machdep.c revision 1.322 1 1.322 rmind /* $NetBSD: machdep.c,v 1.322 2009/11/21 05:35:40 rmind Exp $ */
2 1.110 thorpej
3 1.110 thorpej /*-
4 1.211 thorpej * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 1.110 thorpej * All rights reserved.
6 1.110 thorpej *
7 1.110 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.110 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.110 thorpej * NASA Ames Research Center and by Chris G. Demetriou.
10 1.110 thorpej *
11 1.110 thorpej * Redistribution and use in source and binary forms, with or without
12 1.110 thorpej * modification, are permitted provided that the following conditions
13 1.110 thorpej * are met:
14 1.110 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.110 thorpej * notice, this list of conditions and the following disclaimer.
16 1.110 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.110 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.110 thorpej * documentation and/or other materials provided with the distribution.
19 1.110 thorpej *
20 1.110 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.110 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.110 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.110 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.110 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.110 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.110 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.110 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.110 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.110 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.110 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.110 thorpej */
32 1.1 cgd
33 1.1 cgd /*
34 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35 1.1 cgd * All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Author: Chris G. Demetriou
38 1.1 cgd *
39 1.1 cgd * Permission to use, copy, modify and distribute this software and
40 1.1 cgd * its documentation is hereby granted, provided that both the copyright
41 1.1 cgd * notice and this permission notice appear in all copies of the
42 1.1 cgd * software, derivative works or modified versions, and any portions
43 1.1 cgd * thereof, and that both notices appear in supporting documentation.
44 1.1 cgd *
45 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 1.1 cgd *
49 1.1 cgd * Carnegie Mellon requests users of this software to return to
50 1.1 cgd *
51 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
52 1.1 cgd * School of Computer Science
53 1.1 cgd * Carnegie Mellon University
54 1.1 cgd * Pittsburgh PA 15213-3890
55 1.1 cgd *
56 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
57 1.1 cgd * rights to redistribute these changes.
58 1.1 cgd */
59 1.74 cgd
60 1.129 jonathan #include "opt_ddb.h"
61 1.244 lukem #include "opt_kgdb.h"
62 1.315 apb #include "opt_modular.h"
63 1.147 thorpej #include "opt_multiprocessor.h"
64 1.123 thorpej #include "opt_dec_3000_300.h"
65 1.123 thorpej #include "opt_dec_3000_500.h"
66 1.127 thorpej #include "opt_compat_osf1.h"
67 1.250 jdolecek #include "opt_execfmt.h"
68 1.112 thorpej
69 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
70 1.75 cgd
71 1.322 rmind __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.322 2009/11/21 05:35:40 rmind Exp $");
72 1.1 cgd
73 1.1 cgd #include <sys/param.h>
74 1.1 cgd #include <sys/systm.h>
75 1.1 cgd #include <sys/signalvar.h>
76 1.1 cgd #include <sys/kernel.h>
77 1.297 yamt #include <sys/cpu.h>
78 1.1 cgd #include <sys/proc.h>
79 1.264 nathanw #include <sys/ras.h>
80 1.307 wrstuden #include <sys/sa.h>
81 1.307 wrstuden #include <sys/savar.h>
82 1.207 thorpej #include <sys/sched.h>
83 1.1 cgd #include <sys/reboot.h>
84 1.28 cgd #include <sys/device.h>
85 1.1 cgd #include <sys/malloc.h>
86 1.110 thorpej #include <sys/mman.h>
87 1.1 cgd #include <sys/msgbuf.h>
88 1.1 cgd #include <sys/ioctl.h>
89 1.1 cgd #include <sys/tty.h>
90 1.1 cgd #include <sys/user.h>
91 1.1 cgd #include <sys/exec.h>
92 1.320 matt #include <sys/exec_aout.h> /* for MID_* */
93 1.1 cgd #include <sys/exec_ecoff.h>
94 1.43 cgd #include <sys/core.h>
95 1.43 cgd #include <sys/kcore.h>
96 1.261 thorpej #include <sys/ucontext.h>
97 1.258 gehenna #include <sys/conf.h>
98 1.266 ragge #include <sys/ksyms.h>
99 1.290 elad #include <sys/kauth.h>
100 1.303 ad #include <sys/atomic.h>
101 1.303 ad #include <sys/cpu.h>
102 1.303 ad
103 1.43 cgd #include <machine/kcore.h>
104 1.241 ross #include <machine/fpu.h>
105 1.1 cgd
106 1.1 cgd #include <sys/mount.h>
107 1.1 cgd #include <sys/syscallargs.h>
108 1.1 cgd
109 1.112 thorpej #include <uvm/uvm_extern.h>
110 1.217 mrg #include <sys/sysctl.h>
111 1.112 thorpej
112 1.1 cgd #include <dev/cons.h>
113 1.1 cgd
114 1.81 thorpej #include <machine/autoconf.h>
115 1.1 cgd #include <machine/reg.h>
116 1.1 cgd #include <machine/rpb.h>
117 1.1 cgd #include <machine/prom.h>
118 1.258 gehenna #include <machine/cpuconf.h>
119 1.172 ross #include <machine/ieeefp.h>
120 1.148 thorpej
121 1.81 thorpej #ifdef DDB
122 1.81 thorpej #include <machine/db_machdep.h>
123 1.81 thorpej #include <ddb/db_access.h>
124 1.81 thorpej #include <ddb/db_sym.h>
125 1.81 thorpej #include <ddb/db_extern.h>
126 1.81 thorpej #include <ddb/db_interface.h>
127 1.233 thorpej #endif
128 1.233 thorpej
129 1.233 thorpej #ifdef KGDB
130 1.233 thorpej #include <sys/kgdb.h>
131 1.81 thorpej #endif
132 1.81 thorpej
133 1.229 sommerfe #ifdef DEBUG
134 1.229 sommerfe #include <machine/sigdebug.h>
135 1.229 sommerfe #endif
136 1.229 sommerfe
137 1.155 ross #include <machine/alpha.h>
138 1.143 matt
139 1.266 ragge #include "ksyms.h"
140 1.266 ragge
141 1.245 chs struct vm_map *mb_map = NULL;
142 1.245 chs struct vm_map *phys_map = NULL;
143 1.1 cgd
144 1.295 christos void *msgbufaddr;
145 1.86 leo
146 1.1 cgd int maxmem; /* max memory per process */
147 1.7 cgd
148 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
149 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
150 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
151 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
152 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
153 1.1 cgd
154 1.1 cgd int cputype; /* system type, from the RPB */
155 1.210 thorpej
156 1.210 thorpej int bootdev_debug = 0; /* patchable, or from DDB */
157 1.1 cgd
158 1.1 cgd /*
159 1.1 cgd * XXX We need an address to which we can assign things so that they
160 1.1 cgd * won't be optimized away because we didn't use the value.
161 1.1 cgd */
162 1.1 cgd u_int32_t no_optimize;
163 1.1 cgd
164 1.1 cgd /* the following is used externally (sysctl_hw) */
165 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
166 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
167 1.29 cgd char cpu_model[128];
168 1.1 cgd
169 1.1 cgd struct user *proc0paddr;
170 1.1 cgd
171 1.1 cgd /* Number of machine cycles per microsecond */
172 1.1 cgd u_int64_t cycles_per_usec;
173 1.1 cgd
174 1.280 wiz /* number of CPUs in the box. really! */
175 1.7 cgd int ncpus;
176 1.7 cgd
177 1.102 cgd struct bootinfo_kernel bootinfo;
178 1.81 thorpej
179 1.123 thorpej /* For built-in TCDS */
180 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
181 1.123 thorpej u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
182 1.123 thorpej #endif
183 1.123 thorpej
184 1.89 mjacob struct platform platform;
185 1.89 mjacob
186 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR)
187 1.81 thorpej /* start and end of kernel symbol table */
188 1.81 thorpej void *ksym_start, *ksym_end;
189 1.81 thorpej #endif
190 1.81 thorpej
191 1.30 cgd /* for cpu_sysctl() */
192 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
193 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
194 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
195 1.241 ross int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
196 1.30 cgd
197 1.110 thorpej /*
198 1.110 thorpej * XXX This should be dynamically sized, but we have the chicken-egg problem!
199 1.110 thorpej * XXX it should also be larger than it is, because not all of the mddt
200 1.110 thorpej * XXX clusters end up being used for VM.
201 1.110 thorpej */
202 1.110 thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
203 1.110 thorpej int mem_cluster_cnt;
204 1.110 thorpej
205 1.316 dsl int cpu_dump(void);
206 1.316 dsl int cpu_dumpsize(void);
207 1.316 dsl u_long cpu_dump_mempagecnt(void);
208 1.316 dsl void dumpsys(void);
209 1.316 dsl void identifycpu(void);
210 1.316 dsl void printregs(struct reg *);
211 1.33 cgd
212 1.55 cgd void
213 1.318 dsl alpha_init(u_long pfn, u_long ptb, u_long bim, u_long bip, u_long biv)
214 1.318 dsl /* pfn: first free PFN number */
215 1.318 dsl /* ptb: PFN of current level 1 page table */
216 1.318 dsl /* bim: bootinfo magic */
217 1.318 dsl /* bip: bootinfo pointer */
218 1.318 dsl /* biv: bootinfo version */
219 1.1 cgd {
220 1.95 thorpej extern char kernel_text[], _end[];
221 1.1 cgd struct mddt *mddtp;
222 1.110 thorpej struct mddt_cluster *memc;
223 1.7 cgd int i, mddtweird;
224 1.110 thorpej struct vm_physseg *vps;
225 1.140 thorpej vaddr_t kernstart, kernend;
226 1.140 thorpej paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
227 1.211 thorpej cpuid_t cpu_id;
228 1.211 thorpej struct cpu_info *ci;
229 1.1 cgd char *p;
230 1.209 thorpej const char *bootinfo_msg;
231 1.209 thorpej const struct cpuinit *c;
232 1.106 cgd
233 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
234 1.1 cgd
235 1.1 cgd /*
236 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
237 1.1 cgd * Make sure the instruction and data streams are consistent.
238 1.1 cgd */
239 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
240 1.32 cgd alpha_pal_wrfen(0);
241 1.37 cgd ALPHA_TBIA();
242 1.32 cgd alpha_pal_imb();
243 1.248 thorpej
244 1.248 thorpej /* Initialize the SCB. */
245 1.248 thorpej scb_init();
246 1.1 cgd
247 1.211 thorpej cpu_id = cpu_number();
248 1.211 thorpej
249 1.189 thorpej #if defined(MULTIPROCESSOR)
250 1.189 thorpej /*
251 1.189 thorpej * Set our SysValue to the address of our cpu_info structure.
