machdep.c revision 1.328 1 1.327 uebayasi /* $NetBSD: machdep.c,v 1.328 2010/11/10 09:27:21 uebayasi Exp $ */
2 1.110 thorpej
3 1.110 thorpej /*-
4 1.211 thorpej * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
5 1.110 thorpej * All rights reserved.
6 1.110 thorpej *
7 1.110 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.110 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.110 thorpej * NASA Ames Research Center and by Chris G. Demetriou.
10 1.110 thorpej *
11 1.110 thorpej * Redistribution and use in source and binary forms, with or without
12 1.110 thorpej * modification, are permitted provided that the following conditions
13 1.110 thorpej * are met:
14 1.110 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.110 thorpej * notice, this list of conditions and the following disclaimer.
16 1.110 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.110 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.110 thorpej * documentation and/or other materials provided with the distribution.
19 1.110 thorpej *
20 1.110 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.110 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.110 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.110 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.110 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.110 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.110 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.110 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.110 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.110 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.110 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.110 thorpej */
32 1.1 cgd
33 1.1 cgd /*
34 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35 1.1 cgd * All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Author: Chris G. Demetriou
38 1.1 cgd *
39 1.1 cgd * Permission to use, copy, modify and distribute this software and
40 1.1 cgd * its documentation is hereby granted, provided that both the copyright
41 1.1 cgd * notice and this permission notice appear in all copies of the
42 1.1 cgd * software, derivative works or modified versions, and any portions
43 1.1 cgd * thereof, and that both notices appear in supporting documentation.
44 1.1 cgd *
45 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 1.1 cgd *
49 1.1 cgd * Carnegie Mellon requests users of this software to return to
50 1.1 cgd *
51 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
52 1.1 cgd * School of Computer Science
53 1.1 cgd * Carnegie Mellon University
54 1.1 cgd * Pittsburgh PA 15213-3890
55 1.1 cgd *
56 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
57 1.1 cgd * rights to redistribute these changes.
58 1.1 cgd */
59 1.74 cgd
60 1.129 jonathan #include "opt_ddb.h"
61 1.244 lukem #include "opt_kgdb.h"
62 1.315 apb #include "opt_modular.h"
63 1.147 thorpej #include "opt_multiprocessor.h"
64 1.123 thorpej #include "opt_dec_3000_300.h"
65 1.123 thorpej #include "opt_dec_3000_500.h"
66 1.127 thorpej #include "opt_compat_osf1.h"
67 1.250 jdolecek #include "opt_execfmt.h"
68 1.112 thorpej
69 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
70 1.75 cgd
71 1.327 uebayasi __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.328 2010/11/10 09:27:21 uebayasi Exp $");
72 1.1 cgd
73 1.1 cgd #include <sys/param.h>
74 1.1 cgd #include <sys/systm.h>
75 1.1 cgd #include <sys/signalvar.h>
76 1.1 cgd #include <sys/kernel.h>
77 1.297 yamt #include <sys/cpu.h>
78 1.1 cgd #include <sys/proc.h>
79 1.264 nathanw #include <sys/ras.h>
80 1.307 wrstuden #include <sys/sa.h>
81 1.307 wrstuden #include <sys/savar.h>
82 1.207 thorpej #include <sys/sched.h>
83 1.1 cgd #include <sys/reboot.h>
84 1.28 cgd #include <sys/device.h>
85 1.1 cgd #include <sys/malloc.h>
86 1.110 thorpej #include <sys/mman.h>
87 1.1 cgd #include <sys/msgbuf.h>
88 1.1 cgd #include <sys/ioctl.h>
89 1.1 cgd #include <sys/tty.h>
90 1.1 cgd #include <sys/exec.h>
91 1.320 matt #include <sys/exec_aout.h> /* for MID_* */
92 1.1 cgd #include <sys/exec_ecoff.h>
93 1.43 cgd #include <sys/core.h>
94 1.43 cgd #include <sys/kcore.h>
95 1.261 thorpej #include <sys/ucontext.h>
96 1.258 gehenna #include <sys/conf.h>
97 1.266 ragge #include <sys/ksyms.h>
98 1.290 elad #include <sys/kauth.h>
99 1.303 ad #include <sys/atomic.h>
100 1.303 ad #include <sys/cpu.h>
101 1.303 ad
102 1.43 cgd #include <machine/kcore.h>
103 1.241 ross #include <machine/fpu.h>
104 1.1 cgd
105 1.1 cgd #include <sys/mount.h>
106 1.1 cgd #include <sys/syscallargs.h>
107 1.1 cgd
108 1.327 uebayasi #include <uvm/uvm.h>
109 1.217 mrg #include <sys/sysctl.h>
110 1.112 thorpej
111 1.1 cgd #include <dev/cons.h>
112 1.1 cgd
113 1.81 thorpej #include <machine/autoconf.h>
114 1.1 cgd #include <machine/reg.h>
115 1.1 cgd #include <machine/rpb.h>
116 1.1 cgd #include <machine/prom.h>
117 1.258 gehenna #include <machine/cpuconf.h>
118 1.172 ross #include <machine/ieeefp.h>
119 1.148 thorpej
120 1.81 thorpej #ifdef DDB
121 1.81 thorpej #include <machine/db_machdep.h>
122 1.81 thorpej #include <ddb/db_access.h>
123 1.81 thorpej #include <ddb/db_sym.h>
124 1.81 thorpej #include <ddb/db_extern.h>
125 1.81 thorpej #include <ddb/db_interface.h>
126 1.233 thorpej #endif
127 1.233 thorpej
128 1.233 thorpej #ifdef KGDB
129 1.233 thorpej #include <sys/kgdb.h>
130 1.81 thorpej #endif
131 1.81 thorpej
132 1.229 sommerfe #ifdef DEBUG
133 1.229 sommerfe #include <machine/sigdebug.h>
134 1.229 sommerfe #endif
135 1.229 sommerfe
136 1.155 ross #include <machine/alpha.h>
137 1.143 matt
138 1.266 ragge #include "ksyms.h"
139 1.266 ragge
140 1.245 chs struct vm_map *phys_map = NULL;
141 1.1 cgd
142 1.295 christos void *msgbufaddr;
143 1.86 leo
144 1.1 cgd int maxmem; /* max memory per process */
145 1.7 cgd
146 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
147 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
148 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
149 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
150 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
151 1.1 cgd
152 1.1 cgd int cputype; /* system type, from the RPB */
153 1.210 thorpej
154 1.210 thorpej int bootdev_debug = 0; /* patchable, or from DDB */
155 1.1 cgd
156 1.1 cgd /*
157 1.1 cgd * XXX We need an address to which we can assign things so that they
158 1.1 cgd * won't be optimized away because we didn't use the value.
