Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.324
      1  1.324     rmind /* $NetBSD: machdep.c,v 1.324 2009/11/27 03:23:04 rmind Exp $ */
      2  1.110   thorpej 
      3  1.110   thorpej /*-
      4  1.211   thorpej  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      5  1.110   thorpej  * All rights reserved.
      6  1.110   thorpej  *
      7  1.110   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.110   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.110   thorpej  * NASA Ames Research Center and by Chris G. Demetriou.
     10  1.110   thorpej  *
     11  1.110   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.110   thorpej  * modification, are permitted provided that the following conditions
     13  1.110   thorpej  * are met:
     14  1.110   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.110   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.110   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.110   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.110   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.110   thorpej  *
     20  1.110   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  1.110   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  1.110   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  1.110   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  1.110   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.110   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.110   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.110   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.110   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.110   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.110   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31  1.110   thorpej  */
     32    1.1       cgd 
     33    1.1       cgd /*
     34   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     35    1.1       cgd  * All rights reserved.
     36    1.1       cgd  *
     37    1.1       cgd  * Author: Chris G. Demetriou
     38    1.1       cgd  *
     39    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     40    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     41    1.1       cgd  * notice and this permission notice appear in all copies of the
     42    1.1       cgd  * software, derivative works or modified versions, and any portions
     43    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     44    1.1       cgd  *
     45    1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     46    1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     47    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     48    1.1       cgd  *
     49    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     50    1.1       cgd  *
     51    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     52    1.1       cgd  *  School of Computer Science
     53    1.1       cgd  *  Carnegie Mellon University
     54    1.1       cgd  *  Pittsburgh PA 15213-3890
     55    1.1       cgd  *
     56    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     57    1.1       cgd  * rights to redistribute these changes.
     58    1.1       cgd  */
     59   1.74       cgd 
     60  1.129  jonathan #include "opt_ddb.h"
     61  1.244     lukem #include "opt_kgdb.h"
     62  1.315       apb #include "opt_modular.h"
     63  1.147   thorpej #include "opt_multiprocessor.h"
     64  1.123   thorpej #include "opt_dec_3000_300.h"
     65  1.123   thorpej #include "opt_dec_3000_500.h"
     66  1.127   thorpej #include "opt_compat_osf1.h"
     67  1.250  jdolecek #include "opt_execfmt.h"
     68  1.112   thorpej 
     69   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     70   1.75       cgd 
     71  1.324     rmind __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.324 2009/11/27 03:23:04 rmind Exp $");
     72    1.1       cgd 
     73    1.1       cgd #include <sys/param.h>
     74    1.1       cgd #include <sys/systm.h>
     75    1.1       cgd #include <sys/signalvar.h>
     76    1.1       cgd #include <sys/kernel.h>
     77  1.297      yamt #include <sys/cpu.h>
     78    1.1       cgd #include <sys/proc.h>
     79  1.264   nathanw #include <sys/ras.h>
     80  1.307  wrstuden #include <sys/sa.h>
     81  1.307  wrstuden #include <sys/savar.h>
     82  1.207   thorpej #include <sys/sched.h>
     83    1.1       cgd #include <sys/reboot.h>
     84   1.28       cgd #include <sys/device.h>
     85    1.1       cgd #include <sys/malloc.h>
     86  1.110   thorpej #include <sys/mman.h>
     87    1.1       cgd #include <sys/msgbuf.h>
     88    1.1       cgd #include <sys/ioctl.h>
     89    1.1       cgd #include <sys/tty.h>
     90    1.1       cgd #include <sys/exec.h>
     91  1.320      matt #include <sys/exec_aout.h>		/* for MID_* */
     92    1.1       cgd #include <sys/exec_ecoff.h>
     93   1.43       cgd #include <sys/core.h>
     94   1.43       cgd #include <sys/kcore.h>
     95  1.261   thorpej #include <sys/ucontext.h>
     96  1.258   gehenna #include <sys/conf.h>
     97  1.266     ragge #include <sys/ksyms.h>
     98  1.290      elad #include <sys/kauth.h>
     99  1.303        ad #include <sys/atomic.h>
    100  1.303        ad #include <sys/cpu.h>
    101  1.303        ad 
    102   1.43       cgd #include <machine/kcore.h>
    103  1.241      ross #include <machine/fpu.h>
    104    1.1       cgd 
    105    1.1       cgd #include <sys/mount.h>
    106    1.1       cgd #include <sys/syscallargs.h>
    107    1.1       cgd 
    108  1.112   thorpej #include <uvm/uvm_extern.h>
    109  1.217       mrg #include <sys/sysctl.h>
    110  1.112   thorpej 
    111    1.1       cgd #include <dev/cons.h>
    112    1.1       cgd 
    113   1.81   thorpej #include <machine/autoconf.h>
    114    1.1       cgd #include <machine/reg.h>
    115    1.1       cgd #include <machine/rpb.h>
    116    1.1       cgd #include <machine/prom.h>
    117  1.258   gehenna #include <machine/cpuconf.h>
    118  1.172      ross #include <machine/ieeefp.h>
    119  1.148   thorpej 
    120   1.81   thorpej #ifdef DDB
    121   1.81   thorpej #include <machine/db_machdep.h>
    122   1.81   thorpej #include <ddb/db_access.h>
    123   1.81   thorpej #include <ddb/db_sym.h>
    124   1.81   thorpej #include <ddb/db_extern.h>
    125   1.81   thorpej #include <ddb/db_interface.h>
    126  1.233   thorpej #endif
    127  1.233   thorpej 
    128  1.233   thorpej #ifdef KGDB
    129  1.233   thorpej #include <sys/kgdb.h>
    130   1.81   thorpej #endif
    131   1.81   thorpej 
    132  1.229  sommerfe #ifdef DEBUG
    133  1.229  sommerfe #include <machine/sigdebug.h>
    134  1.229  sommerfe #endif
    135  1.229  sommerfe 
    136  1.155      ross #include <machine/alpha.h>
    137  1.143      matt 
    138  1.266     ragge #include "ksyms.h"
    139  1.266     ragge 
    140  1.245       chs struct vm_map *mb_map = NULL;
    141  1.245       chs struct vm_map *phys_map = NULL;
    142    1.1       cgd 
    143  1.295  christos void *msgbufaddr;
    144   1.86       leo 
    145    1.1       cgd int	maxmem;			/* max memory per process */
    146    1.7       cgd 
    147    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    148    1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    149    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    150    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    151    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    152    1.1       cgd 
    153    1.1       cgd int	cputype;		/* system type, from the RPB */
    154  1.210   thorpej 
    155  1.210   thorpej int	bootdev_debug = 0;	/* patchable, or from DDB */
    156    1.1       cgd 
    157    1.1       cgd /*
    158    1.1       cgd  * XXX We need an address to which we can assign things so that they
    159    1.1       cgd  * won't be optimized away because we didn't use the value.
    160    1.1       cgd  */
    161    1.1       cgd u_int32_t no_optimize;
    162    1.1       cgd 
    163    1.1       cgd /* the following is used externally (sysctl_hw) */
    164   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    165   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    166   1.29       cgd char	cpu_model[128];
    167    1.1       cgd 
    168    1.1       cgd /* Number of machine cycles per microsecond */
    169    1.1       cgd u_int64_t	cycles_per_usec;
    170    1.1       cgd 
    171  1.280       wiz /* number of CPUs in the box.  really! */
    172    1.7       cgd int		ncpus;
    173    1.7       cgd 
    174  1.102       cgd struct bootinfo_kernel bootinfo;
    175   1.81   thorpej 
    176  1.123   thorpej /* For built-in TCDS */
    177  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    178  1.123   thorpej u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    179  1.123   thorpej #endif
    180  1.123   thorpej 
    181   1.89    mjacob struct platform platform;
    182   1.89    mjacob 
    183  1.309        ad #if NKSYMS || defined(DDB) || defined(MODULAR)
    184   1.81   thorpej /* start and end of kernel symbol table */
    185   1.81   thorpej void	*ksym_start, *ksym_end;
    186   1.81   thorpej #endif
    187   1.81   thorpej 
    188   1.30       cgd /* for cpu_sysctl() */
    189   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    190   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    191   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    192  1.241      ross int	alpha_fp_sync_complete = 0;	/* fp fixup if sync even without /s */
    193   1.30       cgd 
    194  1.110   thorpej /*
    195  1.110   thorpej  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    196  1.110   thorpej  * XXX it should also be larger than it is, because not all of the mddt
    197  1.110   thorpej  * XXX clusters end up being used for VM.
    198  1.110   thorpej  */
    199  1.110   thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    200  1.110   thorpej int	mem_cluster_cnt;
    201  1.110   thorpej 
    202  1.316       dsl int	cpu_dump(void);
    203  1.316       dsl int	cpu_dumpsize(void);
    204  1.316       dsl u_long	cpu_dump_mempagecnt(void);
    205  1.316       dsl void	dumpsys(void);
    206  1.316       dsl void	identifycpu(void);
    207  1.316       dsl void	printregs(struct reg *);
    208   1.33       cgd 
    209   1.55       cgd void
    210  1.318       dsl alpha_init(u_long pfn, u_long ptb, u_long bim, u_long bip, u_long biv)
    211  1.318       dsl 	/* pfn:		 first free PFN number */
    212  1.318       dsl 	/* ptb:		 PFN of current level 1 page table */
    213  1.318       dsl 	/* bim:		 bootinfo magic */
    214  1.318       dsl 	/* bip:		 bootinfo pointer */
    215  1.318       dsl 	/* biv:		 bootinfo version */
    216    1.1       cgd {
    217   1.95   thorpej 	extern char kernel_text[], _end[];
    218    1.1       cgd 	struct mddt *mddtp;
    219  1.110   thorpej 	struct mddt_cluster *memc;
    220    1.7       cgd 	int i, mddtweird;
    221  1.110   thorpej 	struct vm_physseg *vps;
    222  1.324     rmind 	struct pcb *pcb0;
    223  1.324     rmind 	vaddr_t kernstart, kernend, v;
    224  1.140   thorpej 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    225  1.211   thorpej 	cpuid_t cpu_id;
    226  1.211   thorpej 	struct cpu_info *ci;
    227    1.1       cgd 	char *p;
    228  1.209   thorpej 	const char *bootinfo_msg;
    229  1.209   thorpej 	const struct cpuinit *c;
    230  1.106       cgd 
    231  1.106       cgd 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    232    1.1       cgd 
    233    1.1       cgd 	/*
    234   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    235    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    236    1.1       cgd 	 */
    237   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    238   1.32       cgd 	alpha_pal_wrfen(0);
    239   1.37       cgd 	ALPHA_TBIA();
    240   1.32       cgd 	alpha_pal_imb();
    241  1.248   thorpej 
    242  1.248   thorpej 	/* Initialize the SCB. */
    243  1.248   thorpej 	scb_init();
    244    1.1       cgd 
    245  1.211   thorpej 	cpu_id = cpu_number();
    246  1.211   thorpej 
    247  1.189   thorpej #if defined(MULTIPROCESSOR)
    248  1.189   thorpej 	/*
    249  1.189   thorpej 	 * Set our SysValue to the address of our cpu_info structure.
    250  1.189   thorpej 	 * Secondary processors do this in their spinup trampoline.
    251  1.189   thorpej 	 */
    252  1.237   thorpej 	alpha_pal_wrval((u_long)&cpu_info_primary);
    253  1.237   thorpej 	cpu_info[cpu_id] = &cpu_info_primary;
    254  1.189   thorpej #endif
    255  1.189   thorpej 
    256  1.211   thorpej 	ci = curcpu();
    257  1.211   thorpej 	ci->ci_cpuid = cpu_id;
    258  1.211   thorpej 
    259    1.1       cgd 	/*
    260  1.106       cgd 	 * Get critical system information (if possible, from the
    261  1.106       cgd 	 * information provided by the boot program).