252 1.189 thorpej * Secondary processors do this in their spinup trampoline.
253 1.189 thorpej */
254 1.237 thorpej alpha_pal_wrval((u_long)&cpu_info_primary);
255 1.237 thorpej cpu_info[cpu_id] = &cpu_info_primary;
256 1.189 thorpej #endif
257 1.189 thorpej
258 1.211 thorpej ci = curcpu();
259 1.211 thorpej ci->ci_cpuid = cpu_id;
260 1.211 thorpej
261 1.1 cgd /*
262 1.106 cgd * Get critical system information (if possible, from the
263 1.106 cgd * information provided by the boot program).
264 1.81 thorpej */
265 1.106 cgd bootinfo_msg = NULL;
266 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
267 1.102 cgd if (biv == 0) { /* backward compat */
268 1.102 cgd biv = *(u_long *)bip;
269 1.102 cgd bip += 8;
270 1.102 cgd }
271 1.102 cgd switch (biv) {
272 1.102 cgd case 1: {
273 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
274 1.102 cgd
275 1.102 cgd bootinfo.ssym = v1p->ssym;
276 1.102 cgd bootinfo.esym = v1p->esym;
277 1.106 cgd /* hwrpb may not be provided by boot block in v1 */
278 1.106 cgd if (v1p->hwrpb != NULL) {
279 1.106 cgd bootinfo.hwrpb_phys =
280 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys;
281 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize;
282 1.106 cgd } else {
283 1.106 cgd bootinfo.hwrpb_phys =
284 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys;
285 1.106 cgd bootinfo.hwrpb_size =
286 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size;
287 1.106 cgd }
288 1.247 thorpej memcpy(bootinfo.boot_flags, v1p->boot_flags,
289 1.102 cgd min(sizeof v1p->boot_flags,
290 1.102 cgd sizeof bootinfo.boot_flags));
291 1.247 thorpej memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
292 1.102 cgd min(sizeof v1p->booted_kernel,
293 1.102 cgd sizeof bootinfo.booted_kernel));
294 1.106 cgd /* booted dev not provided in bootinfo */
295 1.106 cgd init_prom_interface((struct rpb *)
296 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
297 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
298 1.102 cgd sizeof bootinfo.booted_dev);
299 1.81 thorpej break;
300 1.102 cgd }
301 1.81 thorpej default:
302 1.106 cgd bootinfo_msg = "unknown bootinfo version";
303 1.102 cgd goto nobootinfo;
304 1.81 thorpej }
305 1.102 cgd } else {
306 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo";
307 1.102 cgd nobootinfo:
308 1.102 cgd bootinfo.ssym = (u_long)_end;
309 1.102 cgd bootinfo.esym = (u_long)_end;
310 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
311 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
312 1.106 cgd init_prom_interface((struct rpb *)HWRPB_ADDR);
313 1.102 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
314 1.102 cgd sizeof bootinfo.boot_flags);
315 1.102 cgd prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
316 1.102 cgd sizeof bootinfo.booted_kernel);
317 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
318 1.102 cgd sizeof bootinfo.booted_dev);
319 1.102 cgd }
320 1.102 cgd
321 1.81 thorpej /*
322 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for
323 1.106 cgd * lots of things.
324 1.106 cgd */
325 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
326 1.123 thorpej
327 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
328 1.123 thorpej if (hwrpb->rpb_type == ST_DEC_3000_300 ||
329 1.123 thorpej hwrpb->rpb_type == ST_DEC_3000_500) {
330 1.123 thorpej prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
331 1.123 thorpej sizeof(dec_3000_scsiid));
332 1.123 thorpej prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
333 1.123 thorpej sizeof(dec_3000_scsifast));
334 1.123 thorpej }
335 1.123 thorpej #endif
336 1.106 cgd
337 1.106 cgd /*
338 1.106 cgd * Remember how many cycles there are per microsecond,
339 1.106 cgd * so that we can use delay(). Round up, for safety.
340 1.106 cgd */
341 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
342 1.106 cgd
343 1.106 cgd /*
344 1.251 wiz * Initialize the (temporary) bootstrap console interface, so
345 1.106 cgd * we can use printf until the VM system starts being setup.
346 1.106 cgd * The real console is initialized before then.
347 1.106 cgd */
348 1.106 cgd init_bootstrap_console();
349 1.106 cgd
350 1.106 cgd /* OUTPUT NOW ALLOWED */
351 1.106 cgd
352 1.106 cgd /* delayed from above */
353 1.106 cgd if (bootinfo_msg)
354 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
355 1.106 cgd bootinfo_msg, bim, bip, biv);
356 1.106 cgd
357 1.147 thorpej /* Initialize the trap vectors on the primary processor. */
358 1.147 thorpej trap_init();
359 1.1 cgd
360 1.1 cgd /*
361 1.263 thorpej * Find out this system's page size, and initialize
362 1.263 thorpej * PAGE_SIZE-dependent variables.
363 1.243 thorpej */
364 1.263 thorpej if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
365 1.263 thorpej panic("page size %lu != %d?!", hwrpb->rpb_page_size,
366 1.263 thorpej ALPHA_PGBYTES);
367 1.263 thorpej uvmexp.pagesize = hwrpb->rpb_page_size;
368 1.243 thorpej uvm_setpagesize();
369 1.243 thorpej
370 1.243 thorpej /*
371 1.106 cgd * Find out what hardware we're on, and do basic initialization.
372 1.106 cgd */
373 1.106 cgd cputype = hwrpb->rpb_type;
374 1.167 cgd if (cputype < 0) {
375 1.167 cgd /*
376 1.167 cgd * At least some white-box systems have SRM which
377 1.167 cgd * reports a systype that's the negative of their
378 1.167 cgd * blue-box counterpart.
379 1.167 cgd */
380 1.167 cgd cputype = -cputype;
381 1.167 cgd }
382 1.209 thorpej c = platform_lookup(cputype);
383 1.209 thorpej if (c == NULL) {
384 1.106 cgd platform_not_supported();
385 1.106 cgd /* NOTREACHED */
386 1.106 cgd }
387 1.209 thorpej (*c->init)();
388 1.106 cgd strcpy(cpu_model, platform.model);
389 1.106 cgd
390 1.106 cgd /*
391 1.251 wiz * Initialize the real console, so that the bootstrap console is
392 1.106 cgd * no longer necessary.
393 1.106 cgd */
394 1.169 thorpej (*platform.cons_init)();
395 1.106 cgd
396 1.106 cgd #ifdef DIAGNOSTIC
397 1.106 cgd /* Paranoid sanity checking */
398 1.106 cgd
399 1.199 soren /* We should always be running on the primary. */
400 1.211 thorpej assert(hwrpb->rpb_primary_cpu_id == cpu_id);
401 1.106 cgd
402 1.116 mjacob /*
403 1.116 mjacob * On single-CPU systypes, the primary should always be CPU 0,
404 1.116 mjacob * except on Alpha 8200 systems where the CPU id is related
405 1.116 mjacob * to the VID, which is related to the Turbo Laser node id.
406 1.116 mjacob */
407 1.106 cgd if (cputype != ST_DEC_21000)
408 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0);
409 1.106 cgd #endif
410 1.106 cgd
411 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */
412 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
413 1.106 cgd /*
414 1.106 cgd * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
415 1.106 cgd * XXX pmap_uses_prom_console() evaluates to non-zero.)
416 1.106 cgd */
417 1.106 cgd #endif
418 1.95 thorpej
419 1.95 thorpej /*
420 1.101 cgd * Find the beginning and end of the kernel (and leave a
421 1.101 cgd * bit of space before the beginning for the bootstrap
422 1.101 cgd * stack).
423 1.95 thorpej */
424 1.201 kleink kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
425 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR)
426 1.102 cgd ksym_start = (void *)bootinfo.ssym;
427 1.102 cgd ksym_end = (void *)bootinfo.esym;
428 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
429 1.102 cgd #else
430 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)_end);
431 1.95 thorpej #endif
432 1.95 thorpej
433 1.110 thorpej kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
434 1.110 thorpej kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
435 1.110 thorpej
436 1.95 thorpej /*
437 1.1 cgd * Find out how much memory is available, by looking at
438 1.7 cgd * the memory cluster descriptors. This also tries to do
439 1.7 cgd * its best to detect things things that have never been seen
440 1.7 cgd * before...
441 1.1 cgd */
442 1.296 yamt mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
443 1.7 cgd
444 1.110 thorpej /* MDDT SANITY CHECKING */
445 1.7 cgd mddtweird = 0;
446 1.110 thorpej if (mddtp->mddt_cluster_cnt < 2) {
447 1.7 cgd mddtweird = 1;
448 1.160 thorpej printf("WARNING: weird number of mem clusters: %lu\n",
449 1.110 thorpej mddtp->mddt_cluster_cnt);
450 1.7 cgd }
451 1.7 cgd
452 1.110 thorpej #if 0
453 1.110 thorpej printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
454 1.110 thorpej #endif
455 1.110 thorpej
456 1.110 thorpej for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
457 1.110 thorpej memc = &mddtp->mddt_clusters[i];
458 1.110 thorpej #if 0
459 1.110 thorpej printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
460 1.110 thorpej memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
461 1.110 thorpej #endif
462 1.110 thorpej totalphysmem += memc->mddt_pg_cnt;
463 1.110 thorpej if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
464 1.110 thorpej mem_clusters[mem_cluster_cnt].start =
465 1.110 thorpej ptoa(memc->mddt_pfn);
466 1.110 thorpej mem_clusters[mem_cluster_cnt].size =
467 1.110 thorpej ptoa(memc->mddt_pg_cnt);
468 1.110 thorpej if (memc->mddt_usage & MDDT_mbz ||
469 1.110 thorpej memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
470 1.110 thorpej memc->mddt_usage & MDDT_PALCODE)
471 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
472 1.110 thorpej PROT_READ;
473 1.110 thorpej else
474 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
475 1.110 thorpej PROT_READ | PROT_WRITE | PROT_EXEC;
476 1.110 thorpej mem_cluster_cnt++;
477 1.110 thorpej }
478 1.110 thorpej
479 1.110 thorpej if (memc->mddt_usage & MDDT_mbz) {
480 1.7 cgd mddtweird = 1;
481 1.110 thorpej printf("WARNING: mem cluster %d has weird "
482 1.110 thorpej "usage 0x%lx\n", i, memc->mddt_usage);
483 1.110 thorpej unknownmem += memc->mddt_pg_cnt;
484 1.110 thorpej continue;
485 1.7 cgd }
486 1.110 thorpej if (memc->mddt_usage & MDDT_NONVOLATILE) {
487 1.110 thorpej /* XXX should handle these... */
488 1.110 thorpej printf("WARNING: skipping non-volatile mem "
489 1.110 thorpej "cluster %d\n", i);
490 1.110 thorpej unusedmem += memc->mddt_pg_cnt;
491 1.110 thorpej continue;
492 1.110 thorpej }
493 1.110 thorpej if (memc->mddt_usage & MDDT_PALCODE) {
494 1.110 thorpej resvmem += memc->mddt_pg_cnt;
495 1.110 thorpej continue;
496 1.110 thorpej }
497 1.110 thorpej
498 1.110 thorpej /*
499 1.110 thorpej * We have a memory cluster available for system
500 1.110 thorpej * software use. We must determine if this cluster
501 1.110 thorpej * holds the kernel.