159 1.1 cgd */
160 1.1 cgd u_int32_t no_optimize;
161 1.1 cgd
162 1.1 cgd /* the following is used externally (sysctl_hw) */
163 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
164 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
165 1.29 cgd char cpu_model[128];
166 1.1 cgd
167 1.1 cgd /* Number of machine cycles per microsecond */
168 1.1 cgd u_int64_t cycles_per_usec;
169 1.1 cgd
170 1.280 wiz /* number of CPUs in the box. really! */
171 1.7 cgd int ncpus;
172 1.7 cgd
173 1.102 cgd struct bootinfo_kernel bootinfo;
174 1.81 thorpej
175 1.123 thorpej /* For built-in TCDS */
176 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
177 1.123 thorpej u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
178 1.123 thorpej #endif
179 1.123 thorpej
180 1.89 mjacob struct platform platform;
181 1.89 mjacob
182 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR)
183 1.81 thorpej /* start and end of kernel symbol table */
184 1.81 thorpej void *ksym_start, *ksym_end;
185 1.81 thorpej #endif
186 1.81 thorpej
187 1.30 cgd /* for cpu_sysctl() */
188 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
189 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
190 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
191 1.241 ross int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
192 1.30 cgd
193 1.110 thorpej /*
194 1.110 thorpej * XXX This should be dynamically sized, but we have the chicken-egg problem!
195 1.110 thorpej * XXX it should also be larger than it is, because not all of the mddt
196 1.110 thorpej * XXX clusters end up being used for VM.
197 1.110 thorpej */
198 1.110 thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
199 1.110 thorpej int mem_cluster_cnt;
200 1.110 thorpej
201 1.316 dsl int cpu_dump(void);
202 1.316 dsl int cpu_dumpsize(void);
203 1.316 dsl u_long cpu_dump_mempagecnt(void);
204 1.316 dsl void dumpsys(void);
205 1.316 dsl void identifycpu(void);
206 1.316 dsl void printregs(struct reg *);
207 1.33 cgd
208 1.55 cgd void
209 1.318 dsl alpha_init(u_long pfn, u_long ptb, u_long bim, u_long bip, u_long biv)
210 1.318 dsl /* pfn: first free PFN number */
211 1.318 dsl /* ptb: PFN of current level 1 page table */
212 1.318 dsl /* bim: bootinfo magic */
213 1.318 dsl /* bip: bootinfo pointer */
214 1.318 dsl /* biv: bootinfo version */
215 1.1 cgd {
216 1.95 thorpej extern char kernel_text[], _end[];
217 1.1 cgd struct mddt *mddtp;
218 1.110 thorpej struct mddt_cluster *memc;
219 1.7 cgd int i, mddtweird;
220 1.110 thorpej struct vm_physseg *vps;
221 1.324 rmind struct pcb *pcb0;
222 1.324 rmind vaddr_t kernstart, kernend, v;
223 1.140 thorpej paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
224 1.211 thorpej cpuid_t cpu_id;
225 1.211 thorpej struct cpu_info *ci;
226 1.1 cgd char *p;
227 1.209 thorpej const char *bootinfo_msg;
228 1.209 thorpej const struct cpuinit *c;
229 1.106 cgd
230 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
231 1.1 cgd
232 1.1 cgd /*
233 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
234 1.1 cgd * Make sure the instruction and data streams are consistent.
235 1.1 cgd */
236 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
237 1.32 cgd alpha_pal_wrfen(0);
238 1.37 cgd ALPHA_TBIA();
239 1.32 cgd alpha_pal_imb();
240 1.248 thorpej
241 1.248 thorpej /* Initialize the SCB. */
242 1.248 thorpej scb_init();
243 1.1 cgd
244 1.211 thorpej cpu_id = cpu_number();
245 1.211 thorpej
246 1.189 thorpej #if defined(MULTIPROCESSOR)
247 1.189 thorpej /*
248 1.189 thorpej * Set our SysValue to the address of our cpu_info structure.
249 1.189 thorpej * Secondary processors do this in their spinup trampoline.
250 1.189 thorpej */
251 1.237 thorpej alpha_pal_wrval((u_long)&cpu_info_primary);
252 1.237 thorpej cpu_info[cpu_id] = &cpu_info_primary;
253 1.189 thorpej #endif
254 1.189 thorpej
255 1.211 thorpej ci = curcpu();
256 1.211 thorpej ci->ci_cpuid = cpu_id;
257 1.211 thorpej
258 1.1 cgd /*
259 1.106 cgd * Get critical system information (if possible, from the
260 1.106 cgd * information provided by the boot program).