    262   1.81   thorpej 	 */
    263  1.106       cgd 	bootinfo_msg = NULL;
    264   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    265  1.102       cgd 		if (biv == 0) {		/* backward compat */
    266  1.102       cgd 			biv = *(u_long *)bip;
    267  1.102       cgd 			bip += 8;
    268  1.102       cgd 		}
    269  1.102       cgd 		switch (biv) {
    270  1.102       cgd 		case 1: {
    271  1.102       cgd 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    272  1.102       cgd 
    273  1.102       cgd 			bootinfo.ssym = v1p->ssym;
    274  1.102       cgd 			bootinfo.esym = v1p->esym;
    275  1.106       cgd 			/* hwrpb may not be provided by boot block in v1 */
    276  1.106       cgd 			if (v1p->hwrpb != NULL) {
    277  1.106       cgd 				bootinfo.hwrpb_phys =
    278  1.106       cgd 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    279  1.106       cgd 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    280  1.106       cgd 			} else {
    281  1.106       cgd 				bootinfo.hwrpb_phys =
    282  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    283  1.106       cgd 				bootinfo.hwrpb_size =
    284  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    285  1.106       cgd 			}
    286  1.247   thorpej 			memcpy(bootinfo.boot_flags, v1p->boot_flags,
    287  1.102       cgd 			    min(sizeof v1p->boot_flags,
    288  1.102       cgd 			      sizeof bootinfo.boot_flags));
    289  1.247   thorpej 			memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
    290  1.102       cgd 			    min(sizeof v1p->booted_kernel,
    291  1.102       cgd 			      sizeof bootinfo.booted_kernel));
    292  1.106       cgd 			/* booted dev not provided in bootinfo */
    293  1.106       cgd 			init_prom_interface((struct rpb *)
    294  1.106       cgd 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    295  1.102       cgd                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    296  1.102       cgd 			    sizeof bootinfo.booted_dev);
    297   1.81   thorpej 			break;
    298  1.102       cgd 		}
    299   1.81   thorpej 		default:
    300  1.106       cgd 			bootinfo_msg = "unknown bootinfo version";
    301  1.102       cgd 			goto nobootinfo;
    302   1.81   thorpej 		}
    303  1.102       cgd 	} else {
    304  1.106       cgd 		bootinfo_msg = "boot program did not pass bootinfo";
    305  1.102       cgd nobootinfo:
    306  1.102       cgd 		bootinfo.ssym = (u_long)_end;
    307  1.102       cgd 		bootinfo.esym = (u_long)_end;
    308  1.106       cgd 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    309  1.106       cgd 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    310  1.106       cgd 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    311  1.102       cgd 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    312  1.102       cgd 		    sizeof bootinfo.boot_flags);
    313  1.102       cgd 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    314  1.102       cgd 		    sizeof bootinfo.booted_kernel);
    315  1.102       cgd 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    316  1.102       cgd 		    sizeof bootinfo.booted_dev);
    317  1.102       cgd 	}
    318  1.102       cgd 
    319   1.81   thorpej 	/*
    320  1.106       cgd 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    321  1.106       cgd 	 * lots of things.
    322  1.106       cgd 	 */
    323  1.106       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    324  1.123   thorpej 
    325  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    326  1.123   thorpej 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    327  1.123   thorpej 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    328  1.123   thorpej 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    329  1.123   thorpej 		    sizeof(dec_3000_scsiid));
    330  1.123   thorpej 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    331  1.123   thorpej 		    sizeof(dec_3000_scsifast));
    332  1.123   thorpej 	}
    333  1.123   thorpej #endif
    334  1.106       cgd 
    335  1.106       cgd 	/*
    336  1.106       cgd 	 * Remember how many cycles there are per microsecond,
    337  1.106       cgd 	 * so that we can use delay().  Round up, for safety.
    338  1.106       cgd 	 */
    339  1.106       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    340  1.106       cgd 
    341  1.106       cgd 	/*
    342  1.251       wiz 	 * Initialize the (temporary) bootstrap console interface, so
    343  1.106       cgd 	 * we can use printf until the VM system starts being setup.
    344  1.106       cgd 	 * The real console is initialized before then.
    345  1.106       cgd 	 */
    346  1.106       cgd 	init_bootstrap_console();
    347  1.106       cgd 
    348  1.106       cgd 	/* OUTPUT NOW ALLOWED */
    349  1.106       cgd 
    350  1.106       cgd 	/* delayed from above */
    351  1.106       cgd 	if (bootinfo_msg)
    352  1.106       cgd 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    353  1.106       cgd 		    bootinfo_msg, bim, bip, biv);
    354  1.106       cgd 
    355  1.147   thorpej 	/* Initialize the trap vectors on the primary processor. */
    356  1.147   thorpej 	trap_init();
    357    1.1       cgd 
    358    1.1       cgd 	/*
    359  1.263   thorpej 	 * Find out this system's page size, and initialize
    360  1.263   thorpej 	 * PAGE_SIZE-dependent variables.
    361  1.243   thorpej 	 */
    362  1.263   thorpej 	if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
    363  1.263   thorpej 		panic("page size %lu != %d?!", hwrpb->rpb_page_size,
    364  1.263   thorpej 		    ALPHA_PGBYTES);
    365  1.263   thorpej 	uvmexp.pagesize = hwrpb->rpb_page_size;
    366  1.243   thorpej 	uvm_setpagesize();
    367  1.243   thorpej 
    368  1.243   thorpej 	/*
    369  1.106       cgd 	 * Find out what hardware we're on, and do basic initialization.
    370  1.106       cgd 	 */
    371  1.106       cgd 	cputype = hwrpb->rpb_type;
    372  1.167       cgd 	if (cputype < 0) {
    373  1.167       cgd 		/*
    374  1.167       cgd 		 * At least some white-box systems have SRM which
    375  1.167       cgd 		 * reports a systype that's the negative of their
    376  1.167       cgd 		 * blue-box counterpart.
    377  1.167       cgd 		 */
    378  1.167       cgd 		cputype = -cputype;
    379  1.167       cgd 	}
    380  1.209   thorpej 	c = platform_lookup(cputype);
    381  1.209   thorpej 	if (c == NULL) {
    382  1.106       cgd 		platform_not_supported();
    383  1.106       cgd 		/* NOTREACHED */
    384  1.106       cgd 	}
    385  1.209   thorpej 	(*c->init)();
    386  1.106       cgd 	strcpy(cpu_model, platform.model);
    387  1.106       cgd 
    388  1.106       cgd 	/*
    389  1.251       wiz 	 * Initialize the real console, so that the bootstrap console is
    390  1.106       cgd 	 * no longer necessary.
    391  1.106       cgd 	 */
    392  1.169   thorpej 	(*platform.cons_init)();
    393  1.106       cgd 
    394  1.106       cgd #ifdef DIAGNOSTIC
    395  1.106       cgd 	/* Paranoid sanity checking */
    396  1.106       cgd 
    397  1.199     soren 	/* We should always be running on the primary. */
    398  1.211   thorpej 	assert(hwrpb->rpb_primary_cpu_id == cpu_id);
    399  1.106       cgd 
    400  1.116    mjacob 	/*
    401  1.116    mjacob 	 * On single-CPU systypes, the primary should always be CPU 0,
    402  1.116    mjacob 	 * except on Alpha 8200 systems where the CPU id is related
    403  1.116    mjacob 	 * to the VID, which is related to the Turbo Laser node id.
    404  1.116    mjacob 	 */
    405  1.106       cgd 	if (cputype != ST_DEC_21000)
    406  1.106       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);
    407  1.106       cgd #endif
    408  1.106       cgd 
    409  1.106       cgd 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    410  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    411  1.106       cgd 	/*
    412  1.106       cgd 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    413  1.106       cgd 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    414  1.106       cgd 	 */
    415  1.106       cgd #endif
    416   1.95   thorpej 
    417   1.95   thorpej 	/*
    418  1.101       cgd 	 * Find the beginning and end of the kernel (and leave a
    419  1.101       cgd 	 * bit of space before the beginning for the bootstrap
    420  1.101       cgd 	 * stack).
    421   1.95   thorpej 	 */
    422  1.201    kleink 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
    423  1.309        ad #if NKSYMS || defined(DDB) || defined(MODULAR)
    424  1.102       cgd 	ksym_start = (void *)bootinfo.ssym;
    425  1.102       cgd 	ksym_end   = (void *)bootinfo.esym;
    426  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
    427  1.102       cgd #else
    428  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)_end);
    429   1.95   thorpej #endif
    430   1.95   thorpej 
    431  1.110   thorpej 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    432  1.110   thorpej 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    433  1.110   thorpej 
    434   1.95   thorpej 	/*
    435    1.1       cgd 	 * Find out how much memory is available, by looking at
    436    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    437    1.7       cgd 	 * its best to detect things things that have never been seen
    438    1.7       cgd 	 * before...
    439    1.1       cgd 	 */
    440  1.296      yamt 	mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
    441    1.7       cgd 
    442  1.110   thorpej 	/* MDDT SANITY CHECKING */
    443    1.7       cgd 	mddtweird = 0;
    444  1.110   thorpej 	if (mddtp->mddt_cluster_cnt < 2) {
    445    1.7       cgd 		mddtweird = 1;
    446  1.160   thorpej 		printf("WARNING: weird number of mem clusters: %lu\n",
    447  1.110   thorpej 		    mddtp->mddt_cluster_cnt);
    448    1.7       cgd 	}
    449    1.7       cgd 
    450  1.110   thorpej #if 0
    451  1.110   thorpej 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    452  1.110   thorpej #endif
    453  1.110   thorpej 
    454  1.110   thorpej 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    455  1.110   thorpej 		memc = &mddtp->mddt_clusters[i];
    456  1.110   thorpej #if 0
    457  1.110   thorpej 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    458  1.110   thorpej 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    459  1.110   thorpej #endif
    460  1.110   thorpej 		totalphysmem += memc->mddt_pg_cnt;
    461  1.110   thorpej 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    462  1.110   thorpej 			mem_clusters[mem_cluster_cnt].start =
    463  1.110   thorpej 			    ptoa(memc->mddt_pfn);
    464  1.110   thorpej 			mem_clusters[mem_cluster_cnt].size =
    465  1.110   thorpej 			    ptoa(memc->mddt_pg_cnt);
    466  1.110   thorpej 			if (memc->mddt_usage & MDDT_mbz ||
    467  1.110   thorpej 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    468  1.110   thorpej 			    memc->mddt_usage & MDDT_PALCODE)
    469  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    470  1.110   thorpej 				    PROT_READ;
    471  1.110   thorpej 			else
    472  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    473  1.110   thorpej 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    474  1.110   thorpej 			mem_cluster_cnt++;
    475  1.110   thorpej 		}
    476  1.110   thorpej 
    477  1.110   thorpej 		if (memc->mddt_usage & MDDT_mbz) {
    478    1.7       cgd 			mddtweird = 1;
    479  1.110   thorpej 			printf("WARNING: mem cluster %d has weird "
    480  1.110   thorpej 			    "usage 0x%lx\n", i, memc->mddt_usage);
    481  1.110   thorpej 			unknownmem += memc->mddt_pg_cnt;
    482  1.110   thorpej 			continue;
    483    1.7       cgd 		}
    484  1.110   thorpej 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    485  1.110   thorpej 			/* XXX should handle these... */
    486  1.110   thorpej 			printf("WARNING: skipping non-volatile mem "
    487  1.110   thorpej 			    "cluster %d\n", i);
    488  1.110   thorpej 			unusedmem += memc->mddt_pg_cnt;
    489  1.110   thorpej 			continue;
    490  1.110   thorpej 		}
    491  1.110   thorpej 		if (memc->mddt_usage & MDDT_PALCODE) {
    492  1.110   thorpej 			resvmem += memc->mddt_pg_cnt;
    493  1.110   thorpej 			continue;
    494  1.110   thorpej 		}
    495  1.110   thorpej 
    496  1.110   thorpej 		/*
    497  1.110   thorpej 		 * We have a memory cluster available for system
    498  1.110   thorpej 		 * software use.  We must determine if this cluster
    499  1.110   thorpej 		 * holds the kernel.