502 1.110 thorpej */
503 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
504 1.110 thorpej /*
505 1.110 thorpej * XXX If the kernel uses the PROM console, we only use the
506 1.110 thorpej * XXX memory after the kernel in the first system segment,
507 1.110 thorpej * XXX to avoid clobbering prom mapping, data, etc.
508 1.110 thorpej */
509 1.110 thorpej if (!pmap_uses_prom_console() || physmem == 0) {
510 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
511 1.110 thorpej physmem += memc->mddt_pg_cnt;
512 1.110 thorpej pfn0 = memc->mddt_pfn;
513 1.110 thorpej pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
514 1.110 thorpej if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
515 1.110 thorpej /*
516 1.110 thorpej * Must compute the location of the kernel
517 1.110 thorpej * within the segment.
518 1.110 thorpej */
519 1.110 thorpej #if 0
520 1.110 thorpej printf("Cluster %d contains kernel\n", i);
521 1.110 thorpej #endif
522 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
523 1.110 thorpej if (!pmap_uses_prom_console()) {
524 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
525 1.110 thorpej if (pfn0 < kernstartpfn) {
526 1.110 thorpej /*
527 1.110 thorpej * There is a chunk before the kernel.
528 1.110 thorpej */
529 1.110 thorpej #if 0
530 1.110 thorpej printf("Loading chunk before kernel: "
531 1.110 thorpej "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
532 1.110 thorpej #endif
533 1.112 thorpej uvm_page_physload(pfn0, kernstartpfn,
534 1.135 thorpej pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
535 1.110 thorpej }
536 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
537 1.110 thorpej }
538 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
539 1.110 thorpej if (kernendpfn < pfn1) {
540 1.110 thorpej /*
541 1.110 thorpej * There is a chunk after the kernel.
542 1.110 thorpej */
543 1.110 thorpej #if 0
544 1.110 thorpej printf("Loading chunk after kernel: "
545 1.110 thorpej "0x%lx / 0x%lx\n", kernendpfn, pfn1);
546 1.110 thorpej #endif
547 1.112 thorpej uvm_page_physload(kernendpfn, pfn1,
548 1.135 thorpej kernendpfn, pfn1, VM_FREELIST_DEFAULT);
549 1.110 thorpej }
550 1.110 thorpej } else {
551 1.110 thorpej /*
552 1.110 thorpej * Just load this cluster as one chunk.
553 1.110 thorpej */
554 1.110 thorpej #if 0
555 1.110 thorpej printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
556 1.110 thorpej pfn0, pfn1);
557 1.110 thorpej #endif
558 1.135 thorpej uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
559 1.135 thorpej VM_FREELIST_DEFAULT);
560 1.7 cgd }
561 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
562 1.110 thorpej }
563 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
564 1.7 cgd }
565 1.7 cgd
566 1.110 thorpej /*
567 1.110 thorpej * Dump out the MDDT if it looks odd...
568 1.110 thorpej */
569 1.7 cgd if (mddtweird) {
570 1.46 christos printf("\n");
571 1.46 christos printf("complete memory cluster information:\n");
572 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
573 1.46 christos printf("mddt %d:\n", i);
574 1.46 christos printf("\tpfn %lx\n",
575 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
576 1.46 christos printf("\tcnt %lx\n",
577 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
578 1.46 christos printf("\ttest %lx\n",
579 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
580 1.46 christos printf("\tbva %lx\n",
581 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
582 1.46 christos printf("\tbpa %lx\n",
583 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
584 1.46 christos printf("\tbcksum %lx\n",
585 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
586 1.46 christos printf("\tusage %lx\n",
587 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
588 1.2 cgd }
589 1.46 christos printf("\n");
590 1.2 cgd }
591 1.2 cgd
592 1.7 cgd if (totalphysmem == 0)
593 1.1 cgd panic("can't happen: system seems to have no memory!");
594 1.1 cgd maxmem = physmem;
595 1.7 cgd #if 0
596 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
597 1.46 christos printf("physmem = %d\n", physmem);
598 1.46 christos printf("resvmem = %d\n", resvmem);
599 1.46 christos printf("unusedmem = %d\n", unusedmem);
600 1.46 christos printf("unknownmem = %d\n", unknownmem);
601 1.7 cgd #endif
602 1.7 cgd
603 1.1 cgd /*
604 1.1 cgd * Initialize error message buffer (at end of core).
605 1.1 cgd */
606 1.110 thorpej {
607 1.204 enami vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
608 1.203 enami vsize_t reqsz = sz;
609 1.110 thorpej
610 1.110 thorpej vps = &vm_physmem[vm_nphysseg - 1];
611 1.110 thorpej
612 1.110 thorpej /* shrink so that it'll fit in the last segment */
613 1.110 thorpej if ((vps->avail_end - vps->avail_start) < atop(sz))
614 1.110 thorpej sz = ptoa(vps->avail_end - vps->avail_start);
615 1.110 thorpej
616 1.110 thorpej vps->end -= atop(sz);
617 1.110 thorpej vps->avail_end -= atop(sz);
618 1.295 christos msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
619 1.110 thorpej initmsgbuf(msgbufaddr, sz);
620 1.110 thorpej
621 1.110 thorpej /* Remove the last segment if it now has no pages. */
622 1.110 thorpej if (vps->start == vps->end)
623 1.110 thorpej vm_nphysseg--;
624 1.110 thorpej
625 1.110 thorpej /* warn if the message buffer had to be shrunk */
626 1.203 enami if (sz != reqsz)
627 1.203 enami printf("WARNING: %ld bytes not available for msgbuf "
628 1.203 enami "in last cluster (%ld used)\n", reqsz, sz);
629 1.268 thorpej
630 1.110 thorpej }
631 1.239 thorpej
632 1.239 thorpej /*
633 1.268 thorpej * NOTE: It is safe to use uvm_pageboot_alloc() before
634 1.268 thorpej * pmap_bootstrap() because our pmap_virtual_space()
635 1.268 thorpej * returns compile-time constants.
636 1.268 thorpej */
637 1.268 thorpej
638 1.268 thorpej /*
639 1.95 thorpej * Init mapping for u page(s) for proc 0
640 1.1 cgd */
641 1.261 thorpej lwp0.l_addr = proc0paddr =
642 1.268 thorpej (struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
643 1.1 cgd
644 1.1 cgd /*
645 1.1 cgd * Initialize the virtual memory system, and set the
646 1.1 cgd * page table base register in proc 0's PCB.
647 1.1 cgd */
648 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
649 1.144 thorpej hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
650 1.1 cgd
651 1.1 cgd /*
652 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
653 1.3 cgd * address.
654 1.3 cgd */
655 1.261 thorpej lwp0.l_md.md_pcbpaddr =
656 1.140 thorpej (struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
657 1.3 cgd
658 1.3 cgd /*
659 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
660 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
661 1.3 cgd */
662 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
663 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
664 1.261 thorpej lwp0.l_md.md_tf =
665 1.81 thorpej (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
666 1.235 thorpej simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
667 1.189 thorpej
668 1.208 thorpej /* Indicate that proc0 has a CPU. */
669 1.261 thorpej lwp0.l_cpu = ci;
670 1.1 cgd
671 1.1 cgd /*
672 1.25 cgd * Look at arguments passed to us and compute boothowto.
673 1.8 cgd */
674 1.1 cgd
675 1.8 cgd boothowto = RB_SINGLE;
676 1.1 cgd #ifdef KADB
677 1.1 cgd boothowto |= RB_KDB;
678 1.1 cgd #endif
679 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
680 1.26 cgd /*
681 1.26 cgd * Note that we'd really like to differentiate case here,
682 1.26 cgd * but the Alpha AXP Architecture Reference Manual
683 1.26 cgd * says that we shouldn't.
684 1.26 cgd */
685 1.8 cgd switch (*p) {
686 1.26 cgd case 'a': /* autoboot */
687 1.26 cgd case 'A':
688 1.26 cgd boothowto &= ~RB_SINGLE;
689 1.21 cgd break;
690 1.21 cgd
691 1.43 cgd #ifdef DEBUG
692 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
693 1.43 cgd case 'C':
694 1.43 cgd boothowto |= RB_DUMP;
695 1.43 cgd break;
696 1.43 cgd #endif
697 1.43 cgd
698 1.81 thorpej #if defined(KGDB) || defined(DDB)
699 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
700 1.81 thorpej case 'D':
701 1.81 thorpej boothowto |= RB_KDB;
702 1.81 thorpej break;
703 1.81 thorpej #endif
704 1.81 thorpej
705 1.36 cgd case 'h': /* always halt, never reboot */
706 1.36 cgd case 'H':
707 1.36 cgd boothowto |= RB_HALT;
708 1.8 cgd break;
709 1.8 cgd
710 1.21 cgd #if 0
711 1.8 cgd case 'm': /* mini root present in memory */
712 1.26 cgd case 'M':
713 1.8 cgd boothowto |= RB_MINIROOT;
714 1.8 cgd break;
715 1.21 cgd #endif
716 1.36 cgd
717 1.36 cgd case 'n': /* askname */
718 1.36 cgd case 'N':
719 1.36 cgd boothowto |= RB_ASKNAME;
720 1.65 cgd break;
721 1.65 cgd
722 1.65 cgd case 's': /* single-user (default, supported for sanity) */
723 1.65 cgd case 'S':
724 1.65 cgd boothowto |= RB_SINGLE;
725 1.221 jdolecek break;
726 1.221 jdolecek
727 1.221 jdolecek case 'q': /* quiet boot */
728 1.221 jdolecek case 'Q':
729 1.221 jdolecek boothowto |= AB_QUIET;
730 1.221 jdolecek break;
731 1.221 jdolecek
732 1.221 jdolecek case 'v': /* verbose boot */
733 1.221 jdolecek case 'V':
734 1.221 jdolecek boothowto |= AB_VERBOSE;
735 1.119 thorpej break;
736 1.119 thorpej
737 1.119 thorpej case '-':
738 1.119 thorpej /*
739 1.119 thorpej * Just ignore this. It's not required, but it's
740 1.119 thorpej * common for it to be passed regardless.