261 1.81 thorpej */
262 1.106 cgd bootinfo_msg = NULL;
263 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
264 1.102 cgd if (biv == 0) { /* backward compat */
265 1.102 cgd biv = *(u_long *)bip;
266 1.102 cgd bip += 8;
267 1.102 cgd }
268 1.102 cgd switch (biv) {
269 1.102 cgd case 1: {
270 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
271 1.102 cgd
272 1.102 cgd bootinfo.ssym = v1p->ssym;
273 1.102 cgd bootinfo.esym = v1p->esym;
274 1.106 cgd /* hwrpb may not be provided by boot block in v1 */
275 1.106 cgd if (v1p->hwrpb != NULL) {
276 1.106 cgd bootinfo.hwrpb_phys =
277 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys;
278 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize;
279 1.106 cgd } else {
280 1.106 cgd bootinfo.hwrpb_phys =
281 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys;
282 1.106 cgd bootinfo.hwrpb_size =
283 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size;
284 1.106 cgd }
285 1.247 thorpej memcpy(bootinfo.boot_flags, v1p->boot_flags,
286 1.102 cgd min(sizeof v1p->boot_flags,
287 1.102 cgd sizeof bootinfo.boot_flags));
288 1.247 thorpej memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
289 1.102 cgd min(sizeof v1p->booted_kernel,
290 1.102 cgd sizeof bootinfo.booted_kernel));
291 1.106 cgd /* booted dev not provided in bootinfo */
292 1.106 cgd init_prom_interface((struct rpb *)
293 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
294 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
295 1.102 cgd sizeof bootinfo.booted_dev);
296 1.81 thorpej break;
297 1.102 cgd }
298 1.81 thorpej default:
299 1.106 cgd bootinfo_msg = "unknown bootinfo version";
300 1.102 cgd goto nobootinfo;
301 1.81 thorpej }
302 1.102 cgd } else {
303 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo";
304 1.102 cgd nobootinfo:
305 1.102 cgd bootinfo.ssym = (u_long)_end;
306 1.102 cgd bootinfo.esym = (u_long)_end;
307 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
308 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
309 1.106 cgd init_prom_interface((struct rpb *)HWRPB_ADDR);
310 1.102 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
311 1.102 cgd sizeof bootinfo.boot_flags);
312 1.102 cgd prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
313 1.102 cgd sizeof bootinfo.booted_kernel);
314 1.102 cgd prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
315 1.102 cgd sizeof bootinfo.booted_dev);
316 1.102 cgd }
317 1.102 cgd
318 1.81 thorpej /*
319 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for
320 1.106 cgd * lots of things.
321 1.106 cgd */
322 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
323 1.123 thorpej
324 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
325 1.123 thorpej if (hwrpb->rpb_type == ST_DEC_3000_300 ||
326 1.123 thorpej hwrpb->rpb_type == ST_DEC_3000_500) {
327 1.123 thorpej prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
328 1.123 thorpej sizeof(dec_3000_scsiid));
329 1.123 thorpej prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
330 1.123 thorpej sizeof(dec_3000_scsifast));
331 1.123 thorpej }
332 1.123 thorpej #endif
333 1.106 cgd
334 1.106 cgd /*
335 1.106 cgd * Remember how many cycles there are per microsecond,
336 1.106 cgd * so that we can use delay(). Round up, for safety.
337 1.106 cgd */
338 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
339 1.106 cgd
340 1.106 cgd /*
341 1.251 wiz * Initialize the (temporary) bootstrap console interface, so
342 1.106 cgd * we can use printf until the VM system starts being setup.
343 1.106 cgd * The real console is initialized before then.
344 1.106 cgd */
345 1.106 cgd init_bootstrap_console();
346 1.106 cgd
347 1.106 cgd /* OUTPUT NOW ALLOWED */
348 1.106 cgd
349 1.106 cgd /* delayed from above */
350 1.106 cgd if (bootinfo_msg)
351 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
352 1.106 cgd bootinfo_msg, bim, bip, biv);
353 1.106 cgd
354 1.147 thorpej /* Initialize the trap vectors on the primary processor. */
355 1.147 thorpej trap_init();
356 1.1 cgd
357 1.1 cgd /*
358 1.263 thorpej * Find out this system's page size, and initialize
359 1.263 thorpej * PAGE_SIZE-dependent variables.
360 1.243 thorpej */
361 1.263 thorpej if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
362 1.263 thorpej panic("page size %lu != %d?!", hwrpb->rpb_page_size,
363 1.263 thorpej ALPHA_PGBYTES);
364 1.263 thorpej uvmexp.pagesize = hwrpb->rpb_page_size;
365 1.243 thorpej uvm_setpagesize();
366 1.243 thorpej
367 1.243 thorpej /*
368 1.106 cgd * Find out what hardware we're on, and do basic initialization.
369 1.106 cgd */
370 1.106 cgd cputype = hwrpb->rpb_type;
371 1.167 cgd if (cputype < 0) {
372 1.167 cgd /*
373 1.167 cgd * At least some white-box systems have SRM which
374 1.167 cgd * reports a systype that's the negative of their
375 1.167 cgd * blue-box counterpart.
376 1.167 cgd */
377 1.167 cgd cputype = -cputype;
378 1.167 cgd }
379 1.209 thorpej c = platform_lookup(cputype);
380 1.209 thorpej if (c == NULL) {
381 1.106 cgd platform_not_supported();
382 1.106 cgd /* NOTREACHED */
383 1.106 cgd }
384 1.209 thorpej (*c->init)();
385 1.106 cgd strcpy(cpu_model, platform.model);
386 1.106 cgd
387 1.106 cgd /*
388 1.251 wiz * Initialize the real console, so that the bootstrap console is
389 1.106 cgd * no longer necessary.