    500  1.110   thorpej 		 */
    501  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    502  1.110   thorpej 		/*
    503  1.110   thorpej 		 * XXX If the kernel uses the PROM console, we only use the
    504  1.110   thorpej 		 * XXX memory after the kernel in the first system segment,
    505  1.110   thorpej 		 * XXX to avoid clobbering prom mapping, data, etc.
    506  1.110   thorpej 		 */
    507  1.110   thorpej 	    if (!pmap_uses_prom_console() || physmem == 0) {
    508  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    509  1.110   thorpej 		physmem += memc->mddt_pg_cnt;
    510  1.110   thorpej 		pfn0 = memc->mddt_pfn;
    511  1.110   thorpej 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    512  1.110   thorpej 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    513  1.110   thorpej 			/*
    514  1.110   thorpej 			 * Must compute the location of the kernel
    515  1.110   thorpej 			 * within the segment.
    516  1.110   thorpej 			 */
    517  1.110   thorpej #if 0
    518  1.110   thorpej 			printf("Cluster %d contains kernel\n", i);
    519  1.110   thorpej #endif
    520  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    521  1.110   thorpej 		    if (!pmap_uses_prom_console()) {
    522  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    523  1.110   thorpej 			if (pfn0 < kernstartpfn) {
    524  1.110   thorpej 				/*
    525  1.110   thorpej 				 * There is a chunk before the kernel.
    526  1.110   thorpej 				 */
    527  1.110   thorpej #if 0
    528  1.110   thorpej 				printf("Loading chunk before kernel: "
    529  1.110   thorpej 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    530  1.110   thorpej #endif
    531  1.112   thorpej 				uvm_page_physload(pfn0, kernstartpfn,
    532  1.135   thorpej 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    533  1.110   thorpej 			}
    534  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    535  1.110   thorpej 		    }
    536  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    537  1.110   thorpej 			if (kernendpfn < pfn1) {
    538  1.110   thorpej 				/*
    539  1.110   thorpej 				 * There is a chunk after the kernel.
    540  1.110   thorpej 				 */
    541  1.110   thorpej #if 0
    542  1.110   thorpej 				printf("Loading chunk after kernel: "
    543  1.110   thorpej 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    544  1.110   thorpej #endif
    545  1.112   thorpej 				uvm_page_physload(kernendpfn, pfn1,
    546  1.135   thorpej 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    547  1.110   thorpej 			}
    548  1.110   thorpej 		} else {
    549  1.110   thorpej 			/*
    550  1.110   thorpej 			 * Just load this cluster as one chunk.
    551  1.110   thorpej 			 */
    552  1.110   thorpej #if 0
    553  1.110   thorpej 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    554  1.110   thorpej 			    pfn0, pfn1);
    555  1.110   thorpej #endif
    556  1.135   thorpej 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    557  1.135   thorpej 			    VM_FREELIST_DEFAULT);
    558    1.7       cgd 		}
    559  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    560  1.110   thorpej 	    }
    561  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    562    1.7       cgd 	}
    563    1.7       cgd 
    564  1.110   thorpej 	/*
    565  1.110   thorpej 	 * Dump out the MDDT if it looks odd...
    566  1.110   thorpej 	 */
    567    1.7       cgd 	if (mddtweird) {
    568   1.46  christos 		printf("\n");
    569   1.46  christos 		printf("complete memory cluster information:\n");
    570    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    571   1.46  christos 			printf("mddt %d:\n", i);
    572   1.46  christos 			printf("\tpfn %lx\n",
    573    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    574   1.46  christos 			printf("\tcnt %lx\n",
    575    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    576   1.46  christos 			printf("\ttest %lx\n",
    577    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    578   1.46  christos 			printf("\tbva %lx\n",
    579    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    580   1.46  christos 			printf("\tbpa %lx\n",
    581    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    582   1.46  christos 			printf("\tbcksum %lx\n",
    583    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    584   1.46  christos 			printf("\tusage %lx\n",
    585    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    586    1.2       cgd 		}
    587   1.46  christos 		printf("\n");
    588    1.2       cgd 	}
    589    1.2       cgd 
    590    1.7       cgd 	if (totalphysmem == 0)
    591    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    592    1.1       cgd 	maxmem = physmem;
    593    1.7       cgd #if 0
    594   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    595   1.46  christos 	printf("physmem = %d\n", physmem);
    596   1.46  christos 	printf("resvmem = %d\n", resvmem);
    597   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    598   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    599    1.7       cgd #endif
    600    1.7       cgd 
    601    1.1       cgd 	/*
    602    1.1       cgd 	 * Initialize error message buffer (at end of core).
    603    1.1       cgd 	 */
    604  1.110   thorpej 	{
    605  1.204     enami 		vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
    606  1.203     enami 		vsize_t reqsz = sz;
    607  1.110   thorpej 
    608  1.110   thorpej 		vps = &vm_physmem[vm_nphysseg - 1];
    609  1.110   thorpej 
    610  1.110   thorpej 		/* shrink so that it'll fit in the last segment */
    611  1.110   thorpej 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    612  1.110   thorpej 			sz = ptoa(vps->avail_end - vps->avail_start);
    613  1.110   thorpej 
    614  1.110   thorpej 		vps->end -= atop(sz);
    615  1.110   thorpej 		vps->avail_end -= atop(sz);
    616  1.295  christos 		msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    617  1.110   thorpej 		initmsgbuf(msgbufaddr, sz);
    618  1.110   thorpej 
    619  1.110   thorpej 		/* Remove the last segment if it now has no pages. */
    620  1.110   thorpej 		if (vps->start == vps->end)
    621  1.110   thorpej 			vm_nphysseg--;
    622  1.110   thorpej 
    623  1.110   thorpej 		/* warn if the message buffer had to be shrunk */
    624  1.203     enami 		if (sz != reqsz)
    625  1.203     enami 			printf("WARNING: %ld bytes not available for msgbuf "
    626  1.203     enami 			    "in last cluster (%ld used)\n", reqsz, sz);
    627  1.268   thorpej 
    628  1.110   thorpej 	}
    629  1.239   thorpej 
    630  1.239   thorpej 	/*
    631  1.268   thorpej 	 * NOTE: It is safe to use uvm_pageboot_alloc() before
    632  1.268   thorpej 	 * pmap_bootstrap() because our pmap_virtual_space()
    633  1.268   thorpej 	 * returns compile-time constants.
    634  1.268   thorpej 	 */
    635  1.268   thorpej 
    636  1.268   thorpej 	/*
    637  1.324     rmind 	 * Allocate uarea page for lwp0 and set it.
    638    1.1       cgd 	 */
    639  1.324     rmind 	v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
    640  1.324     rmind 	uvm_lwp_setuarea(&lwp0, v);
    641    1.1       cgd 
    642    1.1       cgd 	/*
    643    1.1       cgd 	 * Initialize the virtual memory system, and set the
    644    1.1       cgd 	 * page table base register in proc 0's PCB.
    645    1.1       cgd 	 */
    646  1.110   thorpej 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    647  1.144   thorpej 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    648    1.1       cgd 
    649    1.1       cgd 	/*
    650  1.324     rmind 	 * Initialize the rest of lwp0's PCB and cache its physical address.
    651    1.3       cgd 	 */
    652  1.324     rmind 	pcb0 = lwp_getpcb(&lwp0);
    653  1.324     rmind 	lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
    654    1.3       cgd 
    655    1.3       cgd 	/*
    656    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    657  1.323      matt 	 * and make lwp0's trapframe pointer point to it for sanity.
    658    1.3       cgd 	 */
    659  1.324     rmind 	pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
    660  1.324     rmind 	lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
    661  1.324     rmind 	simple_lock_init(&pcb0->pcb_fpcpu_slock);
    662  1.189   thorpej 
    663  1.323      matt 	/* Indicate that lwp0 has a CPU. */
    664  1.261   thorpej 	lwp0.l_cpu = ci;
    665    1.1       cgd 
    666    1.1       cgd 	/*
    667   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    668    1.8       cgd 	 */
    669    1.1       cgd 
    670    1.8       cgd 	boothowto = RB_SINGLE;
    671    1.1       cgd #ifdef KADB
    672    1.1       cgd 	boothowto |= RB_KDB;
    673    1.1       cgd #endif
    674  1.102       cgd 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    675   1.26       cgd 		/*
    676   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    677   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    678   1.26       cgd 		 * says that we shouldn't.
    679   1.26       cgd 		 */
    680    1.8       cgd 		switch (*p) {
    681   1.26       cgd 		case 'a': /* autoboot */
    682   1.26       cgd 		case 'A':
    683   1.26       cgd 			boothowto &= ~RB_SINGLE;
    684   1.21       cgd 			break;
    685   1.21       cgd 
    686   1.43       cgd #ifdef DEBUG
    687   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    688   1.43       cgd 		case 'C':
    689   1.43       cgd 			boothowto |= RB_DUMP;
    690   1.43       cgd 			break;
    691   1.43       cgd #endif
    692   1.43       cgd 
    693   1.81   thorpej #if defined(KGDB) || defined(DDB)
    694   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    695   1.81   thorpej 		case 'D':
    696   1.81   thorpej 			boothowto |= RB_KDB;
    697   1.81   thorpej 			break;
    698   1.81   thorpej #endif
    699   1.81   thorpej 
    700   1.36       cgd 		case 'h': /* always halt, never reboot */
    701   1.36       cgd 		case 'H':
    702   1.36       cgd 			boothowto |= RB_HALT;
    703    1.8       cgd 			break;
    704    1.8       cgd 
    705   1.21       cgd #if 0
    706    1.8       cgd 		case 'm': /* mini root present in memory */
    707   1.26       cgd 		case 'M':
    708    1.8       cgd 			boothowto |= RB_MINIROOT;
    709    1.8       cgd 			break;
    710   1.21       cgd #endif
    711   1.36       cgd 
    712   1.36       cgd 		case 'n': /* askname */
    713   1.36       cgd 		case 'N':
    714   1.36       cgd 			boothowto |= RB_ASKNAME;
    715   1.65       cgd 			break;
    716   1.65       cgd 
    717   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    718   1.65       cgd 		case 'S':
    719   1.65       cgd 			boothowto |= RB_SINGLE;
    720  1.221  jdolecek 			break;
    721  1.221  jdolecek 
    722  1.221  jdolecek 		case 'q': /* quiet boot */
    723  1.221  jdolecek 		case 'Q':
    724  1.221  jdolecek 			boothowto |= AB_QUIET;
    725  1.221  jdolecek 			break;
    726  1.221  jdolecek 
    727  1.221  jdolecek 		case 'v': /* verbose boot */
    728  1.221  jdolecek 		case 'V':
    729  1.221  jdolecek 			boothowto |= AB_VERBOSE;
    730  1.119   thorpej 			break;
    731  1.119   thorpej 
    732  1.119   thorpej 		case '-':
    733  1.119   thorpej 			/*
    734  1.119   thorpej 			 * Just ignore this.  It's not required, but it's
    735  1.119   thorpej 			 * common for it to be passed regardless.
    736  1.119   thorpej 			 */
    737   1.65       cgd 			break;
    738   1.65       cgd 
    739   1.65       cgd 		default:
    740   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    741   1.36       cgd 			break;
    742    1.1       cgd 		}
    743    1.1       cgd 	}
    744    1.1       cgd 
    745  1.302        ad 	/*
    746  1.302        ad 	 * Perform any initial kernel patches based on the running system.
    747  1.302        ad 	 * We may perform more later if we attach additional CPUs.