741 1.119 thorpej */
742 1.65 cgd break;
743 1.65 cgd
744 1.65 cgd default:
745 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
746 1.36 cgd break;
747 1.1 cgd }
748 1.1 cgd }
749 1.1 cgd
750 1.302 ad /*
751 1.302 ad * Perform any initial kernel patches based on the running system.
752 1.302 ad * We may perform more later if we attach additional CPUs.
753 1.302 ad */
754 1.302 ad alpha_patch(false);
755 1.136 mjacob
756 1.136 mjacob /*
757 1.280 wiz * Figure out the number of CPUs in the box, from RPB fields.
758 1.136 mjacob * Really. We mean it.
759 1.136 mjacob */
760 1.136 mjacob for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
761 1.136 mjacob struct pcs *pcsp;
762 1.136 mjacob
763 1.144 thorpej pcsp = LOCATE_PCS(hwrpb, i);
764 1.136 mjacob if ((pcsp->pcs_flags & PCS_PP) != 0)
765 1.136 mjacob ncpus++;
766 1.136 mjacob }
767 1.136 mjacob
768 1.7 cgd /*
769 1.106 cgd * Initialize debuggers, and break into them if appropriate.
770 1.106 cgd */
771 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR)
772 1.312 martin ksyms_addsyms_elf((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
773 1.159 mjacob ksym_start, ksym_end);
774 1.234 thorpej #endif
775 1.234 thorpej
776 1.234 thorpej if (boothowto & RB_KDB) {
777 1.234 thorpej #if defined(KGDB)
778 1.234 thorpej kgdb_debug_init = 1;
779 1.234 thorpej kgdb_connect(1);
780 1.234 thorpej #elif defined(DDB)
781 1.106 cgd Debugger();
782 1.106 cgd #endif
783 1.234 thorpej }
784 1.234 thorpej
785 1.298 tsutsui #ifdef DIAGNOSTIC
786 1.106 cgd /*
787 1.298 tsutsui * Check our clock frequency, from RPB fields.
788 1.106 cgd */
789 1.298 tsutsui if ((hwrpb->rpb_intr_freq >> 12) != 1024)
790 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
791 1.106 cgd hwrpb->rpb_intr_freq, hz);
792 1.106 cgd #endif
793 1.95 thorpej }
794 1.95 thorpej
795 1.18 cgd void
796 1.319 cegger consinit(void)
797 1.1 cgd {
798 1.81 thorpej
799 1.106 cgd /*
800 1.106 cgd * Everything related to console initialization is done
801 1.106 cgd * in alpha_init().
802 1.106 cgd */
803 1.106 cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
804 1.106 cgd printf("consinit: %susing prom console\n",
805 1.106 cgd pmap_uses_prom_console() ? "" : "not ");
806 1.81 thorpej #endif
807 1.1 cgd }
808 1.118 thorpej
809 1.18 cgd void
810 1.319 cegger cpu_startup(void)
811 1.1 cgd {
812 1.140 thorpej vaddr_t minaddr, maxaddr;
813 1.173 lukem char pbuf[9];
814 1.40 cgd #if defined(DEBUG)
815 1.1 cgd extern int pmapdebug;
816 1.1 cgd int opmapdebug = pmapdebug;
817 1.1 cgd
818 1.1 cgd pmapdebug = 0;
819 1.1 cgd #endif
820 1.1 cgd
821 1.1 cgd /*
822 1.1 cgd * Good {morning,afternoon,evening,night}.
823 1.1 cgd */
824 1.284 lukem printf("%s%s", copyright, version);
825 1.1 cgd identifycpu();
826 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
827 1.173 lukem printf("total memory = %s\n", pbuf);
828 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
829 1.173 lukem printf("(%s reserved for PROM, ", pbuf);
830 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
831 1.173 lukem printf("%s used by NetBSD)\n", pbuf);
832 1.173 lukem if (unusedmem) {
833 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
834 1.173 lukem printf("WARNING: unused memory = %s\n", pbuf);
835 1.173 lukem }
836 1.173 lukem if (unknownmem) {
837 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
838 1.173 lukem printf("WARNING: %s of memory with unknown purpose\n", pbuf);
839 1.173 lukem }
840 1.1 cgd
841 1.279 pk minaddr = 0;
842 1.240 thorpej
843 1.1 cgd /*
844 1.1 cgd * Allocate a submap for physio
845 1.1 cgd */
846 1.112 thorpej phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
847 1.294 thorpej VM_PHYS_SIZE, 0, false, NULL);
848 1.1 cgd
849 1.1 cgd /*
850 1.164 thorpej * No need to allocate an mbuf cluster submap. Mbuf clusters
851 1.164 thorpej * are allocated via the pool allocator, and we use K0SEG to
852 1.164 thorpej * map those pages.
853 1.1 cgd */
854 1.1 cgd
855 1.40 cgd #if defined(DEBUG)
856 1.1 cgd pmapdebug = opmapdebug;
857 1.1 cgd #endif
858 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
859 1.173 lukem printf("avail memory = %s\n", pbuf);
860 1.139 thorpej #if 0
861 1.139 thorpej {
862 1.139 thorpej extern u_long pmap_pages_stolen;
863 1.173 lukem
864 1.173 lukem format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
865 1.173 lukem printf("stolen memory for VM structures = %s\n", pbuf);
866 1.139 thorpej }
867 1.112 thorpej #endif
868 1.151 thorpej
869 1.151 thorpej /*
870 1.151 thorpej * Set up the HWPCB so that it's safe to configure secondary
871 1.151 thorpej * CPUs.
872 1.151 thorpej */
873 1.151 thorpej hwrpb_primary_init();
874 1.104 thorpej }
875 1.104 thorpej
876 1.104 thorpej /*
877 1.104 thorpej * Retrieve the platform name from the DSR.
878 1.104 thorpej */
879 1.104 thorpej const char *
880 1.319 cegger alpha_dsr_sysname(void)
881 1.104 thorpej {
882 1.104 thorpej struct dsrdb *dsr;
883 1.104 thorpej const char *sysname;
884 1.104 thorpej
885 1.104 thorpej /*
886 1.104 thorpej * DSR does not exist on early HWRPB versions.
887 1.104 thorpej */
888 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
889 1.104 thorpej return (NULL);
890 1.104 thorpej
891 1.296 yamt dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
892 1.296 yamt sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
893 1.104 thorpej sizeof(u_int64_t)));
894 1.104 thorpej return (sysname);
895 1.104 thorpej }
896 1.104 thorpej
897 1.104 thorpej /*
898 1.104 thorpej * Lookup the system specified system variation in the provided table,
899 1.104 thorpej * returning the model string on match.
900 1.104 thorpej */
901 1.104 thorpej const char *
902 1.317 dsl alpha_variation_name(u_int64_t variation, const struct alpha_variation_table *avtp)
903 1.104 thorpej {
904 1.104 thorpej int i;
905 1.104 thorpej
906 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++)
907 1.104 thorpej if (avtp[i].avt_variation == variation)
908 1.104 thorpej return (avtp[i].avt_model);
909 1.104 thorpej return (NULL);
910 1.104 thorpej }
911 1.104 thorpej
912 1.104 thorpej /*
913 1.104 thorpej * Generate a default platform name based for unknown system variations.
914 1.104 thorpej */
915 1.104 thorpej const char *
916 1.319 cegger alpha_unknown_sysname(void)
917 1.104 thorpej {
918 1.105 thorpej static char s[128]; /* safe size */
919 1.104 thorpej
920 1.105 thorpej sprintf(s, "%s family, unknown model variation 0x%lx",
921 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK);
922 1.104 thorpej return ((const char *)s);
923 1.1 cgd }
924 1.1 cgd
925 1.33 cgd void
926 1.319 cegger identifycpu(void)
927 1.1 cgd {
928 1.177 ross char *s;
929 1.218 thorpej int i;
930 1.1 cgd
931 1.7 cgd /*
932 1.7 cgd * print out CPU identification information.
933 1.7 cgd */
934 1.177 ross printf("%s", cpu_model);
935 1.177 ross for(s = cpu_model; *s; ++s)
936 1.177 ross if(strncasecmp(s, "MHz", 3) == 0)
937 1.177 ross goto skipMHz;
938 1.177 ross printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
939 1.177 ross skipMHz:
940 1.218 thorpej printf(", s/n ");
941 1.218 thorpej for (i = 0; i < 10; i++)
942 1.218 thorpej printf("%c", hwrpb->rpb_ssn[i]);
943 1.177 ross printf("\n");
944 1.46 christos printf("%ld byte page size, %d processor%s.\n",
945 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
946 1.7 cgd #if 0
947 1.7 cgd /* this isn't defined for any systems that we run on? */
948 1.46 christos printf("serial number 0x%lx 0x%lx\n",
949 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
950 1.7 cgd
951 1.7 cgd /* and these aren't particularly useful! */
952 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
953 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
954 1.7 cgd #endif
955 1.1 cgd }
956 1.1 cgd
957 1.1 cgd int waittime = -1;
958 1.7 cgd struct pcb dumppcb;
959 1.1 cgd
960 1.18 cgd void
961 1.317 dsl cpu_reboot(int howto, char *bootstr)
962 1.1 cgd {
963 1.148 thorpej #if defined(MULTIPROCESSOR)
964 1.225 thorpej u_long cpu_id = cpu_number();
965 1.321 mhitch u_long wait_mask;
966 1.225 thorpej int i;
967 1.148 thorpej #endif
968 1.148 thorpej
969 1.225 thorpej /* If "always halt" was specified as a boot flag, obey. */
970 1.225 thorpej if ((boothowto & RB_HALT) != 0)
971 1.225 thorpej howto |= RB_HALT;
972 1.225 thorpej
973 1.225 thorpej boothowto = howto;
974 1.1 cgd
975 1.1 cgd /* If system is cold, just halt. */
976 1.1 cgd if (cold) {
977 1.225 thorpej boothowto |= RB_HALT;
978 1.1 cgd goto haltsys;
979 1.1 cgd }
980 1.1 cgd
981 1.225 thorpej if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
982 1.1 cgd waittime = 0;
983 1.7 cgd vfs_shutdown();
984 1.1 cgd /*
985 1.1 cgd * If we've been adjusting the clock, the todr
986 1.1 cgd * will be out of synch; adjust it now.
987 1.1 cgd */
988 1.1 cgd resettodr();
989 1.1 cgd }
990 1.1 cgd
991 1.1 cgd /* Disable interrupts. */
992 1.1 cgd splhigh();
993 1.1 cgd
994 1.225 thorpej #if defined(MULTIPROCESSOR)
995 1.225 thorpej /*
996 1.225 thorpej * Halt all other CPUs. If we're not the primary, the
997 1.225 thorpej * primary will spin, waiting for us to halt.