390 1.106 cgd */
391 1.169 thorpej (*platform.cons_init)();
392 1.106 cgd
393 1.106 cgd #ifdef DIAGNOSTIC
394 1.106 cgd /* Paranoid sanity checking */
395 1.106 cgd
396 1.199 soren /* We should always be running on the primary. */
397 1.211 thorpej assert(hwrpb->rpb_primary_cpu_id == cpu_id);
398 1.106 cgd
399 1.116 mjacob /*
400 1.116 mjacob * On single-CPU systypes, the primary should always be CPU 0,
401 1.116 mjacob * except on Alpha 8200 systems where the CPU id is related
402 1.116 mjacob * to the VID, which is related to the Turbo Laser node id.
403 1.116 mjacob */
404 1.106 cgd if (cputype != ST_DEC_21000)
405 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0);
406 1.106 cgd #endif
407 1.106 cgd
408 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */
409 1.106 cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
410 1.106 cgd /*
411 1.106 cgd * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
412 1.106 cgd * XXX pmap_uses_prom_console() evaluates to non-zero.)
413 1.106 cgd */
414 1.106 cgd #endif
415 1.95 thorpej
416 1.95 thorpej /*
417 1.101 cgd * Find the beginning and end of the kernel (and leave a
418 1.101 cgd * bit of space before the beginning for the bootstrap
419 1.101 cgd * stack).
420 1.95 thorpej */
421 1.201 kleink kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
422 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR)
423 1.102 cgd ksym_start = (void *)bootinfo.ssym;
424 1.102 cgd ksym_end = (void *)bootinfo.esym;
425 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
426 1.102 cgd #else
427 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)_end);
428 1.95 thorpej #endif
429 1.95 thorpej
430 1.110 thorpej kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
431 1.110 thorpej kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
432 1.110 thorpej
433 1.95 thorpej /*
434 1.1 cgd * Find out how much memory is available, by looking at
435 1.7 cgd * the memory cluster descriptors. This also tries to do
436 1.7 cgd * its best to detect things things that have never been seen
437 1.7 cgd * before...
438 1.1 cgd */
439 1.296 yamt mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
440 1.7 cgd
441 1.110 thorpej /* MDDT SANITY CHECKING */
442 1.7 cgd mddtweird = 0;
443 1.110 thorpej if (mddtp->mddt_cluster_cnt < 2) {
444 1.7 cgd mddtweird = 1;
445 1.160 thorpej printf("WARNING: weird number of mem clusters: %lu\n",
446 1.110 thorpej mddtp->mddt_cluster_cnt);
447 1.7 cgd }
448 1.7 cgd
449 1.110 thorpej #if 0
450 1.110 thorpej printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
451 1.110 thorpej #endif
452 1.110 thorpej
453 1.110 thorpej for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
454 1.110 thorpej memc = &mddtp->mddt_clusters[i];
455 1.110 thorpej #if 0
456 1.110 thorpej printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
457 1.110 thorpej memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
458 1.110 thorpej #endif
459 1.110 thorpej totalphysmem += memc->mddt_pg_cnt;
460 1.110 thorpej if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
461 1.110 thorpej mem_clusters[mem_cluster_cnt].start =
462 1.110 thorpej ptoa(memc->mddt_pfn);
463 1.110 thorpej mem_clusters[mem_cluster_cnt].size =
464 1.110 thorpej ptoa(memc->mddt_pg_cnt);
465 1.110 thorpej if (memc->mddt_usage & MDDT_mbz ||
466 1.110 thorpej memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
467 1.110 thorpej memc->mddt_usage & MDDT_PALCODE)
468 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
469 1.110 thorpej PROT_READ;
470 1.110 thorpej else
471 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
472 1.110 thorpej PROT_READ | PROT_WRITE | PROT_EXEC;
473 1.110 thorpej mem_cluster_cnt++;
474 1.110 thorpej }
475 1.110 thorpej
476 1.110 thorpej if (memc->mddt_usage & MDDT_mbz) {
477 1.7 cgd mddtweird = 1;
478 1.110 thorpej printf("WARNING: mem cluster %d has weird "
479 1.110 thorpej "usage 0x%lx\n", i, memc->mddt_usage);
480 1.110 thorpej unknownmem += memc->mddt_pg_cnt;
481 1.110 thorpej continue;
482 1.7 cgd }
483 1.110 thorpej if (memc->mddt_usage & MDDT_NONVOLATILE) {
484 1.110 thorpej /* XXX should handle these... */
485 1.110 thorpej printf("WARNING: skipping non-volatile mem "
486 1.110 thorpej "cluster %d\n", i);
487 1.110 thorpej unusedmem += memc->mddt_pg_cnt;
488 1.110 thorpej continue;
489 1.110 thorpej }
490 1.110 thorpej if (memc->mddt_usage & MDDT_PALCODE) {
491 1.110 thorpej resvmem += memc->mddt_pg_cnt;
492 1.110 thorpej continue;
493 1.110 thorpej }
494 1.110 thorpej
495 1.110 thorpej /*
496 1.110 thorpej * We have a memory cluster available for system
497 1.110 thorpej * software use. We must determine if this cluster
498 1.110 thorpej * holds the kernel.
499 1.110 thorpej */
500 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
501 1.110 thorpej /*
502 1.110 thorpej * XXX If the kernel uses the PROM console, we only use the
503 1.110 thorpej * XXX memory after the kernel in the first system segment,
504 1.110 thorpej * XXX to avoid clobbering prom mapping, data, etc.