    748  1.302        ad 	 */
    749  1.302        ad 	alpha_patch(false);
    750  1.136    mjacob 
    751  1.136    mjacob 	/*
    752  1.280       wiz 	 * Figure out the number of CPUs in the box, from RPB fields.
    753  1.136    mjacob 	 * Really.  We mean it.
    754  1.136    mjacob 	 */
    755  1.136    mjacob 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    756  1.136    mjacob 		struct pcs *pcsp;
    757  1.136    mjacob 
    758  1.144   thorpej 		pcsp = LOCATE_PCS(hwrpb, i);
    759  1.136    mjacob 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    760  1.136    mjacob 			ncpus++;
    761  1.136    mjacob 	}
    762  1.136    mjacob 
    763    1.7       cgd 	/*
    764  1.106       cgd 	 * Initialize debuggers, and break into them if appropriate.
    765  1.106       cgd 	 */
    766  1.309        ad #if NKSYMS || defined(DDB) || defined(MODULAR)
    767  1.312    martin 	ksyms_addsyms_elf((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    768  1.159    mjacob 	    ksym_start, ksym_end);
    769  1.234   thorpej #endif
    770  1.234   thorpej 
    771  1.234   thorpej 	if (boothowto & RB_KDB) {
    772  1.234   thorpej #if defined(KGDB)
    773  1.234   thorpej 		kgdb_debug_init = 1;
    774  1.234   thorpej 		kgdb_connect(1);
    775  1.234   thorpej #elif defined(DDB)
    776  1.106       cgd 		Debugger();
    777  1.106       cgd #endif
    778  1.234   thorpej 	}
    779  1.234   thorpej 
    780  1.298   tsutsui #ifdef DIAGNOSTIC
    781  1.106       cgd 	/*
    782  1.298   tsutsui 	 * Check our clock frequency, from RPB fields.
    783  1.106       cgd 	 */
    784  1.298   tsutsui 	if ((hwrpb->rpb_intr_freq >> 12) != 1024)
    785  1.106       cgd 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    786  1.106       cgd 			hwrpb->rpb_intr_freq, hz);
    787  1.106       cgd #endif
    788   1.95   thorpej }
    789   1.95   thorpej 
    790   1.18       cgd void
    791  1.319    cegger consinit(void)
    792    1.1       cgd {
    793   1.81   thorpej 
    794  1.106       cgd 	/*
    795  1.106       cgd 	 * Everything related to console initialization is done
    796  1.106       cgd 	 * in alpha_init().
    797  1.106       cgd 	 */
    798  1.106       cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    799  1.106       cgd 	printf("consinit: %susing prom console\n",
    800  1.106       cgd 	    pmap_uses_prom_console() ? "" : "not ");
    801   1.81   thorpej #endif
    802    1.1       cgd }
    803  1.118   thorpej 
    804   1.18       cgd void
    805  1.319    cegger cpu_startup(void)
    806    1.1       cgd {
    807  1.140   thorpej 	vaddr_t minaddr, maxaddr;
    808  1.173     lukem 	char pbuf[9];
    809   1.40       cgd #if defined(DEBUG)
    810    1.1       cgd 	extern int pmapdebug;
    811    1.1       cgd 	int opmapdebug = pmapdebug;
    812    1.1       cgd 
    813    1.1       cgd 	pmapdebug = 0;
    814    1.1       cgd #endif
    815    1.1       cgd 
    816    1.1       cgd 	/*
    817    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    818    1.1       cgd 	 */
    819  1.284     lukem 	printf("%s%s", copyright, version);
    820    1.1       cgd 	identifycpu();
    821  1.185   thorpej 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
    822  1.173     lukem 	printf("total memory = %s\n", pbuf);
    823  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    824  1.173     lukem 	printf("(%s reserved for PROM, ", pbuf);
    825  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    826  1.173     lukem 	printf("%s used by NetBSD)\n", pbuf);
    827  1.173     lukem 	if (unusedmem) {
    828  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
    829  1.173     lukem 		printf("WARNING: unused memory = %s\n", pbuf);
    830  1.173     lukem 	}
    831  1.173     lukem 	if (unknownmem) {
    832  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
    833  1.173     lukem 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    834  1.173     lukem 	}
    835    1.1       cgd 
    836  1.279        pk 	minaddr = 0;
    837  1.240   thorpej 
    838    1.1       cgd 	/*
    839    1.1       cgd 	 * Allocate a submap for physio
    840    1.1       cgd 	 */
    841  1.112   thorpej 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    842  1.294   thorpej 				   VM_PHYS_SIZE, 0, false, NULL);
    843    1.1       cgd 
    844    1.1       cgd 	/*
    845  1.164   thorpej 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    846  1.164   thorpej 	 * are allocated via the pool allocator, and we use K0SEG to
    847  1.164   thorpej 	 * map those pages.
    848    1.1       cgd 	 */
    849    1.1       cgd 
    850   1.40       cgd #if defined(DEBUG)
    851    1.1       cgd 	pmapdebug = opmapdebug;
    852    1.1       cgd #endif
    853  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
    854  1.173     lukem 	printf("avail memory = %s\n", pbuf);
    855  1.139   thorpej #if 0
    856  1.139   thorpej 	{
    857  1.139   thorpej 		extern u_long pmap_pages_stolen;
    858  1.173     lukem 
    859  1.173     lukem 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
    860  1.173     lukem 		printf("stolen memory for VM structures = %s\n", pbuf);
    861  1.139   thorpej 	}
    862  1.112   thorpej #endif
    863  1.151   thorpej 
    864  1.151   thorpej 	/*
    865  1.151   thorpej 	 * Set up the HWPCB so that it's safe to configure secondary
    866  1.151   thorpej 	 * CPUs.
    867  1.151   thorpej 	 */
    868  1.151   thorpej 	hwrpb_primary_init();
    869  1.104   thorpej }
    870  1.104   thorpej 
    871  1.104   thorpej /*
    872  1.104   thorpej  * Retrieve the platform name from the DSR.
    873  1.104   thorpej  */
    874  1.104   thorpej const char *
    875  1.319    cegger alpha_dsr_sysname(void)
    876  1.104   thorpej {
    877  1.104   thorpej 	struct dsrdb *dsr;
    878  1.104   thorpej 	const char *sysname;
    879  1.104   thorpej 
    880  1.104   thorpej 	/*
    881  1.104   thorpej 	 * DSR does not exist on early HWRPB versions.
    882  1.104   thorpej 	 */
    883  1.104   thorpej 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
    884  1.104   thorpej 		return (NULL);
    885  1.104   thorpej 
    886  1.296      yamt 	dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
    887  1.296      yamt 	sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
    888  1.104   thorpej 	    sizeof(u_int64_t)));
    889  1.104   thorpej 	return (sysname);
    890  1.104   thorpej }
    891  1.104   thorpej 
    892  1.104   thorpej /*
    893  1.104   thorpej  * Lookup the system specified system variation in the provided table,
    894  1.104   thorpej  * returning the model string on match.
    895  1.104   thorpej  */
    896  1.104   thorpej const char *
    897  1.317       dsl alpha_variation_name(u_int64_t variation, const struct alpha_variation_table *avtp)
    898  1.104   thorpej {
    899  1.104   thorpej 	int i;
    900  1.104   thorpej 
    901  1.104   thorpej 	for (i = 0; avtp[i].avt_model != NULL; i++)
    902  1.104   thorpej 		if (avtp[i].avt_variation == variation)
    903  1.104   thorpej 			return (avtp[i].avt_model);
    904  1.104   thorpej 	return (NULL);
    905  1.104   thorpej }
    906  1.104   thorpej 
    907  1.104   thorpej /*
    908  1.104   thorpej  * Generate a default platform name based for unknown system variations.
    909  1.104   thorpej  */
    910  1.104   thorpej const char *
    911  1.319    cegger alpha_unknown_sysname(void)
    912  1.104   thorpej {
    913  1.105   thorpej 	static char s[128];		/* safe size */
    914  1.104   thorpej 
    915  1.105   thorpej 	sprintf(s, "%s family, unknown model variation 0x%lx",
    916  1.105   thorpej 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
    917  1.104   thorpej 	return ((const char *)s);
    918    1.1       cgd }
    919    1.1       cgd 
    920   1.33       cgd void
    921  1.319    cegger identifycpu(void)
    922    1.1       cgd {
    923  1.177      ross 	char *s;
    924  1.218   thorpej 	int i;
    925    1.1       cgd 
    926    1.7       cgd 	/*
    927    1.7       cgd 	 * print out CPU identification information.
    928    1.7       cgd 	 */
    929  1.177      ross 	printf("%s", cpu_model);
    930  1.177      ross 	for(s = cpu_model; *s; ++s)
    931  1.177      ross 		if(strncasecmp(s, "MHz", 3) == 0)
    932  1.177      ross 			goto skipMHz;
    933  1.177      ross 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
    934  1.177      ross skipMHz:
    935  1.218   thorpej 	printf(", s/n ");
    936  1.218   thorpej 	for (i = 0; i < 10; i++)
    937  1.218   thorpej 		printf("%c", hwrpb->rpb_ssn[i]);
    938  1.177      ross 	printf("\n");
    939   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
    940    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    941    1.7       cgd #if 0
    942    1.7       cgd 	/* this isn't defined for any systems that we run on? */
    943   1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
    944    1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    945    1.7       cgd 
    946    1.7       cgd 	/* and these aren't particularly useful! */
    947   1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
    948    1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    949    1.7       cgd #endif
    950    1.1       cgd }
    951    1.1       cgd 
    952    1.1       cgd int	waittime = -1;
    953    1.7       cgd struct pcb dumppcb;
    954    1.1       cgd 
    955   1.18       cgd void
    956  1.317       dsl cpu_reboot(int howto, char *bootstr)
    957    1.1       cgd {
    958  1.148   thorpej #if defined(MULTIPROCESSOR)
    959  1.225   thorpej 	u_long cpu_id = cpu_number();
    960  1.321    mhitch 	u_long wait_mask;
    961  1.225   thorpej 	int i;
    962  1.148   thorpej #endif
    963  1.148   thorpej 
    964  1.225   thorpej 	/* If "always halt" was specified as a boot flag, obey. */
    965  1.225   thorpej 	if ((boothowto & RB_HALT) != 0)
    966  1.225   thorpej 		howto |= RB_HALT;
    967  1.225   thorpej 
    968  1.225   thorpej 	boothowto = howto;
    969    1.1       cgd 
    970    1.1       cgd 	/* If system is cold, just halt. */
    971    1.1       cgd 	if (cold) {
    972  1.225   thorpej 		boothowto |= RB_HALT;
    973    1.1       cgd 		goto haltsys;
    974    1.1       cgd 	}
    975    1.1       cgd 
    976  1.225   thorpej 	if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
    977    1.1       cgd 		waittime = 0;
    978    1.7       cgd 		vfs_shutdown();
    979    1.1       cgd 		/*
    980    1.1       cgd 		 * If we've been adjusting the clock, the todr
    981    1.1       cgd 		 * will be out of synch; adjust it now.
    982    1.1       cgd 		 */
    983    1.1       cgd 		resettodr();
    984    1.1       cgd 	}
    985    1.1       cgd 
    986    1.1       cgd 	/* Disable interrupts. */
    987    1.1       cgd 	splhigh();
    988    1.1       cgd 
    989  1.225   thorpej #if defined(MULTIPROCESSOR)
    990  1.225   thorpej 	/*
    991  1.225   thorpej 	 * Halt all other CPUs.  If we're not the primary, the
    992  1.225   thorpej 	 * primary will spin, waiting for us to halt.