998 1.225 thorpej */
999 1.321 mhitch cpu_id = cpu_number(); /* may have changed cpu */
1000 1.321 mhitch wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
1001 1.321 mhitch
1002 1.225 thorpej alpha_broadcast_ipi(ALPHA_IPI_HALT);
1003 1.225 thorpej
1004 1.283 mhitch /* Ensure any CPUs paused by DDB resume execution so they can halt */
1005 1.283 mhitch cpus_paused = 0;
1006 1.283 mhitch
1007 1.225 thorpej for (i = 0; i < 10000; i++) {
1008 1.225 thorpej alpha_mb();
1009 1.225 thorpej if (cpus_running == wait_mask)
1010 1.225 thorpej break;
1011 1.225 thorpej delay(1000);
1012 1.225 thorpej }
1013 1.225 thorpej alpha_mb();
1014 1.225 thorpej if (cpus_running != wait_mask)
1015 1.225 thorpej printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1016 1.225 thorpej cpus_running);
1017 1.225 thorpej #endif /* MULTIPROCESSOR */
1018 1.225 thorpej
1019 1.7 cgd /* If rebooting and a dump is requested do it. */
1020 1.42 cgd #if 0
1021 1.225 thorpej if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1022 1.42 cgd #else
1023 1.225 thorpej if (boothowto & RB_DUMP)
1024 1.42 cgd #endif
1025 1.1 cgd dumpsys();
1026 1.6 cgd
1027 1.12 cgd haltsys:
1028 1.12 cgd
1029 1.6 cgd /* run any shutdown hooks */
1030 1.6 cgd doshutdownhooks();
1031 1.148 thorpej
1032 1.308 dyoung pmf_system_shutdown(boothowto);
1033 1.308 dyoung
1034 1.7 cgd #ifdef BOOTKEY
1035 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1036 1.117 drochner cnpollc(1); /* for proper keyboard command handling */
1037 1.7 cgd cngetc();
1038 1.117 drochner cnpollc(0);
1039 1.46 christos printf("\n");
1040 1.7 cgd #endif
1041 1.7 cgd
1042 1.124 thorpej /* Finally, powerdown/halt/reboot the system. */
1043 1.225 thorpej if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1044 1.124 thorpej platform.powerdown != NULL) {
1045 1.124 thorpej (*platform.powerdown)();
1046 1.124 thorpej printf("WARNING: powerdown failed!\n");
1047 1.124 thorpej }
1048 1.225 thorpej printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1049 1.225 thorpej #if defined(MULTIPROCESSOR)
1050 1.225 thorpej if (cpu_id != hwrpb->rpb_primary_cpu_id)
1051 1.225 thorpej cpu_halt();
1052 1.225 thorpej else
1053 1.225 thorpej #endif
1054 1.225 thorpej prom_halt(boothowto & RB_HALT);
1055 1.1 cgd /*NOTREACHED*/
1056 1.1 cgd }
1057 1.1 cgd
1058 1.7 cgd /*
1059 1.7 cgd * These variables are needed by /sbin/savecore
1060 1.7 cgd */
1061 1.253 tsutsui u_int32_t dumpmag = 0x8fca0101; /* magic number */
1062 1.7 cgd int dumpsize = 0; /* pages */
1063 1.7 cgd long dumplo = 0; /* blocks */
1064 1.7 cgd
1065 1.7 cgd /*
1066 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1067 1.43 cgd */
1068 1.43 cgd int
1069 1.319 cegger cpu_dumpsize(void)
1070 1.43 cgd {
1071 1.43 cgd int size;
1072 1.43 cgd
1073 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1074 1.110 thorpej ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1075 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
1076 1.43 cgd return -1;
1077 1.43 cgd
1078 1.43 cgd return (1);
1079 1.43 cgd }
1080 1.43 cgd
1081 1.43 cgd /*
1082 1.110 thorpej * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1083 1.110 thorpej */
1084 1.110 thorpej u_long
1085 1.319 cegger cpu_dump_mempagecnt(void)
1086 1.110 thorpej {
1087 1.110 thorpej u_long i, n;
1088 1.110 thorpej
1089 1.110 thorpej n = 0;
1090 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++)
1091 1.110 thorpej n += atop(mem_clusters[i].size);
1092 1.110 thorpej return (n);
1093 1.110 thorpej }
1094 1.110 thorpej
1095 1.110 thorpej /*
1096 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
1097 1.43 cgd */
1098 1.43 cgd int
1099 1.319 cegger cpu_dump(void)
1100 1.43 cgd {
1101 1.316 dsl int (*dump)(dev_t, daddr_t, void *, size_t);
1102 1.107 cgd char buf[dbtob(1)];
1103 1.107 cgd kcore_seg_t *segp;
1104 1.107 cgd cpu_kcore_hdr_t *cpuhdrp;
1105 1.107 cgd phys_ram_seg_t *memsegp;
1106 1.258 gehenna const struct bdevsw *bdev;
1107 1.110 thorpej int i;
1108 1.43 cgd
1109 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1110 1.258 gehenna if (bdev == NULL)
1111 1.258 gehenna return (ENXIO);
1112 1.258 gehenna dump = bdev->d_dump;
1113 1.43 cgd
1114 1.246 thorpej memset(buf, 0, sizeof buf);
1115 1.43 cgd segp = (kcore_seg_t *)buf;
1116 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1117 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1118 1.107 cgd ALIGN(sizeof(*cpuhdrp))];
1119 1.43 cgd
1120 1.43 cgd /*
1121 1.43 cgd * Generate a segment header.
1122 1.43 cgd */
1123 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1124 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1125 1.43 cgd
1126 1.43 cgd /*
1127 1.107 cgd * Add the machine-dependent header info.
1128 1.43 cgd */
1129 1.140 thorpej cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1130 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
1131 1.110 thorpej cpuhdrp->nmemsegs = mem_cluster_cnt;
1132 1.107 cgd
1133 1.107 cgd /*
1134 1.107 cgd * Fill in the memory segment descriptors.
1135 1.107 cgd */
1136 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1137 1.110 thorpej memsegp[i].start = mem_clusters[i].start;
1138 1.110 thorpej memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1139 1.110 thorpej }
1140 1.43 cgd
1141 1.295 christos return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1142 1.43 cgd }
1143 1.43 cgd
1144 1.43 cgd /*
1145 1.68 gwr * This is called by main to set dumplo and dumpsize.
1146 1.262 thorpej * Dumps always skip the first PAGE_SIZE of disk space
1147 1.7 cgd * in case there might be a disk label stored there.
1148 1.7 cgd * If there is extra space, put dump at the end to
1149 1.7 cgd * reduce the chance that swapping trashes it.
1150 1.7 cgd */
1151 1.7 cgd void
1152 1.319 cegger cpu_dumpconf(void)
1153 1.7 cgd {
1154 1.258 gehenna const struct bdevsw *bdev;
1155 1.43 cgd int nblks, dumpblks; /* size of dump area */
1156 1.7 cgd
1157 1.7 cgd if (dumpdev == NODEV)
1158 1.43 cgd goto bad;
1159 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1160 1.289 mrg if (bdev == NULL) {
1161 1.289 mrg dumpdev = NODEV;
1162 1.289 mrg goto bad;
1163 1.289 mrg }
1164 1.258 gehenna if (bdev->d_psize == NULL)
1165 1.43 cgd goto bad;
1166 1.258 gehenna nblks = (*bdev->d_psize)(dumpdev);
1167 1.7 cgd if (nblks <= ctod(1))
1168 1.43 cgd goto bad;
1169 1.43 cgd
1170 1.43 cgd dumpblks = cpu_dumpsize();
1171 1.43 cgd if (dumpblks < 0)
1172 1.43 cgd goto bad;
1173 1.110 thorpej dumpblks += ctod(cpu_dump_mempagecnt());
1174 1.43 cgd
1175 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
1176 1.43 cgd if (dumpblks > (nblks - ctod(1)))
1177 1.43 cgd goto bad;
1178 1.43 cgd
1179 1.43 cgd /* Put dump at end of partition */
1180 1.43 cgd dumplo = nblks - dumpblks;
1181 1.7 cgd
1182 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1183 1.110 thorpej dumpsize = cpu_dump_mempagecnt();
1184 1.43 cgd return;
1185 1.7 cgd
1186 1.43 cgd bad:
1187 1.43 cgd dumpsize = 0;
1188 1.43 cgd return;
1189 1.7 cgd }
1190 1.7 cgd
1191 1.7 cgd /*
1192 1.42 cgd * Dump the kernel's image to the swap partition.
1193 1.7 cgd */
1194 1.262 thorpej #define BYTES_PER_DUMP PAGE_SIZE
1195 1.42 cgd
1196 1.7 cgd void
1197 1.319 cegger dumpsys(void)
1198 1.7 cgd {
1199 1.258 gehenna const struct bdevsw *bdev;
1200 1.110 thorpej u_long totalbytesleft, bytes, i, n, memcl;
1201 1.110 thorpej u_long maddr;
1202 1.110 thorpej int psize;
1203 1.42 cgd daddr_t blkno;
1204 1.316 dsl int (*dump)(dev_t, daddr_t, void *, size_t);
1205 1.42 cgd int error;
1206 1.42 cgd
1207 1.42 cgd /* Save registers. */
1208 1.42 cgd savectx(&dumppcb);
1209 1.7 cgd
1210 1.7 cgd if (dumpdev == NODEV)
1211 1.7 cgd return;
1212 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1213 1.258 gehenna if (bdev == NULL || bdev->d_psize == NULL)
1214 1.258 gehenna return;
1215 1.42 cgd
1216 1.42 cgd /*
1217 1.42 cgd * For dumps during autoconfiguration,
1218 1.42 cgd * if dump device has already configured...