505 1.110 thorpej */
506 1.110 thorpej if (!pmap_uses_prom_console() || physmem == 0) {
507 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
508 1.110 thorpej physmem += memc->mddt_pg_cnt;
509 1.110 thorpej pfn0 = memc->mddt_pfn;
510 1.110 thorpej pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
511 1.110 thorpej if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
512 1.110 thorpej /*
513 1.110 thorpej * Must compute the location of the kernel
514 1.110 thorpej * within the segment.
515 1.110 thorpej */
516 1.110 thorpej #if 0
517 1.110 thorpej printf("Cluster %d contains kernel\n", i);
518 1.110 thorpej #endif
519 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
520 1.110 thorpej if (!pmap_uses_prom_console()) {
521 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
522 1.110 thorpej if (pfn0 < kernstartpfn) {
523 1.110 thorpej /*
524 1.110 thorpej * There is a chunk before the kernel.
525 1.110 thorpej */
526 1.110 thorpej #if 0
527 1.110 thorpej printf("Loading chunk before kernel: "
528 1.110 thorpej "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
529 1.110 thorpej #endif
530 1.112 thorpej uvm_page_physload(pfn0, kernstartpfn,
531 1.135 thorpej pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
532 1.110 thorpej }
533 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
534 1.110 thorpej }
535 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
536 1.110 thorpej if (kernendpfn < pfn1) {
537 1.110 thorpej /*
538 1.110 thorpej * There is a chunk after the kernel.
539 1.110 thorpej */
540 1.110 thorpej #if 0
541 1.110 thorpej printf("Loading chunk after kernel: "
542 1.110 thorpej "0x%lx / 0x%lx\n", kernendpfn, pfn1);
543 1.110 thorpej #endif
544 1.112 thorpej uvm_page_physload(kernendpfn, pfn1,
545 1.135 thorpej kernendpfn, pfn1, VM_FREELIST_DEFAULT);
546 1.110 thorpej }
547 1.110 thorpej } else {
548 1.110 thorpej /*
549 1.110 thorpej * Just load this cluster as one chunk.
550 1.110 thorpej */
551 1.110 thorpej #if 0
552 1.110 thorpej printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
553 1.110 thorpej pfn0, pfn1);
554 1.110 thorpej #endif
555 1.135 thorpej uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
556 1.135 thorpej VM_FREELIST_DEFAULT);
557 1.7 cgd }
558 1.110 thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
559 1.110 thorpej }
560 1.110 thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
561 1.7 cgd }
562 1.7 cgd
563 1.110 thorpej /*
564 1.110 thorpej * Dump out the MDDT if it looks odd...
565 1.110 thorpej */
566 1.7 cgd if (mddtweird) {
567 1.46 christos printf("\n");
568 1.46 christos printf("complete memory cluster information:\n");
569 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
570 1.46 christos printf("mddt %d:\n", i);
571 1.46 christos printf("\tpfn %lx\n",
572 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
573 1.46 christos printf("\tcnt %lx\n",
574 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
575 1.46 christos printf("\ttest %lx\n",
576 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
577 1.46 christos printf("\tbva %lx\n",
578 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
579 1.46 christos printf("\tbpa %lx\n",
580 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
581 1.46 christos printf("\tbcksum %lx\n",
582 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
583 1.46 christos printf("\tusage %lx\n",
584 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
585 1.2 cgd }
586 1.46 christos printf("\n");
587 1.2 cgd }
588 1.2 cgd
589 1.7 cgd if (totalphysmem == 0)
590 1.1 cgd panic("can't happen: system seems to have no memory!");
591 1.1 cgd maxmem = physmem;
592 1.7 cgd #if 0
593 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
594 1.46 christos printf("physmem = %d\n", physmem);
595 1.46 christos printf("resvmem = %d\n", resvmem);
596 1.46 christos printf("unusedmem = %d\n", unusedmem);
597 1.46 christos printf("unknownmem = %d\n", unknownmem);
598 1.7 cgd #endif
599 1.7 cgd
600 1.1 cgd /*
601 1.1 cgd * Initialize error message buffer (at end of core).
602 1.1 cgd */
603 1.110 thorpej {
604 1.204 enami vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
605 1.203 enami vsize_t reqsz = sz;
606 1.110 thorpej
607 1.328 uebayasi vps = VM_PHYSMEM_PTR(vm_nphysseg - 1);
608 1.110 thorpej
609 1.110 thorpej /* shrink so that it'll fit in the last segment */
610 1.110 thorpej if ((vps->avail_end - vps->avail_start) < atop(sz))
611 1.110 thorpej sz = ptoa(vps->avail_end - vps->avail_start);
612 1.110 thorpej
613 1.110 thorpej vps->end -= atop(sz);
614 1.110 thorpej vps->avail_end -= atop(sz);
615 1.295 christos msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
616 1.110 thorpej initmsgbuf(msgbufaddr, sz);
617 1.110 thorpej
618 1.110 thorpej /* Remove the last segment if it now has no pages. */
619 1.110 thorpej if (vps->start == vps->end)
620 1.110 thorpej vm_nphysseg--;
621 1.110 thorpej
622 1.110 thorpej /* warn if the message buffer had to be shrunk */
623 1.203 enami if (sz != reqsz)
624 1.203 enami printf("WARNING: %ld bytes not available for msgbuf "
625 1.203 enami "in last cluster (%ld used)\n", reqsz, sz);
626 1.268 thorpej
627 1.110 thorpej }
628 1.239 thorpej
629 1.239 thorpej /*
630 1.268 thorpej * NOTE: It is safe to use uvm_pageboot_alloc() before
631 1.268 thorpej * pmap_bootstrap() because our pmap_virtual_space()
632 1.268 thorpej * returns compile-time constants.