    993  1.225   thorpej 	 */
    994  1.321    mhitch 	cpu_id = cpu_number();		/* may have changed cpu */
    995  1.321    mhitch 	wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
    996  1.321    mhitch 
    997  1.225   thorpej 	alpha_broadcast_ipi(ALPHA_IPI_HALT);
    998  1.225   thorpej 
    999  1.283    mhitch 	/* Ensure any CPUs paused by DDB resume execution so they can halt */
   1000  1.283    mhitch 	cpus_paused = 0;
   1001  1.283    mhitch 
   1002  1.225   thorpej 	for (i = 0; i < 10000; i++) {
   1003  1.225   thorpej 		alpha_mb();
   1004  1.225   thorpej 		if (cpus_running == wait_mask)
   1005  1.225   thorpej 			break;
   1006  1.225   thorpej 		delay(1000);
   1007  1.225   thorpej 	}
   1008  1.225   thorpej 	alpha_mb();
   1009  1.225   thorpej 	if (cpus_running != wait_mask)
   1010  1.225   thorpej 		printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
   1011  1.225   thorpej 		    cpus_running);
   1012  1.225   thorpej #endif /* MULTIPROCESSOR */
   1013  1.225   thorpej 
   1014    1.7       cgd 	/* If rebooting and a dump is requested do it. */
   1015   1.42       cgd #if 0
   1016  1.225   thorpej 	if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1017   1.42       cgd #else
   1018  1.225   thorpej 	if (boothowto & RB_DUMP)
   1019   1.42       cgd #endif
   1020    1.1       cgd 		dumpsys();
   1021    1.6       cgd 
   1022   1.12       cgd haltsys:
   1023   1.12       cgd 
   1024    1.6       cgd 	/* run any shutdown hooks */
   1025    1.6       cgd 	doshutdownhooks();
   1026  1.148   thorpej 
   1027  1.308    dyoung 	pmf_system_shutdown(boothowto);
   1028  1.308    dyoung 
   1029    1.7       cgd #ifdef BOOTKEY
   1030   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1031  1.117  drochner 	cnpollc(1);	/* for proper keyboard command handling */
   1032    1.7       cgd 	cngetc();
   1033  1.117  drochner 	cnpollc(0);
   1034   1.46  christos 	printf("\n");
   1035    1.7       cgd #endif
   1036    1.7       cgd 
   1037  1.124   thorpej 	/* Finally, powerdown/halt/reboot the system. */
   1038  1.225   thorpej 	if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
   1039  1.124   thorpej 	    platform.powerdown != NULL) {
   1040  1.124   thorpej 		(*platform.powerdown)();
   1041  1.124   thorpej 		printf("WARNING: powerdown failed!\n");
   1042  1.124   thorpej 	}
   1043  1.225   thorpej 	printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
   1044  1.225   thorpej #if defined(MULTIPROCESSOR)
   1045  1.225   thorpej 	if (cpu_id != hwrpb->rpb_primary_cpu_id)
   1046  1.225   thorpej 		cpu_halt();
   1047  1.225   thorpej 	else
   1048  1.225   thorpej #endif
   1049  1.225   thorpej 		prom_halt(boothowto & RB_HALT);
   1050    1.1       cgd 	/*NOTREACHED*/
   1051    1.1       cgd }
   1052    1.1       cgd 
   1053    1.7       cgd /*
   1054    1.7       cgd  * These variables are needed by /sbin/savecore
   1055    1.7       cgd  */
   1056  1.253   tsutsui u_int32_t dumpmag = 0x8fca0101;	/* magic number */
   1057    1.7       cgd int 	dumpsize = 0;		/* pages */
   1058    1.7       cgd long	dumplo = 0; 		/* blocks */
   1059    1.7       cgd 
   1060    1.7       cgd /*
   1061   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1062   1.43       cgd  */
   1063   1.43       cgd int
   1064  1.319    cegger cpu_dumpsize(void)
   1065   1.43       cgd {
   1066   1.43       cgd 	int size;
   1067   1.43       cgd 
   1068  1.108       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1069  1.110   thorpej 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1070   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
   1071   1.43       cgd 		return -1;
   1072   1.43       cgd 
   1073   1.43       cgd 	return (1);
   1074   1.43       cgd }
   1075   1.43       cgd 
   1076   1.43       cgd /*
   1077  1.110   thorpej  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1078  1.110   thorpej  */
   1079  1.110   thorpej u_long
   1080  1.319    cegger cpu_dump_mempagecnt(void)
   1081  1.110   thorpej {
   1082  1.110   thorpej 	u_long i, n;
   1083  1.110   thorpej 
   1084  1.110   thorpej 	n = 0;
   1085  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++)
   1086  1.110   thorpej 		n += atop(mem_clusters[i].size);
   1087  1.110   thorpej 	return (n);
   1088  1.110   thorpej }
   1089  1.110   thorpej 
   1090  1.110   thorpej /*
   1091   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
   1092   1.43       cgd  */
   1093   1.43       cgd int
   1094  1.319    cegger cpu_dump(void)
   1095   1.43       cgd {
   1096  1.316       dsl 	int (*dump)(dev_t, daddr_t, void *, size_t);
   1097  1.107       cgd 	char buf[dbtob(1)];
   1098  1.107       cgd 	kcore_seg_t *segp;
   1099  1.107       cgd 	cpu_kcore_hdr_t *cpuhdrp;
   1100  1.107       cgd 	phys_ram_seg_t *memsegp;
   1101  1.258   gehenna 	const struct bdevsw *bdev;
   1102  1.110   thorpej 	int i;
   1103   1.43       cgd 
   1104  1.258   gehenna 	bdev = bdevsw_lookup(dumpdev);
   1105  1.258   gehenna 	if (bdev == NULL)
   1106  1.258   gehenna 		return (ENXIO);
   1107  1.258   gehenna 	dump = bdev->d_dump;
   1108   1.43       cgd 
   1109  1.246   thorpej 	memset(buf, 0, sizeof buf);
   1110   1.43       cgd 	segp = (kcore_seg_t *)buf;
   1111  1.107       cgd 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1112  1.107       cgd 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1113  1.107       cgd 	    ALIGN(sizeof(*cpuhdrp))];
   1114   1.43       cgd 
   1115   1.43       cgd 	/*
   1116   1.43       cgd 	 * Generate a segment header.
   1117   1.43       cgd 	 */
   1118   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1119   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1120   1.43       cgd 
   1121   1.43       cgd 	/*
   1122  1.107       cgd 	 * Add the machine-dependent header info.
   1123   1.43       cgd 	 */
   1124  1.140   thorpej 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1125   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
   1126  1.110   thorpej 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1127  1.107       cgd 
   1128  1.107       cgd 	/*
   1129  1.107       cgd 	 * Fill in the memory segment descriptors.
   1130  1.107       cgd 	 */
   1131  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1132  1.110   thorpej 		memsegp[i].start = mem_clusters[i].start;
   1133  1.110   thorpej 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1134  1.110   thorpej 	}
   1135   1.43       cgd 
   1136  1.295  christos 	return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
   1137   1.43       cgd }
   1138   1.43       cgd 
   1139   1.43       cgd /*
   1140   1.68       gwr  * This is called by main to set dumplo and dumpsize.
   1141  1.262   thorpej  * Dumps always skip the first PAGE_SIZE of disk space
   1142    1.7       cgd  * in case there might be a disk label stored there.
   1143    1.7       cgd  * If there is extra space, put dump at the end to
   1144    1.7       cgd  * reduce the chance that swapping trashes it.
   1145    1.7       cgd  */
   1146    1.7       cgd void
   1147  1.319    cegger cpu_dumpconf(void)
   1148    1.7       cgd {
   1149  1.258   gehenna 	const struct bdevsw *bdev;
   1150   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
   1151    1.7       cgd 
   1152    1.7       cgd 	if (dumpdev == NODEV)
   1153   1.43       cgd 		goto bad;
   1154  1.258   gehenna 	bdev = bdevsw_lookup(dumpdev);
   1155  1.289       mrg 	if (bdev == NULL) {
   1156  1.289       mrg 		dumpdev = NODEV;
   1157  1.289       mrg 		goto bad;
   1158  1.289       mrg 	}
   1159  1.258   gehenna 	if (bdev->d_psize == NULL)
   1160   1.43       cgd 		goto bad;
   1161  1.258   gehenna 	nblks = (*bdev->d_psize)(dumpdev);
   1162    1.7       cgd 	if (nblks <= ctod(1))
   1163   1.43       cgd 		goto bad;
   1164   1.43       cgd 
   1165   1.43       cgd 	dumpblks = cpu_dumpsize();
   1166   1.43       cgd 	if (dumpblks < 0)
   1167   1.43       cgd 		goto bad;
   1168  1.110   thorpej 	dumpblks += ctod(cpu_dump_mempagecnt());
   1169   1.43       cgd 
   1170   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1171   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1172   1.43       cgd 		goto bad;
   1173   1.43       cgd 
   1174   1.43       cgd 	/* Put dump at end of partition */
   1175   1.43       cgd 	dumplo = nblks - dumpblks;
   1176    1.7       cgd 
   1177   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1178  1.110   thorpej 	dumpsize = cpu_dump_mempagecnt();
   1179   1.43       cgd 	return;
   1180    1.7       cgd 
   1181   1.43       cgd bad:
   1182   1.43       cgd 	dumpsize = 0;
   1183   1.43       cgd 	return;
   1184    1.7       cgd }
   1185    1.7       cgd 
   1186    1.7       cgd /*
   1187   1.42       cgd  * Dump the kernel's image to the swap partition.
   1188    1.7       cgd  */
   1189  1.262   thorpej #define	BYTES_PER_DUMP	PAGE_SIZE
   1190   1.42       cgd 
   1191    1.7       cgd void
   1192  1.319    cegger dumpsys(void)
   1193    1.7       cgd {
   1194  1.258   gehenna 	const struct bdevsw *bdev;
   1195  1.110   thorpej 	u_long totalbytesleft, bytes, i, n, memcl;
   1196  1.110   thorpej 	u_long maddr;
   1197  1.110   thorpej 	int psize;
   1198   1.42       cgd 	daddr_t blkno;
   1199  1.316       dsl 	int (*dump)(dev_t, daddr_t, void *, size_t);
   1200   1.42       cgd 	int error;
   1201   1.42       cgd 
   1202   1.42       cgd 	/* Save registers. */
   1203   1.42       cgd 	savectx(&dumppcb);
   1204    1.7       cgd 
   1205    1.7       cgd 	if (dumpdev == NODEV)
   1206    1.7       cgd 		return;
   1207  1.258   gehenna 	bdev = bdevsw_lookup(dumpdev);
   1208  1.258   gehenna 	if (bdev == NULL || bdev->d_psize == NULL)
   1209  1.258   gehenna 		return;
   1210   1.42       cgd 
   1211   1.42       cgd 	/*
   1212   1.42       cgd 	 * For dumps during autoconfiguration,
   1213   1.42       cgd 	 * if dump device has already configured...