1219 1.42 cgd */
1220 1.42 cgd if (dumpsize == 0)
1221 1.68 gwr cpu_dumpconf();
1222 1.47 cgd if (dumplo <= 0) {
1223 1.314 he printf("\ndump to dev %u,%u not possible\n",
1224 1.313 rtr major(dumpdev), minor(dumpdev));
1225 1.42 cgd return;
1226 1.43 cgd }
1227 1.314 he printf("\ndumping to dev %u,%u offset %ld\n",
1228 1.313 rtr major(dumpdev), minor(dumpdev), dumplo);
1229 1.7 cgd
1230 1.258 gehenna psize = (*bdev->d_psize)(dumpdev);
1231 1.46 christos printf("dump ");
1232 1.42 cgd if (psize == -1) {
1233 1.46 christos printf("area unavailable\n");
1234 1.42 cgd return;
1235 1.42 cgd }
1236 1.42 cgd
1237 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1238 1.42 cgd
1239 1.43 cgd if ((error = cpu_dump()) != 0)
1240 1.43 cgd goto err;
1241 1.43 cgd
1242 1.110 thorpej totalbytesleft = ptoa(cpu_dump_mempagecnt());
1243 1.43 cgd blkno = dumplo + cpu_dumpsize();
1244 1.258 gehenna dump = bdev->d_dump;
1245 1.42 cgd error = 0;
1246 1.42 cgd
1247 1.110 thorpej for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1248 1.110 thorpej maddr = mem_clusters[memcl].start;
1249 1.110 thorpej bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1250 1.110 thorpej
1251 1.110 thorpej for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1252 1.110 thorpej
1253 1.110 thorpej /* Print out how many MBs we to go. */
1254 1.110 thorpej if ((totalbytesleft % (1024*1024)) == 0)
1255 1.311 ad printf_nolog("%ld ",
1256 1.311 ad totalbytesleft / (1024 * 1024));
1257 1.110 thorpej
1258 1.110 thorpej /* Limit size for next transfer. */
1259 1.110 thorpej n = bytes - i;
1260 1.110 thorpej if (n > BYTES_PER_DUMP)
1261 1.110 thorpej n = BYTES_PER_DUMP;
1262 1.110 thorpej
1263 1.110 thorpej error = (*dump)(dumpdev, blkno,
1264 1.295 christos (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1265 1.110 thorpej if (error)
1266 1.110 thorpej goto err;
1267 1.110 thorpej maddr += n;
1268 1.110 thorpej blkno += btodb(n); /* XXX? */
1269 1.42 cgd
1270 1.110 thorpej /* XXX should look for keystrokes, to cancel. */
1271 1.110 thorpej }
1272 1.42 cgd }
1273 1.42 cgd
1274 1.43 cgd err:
1275 1.42 cgd switch (error) {
1276 1.7 cgd
1277 1.7 cgd case ENXIO:
1278 1.46 christos printf("device bad\n");
1279 1.7 cgd break;
1280 1.7 cgd
1281 1.7 cgd case EFAULT:
1282 1.46 christos printf("device not ready\n");
1283 1.7 cgd break;
1284 1.7 cgd
1285 1.7 cgd case EINVAL:
1286 1.46 christos printf("area improper\n");
1287 1.7 cgd break;
1288 1.7 cgd
1289 1.7 cgd case EIO:
1290 1.46 christos printf("i/o error\n");
1291 1.7 cgd break;
1292 1.7 cgd
1293 1.7 cgd case EINTR:
1294 1.46 christos printf("aborted from console\n");
1295 1.7 cgd break;
1296 1.7 cgd
1297 1.42 cgd case 0:
1298 1.46 christos printf("succeeded\n");
1299 1.42 cgd break;
1300 1.42 cgd
1301 1.7 cgd default:
1302 1.46 christos printf("error %d\n", error);
1303 1.7 cgd break;
1304 1.7 cgd }
1305 1.46 christos printf("\n\n");
1306 1.7 cgd delay(1000);
1307 1.7 cgd }
1308 1.7 cgd
1309 1.1 cgd void
1310 1.317 dsl frametoreg(const struct trapframe *framep, struct reg *regp)
1311 1.1 cgd {
1312 1.1 cgd
1313 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1314 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1315 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1316 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1317 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1318 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1319 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1320 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1321 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1322 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1323 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1324 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1325 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1326 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1327 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1328 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1329 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1330 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1331 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1332 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1333 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1334 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1335 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1336 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1337 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1338 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1339 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1340 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1341 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1342 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1343 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1344 1.1 cgd regp->r_regs[R_ZERO] = 0;
1345 1.1 cgd }
1346 1.1 cgd
1347 1.1 cgd void
1348 1.317 dsl regtoframe(const struct reg *regp, struct trapframe *framep)
1349 1.1 cgd {
1350 1.1 cgd
1351 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1352 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1353 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1354 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1355 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1356 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1357 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1358 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1359 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1360 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1361 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1362 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1363 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1364 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1365 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1366 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1367 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1368 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1369 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1370 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1371 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1372 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1373 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1374 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1375 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1376 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1377 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1378 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1379 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1380 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1381 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1382 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1383 1.1 cgd }
1384 1.1 cgd
1385 1.1 cgd void
1386 1.317 dsl printregs(struct reg *regp)
1387 1.1 cgd {
1388 1.1 cgd int i;
1389 1.1 cgd
1390 1.1 cgd for (i = 0; i < 32; i++)
1391 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1392 1.1 cgd i & 1 ? "\n" : "\t");
1393 1.1 cgd }
1394 1.1 cgd
1395 1.1 cgd void
1396 1.317 dsl regdump(struct trapframe *framep)
1397 1.1 cgd {
1398 1.1 cgd struct reg reg;
1399 1.1 cgd
1400 1.1 cgd frametoreg(framep, ®);
1401 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1402 1.35 cgd
1403 1.46 christos printf("REGISTERS:\n");
1404 1.1 cgd printregs(®);
1405 1.1 cgd }
1406 1.1 cgd
1407 1.1 cgd
1408 1.274 skd
1409 1.274 skd void *
1410 1.274 skd getframe(const struct lwp *l, int sig, int *onstack)
1411 1.274 skd {
1412 1.295 christos void *frame;
1413 1.274 skd
1414 1.274 skd /* Do we need to jump onto the signal stack? */
1415 1.274 skd *onstack =
1416 1.293 ad (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1417 1.293 ad (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1418 1.274 skd
1419 1.274 skd if (*onstack)
1420 1.296 yamt frame = (void *)((char *)l->l_sigstk.ss_sp +
1421 1.293 ad l->l_sigstk.ss_size);
1422 1.274 skd else
1423 1.274 skd frame = (void *)(alpha_pal_rdusp());
1424 1.274 skd return (frame);
1425 1.274 skd }
1426 1.274 skd
1427 1.274 skd void
1428 1.274 skd buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1429 1.274 skd {
1430 1.274 skd struct trapframe *tf = l->l_md.md_tf;
1431 1.274 skd
1432 1.274 skd tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1433 1.274 skd tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1434 1.274 skd tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1435 1.274 skd alpha_pal_wrusp((unsigned long)fp);
1436 1.274 skd }
1437 1.274 skd
1438 1.274 skd
1439 1.1 cgd /*
1440 1.274 skd * Send an interrupt to process, new style
1441 1.1 cgd */
1442 1.1 cgd void
1443 1.274 skd sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1444 1.1 cgd {
1445 1.261 thorpej struct lwp *l = curlwp;
1446 1.261 thorpej struct proc *p = l->l_proc;
1447 1.256 thorpej struct sigacts *ps = p->p_sigacts;
1448 1.293 ad int onstack, sig = ksi->ksi_signo, error;
1449 1.274 skd struct sigframe_siginfo *fp, frame;
1450 1.274 skd struct trapframe *tf;
1451 1.274 skd sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1452 1.1 cgd
1453 1.274 skd fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1454 1.274 skd tf = l->l_md.md_tf;
1455 1.141 thorpej
1456 1.141 thorpej /* Allocate space for the signal handler context. */
1457 1.274 skd fp--;
1458 1.141 thorpej
1459 1.1 cgd #ifdef DEBUG
1460 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1461 1.274 skd printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1462 1.276 nathanw sig, &onstack, fp);
1463 1.125 ross #endif
1464 1.1 cgd
1465 1.141 thorpej /* Build stack frame for signal trampoline. */
1466 1.1 cgd
1467 1.275 enami frame.sf_si._info = ksi->ksi_info;
1468 1.274 skd frame.sf_uc.uc_flags = _UC_SIGMASK;
1469 1.274 skd frame.sf_uc.uc_sigmask = *mask;
1470 1.299 pooka frame.sf_uc.uc_link = l->l_ctxlink;
1471 1.274 skd memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1472 1.293 ad sendsig_reset(l, sig);
1473 1.304 ad mutex_exit(p->p_lock);
1474 1.274 skd cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1475 1.293 ad error = copyout(&frame, fp, sizeof(frame));
1476 1.304 ad mutex_enter(p->p_lock);
1477 1.1 cgd
1478 1.293 ad if (error != 0) {
1479 1.141 thorpej /*
1480 1.141 thorpej * Process has trashed its stack; give it an illegal
1481 1.141 thorpej * instruction to halt it in its tracks.
1482 1.141 thorpej */
1483 1.141 thorpej #ifdef DEBUG
1484 1.141 thorpej if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1485 1.274 skd printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1486 1.141 thorpej p->p_pid, sig);
1487 1.141 thorpej #endif
1488 1.261 thorpej sigexit(l, SIGILL);
1489 1.141 thorpej /* NOTREACHED */
1490 1.141 thorpej }
1491 1.274 skd
1492 1.1 cgd #ifdef DEBUG
1493 1.1 cgd if (sigdebug & SDB_FOLLOW)
1494 1.276 nathanw printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1495 1.276 nathanw p->p_pid, sig, fp, ksi->ksi_code);
1496 1.1 cgd #endif
1497 1.1 cgd
1498 1.256 thorpej /*
1499 1.256 thorpej * Set up the registers to directly invoke the signal handler. The
1500 1.256 thorpej * signal trampoline is then used to return from the signal. Note
1501 1.256 thorpej * the trampoline version numbers are coordinated with machine-
1502 1.256 thorpej * dependent code in libc.
1503 1.256 thorpej */
1504 1.274 skd
1505 1.274 skd tf->tf_regs[FRAME_A0] = sig;
1506 1.274 skd tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1507 1.274 skd tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1508 1.256 thorpej
1509 1.274 skd buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1510 1.142 mycroft
1511 1.142 mycroft /* Remember that we're now on the signal stack. */
1512 1.142 mycroft if (onstack)
1513 1.293 ad l->l_sigstk.ss_flags |= SS_ONSTACK;
1514 1.1 cgd
1515 1.1 cgd #ifdef DEBUG
1516 1.1 cgd if (sigdebug & SDB_FOLLOW)
1517 1.274 skd printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1518 1.276 nathanw tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1519 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1520 1.274 skd printf("sendsig_siginfo(%d): sig %d returns\n",
1521 1.1 cgd p->p_pid, sig);
1522 1.1 cgd #endif
1523 1.1 cgd }
1524 1.1 cgd
1525 1.261 thorpej
1526 1.307 wrstuden void
1527 1.307 wrstuden cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1528 1.307 wrstuden {
1529 1.307 wrstuden struct trapframe *tf;
1530 1.307 wrstuden
1531 1.307 wrstuden tf = l->l_md.md_tf;
1532 1.307 wrstuden
1533 1.307 wrstuden tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1534 1.307 wrstuden tf->tf_regs[FRAME_RA] = 0;
1535 1.307 wrstuden tf->tf_regs[FRAME_A0] = type;
1536 1.307 wrstuden tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1537 1.307 wrstuden tf->tf_regs[FRAME_A2] = nevents;
1538 1.307 wrstuden tf->tf_regs[FRAME_A3] = ninterrupted;
1539 1.307 wrstuden tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1540 1.307 wrstuden tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1541 1.307 wrstuden alpha_pal_wrusp((unsigned long)sp);
1542 1.307 wrstuden }
1543 1.307 wrstuden
1544 1.1 cgd /*
1545 1.1 cgd * machine dependent system variables.