633 1.268 thorpej */
634 1.268 thorpej
635 1.268 thorpej /*
636 1.324 rmind * Allocate uarea page for lwp0 and set it.
637 1.1 cgd */
638 1.324 rmind v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
639 1.324 rmind uvm_lwp_setuarea(&lwp0, v);
640 1.1 cgd
641 1.1 cgd /*
642 1.1 cgd * Initialize the virtual memory system, and set the
643 1.1 cgd * page table base register in proc 0's PCB.
644 1.1 cgd */
645 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
646 1.144 thorpej hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
647 1.1 cgd
648 1.1 cgd /*
649 1.324 rmind * Initialize the rest of lwp0's PCB and cache its physical address.
650 1.3 cgd */
651 1.324 rmind pcb0 = lwp_getpcb(&lwp0);
652 1.324 rmind lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
653 1.3 cgd
654 1.3 cgd /*
655 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
656 1.323 matt * and make lwp0's trapframe pointer point to it for sanity.
657 1.3 cgd */
658 1.324 rmind pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
659 1.324 rmind lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
660 1.324 rmind simple_lock_init(&pcb0->pcb_fpcpu_slock);
661 1.189 thorpej
662 1.323 matt /* Indicate that lwp0 has a CPU. */
663 1.261 thorpej lwp0.l_cpu = ci;
664 1.1 cgd
665 1.1 cgd /*
666 1.25 cgd * Look at arguments passed to us and compute boothowto.
667 1.8 cgd */
668 1.1 cgd
669 1.8 cgd boothowto = RB_SINGLE;
670 1.1 cgd #ifdef KADB
671 1.1 cgd boothowto |= RB_KDB;
672 1.1 cgd #endif
673 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
674 1.26 cgd /*
675 1.26 cgd * Note that we'd really like to differentiate case here,
676 1.26 cgd * but the Alpha AXP Architecture Reference Manual
677 1.26 cgd * says that we shouldn't.
678 1.26 cgd */
679 1.8 cgd switch (*p) {
680 1.26 cgd case 'a': /* autoboot */
681 1.26 cgd case 'A':
682 1.26 cgd boothowto &= ~RB_SINGLE;
683 1.21 cgd break;
684 1.21 cgd
685 1.43 cgd #ifdef DEBUG
686 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
687 1.43 cgd case 'C':
688 1.43 cgd boothowto |= RB_DUMP;
689 1.43 cgd break;
690 1.43 cgd #endif
691 1.43 cgd
692 1.81 thorpej #if defined(KGDB) || defined(DDB)
693 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
694 1.81 thorpej case 'D':
695 1.81 thorpej boothowto |= RB_KDB;
696 1.81 thorpej break;
697 1.81 thorpej #endif
698 1.81 thorpej
699 1.36 cgd case 'h': /* always halt, never reboot */
700 1.36 cgd case 'H':
701 1.36 cgd boothowto |= RB_HALT;
702 1.8 cgd break;
703 1.8 cgd
704 1.21 cgd #if 0
705 1.8 cgd case 'm': /* mini root present in memory */
706 1.26 cgd case 'M':
707 1.8 cgd boothowto |= RB_MINIROOT;
708 1.8 cgd break;
709 1.21 cgd #endif
710 1.36 cgd
711 1.36 cgd case 'n': /* askname */
712 1.36 cgd case 'N':
713 1.36 cgd boothowto |= RB_ASKNAME;
714 1.65 cgd break;
715 1.65 cgd
716 1.65 cgd case 's': /* single-user (default, supported for sanity) */
717 1.65 cgd case 'S':
718 1.65 cgd boothowto |= RB_SINGLE;
719 1.221 jdolecek break;
720 1.221 jdolecek
721 1.221 jdolecek case 'q': /* quiet boot */
722 1.221 jdolecek case 'Q':
723 1.221 jdolecek boothowto |= AB_QUIET;
724 1.221 jdolecek break;
725 1.221 jdolecek
726 1.221 jdolecek case 'v': /* verbose boot */
727 1.221 jdolecek case 'V':
728 1.221 jdolecek boothowto |= AB_VERBOSE;
729 1.119 thorpej break;
730 1.119 thorpej
731 1.119 thorpej case '-':
732 1.119 thorpej /*
733 1.119 thorpej * Just ignore this. It's not required, but it's
734 1.119 thorpej * common for it to be passed regardless.
735 1.119 thorpej */
736 1.65 cgd break;
737 1.65 cgd
738 1.65 cgd default:
739 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
740 1.36 cgd break;
741 1.1 cgd }
742 1.1 cgd }
743 1.1 cgd
744 1.302 ad /*
745 1.302 ad * Perform any initial kernel patches based on the running system.
746 1.302 ad * We may perform more later if we attach additional CPUs.
747 1.302 ad */
748 1.302 ad alpha_patch(false);
749 1.136 mjacob
750 1.136 mjacob /*
751 1.280 wiz * Figure out the number of CPUs in the box, from RPB fields.
752 1.136 mjacob * Really. We mean it.
753 1.136 mjacob */
754 1.136 mjacob for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
755 1.136 mjacob struct pcs *pcsp;
756 1.136 mjacob
757 1.144 thorpej pcsp = LOCATE_PCS(hwrpb, i);
758 1.136 mjacob if ((pcsp->pcs_flags & PCS_PP) != 0)
759 1.136 mjacob ncpus++;
760 1.136 mjacob }
761 1.136 mjacob
762 1.7 cgd /*
763 1.106 cgd * Initialize debuggers, and break into them if appropriate.