   1214   1.42       cgd 	 */
   1215   1.42       cgd 	if (dumpsize == 0)
   1216   1.68       gwr 		cpu_dumpconf();
   1217   1.47       cgd 	if (dumplo <= 0) {
   1218  1.314        he 		printf("\ndump to dev %u,%u not possible\n",
   1219  1.313       rtr 		    major(dumpdev), minor(dumpdev));
   1220   1.42       cgd 		return;
   1221   1.43       cgd 	}
   1222  1.314        he 	printf("\ndumping to dev %u,%u offset %ld\n",
   1223  1.313       rtr 	    major(dumpdev), minor(dumpdev), dumplo);
   1224    1.7       cgd 
   1225  1.258   gehenna 	psize = (*bdev->d_psize)(dumpdev);
   1226   1.46  christos 	printf("dump ");
   1227   1.42       cgd 	if (psize == -1) {
   1228   1.46  christos 		printf("area unavailable\n");
   1229   1.42       cgd 		return;
   1230   1.42       cgd 	}
   1231   1.42       cgd 
   1232   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1233   1.42       cgd 
   1234   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1235   1.43       cgd 		goto err;
   1236   1.43       cgd 
   1237  1.110   thorpej 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1238   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1239  1.258   gehenna 	dump = bdev->d_dump;
   1240   1.42       cgd 	error = 0;
   1241   1.42       cgd 
   1242  1.110   thorpej 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1243  1.110   thorpej 		maddr = mem_clusters[memcl].start;
   1244  1.110   thorpej 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1245  1.110   thorpej 
   1246  1.110   thorpej 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1247  1.110   thorpej 
   1248  1.110   thorpej 			/* Print out how many MBs we to go. */
   1249  1.110   thorpej 			if ((totalbytesleft % (1024*1024)) == 0)
   1250  1.311        ad 				printf_nolog("%ld ",
   1251  1.311        ad 				    totalbytesleft / (1024 * 1024));
   1252  1.110   thorpej 
   1253  1.110   thorpej 			/* Limit size for next transfer. */
   1254  1.110   thorpej 			n = bytes - i;
   1255  1.110   thorpej 			if (n > BYTES_PER_DUMP)
   1256  1.110   thorpej 				n =  BYTES_PER_DUMP;
   1257  1.110   thorpej 
   1258  1.110   thorpej 			error = (*dump)(dumpdev, blkno,
   1259  1.295  christos 			    (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1260  1.110   thorpej 			if (error)
   1261  1.110   thorpej 				goto err;
   1262  1.110   thorpej 			maddr += n;
   1263  1.110   thorpej 			blkno += btodb(n);			/* XXX? */
   1264   1.42       cgd 
   1265  1.110   thorpej 			/* XXX should look for keystrokes, to cancel. */
   1266  1.110   thorpej 		}
   1267   1.42       cgd 	}
   1268   1.42       cgd 
   1269   1.43       cgd err:
   1270   1.42       cgd 	switch (error) {
   1271    1.7       cgd 
   1272    1.7       cgd 	case ENXIO:
   1273   1.46  christos 		printf("device bad\n");
   1274    1.7       cgd 		break;
   1275    1.7       cgd 
   1276    1.7       cgd 	case EFAULT:
   1277   1.46  christos 		printf("device not ready\n");
   1278    1.7       cgd 		break;
   1279    1.7       cgd 
   1280    1.7       cgd 	case EINVAL:
   1281   1.46  christos 		printf("area improper\n");
   1282    1.7       cgd 		break;
   1283    1.7       cgd 
   1284    1.7       cgd 	case EIO:
   1285   1.46  christos 		printf("i/o error\n");
   1286    1.7       cgd 		break;
   1287    1.7       cgd 
   1288    1.7       cgd 	case EINTR:
   1289   1.46  christos 		printf("aborted from console\n");
   1290    1.7       cgd 		break;
   1291    1.7       cgd 
   1292   1.42       cgd 	case 0:
   1293   1.46  christos 		printf("succeeded\n");
   1294   1.42       cgd 		break;
   1295   1.42       cgd 
   1296    1.7       cgd 	default:
   1297   1.46  christos 		printf("error %d\n", error);
   1298    1.7       cgd 		break;
   1299    1.7       cgd 	}
   1300   1.46  christos 	printf("\n\n");
   1301    1.7       cgd 	delay(1000);
   1302    1.7       cgd }
   1303    1.7       cgd 
   1304    1.1       cgd void
   1305  1.317       dsl frametoreg(const struct trapframe *framep, struct reg *regp)
   1306    1.1       cgd {
   1307    1.1       cgd 
   1308    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1309    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1310    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1311    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1312    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1313    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1314    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1315    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1316    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1317    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1318    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1319    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1320    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1321    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1322    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1323    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1324   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1325   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1326   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1327    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1328    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1329    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1330    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1331    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1332    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1333    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1334    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1335    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1336    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1337   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1338   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1339    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1340    1.1       cgd }
   1341    1.1       cgd 
   1342    1.1       cgd void
   1343  1.317       dsl regtoframe(const struct reg *regp, struct trapframe *framep)
   1344    1.1       cgd {
   1345    1.1       cgd 
   1346    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1347    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1348    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1349    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1350    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1351    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1352    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1353    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1354    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1355    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1356    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1357    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1358    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1359    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1360    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1361    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1362   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1363   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1364   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1365    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1366    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1367    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1368    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1369    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1370    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1371    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1372    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1373    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1374    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1375   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1376   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1377    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1378    1.1       cgd }
   1379    1.1       cgd 
   1380    1.1       cgd void
   1381  1.317       dsl printregs(struct reg *regp)
   1382    1.1       cgd {
   1383    1.1       cgd 	int i;
   1384    1.1       cgd 
   1385    1.1       cgd 	for (i = 0; i < 32; i++)
   1386   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1387    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1388    1.1       cgd }
   1389    1.1       cgd 
   1390    1.1       cgd void
   1391  1.317       dsl regdump(struct trapframe *framep)
   1392    1.1       cgd {
   1393    1.1       cgd 	struct reg reg;
   1394    1.1       cgd 
   1395    1.1       cgd 	frametoreg(framep, &reg);
   1396   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1397   1.35       cgd 
   1398   1.46  christos 	printf("REGISTERS:\n");
   1399    1.1       cgd 	printregs(&reg);
   1400    1.1       cgd }
   1401    1.1       cgd 
   1402    1.1       cgd 
   1403  1.274       skd 
   1404  1.274       skd void *
   1405  1.274       skd getframe(const struct lwp *l, int sig, int *onstack)
   1406  1.274       skd {
   1407  1.295  christos 	void *frame;
   1408  1.274       skd 
   1409  1.274       skd 	/* Do we need to jump onto the signal stack? */
   1410  1.274       skd 	*onstack =
   1411  1.293        ad 	    (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1412  1.293        ad 	    (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
   1413  1.274       skd 
   1414  1.274       skd 	if (*onstack)
   1415  1.296      yamt 		frame = (void *)((char *)l->l_sigstk.ss_sp +
   1416  1.293        ad 					l->l_sigstk.ss_size);
   1417  1.274       skd 	else
   1418  1.274       skd 		frame = (void *)(alpha_pal_rdusp());
   1419  1.274       skd 	return (frame);
   1420  1.274       skd }
   1421  1.274       skd 
   1422  1.274       skd void
   1423  1.274       skd buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
   1424  1.274       skd {
   1425  1.274       skd 	struct trapframe *tf = l->l_md.md_tf;
   1426  1.274       skd 
   1427  1.274       skd 	tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
   1428  1.274       skd 	tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
   1429  1.274       skd 	tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
   1430  1.274       skd 	alpha_pal_wrusp((unsigned long)fp);
   1431  1.274       skd }
   1432  1.274       skd 
   1433  1.274       skd 
   1434    1.1       cgd /*
   1435  1.274       skd  * Send an interrupt to process, new style
   1436    1.1       cgd  */
   1437    1.1       cgd void
   1438  1.274       skd sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
   1439    1.1       cgd {
   1440  1.261   thorpej 	struct lwp *l = curlwp;
   1441  1.261   thorpej 	struct proc *p = l->l_proc;
   1442  1.256   thorpej 	struct sigacts *ps = p->p_sigacts;
   1443  1.293        ad 	int onstack, sig = ksi->ksi_signo, error;
   1444  1.274       skd 	struct sigframe_siginfo *fp, frame;
   1445  1.274       skd 	struct trapframe *tf;
   1446  1.274       skd 	sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
   1447    1.1       cgd 
   1448  1.274       skd 	fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
   1449  1.274       skd 	tf = l->l_md.md_tf;
   1450  1.141   thorpej 
   1451  1.141   thorpej 	/* Allocate space for the signal handler context. */
   1452  1.274       skd 	fp--;
   1453  1.141   thorpej 
   1454    1.1       cgd #ifdef DEBUG
   1455    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1456  1.274       skd 		printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1457  1.276   nathanw 		    sig, &onstack, fp);
   1458  1.125      ross #endif
   1459    1.1       cgd 
   1460  1.141   thorpej 	/* Build stack frame for signal trampoline. */
   1461    1.1       cgd 
   1462  1.275     enami 	frame.sf_si._info = ksi->ksi_info;
   1463  1.274       skd 	frame.sf_uc.uc_flags = _UC_SIGMASK;
   1464  1.274       skd 	frame.sf_uc.uc_sigmask = *mask;
   1465  1.299     pooka 	frame.sf_uc.uc_link = l->l_ctxlink;
   1466  1.274       skd 	memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
   1467  1.293        ad 	sendsig_reset(l, sig);
   1468  1.304        ad 	mutex_exit(p->p_lock);
   1469  1.274       skd 	cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
   1470  1.293        ad 	error = copyout(&frame, fp, sizeof(frame));
   1471  1.304        ad 	mutex_enter(p->p_lock);
   1472    1.1       cgd 
   1473  1.293        ad 	if (error != 0) {
   1474  1.141   thorpej 		/*
   1475  1.141   thorpej 		 * Process has trashed its stack; give it an illegal
   1476  1.141   thorpej 		 * instruction to halt it in its tracks.
   1477  1.141   thorpej 		 */
   1478  1.141   thorpej #ifdef DEBUG
   1479  1.141   thorpej 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1480  1.274       skd 			printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
   1481  1.141   thorpej 			    p->p_pid, sig);
   1482  1.141   thorpej #endif
   1483  1.261   thorpej 		sigexit(l, SIGILL);
   1484  1.141   thorpej 		/* NOTREACHED */
   1485  1.141   thorpej 	}
   1486  1.274       skd 
   1487    1.1       cgd #ifdef DEBUG
   1488    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1489  1.276   nathanw 		printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
   1490  1.276   nathanw 		       p->p_pid, sig, fp, ksi->ksi_code);
   1491    1.1       cgd #endif
   1492    1.1       cgd 
   1493  1.256   thorpej 	/*
   1494  1.256   thorpej 	 * Set up the registers to directly invoke the signal handler.  The
   1495  1.256   thorpej 	 * signal trampoline is then used to return from the signal.  Note
   1496  1.256   thorpej 	 * the trampoline version numbers are coordinated with machine-
   1497  1.256   thorpej 	 * dependent code in libc.
   1498  1.256   thorpej 	 */
   1499  1.274       skd 
   1500  1.274       skd 	tf->tf_regs[FRAME_A0] = sig;
   1501  1.274       skd 	tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
   1502  1.274       skd 	tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
   1503  1.256   thorpej 
   1504  1.274       skd 	buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
   1505  1.142   mycroft 
   1506  1.142   mycroft 	/* Remember that we're now on the signal stack. */
   1507  1.142   mycroft 	if (onstack)
   1508  1.293        ad 		l->l_sigstk.ss_flags |= SS_ONSTACK;
   1509    1.1       cgd 
   1510    1.1       cgd #ifdef DEBUG
   1511    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1512  1.274       skd 		printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
   1513  1.276   nathanw 		    tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
   1514    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1515  1.274       skd 		printf("sendsig_siginfo(%d): sig %d returns\n",
   1516    1.1       cgd 		    p->p_pid, sig);
   1517    1.1       cgd #endif
   1518    1.1       cgd }
   1519    1.1       cgd 
   1520  1.261   thorpej 
   1521  1.307  wrstuden void
   1522  1.307  wrstuden cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
   1523  1.307  wrstuden {
   1524  1.307  wrstuden        	struct trapframe *tf;
   1525  1.307  wrstuden 
   1526  1.307  wrstuden 	tf = l->l_md.md_tf;
   1527  1.307  wrstuden 
   1528  1.307  wrstuden 	tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
   1529  1.307  wrstuden 	tf->tf_regs[FRAME_RA] = 0;
   1530  1.307  wrstuden 	tf->tf_regs[FRAME_A0] = type;
   1531  1.307  wrstuden 	tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
   1532  1.307  wrstuden 	tf->tf_regs[FRAME_A2] = nevents;
   1533  1.307  wrstuden 	tf->tf_regs[FRAME_A3] = ninterrupted;
   1534  1.307  wrstuden 	tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
   1535  1.307  wrstuden 	tf->tf_regs[FRAME_T12] = (u_int64_t)upcall;  /* t12 is pv */
   1536  1.307  wrstuden 	alpha_pal_wrusp((unsigned long)sp);
   1537  1.307  wrstuden }
   1538  1.307  wrstuden 
   1539    1.1       cgd /*
   1540    1.1       cgd  * machine dependent system variables.