1546 1.1 cgd */
1547 1.278 atatat SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1548 1.1 cgd {
1549 1.241 ross
1550 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1551 1.282 atatat CTLFLAG_PERMANENT,
1552 1.278 atatat CTLTYPE_NODE, "machdep", NULL,
1553 1.278 atatat NULL, 0, NULL, 0,
1554 1.278 atatat CTL_MACHDEP, CTL_EOL);
1555 1.278 atatat
1556 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1557 1.282 atatat CTLFLAG_PERMANENT,
1558 1.278 atatat CTLTYPE_STRUCT, "console_device", NULL,
1559 1.278 atatat sysctl_consdev, 0, NULL, sizeof(dev_t),
1560 1.278 atatat CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1561 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1562 1.282 atatat CTLFLAG_PERMANENT,
1563 1.278 atatat CTLTYPE_STRING, "root_device", NULL,
1564 1.278 atatat sysctl_root_device, 0, NULL, 0,
1565 1.278 atatat CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1566 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1567 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1568 1.278 atatat CTLTYPE_INT, "unaligned_print", NULL,
1569 1.278 atatat NULL, 0, &alpha_unaligned_print, 0,
1570 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1571 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1572 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1573 1.278 atatat CTLTYPE_INT, "unaligned_fix", NULL,
1574 1.278 atatat NULL, 0, &alpha_unaligned_fix, 0,
1575 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1576 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1577 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1578 1.278 atatat CTLTYPE_INT, "unaligned_sigbus", NULL,
1579 1.278 atatat NULL, 0, &alpha_unaligned_sigbus, 0,
1580 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1581 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1582 1.282 atatat CTLFLAG_PERMANENT,
1583 1.278 atatat CTLTYPE_STRING, "booted_kernel", NULL,
1584 1.278 atatat NULL, 0, bootinfo.booted_kernel, 0,
1585 1.278 atatat CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1586 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1587 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1588 1.278 atatat CTLTYPE_INT, "fp_sync_complete", NULL,
1589 1.278 atatat NULL, 0, &alpha_fp_sync_complete, 0,
1590 1.278 atatat CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1591 1.1 cgd }
1592 1.1 cgd
1593 1.1 cgd /*
1594 1.1 cgd * Set registers on exec.
1595 1.1 cgd */
1596 1.1 cgd void
1597 1.317 dsl setregs(register struct lwp *l, struct exec_package *pack, u_long stack)
1598 1.1 cgd {
1599 1.261 thorpej struct trapframe *tfp = l->l_md.md_tf;
1600 1.322 rmind struct pcb *pcb;
1601 1.56 cgd #ifdef DEBUG
1602 1.1 cgd int i;
1603 1.56 cgd #endif
1604 1.43 cgd
1605 1.43 cgd #ifdef DEBUG
1606 1.43 cgd /*
1607 1.43 cgd * Crash and dump, if the user requested it.
1608 1.43 cgd */
1609 1.43 cgd if (boothowto & RB_DUMP)
1610 1.43 cgd panic("crash requested by boot flags");
1611 1.43 cgd #endif
1612 1.1 cgd
1613 1.1 cgd #ifdef DEBUG
1614 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1615 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1616 1.1 cgd #else
1617 1.246 thorpej memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1618 1.1 cgd #endif
1619 1.322 rmind pcb = lwp_getpcb(l);
1620 1.322 rmind memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
1621 1.35 cgd alpha_pal_wrusp(stack);
1622 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1623 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1624 1.41 cgd
1625 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1626 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1627 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1628 1.261 thorpej tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1629 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1630 1.1 cgd
1631 1.261 thorpej l->l_md.md_flags &= ~MDP_FPUSED;
1632 1.261 thorpej if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1633 1.261 thorpej l->l_md.md_flags &= ~MDP_FP_C;
1634 1.322 rmind pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1635 1.241 ross }
1636 1.322 rmind if (pcb->pcb_fpcpu != NULL)
1637 1.261 thorpej fpusave_proc(l, 0);
1638 1.219 thorpej }
1639 1.219 thorpej
1640 1.219 thorpej /*
1641 1.219 thorpej * Release the FPU.
1642 1.219 thorpej */
1643 1.219 thorpej void
1644 1.225 thorpej fpusave_cpu(struct cpu_info *ci, int save)
1645 1.219 thorpej {
1646 1.261 thorpej struct lwp *l;
1647 1.322 rmind struct pcb *pcb;
1648 1.225 thorpej #if defined(MULTIPROCESSOR)
1649 1.219 thorpej int s;
1650 1.225 thorpej #endif
1651 1.219 thorpej
1652 1.225 thorpej KDASSERT(ci == curcpu());
1653 1.225 thorpej
1654 1.235 thorpej #if defined(MULTIPROCESSOR)
1655 1.287 thorpej s = splhigh(); /* block IPIs for the duration */
1656 1.303 ad atomic_or_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1657 1.235 thorpej #endif
1658 1.235 thorpej
1659 1.261 thorpej l = ci->ci_fpcurlwp;
1660 1.261 thorpej if (l == NULL)
1661 1.235 thorpej goto out;
1662 1.219 thorpej
1663 1.322 rmind pcb = lwp_getpcb(l);
1664 1.219 thorpej if (save) {
1665 1.219 thorpej alpha_pal_wrfen(1);
1666 1.322 rmind savefpstate(&pcb->pcb_fp);
1667 1.225 thorpej }
1668 1.225 thorpej
1669 1.225 thorpej alpha_pal_wrfen(0);
1670 1.225 thorpej
1671 1.322 rmind FPCPU_LOCK(pcb);
1672 1.235 thorpej
1673 1.322 rmind pcb->pcb_fpcpu = NULL;
1674 1.261 thorpej ci->ci_fpcurlwp = NULL;
1675 1.235 thorpej
1676 1.322 rmind FPCPU_UNLOCK(pcb);
1677 1.235 thorpej
1678 1.235 thorpej out:
1679 1.219 thorpej #if defined(MULTIPROCESSOR)
1680 1.303 ad atomic_and_ulong(&ci->ci_flags, ~CPUF_FPUSAVE);
1681 1.287 thorpej splx(s);
1682 1.219 thorpej #endif
1683 1.235 thorpej return;
1684 1.219 thorpej }
1685 1.219 thorpej
1686 1.219 thorpej /*
1687 1.219 thorpej * Synchronize FP state for this process.
1688 1.219 thorpej */
1689 1.219 thorpej void
1690 1.261 thorpej fpusave_proc(struct lwp *l, int save)
1691 1.219 thorpej {
1692 1.225 thorpej struct cpu_info *ci = curcpu();
1693 1.225 thorpej struct cpu_info *oci;
1694 1.322 rmind struct pcb *pcb;
1695 1.235 thorpej #if defined(MULTIPROCESSOR)
1696 1.235 thorpej u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1697 1.236 thorpej int s, spincount;
1698 1.235 thorpej #endif
1699 1.219 thorpej
1700 1.322 rmind pcb = lwp_getpcb(l);
1701 1.322 rmind KDASSERT(pcb != NULL);
1702 1.225 thorpej
1703 1.287 thorpej #if defined(MULTIPROCESSOR)
1704 1.287 thorpej s = splhigh(); /* block IPIs for the duration */
1705 1.287 thorpej #endif
1706 1.322 rmind FPCPU_LOCK(pcb);
1707 1.235 thorpej
1708 1.322 rmind oci = pcb->pcb_fpcpu;
1709 1.235 thorpej if (oci == NULL) {
1710 1.322 rmind FPCPU_UNLOCK(pcb);
1711 1.287 thorpej #if defined(MULTIPROCESSOR)
1712 1.287 thorpej splx(s);
1713 1.287 thorpej #endif
1714 1.219 thorpej return;
1715 1.235 thorpej }
1716 1.219 thorpej
1717 1.219 thorpej #if defined(MULTIPROCESSOR)
1718 1.225 thorpej if (oci == ci) {
1719 1.261 thorpej KASSERT(ci->ci_fpcurlwp == l);
1720 1.322 rmind FPCPU_UNLOCK(pcb);
1721 1.287 thorpej splx(s);
1722 1.225 thorpej fpusave_cpu(ci, save);
1723 1.235 thorpej return;
1724 1.235 thorpej }
1725 1.235 thorpej
1726 1.261 thorpej KASSERT(oci->ci_fpcurlwp == l);
1727 1.235 thorpej alpha_send_ipi(oci->ci_cpuid, ipi);
1728 1.322 rmind FPCPU_UNLOCK(pcb);
1729 1.235 thorpej
1730 1.235 thorpej spincount = 0;
1731 1.322 rmind while (pcb->pcb_fpcpu != NULL) {
1732 1.235 thorpej spincount++;
1733 1.235 thorpej delay(1000); /* XXX */
1734 1.235 thorpej if (spincount > 10000)
1735 1.235 thorpej panic("fpsave ipi didn't");
1736 1.219 thorpej }
1737 1.219 thorpej #else
1738 1.261 thorpej KASSERT(ci->ci_fpcurlwp == l);
1739 1.322 rmind FPCPU_UNLOCK(pcb);
1740 1.225 thorpej fpusave_cpu(ci, save);
1741 1.219 thorpej #endif /* MULTIPROCESSOR */
1742 1.15 cgd }
1743 1.15 cgd
1744 1.15 cgd /*
1745 1.15 cgd * Wait "n" microseconds.
1746 1.15 cgd */
1747 1.32 cgd void
1748 1.317 dsl delay(unsigned long n)
1749 1.15 cgd {
1750 1.216 thorpej unsigned long pcc0, pcc1, curcycle, cycles, usec;
1751 1.15 cgd
1752 1.216 thorpej if (n == 0)
1753 1.216 thorpej return;
1754 1.216 thorpej
1755 1.216 thorpej pcc0 = alpha_rpcc() & 0xffffffffUL;
1756 1.216 thorpej cycles = 0;
1757 1.216 thorpej usec = 0;
1758 1.216 thorpej
1759 1.216 thorpej while (usec <= n) {
1760 1.216 thorpej /*
1761 1.216 thorpej * Get the next CPU cycle count- assumes that we cannot
1762 1.216 thorpej * have had more than one 32 bit overflow.