764 1.106 cgd */
765 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR)
766 1.312 martin ksyms_addsyms_elf((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
767 1.159 mjacob ksym_start, ksym_end);
768 1.234 thorpej #endif
769 1.234 thorpej
770 1.234 thorpej if (boothowto & RB_KDB) {
771 1.234 thorpej #if defined(KGDB)
772 1.234 thorpej kgdb_debug_init = 1;
773 1.234 thorpej kgdb_connect(1);
774 1.234 thorpej #elif defined(DDB)
775 1.106 cgd Debugger();
776 1.106 cgd #endif
777 1.234 thorpej }
778 1.234 thorpej
779 1.298 tsutsui #ifdef DIAGNOSTIC
780 1.106 cgd /*
781 1.298 tsutsui * Check our clock frequency, from RPB fields.
782 1.106 cgd */
783 1.298 tsutsui if ((hwrpb->rpb_intr_freq >> 12) != 1024)
784 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
785 1.106 cgd hwrpb->rpb_intr_freq, hz);
786 1.106 cgd #endif
787 1.95 thorpej }
788 1.95 thorpej
789 1.18 cgd void
790 1.319 cegger consinit(void)
791 1.1 cgd {
792 1.81 thorpej
793 1.106 cgd /*
794 1.106 cgd * Everything related to console initialization is done
795 1.106 cgd * in alpha_init().
796 1.106 cgd */
797 1.106 cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
798 1.106 cgd printf("consinit: %susing prom console\n",
799 1.106 cgd pmap_uses_prom_console() ? "" : "not ");
800 1.81 thorpej #endif
801 1.1 cgd }
802 1.118 thorpej
803 1.18 cgd void
804 1.319 cegger cpu_startup(void)
805 1.1 cgd {
806 1.140 thorpej vaddr_t minaddr, maxaddr;
807 1.173 lukem char pbuf[9];
808 1.40 cgd #if defined(DEBUG)
809 1.1 cgd extern int pmapdebug;
810 1.1 cgd int opmapdebug = pmapdebug;
811 1.1 cgd
812 1.1 cgd pmapdebug = 0;
813 1.1 cgd #endif
814 1.1 cgd
815 1.1 cgd /*
816 1.1 cgd * Good {morning,afternoon,evening,night}.
817 1.1 cgd */
818 1.284 lukem printf("%s%s", copyright, version);
819 1.1 cgd identifycpu();
820 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
821 1.173 lukem printf("total memory = %s\n", pbuf);
822 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
823 1.173 lukem printf("(%s reserved for PROM, ", pbuf);
824 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
825 1.173 lukem printf("%s used by NetBSD)\n", pbuf);
826 1.173 lukem if (unusedmem) {
827 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
828 1.173 lukem printf("WARNING: unused memory = %s\n", pbuf);
829 1.173 lukem }
830 1.173 lukem if (unknownmem) {
831 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
832 1.173 lukem printf("WARNING: %s of memory with unknown purpose\n", pbuf);
833 1.173 lukem }
834 1.1 cgd
835 1.279 pk minaddr = 0;
836 1.240 thorpej
837 1.1 cgd /*
838 1.1 cgd * Allocate a submap for physio
839 1.1 cgd */
840 1.112 thorpej phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
841 1.294 thorpej VM_PHYS_SIZE, 0, false, NULL);
842 1.1 cgd
843 1.1 cgd /*
844 1.164 thorpej * No need to allocate an mbuf cluster submap. Mbuf clusters
845 1.164 thorpej * are allocated via the pool allocator, and we use K0SEG to
846 1.164 thorpej * map those pages.
847 1.1 cgd */
848 1.1 cgd
849 1.40 cgd #if defined(DEBUG)
850 1.1 cgd pmapdebug = opmapdebug;
851 1.1 cgd #endif
852 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
853 1.173 lukem printf("avail memory = %s\n", pbuf);
854 1.139 thorpej #if 0
855 1.139 thorpej {
856 1.139 thorpej extern u_long pmap_pages_stolen;
857 1.173 lukem
858 1.173 lukem format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
859 1.173 lukem printf("stolen memory for VM structures = %s\n", pbuf);
860 1.139 thorpej }
861 1.112 thorpej #endif
862 1.151 thorpej
863 1.151 thorpej /*
864 1.151 thorpej * Set up the HWPCB so that it's safe to configure secondary
865 1.151 thorpej * CPUs.
866 1.151 thorpej */
867 1.151 thorpej hwrpb_primary_init();
868 1.104 thorpej }
869 1.104 thorpej
870 1.104 thorpej /*
871 1.104 thorpej * Retrieve the platform name from the DSR.
872 1.104 thorpej */
873 1.104 thorpej const char *
874 1.319 cegger alpha_dsr_sysname(void)
875 1.104 thorpej {
876 1.104 thorpej struct dsrdb *dsr;
877 1.104 thorpej const char *sysname;
878 1.104 thorpej
879 1.104 thorpej /*
880 1.104 thorpej * DSR does not exist on early HWRPB versions.
881 1.104 thorpej */
882 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
883 1.104 thorpej return (NULL);
884 1.104 thorpej
885 1.296 yamt dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
886 1.296 yamt sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
887 1.104 thorpej sizeof(u_int64_t)));
888 1.104 thorpej return (sysname);
889 1.104 thorpej }
890 1.104 thorpej
891 1.104 thorpej /*
892 1.104 thorpej * Lookup the system specified system variation in the provided table,
893 1.104 thorpej * returning the model string on match.