   1541    1.1       cgd  */
   1542  1.278    atatat SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
   1543    1.1       cgd {
   1544  1.241      ross 
   1545  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1546  1.282    atatat 		       CTLFLAG_PERMANENT,
   1547  1.278    atatat 		       CTLTYPE_NODE, "machdep", NULL,
   1548  1.278    atatat 		       NULL, 0, NULL, 0,
   1549  1.278    atatat 		       CTL_MACHDEP, CTL_EOL);
   1550  1.278    atatat 
   1551  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1552  1.282    atatat 		       CTLFLAG_PERMANENT,
   1553  1.278    atatat 		       CTLTYPE_STRUCT, "console_device", NULL,
   1554  1.278    atatat 		       sysctl_consdev, 0, NULL, sizeof(dev_t),
   1555  1.278    atatat 		       CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
   1556  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1557  1.282    atatat 		       CTLFLAG_PERMANENT,
   1558  1.278    atatat 		       CTLTYPE_STRING, "root_device", NULL,
   1559  1.278    atatat 		       sysctl_root_device, 0, NULL, 0,
   1560  1.278    atatat 		       CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
   1561  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1562  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1563  1.278    atatat 		       CTLTYPE_INT, "unaligned_print", NULL,
   1564  1.278    atatat 		       NULL, 0, &alpha_unaligned_print, 0,
   1565  1.278    atatat 		       CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
   1566  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1567  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1568  1.278    atatat 		       CTLTYPE_INT, "unaligned_fix", NULL,
   1569  1.278    atatat 		       NULL, 0, &alpha_unaligned_fix, 0,
   1570  1.278    atatat 		       CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
   1571  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1572  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1573  1.278    atatat 		       CTLTYPE_INT, "unaligned_sigbus", NULL,
   1574  1.278    atatat 		       NULL, 0, &alpha_unaligned_sigbus, 0,
   1575  1.278    atatat 		       CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
   1576  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1577  1.282    atatat 		       CTLFLAG_PERMANENT,
   1578  1.278    atatat 		       CTLTYPE_STRING, "booted_kernel", NULL,
   1579  1.278    atatat 		       NULL, 0, bootinfo.booted_kernel, 0,
   1580  1.278    atatat 		       CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
   1581  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1582  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1583  1.278    atatat 		       CTLTYPE_INT, "fp_sync_complete", NULL,
   1584  1.278    atatat 		       NULL, 0, &alpha_fp_sync_complete, 0,
   1585  1.278    atatat 		       CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
   1586    1.1       cgd }
   1587    1.1       cgd 
   1588    1.1       cgd /*
   1589    1.1       cgd  * Set registers on exec.
   1590    1.1       cgd  */
   1591    1.1       cgd void
   1592  1.317       dsl setregs(register struct lwp *l, struct exec_package *pack, u_long stack)
   1593    1.1       cgd {
   1594  1.261   thorpej 	struct trapframe *tfp = l->l_md.md_tf;
   1595  1.322     rmind 	struct pcb *pcb;
   1596   1.56       cgd #ifdef DEBUG
   1597    1.1       cgd 	int i;
   1598   1.56       cgd #endif
   1599   1.43       cgd 
   1600   1.43       cgd #ifdef DEBUG
   1601   1.43       cgd 	/*
   1602   1.43       cgd 	 * Crash and dump, if the user requested it.
   1603   1.43       cgd 	 */
   1604   1.43       cgd 	if (boothowto & RB_DUMP)
   1605   1.43       cgd 		panic("crash requested by boot flags");
   1606   1.43       cgd #endif
   1607    1.1       cgd 
   1608    1.1       cgd #ifdef DEBUG
   1609   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1610    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1611    1.1       cgd #else
   1612  1.246   thorpej 	memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1613    1.1       cgd #endif
   1614  1.322     rmind 	pcb = lwp_getpcb(l);
   1615  1.322     rmind 	memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
   1616   1.35       cgd 	alpha_pal_wrusp(stack);
   1617   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1618   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1619   1.41       cgd 
   1620   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1621   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1622   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1623  1.261   thorpej 	tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr;	/* a3 = ps_strings */
   1624   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1625    1.1       cgd 
   1626  1.261   thorpej 	l->l_md.md_flags &= ~MDP_FPUSED;
   1627  1.261   thorpej 	if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
   1628  1.261   thorpej 		l->l_md.md_flags &= ~MDP_FP_C;
   1629  1.322     rmind 		pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
   1630  1.241      ross 	}
   1631  1.322     rmind 	if (pcb->pcb_fpcpu != NULL)
   1632  1.261   thorpej 		fpusave_proc(l, 0);
   1633  1.219   thorpej }
   1634  1.219   thorpej 
   1635  1.219   thorpej /*
   1636  1.219   thorpej  * Release the FPU.
   1637  1.219   thorpej  */
   1638  1.219   thorpej void
   1639  1.225   thorpej fpusave_cpu(struct cpu_info *ci, int save)
   1640  1.219   thorpej {
   1641  1.261   thorpej 	struct lwp *l;
   1642  1.322     rmind 	struct pcb *pcb;
   1643  1.225   thorpej #if defined(MULTIPROCESSOR)
   1644  1.219   thorpej 	int s;
   1645  1.225   thorpej #endif
   1646  1.219   thorpej 
   1647  1.225   thorpej 	KDASSERT(ci == curcpu());
   1648  1.225   thorpej 
   1649  1.235   thorpej #if defined(MULTIPROCESSOR)
   1650  1.287   thorpej 	s = splhigh();		/* block IPIs for the duration */
   1651  1.303        ad 	atomic_or_ulong(&ci->ci_flags, CPUF_FPUSAVE);
   1652  1.235   thorpej #endif
   1653  1.235   thorpej 
   1654  1.261   thorpej 	l = ci->ci_fpcurlwp;
   1655  1.261   thorpej 	if (l == NULL)
   1656  1.235   thorpej 		goto out;
   1657  1.219   thorpej 
   1658  1.322     rmind 	pcb = lwp_getpcb(l);
   1659  1.219   thorpej 	if (save) {
   1660  1.219   thorpej 		alpha_pal_wrfen(1);
   1661  1.322     rmind 		savefpstate(&pcb->pcb_fp);
   1662  1.225   thorpej 	}
   1663  1.225   thorpej 
   1664  1.225   thorpej 	alpha_pal_wrfen(0);
   1665  1.225   thorpej 
   1666  1.322     rmind 	FPCPU_LOCK(pcb);
   1667  1.235   thorpej 
   1668  1.322     rmind 	pcb->pcb_fpcpu = NULL;
   1669  1.261   thorpej 	ci->ci_fpcurlwp = NULL;
   1670  1.235   thorpej 
   1671  1.322     rmind 	FPCPU_UNLOCK(pcb);
   1672  1.235   thorpej 
   1673  1.235   thorpej  out:
   1674  1.219   thorpej #if defined(MULTIPROCESSOR)
   1675  1.303        ad 	atomic_and_ulong(&ci->ci_flags, ~CPUF_FPUSAVE);
   1676  1.287   thorpej 	splx(s);
   1677  1.219   thorpej #endif
   1678  1.235   thorpej 	return;
   1679  1.219   thorpej }
   1680  1.219   thorpej 
   1681  1.219   thorpej /*
   1682  1.219   thorpej  * Synchronize FP state for this process.
   1683  1.219   thorpej  */
   1684  1.219   thorpej void
   1685  1.261   thorpej fpusave_proc(struct lwp *l, int save)
   1686  1.219   thorpej {
   1687  1.225   thorpej 	struct cpu_info *ci = curcpu();
   1688  1.225   thorpej 	struct cpu_info *oci;
   1689  1.322     rmind 	struct pcb *pcb;
   1690  1.235   thorpej #if defined(MULTIPROCESSOR)
   1691  1.235   thorpej 	u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
   1692  1.236   thorpej 	int s, spincount;
   1693  1.235   thorpej #endif
   1694  1.219   thorpej 
   1695  1.322     rmind 	pcb = lwp_getpcb(l);
   1696  1.322     rmind 	KDASSERT(pcb != NULL);
   1697  1.225   thorpej 
   1698  1.287   thorpej #if defined(MULTIPROCESSOR)
   1699  1.287   thorpej 	s = splhigh();		/* block IPIs for the duration */
   1700  1.287   thorpej #endif
   1701  1.322     rmind 	FPCPU_LOCK(pcb);
   1702  1.235   thorpej 
   1703  1.322     rmind 	oci = pcb->pcb_fpcpu;
   1704  1.235   thorpej 	if (oci == NULL) {
   1705  1.322     rmind 		FPCPU_UNLOCK(pcb);
   1706  1.287   thorpej #if defined(MULTIPROCESSOR)
   1707  1.287   thorpej 		splx(s);
   1708  1.287   thorpej #endif
   1709  1.219   thorpej 		return;
   1710  1.235   thorpej 	}
   1711  1.219   thorpej 
   1712  1.219   thorpej #if defined(MULTIPROCESSOR)
   1713  1.225   thorpej 	if (oci == ci) {
   1714  1.261   thorpej 		KASSERT(ci->ci_fpcurlwp == l);
   1715  1.322     rmind 		FPCPU_UNLOCK(pcb);
   1716  1.287   thorpej 		splx(s);
   1717  1.225   thorpej 		fpusave_cpu(ci, save);
   1718  1.235   thorpej 		return;
   1719  1.235   thorpej 	}
   1720  1.235   thorpej 
   1721  1.261   thorpej 	KASSERT(oci->ci_fpcurlwp == l);
   1722  1.235   thorpej 	alpha_send_ipi(oci->ci_cpuid, ipi);
   1723  1.322     rmind 	FPCPU_UNLOCK(pcb);
   1724  1.235   thorpej 
   1725  1.235   thorpej 	spincount = 0;
   1726  1.322     rmind 	while (pcb->pcb_fpcpu != NULL) {
   1727  1.235   thorpej 		spincount++;
   1728  1.235   thorpej 		delay(1000);	/* XXX */
   1729  1.235   thorpej 		if (spincount > 10000)
   1730  1.235   thorpej 			panic("fpsave ipi didn't");
   1731  1.219   thorpej 	}
   1732  1.219   thorpej #else
   1733  1.261   thorpej 	KASSERT(ci->ci_fpcurlwp == l);
   1734  1.322     rmind 	FPCPU_UNLOCK(pcb);
   1735  1.225   thorpej 	fpusave_cpu(ci, save);
   1736  1.219   thorpej #endif /* MULTIPROCESSOR */
   1737   1.15       cgd }
   1738   1.15       cgd 
   1739   1.15       cgd /*
   1740   1.15       cgd  * Wait "n" microseconds.
   1741   1.15       cgd  */
   1742   1.32       cgd void
   1743  1.317       dsl delay(unsigned long n)
   1744   1.15       cgd {
   1745  1.216   thorpej 	unsigned long pcc0, pcc1, curcycle, cycles, usec;
   1746   1.15       cgd 
   1747  1.216   thorpej 	if (n == 0)
   1748  1.216   thorpej 		return;
   1749  1.216   thorpej 
   1750  1.216   thorpej 	pcc0 = alpha_rpcc() & 0xffffffffUL;
   1751  1.216   thorpej 	cycles = 0;
   1752  1.216   thorpej 	usec = 0;
   1753  1.216   thorpej 
   1754  1.216   thorpej 	while (usec <= n) {
   1755  1.216   thorpej 		/*
   1756  1.216   thorpej 		 * Get the next CPU cycle count- assumes that we cannot
   1757  1.216   thorpej 		 * have had more than one 32 bit overflow.