1763 1.216 thorpej */
1764 1.216 thorpej pcc1 = alpha_rpcc() & 0xffffffffUL;
1765 1.216 thorpej if (pcc1 < pcc0)
1766 1.216 thorpej curcycle = (pcc1 + 0x100000000UL) - pcc0;
1767 1.216 thorpej else
1768 1.216 thorpej curcycle = pcc1 - pcc0;
1769 1.186 thorpej
1770 1.216 thorpej /*
1771 1.216 thorpej * We now have the number of processor cycles since we
1772 1.216 thorpej * last checked. Add the current cycle count to the
1773 1.216 thorpej * running total. If it's over cycles_per_usec, increment
1774 1.216 thorpej * the usec counter.
1775 1.216 thorpej */
1776 1.216 thorpej cycles += curcycle;
1777 1.216 thorpej while (cycles > cycles_per_usec) {
1778 1.216 thorpej usec++;
1779 1.216 thorpej cycles -= cycles_per_usec;
1780 1.216 thorpej }
1781 1.216 thorpej pcc0 = pcc1;
1782 1.216 thorpej }
1783 1.1 cgd }
1784 1.225 thorpej
1785 1.250 jdolecek #ifdef EXEC_ECOFF
1786 1.1 cgd void
1787 1.317 dsl cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, u_long stack)
1788 1.1 cgd {
1789 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1790 1.1 cgd
1791 1.261 thorpej l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1792 1.1 cgd }
1793 1.1 cgd
1794 1.1 cgd /*
1795 1.1 cgd * cpu_exec_ecoff_hook():
1796 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1797 1.1 cgd *
1798 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1799 1.1 cgd *
1800 1.1 cgd */
1801 1.1 cgd int
1802 1.317 dsl cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
1803 1.1 cgd {
1804 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1805 1.171 cgd int error;
1806 1.1 cgd
1807 1.224 jdolecek if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1808 1.171 cgd error = 0;
1809 1.224 jdolecek else
1810 1.224 jdolecek error = ENOEXEC;
1811 1.1 cgd
1812 1.171 cgd return (error);
1813 1.1 cgd }
1814 1.250 jdolecek #endif /* EXEC_ECOFF */
1815 1.110 thorpej
1816 1.110 thorpej int
1817 1.317 dsl alpha_pa_access(u_long pa)
1818 1.110 thorpej {
1819 1.110 thorpej int i;
1820 1.110 thorpej
1821 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1822 1.110 thorpej if (pa < mem_clusters[i].start)
1823 1.110 thorpej continue;
1824 1.110 thorpej if ((pa - mem_clusters[i].start) >=
1825 1.110 thorpej (mem_clusters[i].size & ~PAGE_MASK))
1826 1.110 thorpej continue;
1827 1.110 thorpej return (mem_clusters[i].size & PAGE_MASK); /* prot */
1828 1.110 thorpej }
1829 1.197 thorpej
1830 1.197 thorpej /*
1831 1.197 thorpej * Address is not a memory address. If we're secure, disallow
1832 1.197 thorpej * access. Otherwise, grant read/write.
1833 1.197 thorpej */
1834 1.291 elad if (kauth_authorize_machdep(kauth_cred_get(),
1835 1.291 elad KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
1836 1.197 thorpej return (PROT_NONE);
1837 1.197 thorpej else
1838 1.197 thorpej return (PROT_READ | PROT_WRITE);
1839 1.110 thorpej }
1840 1.50 cgd
1841 1.50 cgd /* XXX XXX BEGIN XXX XXX */
1842 1.140 thorpej paddr_t alpha_XXX_dmamap_or; /* XXX */
1843 1.50 cgd /* XXX */
1844 1.140 thorpej paddr_t /* XXX */
1845 1.50 cgd alpha_XXX_dmamap(v) /* XXX */
1846 1.140 thorpej vaddr_t v; /* XXX */
1847 1.50 cgd { /* XXX */
1848 1.50 cgd /* XXX */
1849 1.51 cgd return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1850 1.50 cgd } /* XXX */
1851 1.50 cgd /* XXX XXX END XXX XXX */
1852 1.177 ross
1853 1.177 ross char *
1854 1.317 dsl dot_conv(unsigned long x)
1855 1.177 ross {
1856 1.177 ross int i;
1857 1.177 ross char *xc;
1858 1.177 ross static int next;
1859 1.177 ross static char space[2][20];
1860 1.177 ross
1861 1.177 ross xc = space[next ^= 1] + sizeof space[0];
1862 1.177 ross *--xc = '\0';
1863 1.177 ross for (i = 0;; ++i) {
1864 1.177 ross if (i && (i & 3) == 0)
1865 1.177 ross *--xc = '.';
1866 1.285 christos *--xc = hexdigits[x & 0xf];
1867 1.177 ross x >>= 4;
1868 1.177 ross if (x == 0)
1869 1.177 ross break;
1870 1.177 ross }
1871 1.177 ross return xc;
1872 1.261 thorpej }
1873 1.261 thorpej
1874 1.261 thorpej void
1875 1.317 dsl cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
1876 1.261 thorpej {
1877 1.261 thorpej struct trapframe *frame = l->l_md.md_tf;
1878 1.322 rmind struct pcb *pcb = lwp_getpcb(l);
1879 1.261 thorpej __greg_t *gr = mcp->__gregs;
1880 1.264 nathanw __greg_t ras_pc;
1881 1.261 thorpej
1882 1.261 thorpej /* Save register context. */
1883 1.261 thorpej frametoreg(frame, (struct reg *)gr);
1884 1.261 thorpej /* XXX if there's a better, general way to get the USP of
1885 1.261 thorpej * an LWP that might or might not be curlwp, I'd like to know
1886 1.261 thorpej * about it.
1887 1.261 thorpej */
1888 1.261 thorpej if (l == curlwp) {
1889 1.261 thorpej gr[_REG_SP] = alpha_pal_rdusp();
1890 1.261 thorpej gr[_REG_UNIQUE] = alpha_pal_rdunique();
1891 1.261 thorpej } else {
1892 1.322 rmind gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
1893 1.322 rmind gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
1894 1.261 thorpej }
1895 1.261 thorpej gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1896 1.261 thorpej gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1897 1.264 nathanw
1898 1.264 nathanw if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1899 1.295 christos (void *) gr[_REG_PC])) != -1)
1900 1.264 nathanw gr[_REG_PC] = ras_pc;
1901 1.264 nathanw
1902 1.261 thorpej *flags |= _UC_CPU | _UC_UNIQUE;
1903 1.261 thorpej
1904 1.261 thorpej /* Save floating point register context, if any, and copy it. */
1905 1.265 nathanw if (l->l_md.md_flags & MDP_FPUSED) {
1906 1.261 thorpej fpusave_proc(l, 1);
1907 1.322 rmind (void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
1908 1.261 thorpej sizeof (mcp->__fpregs));
1909 1.261 thorpej mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1910 1.261 thorpej *flags |= _UC_FPU;
1911 1.261 thorpej }
1912 1.261 thorpej }
1913 1.261 thorpej
1914 1.261 thorpej
1915 1.261 thorpej int
1916 1.317 dsl cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
1917 1.261 thorpej {
1918 1.261 thorpej struct trapframe *frame = l->l_md.md_tf;
1919 1.322 rmind struct pcb *pcb = lwp_getpcb(l);
1920 1.261 thorpej const __greg_t *gr = mcp->__gregs;
1921 1.261 thorpej
1922 1.261 thorpej /* Restore register context, if any. */
1923 1.261 thorpej if (flags & _UC_CPU) {
1924 1.261 thorpej /* Check for security violations first. */
1925 1.261 thorpej if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1926 1.261 thorpej (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1927 1.261 thorpej return (EINVAL);
1928 1.261 thorpej
1929 1.286 jdc regtoframe((const struct reg *)gr, l->l_md.md_tf);
1930 1.261 thorpej if (l == curlwp)
1931 1.261 thorpej alpha_pal_wrusp(gr[_REG_SP]);
1932 1.261 thorpej else
1933 1.322 rmind pcb->pcb_hw.apcb_usp = gr[_REG_SP];
1934 1.261 thorpej frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1935 1.261 thorpej frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1936 1.261 thorpej }
1937 1.261 thorpej if (flags & _UC_UNIQUE) {
1938 1.261 thorpej if (l == curlwp)
1939 1.261 thorpej alpha_pal_wrunique(gr[_REG_UNIQUE]);
1940 1.261 thorpej else
1941 1.322 rmind pcb->pcb_hw.apcb_unique = gr[_REG_UNIQUE];
1942 1.261 thorpej }
1943 1.261 thorpej /* Restore floating point register context, if any. */
1944 1.261 thorpej if (flags & _UC_FPU) {
1945 1.261 thorpej /* If we have an FP register context, get rid of it. */
1946 1.322 rmind if (pcb->pcb_fpcpu != NULL)
1947 1.261 thorpej fpusave_proc(l, 0);
1948 1.322 rmind (void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
1949 1.322 rmind sizeof (pcb->pcb_fp));
1950 1.261 thorpej l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
1951 1.271 nathanw l->l_md.md_flags |= MDP_FPUSED;
1952 1.261 thorpej }
1953 1.261 thorpej
1954 1.261 thorpej return (0);
1955 1.138 ross }
1956 1.297 yamt
1957 1.297 yamt /*
1958 1.297 yamt * Preempt the current process if in interrupt from user mode,
1959 1.297 yamt * or after the current trap/syscall if in system mode.
1960 1.297 yamt */
1961 1.297 yamt void
1962 1.297 yamt cpu_need_resched(struct cpu_info *ci, int flags)
1963 1.297 yamt {
1964 1.297 yamt #if defined(MULTIPROCESSOR)
1965 1.297 yamt bool immed = (flags & RESCHED_IMMED) != 0;
1966 1.297 yamt #endif /* defined(MULTIPROCESSOR) */
1967 1.297 yamt
1968 1.301 ad aston(ci->ci_data.cpu_onproc);
1969 1.297 yamt ci->ci_want_resched = 1;
1970 1.301 ad if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
1971 1.297 yamt #if defined(MULTIPROCESSOR)
1972 1.297 yamt if (immed && ci != curcpu()) {
1973 1.297 yamt alpha_send_ipi(ci->ci_cpuid, 0);
1974 1.297 yamt }
1975 1.297 yamt #endif /* defined(MULTIPROCESSOR) */
1976 1.297 yamt }
1977 1.297 yamt }
1978