fpusave_proc(l, 1);
1920 1.261 thorpej (void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
1921 1.261 thorpej sizeof (mcp->__fpregs));
1922 1.261 thorpej mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1923 1.261 thorpej *flags |= _UC_FPU;
1924 1.261 thorpej }
1925 1.261 thorpej }
1926 1.261 thorpej
1927 1.261 thorpej
1928 1.261 thorpej int
1929 1.261 thorpej cpu_setmcontext(l, mcp, flags)
1930 1.261 thorpej struct lwp *l;
1931 1.261 thorpej const mcontext_t *mcp;
1932 1.261 thorpej unsigned int flags;
1933 1.261 thorpej {
1934 1.261 thorpej struct trapframe *frame = l->l_md.md_tf;
1935 1.261 thorpej const __greg_t *gr = mcp->__gregs;
1936 1.261 thorpej
1937 1.261 thorpej /* Restore register context, if any. */
1938 1.261 thorpej if (flags & _UC_CPU) {
1939 1.261 thorpej /* Check for security violations first. */
1940 1.261 thorpej if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1941 1.261 thorpej (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1942 1.261 thorpej return (EINVAL);
1943 1.261 thorpej
1944 1.286 jdc regtoframe((const struct reg *)gr, l->l_md.md_tf);
1945 1.261 thorpej if (l == curlwp)
1946 1.261 thorpej alpha_pal_wrusp(gr[_REG_SP]);
1947 1.261 thorpej else
1948 1.261 thorpej l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
1949 1.261 thorpej frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1950 1.261 thorpej frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1951 1.261 thorpej }
1952 1.261 thorpej if (flags & _UC_UNIQUE) {
1953 1.261 thorpej if (l == curlwp)
1954 1.261 thorpej alpha_pal_wrunique(gr[_REG_UNIQUE]);
1955 1.261 thorpej else
1956 1.261 thorpej l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
1957 1.261 thorpej }
1958 1.261 thorpej /* Restore floating point register context, if any. */
1959 1.261 thorpej if (flags & _UC_FPU) {
1960 1.261 thorpej /* If we have an FP register context, get rid of it. */
1961 1.261 thorpej if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
1962 1.261 thorpej fpusave_proc(l, 0);
1963 1.261 thorpej (void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
1964 1.261 thorpej sizeof (l->l_addr->u_pcb.pcb_fp));
1965 1.261 thorpej l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
1966 1.271 nathanw l->l_md.md_flags |= MDP_FPUSED;
1967 1.261 thorpej }
1968 1.261 thorpej
1969 1.261 thorpej return (0);
1970 1.138 ross }
1971 1.297 yamt
1972 1.297 yamt /*
1973 1.297 yamt * Preempt the current process if in interrupt from user mode,
1974 1.297 yamt * or after the current trap/syscall if in system mode.
1975 1.297 yamt */
1976 1.297 yamt void
1977 1.297 yamt cpu_need_resched(struct cpu_info *ci, int flags)
1978 1.297 yamt {
1979 1.297 yamt #if defined(MULTIPROCESSOR)
1980 1.297 yamt bool immed = (flags & RESCHED_IMMED) != 0;
1981 1.297 yamt #endif /* defined(MULTIPROCESSOR) */
1982 1.297 yamt
1983 1.301 ad aston(ci->ci_data.cpu_onproc);
1984 1.297 yamt ci->ci_want_resched = 1;
1985 1.301 ad if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
1986 1.297 yamt #if defined(MULTIPROCESSOR)
1987 1.297 yamt if (immed && ci != curcpu()) {
1988 1.297 yamt alpha_send_ipi(ci->ci_cpuid, 0);
1989 1.297 yamt }
1990 1.297 yamt #endif /* defined(MULTIPROCESSOR) */
1991 1.297 yamt }
1992 1.297 yamt }
1993