   1758  1.216   thorpej 		 */
   1759  1.216   thorpej 		pcc1 = alpha_rpcc() & 0xffffffffUL;
   1760  1.216   thorpej 		if (pcc1 < pcc0)
   1761  1.216   thorpej 			curcycle = (pcc1 + 0x100000000UL) - pcc0;
   1762  1.216   thorpej 		else
   1763  1.216   thorpej 			curcycle = pcc1 - pcc0;
   1764  1.186   thorpej 
   1765  1.216   thorpej 		/*
   1766  1.216   thorpej 		 * We now have the number of processor cycles since we
   1767  1.216   thorpej 		 * last checked. Add the current cycle count to the
   1768  1.216   thorpej 		 * running total. If it's over cycles_per_usec, increment
   1769  1.216   thorpej 		 * the usec counter.
   1770  1.216   thorpej 		 */
   1771  1.216   thorpej 		cycles += curcycle;
   1772  1.216   thorpej 		while (cycles > cycles_per_usec) {
   1773  1.216   thorpej 			usec++;
   1774  1.216   thorpej 			cycles -= cycles_per_usec;
   1775  1.216   thorpej 		}
   1776  1.216   thorpej 		pcc0 = pcc1;
   1777  1.216   thorpej 	}
   1778    1.1       cgd }
   1779  1.225   thorpej 
   1780  1.250  jdolecek #ifdef EXEC_ECOFF
   1781    1.1       cgd void
   1782  1.317       dsl cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, u_long stack)
   1783    1.1       cgd {
   1784   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1785    1.1       cgd 
   1786  1.261   thorpej 	l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1787    1.1       cgd }
   1788    1.1       cgd 
   1789    1.1       cgd /*
   1790    1.1       cgd  * cpu_exec_ecoff_hook():
   1791    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   1792    1.1       cgd  *
   1793    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1794    1.1       cgd  *
   1795    1.1       cgd  */
   1796    1.1       cgd int
   1797  1.317       dsl cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
   1798    1.1       cgd {
   1799   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1800  1.171       cgd 	int error;
   1801    1.1       cgd 
   1802  1.224  jdolecek 	if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
   1803  1.171       cgd 		error = 0;
   1804  1.224  jdolecek 	else
   1805  1.224  jdolecek 		error = ENOEXEC;
   1806    1.1       cgd 
   1807  1.171       cgd 	return (error);
   1808    1.1       cgd }
   1809  1.250  jdolecek #endif /* EXEC_ECOFF */
   1810  1.110   thorpej 
   1811  1.110   thorpej int
   1812  1.317       dsl alpha_pa_access(u_long pa)
   1813  1.110   thorpej {
   1814  1.110   thorpej 	int i;
   1815  1.110   thorpej 
   1816  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1817  1.110   thorpej 		if (pa < mem_clusters[i].start)
   1818  1.110   thorpej 			continue;
   1819  1.110   thorpej 		if ((pa - mem_clusters[i].start) >=
   1820  1.110   thorpej 		    (mem_clusters[i].size & ~PAGE_MASK))
   1821  1.110   thorpej 			continue;
   1822  1.110   thorpej 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   1823  1.110   thorpej 	}
   1824  1.197   thorpej 
   1825  1.197   thorpej 	/*
   1826  1.197   thorpej 	 * Address is not a memory address.  If we're secure, disallow
   1827  1.197   thorpej 	 * access.  Otherwise, grant read/write.
   1828  1.197   thorpej 	 */
   1829  1.291      elad 	if (kauth_authorize_machdep(kauth_cred_get(),
   1830  1.291      elad 	    KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
   1831  1.197   thorpej 		return (PROT_NONE);
   1832  1.197   thorpej 	else
   1833  1.197   thorpej 		return (PROT_READ | PROT_WRITE);
   1834  1.110   thorpej }
   1835   1.50       cgd 
   1836   1.50       cgd /* XXX XXX BEGIN XXX XXX */
   1837  1.140   thorpej paddr_t alpha_XXX_dmamap_or;					/* XXX */
   1838   1.50       cgd 								/* XXX */
   1839  1.140   thorpej paddr_t								/* XXX */
   1840   1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   1841  1.140   thorpej 	vaddr_t v;						/* XXX */
   1842   1.50       cgd {								/* XXX */
   1843   1.50       cgd 								/* XXX */
   1844   1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   1845   1.50       cgd }								/* XXX */
   1846   1.50       cgd /* XXX XXX END XXX XXX */
   1847  1.177      ross 
   1848  1.177      ross char *
   1849  1.317       dsl dot_conv(unsigned long x)
   1850  1.177      ross {
   1851  1.177      ross 	int i;
   1852  1.177      ross 	char *xc;
   1853  1.177      ross 	static int next;
   1854  1.177      ross 	static char space[2][20];
   1855  1.177      ross 
   1856  1.177      ross 	xc = space[next ^= 1] + sizeof space[0];
   1857  1.177      ross 	*--xc = '\0';
   1858  1.177      ross 	for (i = 0;; ++i) {
   1859  1.177      ross 		if (i && (i & 3) == 0)
   1860  1.177      ross 			*--xc = '.';
   1861  1.285  christos 		*--xc = hexdigits[x & 0xf];
   1862  1.177      ross 		x >>= 4;
   1863  1.177      ross 		if (x == 0)
   1864  1.177      ross 			break;
   1865  1.177      ross 	}
   1866  1.177      ross 	return xc;
   1867  1.261   thorpej }
   1868  1.261   thorpej 
   1869  1.261   thorpej void
   1870  1.317       dsl cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
   1871  1.261   thorpej {
   1872  1.261   thorpej 	struct trapframe *frame = l->l_md.md_tf;
   1873  1.322     rmind 	struct pcb *pcb = lwp_getpcb(l);
   1874  1.261   thorpej 	__greg_t *gr = mcp->__gregs;
   1875  1.264   nathanw 	__greg_t ras_pc;
   1876  1.261   thorpej 
   1877  1.261   thorpej 	/* Save register context. */
   1878  1.261   thorpej 	frametoreg(frame, (struct reg *)gr);
   1879  1.261   thorpej 	/* XXX if there's a better, general way to get the USP of
   1880  1.261   thorpej 	 * an LWP that might or might not be curlwp, I'd like to know
   1881  1.261   thorpej 	 * about it.
   1882  1.261   thorpej 	 */
   1883  1.261   thorpej 	if (l == curlwp) {
   1884  1.261   thorpej 		gr[_REG_SP] = alpha_pal_rdusp();
   1885  1.261   thorpej 		gr[_REG_UNIQUE] = alpha_pal_rdunique();
   1886  1.261   thorpej 	} else {
   1887  1.322     rmind 		gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
   1888  1.322     rmind 		gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
   1889  1.261   thorpej 	}
   1890  1.261   thorpej 	gr[_REG_PC] = frame->tf_regs[FRAME_PC];
   1891  1.261   thorpej 	gr[_REG_PS] = frame->tf_regs[FRAME_PS];
   1892  1.264   nathanw 
   1893  1.264   nathanw 	if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
   1894  1.295  christos 	    (void *) gr[_REG_PC])) != -1)
   1895  1.264   nathanw 		gr[_REG_PC] = ras_pc;
   1896  1.264   nathanw 
   1897  1.261   thorpej 	*flags |= _UC_CPU | _UC_UNIQUE;
   1898  1.261   thorpej 
   1899  1.261   thorpej 	/* Save floating point register context, if any, and copy it. */
   1900  1.265   nathanw 	if (l->l_md.md_flags & MDP_FPUSED) {
   1901  1.261   thorpej 		fpusave_proc(l, 1);
   1902  1.322     rmind 		(void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
   1903  1.261   thorpej 		    sizeof (mcp->__fpregs));
   1904  1.261   thorpej 		mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
   1905  1.261   thorpej 		*flags |= _UC_FPU;
   1906  1.261   thorpej 	}
   1907  1.261   thorpej }
   1908  1.261   thorpej 
   1909  1.261   thorpej 
   1910  1.261   thorpej int
   1911  1.317       dsl cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
   1912  1.261   thorpej {
   1913  1.261   thorpej 	struct trapframe *frame = l->l_md.md_tf;
   1914  1.322     rmind 	struct pcb *pcb = lwp_getpcb(l);
   1915  1.261   thorpej 	const __greg_t *gr = mcp->__gregs;
   1916  1.261   thorpej 
   1917  1.261   thorpej 	/* Restore register context, if any. */
   1918  1.261   thorpej 	if (flags & _UC_CPU) {
   1919  1.261   thorpej 		/* Check for security violations first. */
   1920  1.261   thorpej 		if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
   1921  1.261   thorpej 		    (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
   1922  1.261   thorpej 			return (EINVAL);
   1923  1.261   thorpej 
   1924  1.286       jdc 		regtoframe((const struct reg *)gr, l->l_md.md_tf);
   1925  1.261   thorpej 		if (l == curlwp)
   1926  1.261   thorpej 			alpha_pal_wrusp(gr[_REG_SP]);
   1927  1.261   thorpej 		else
   1928  1.322     rmind 			pcb->pcb_hw.apcb_usp = gr[_REG_SP];
   1929  1.261   thorpej 		frame->tf_regs[FRAME_PC] = gr[_REG_PC];
   1930  1.261   thorpej 		frame->tf_regs[FRAME_PS] = gr[_REG_PS];
   1931  1.261   thorpej 	}
   1932  1.261   thorpej 	if (flags & _UC_UNIQUE) {
   1933  1.261   thorpej 		if (l == curlwp)
   1934  1.261   thorpej 			alpha_pal_wrunique(gr[_REG_UNIQUE]);
   1935  1.261   thorpej 		else
   1936  1.322     rmind 			pcb->pcb_hw.apcb_unique = gr[_REG_UNIQUE];
   1937  1.261   thorpej 	}
   1938  1.261   thorpej 	/* Restore floating point register context, if any. */
   1939  1.261   thorpej 	if (flags & _UC_FPU) {
   1940  1.261   thorpej 		/* If we have an FP register context, get rid of it. */
   1941  1.322     rmind 		if (pcb->pcb_fpcpu != NULL)
   1942  1.261   thorpej 			fpusave_proc(l, 0);
   1943  1.322     rmind 		(void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
   1944  1.322     rmind 		    sizeof (pcb->pcb_fp));
   1945  1.261   thorpej 		l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
   1946  1.271   nathanw 		l->l_md.md_flags |= MDP_FPUSED;
   1947  1.261   thorpej 	}
   1948  1.261   thorpej 
   1949  1.261   thorpej 	return (0);
   1950  1.138      ross }
   1951  1.297      yamt 
   1952  1.297      yamt /*
   1953  1.297      yamt  * Preempt the current process if in interrupt from user mode,
   1954  1.297      yamt  * or after the current trap/syscall if in system mode.
   1955  1.297      yamt  */
   1956  1.297      yamt void
   1957  1.297      yamt cpu_need_resched(struct cpu_info *ci, int flags)
   1958  1.297      yamt {
   1959  1.297      yamt #if defined(MULTIPROCESSOR)
   1960  1.297      yamt 	bool immed = (flags & RESCHED_IMMED) != 0;
   1961  1.297      yamt #endif /* defined(MULTIPROCESSOR) */
   1962  1.297      yamt 
   1963  1.301        ad 	aston(ci->ci_data.cpu_onproc);
   1964  1.297      yamt 	ci->ci_want_resched = 1;
   1965  1.301        ad 	if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
   1966  1.297      yamt #if defined(MULTIPROCESSOR)
   1967  1.297      yamt 		if (immed && ci != curcpu()) {
   1968  1.297      yamt 			alpha_send_ipi(ci->ci_cpuid, 0);
   1969  1.297      yamt 		}
   1970  1.297      yamt #endif /* defined(MULTIPROCESSOR) */
   1971  1.297      yamt 	}
   1972  1.297      yamt }
   1973