894 1.104 thorpej */
895 1.104 thorpej const char *
896 1.317 dsl alpha_variation_name(u_int64_t variation, const struct alpha_variation_table *avtp)
897 1.104 thorpej {
898 1.104 thorpej int i;
899 1.104 thorpej
900 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++)
901 1.104 thorpej if (avtp[i].avt_variation == variation)
902 1.104 thorpej return (avtp[i].avt_model);
903 1.104 thorpej return (NULL);
904 1.104 thorpej }
905 1.104 thorpej
906 1.104 thorpej /*
907 1.104 thorpej * Generate a default platform name based for unknown system variations.
908 1.104 thorpej */
909 1.104 thorpej const char *
910 1.319 cegger alpha_unknown_sysname(void)
911 1.104 thorpej {
912 1.105 thorpej static char s[128]; /* safe size */
913 1.104 thorpej
914 1.105 thorpej sprintf(s, "%s family, unknown model variation 0x%lx",
915 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK);
916 1.104 thorpej return ((const char *)s);
917 1.1 cgd }
918 1.1 cgd
919 1.33 cgd void
920 1.319 cegger identifycpu(void)
921 1.1 cgd {
922 1.177 ross char *s;
923 1.218 thorpej int i;
924 1.1 cgd
925 1.7 cgd /*
926 1.7 cgd * print out CPU identification information.
927 1.7 cgd */
928 1.177 ross printf("%s", cpu_model);
929 1.177 ross for(s = cpu_model; *s; ++s)
930 1.177 ross if(strncasecmp(s, "MHz", 3) == 0)
931 1.177 ross goto skipMHz;
932 1.177 ross printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
933 1.177 ross skipMHz:
934 1.218 thorpej printf(", s/n ");
935 1.218 thorpej for (i = 0; i < 10; i++)
936 1.218 thorpej printf("%c", hwrpb->rpb_ssn[i]);
937 1.177 ross printf("\n");
938 1.46 christos printf("%ld byte page size, %d processor%s.\n",
939 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
940 1.7 cgd #if 0
941 1.7 cgd /* this isn't defined for any systems that we run on? */
942 1.46 christos printf("serial number 0x%lx 0x%lx\n",
943 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
944 1.7 cgd
945 1.7 cgd /* and these aren't particularly useful! */
946 1.46 christos printf("variation: 0x%lx, revision 0x%lx\n",
947 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
948 1.7 cgd #endif
949 1.1 cgd }
950 1.1 cgd
951 1.1 cgd int waittime = -1;
952 1.7 cgd struct pcb dumppcb;
953 1.1 cgd
954 1.18 cgd void
955 1.317 dsl cpu_reboot(int howto, char *bootstr)
956 1.1 cgd {
957 1.148 thorpej #if defined(MULTIPROCESSOR)
958 1.225 thorpej u_long cpu_id = cpu_number();
959 1.321 mhitch u_long wait_mask;
960 1.225 thorpej int i;
961 1.148 thorpej #endif
962 1.148 thorpej
963 1.225 thorpej /* If "always halt" was specified as a boot flag, obey. */
964 1.225 thorpej if ((boothowto & RB_HALT) != 0)
965 1.225 thorpej howto |= RB_HALT;
966 1.225 thorpej
967 1.225 thorpej boothowto = howto;
968 1.1 cgd
969 1.1 cgd /* If system is cold, just halt. */
970 1.1 cgd if (cold) {
971 1.225 thorpej boothowto |= RB_HALT;
972 1.1 cgd goto haltsys;
973 1.1 cgd }
974 1.1 cgd
975 1.225 thorpej if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
976 1.1 cgd waittime = 0;
977 1.7 cgd vfs_shutdown();
978 1.1 cgd /*
979 1.1 cgd * If we've been adjusting the clock, the todr
980 1.1 cgd * will be out of synch; adjust it now.
981 1.1 cgd */
982 1.1 cgd resettodr();
983 1.1 cgd }
984 1.1 cgd
985 1.1 cgd /* Disable interrupts. */
986 1.1 cgd splhigh();
987 1.1 cgd
988 1.225 thorpej #if defined(MULTIPROCESSOR)
989 1.225 thorpej /*
990 1.225 thorpej * Halt all other CPUs. If we're not the primary, the
991 1.225 thorpej * primary will spin, waiting for us to halt.
992 1.225 thorpej */
993 1.321 mhitch cpu_id = cpu_number(); /* may have changed cpu */
994 1.321 mhitch wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
995 1.321 mhitch
996 1.225 thorpej alpha_broadcast_ipi(ALPHA_IPI_HALT);
997 1.225 thorpej
998 1.283 mhitch /* Ensure any CPUs paused by DDB resume execution so they can halt */
999 1.283 mhitch cpus_paused = 0;
1000 1.283 mhitch
1001 1.225 thorpej for (i = 0; i < 10000; i++) {
1002 1.225 thorpej alpha_mb();
1003 1.225 thorpej if (cpus_running == wait_mask)
1004 1.225 thorpej break;
1005 1.225 thorpej delay(1000);
1006 1.225 thorpej }
1007 1.225 thorpej alpha_mb();
1008 1.225 thorpej if (cpus_running != wait_mask)
1009 1.225 thorpej printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1010 1.225 thorpej cpus_running);
1011 1.225 thorpej #endif /* MULTIPROCESSOR */
1012 1.225 thorpej
1013 1.7 cgd /* If rebooting and a dump is requested do it. */
1014 1.42 cgd #if 0
1015 1.225 thorpej if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1016 1.42 cgd #else
1017 1.225 thorpej if (boothowto & RB_DUMP)
1018 1.42 cgd #endif
1019 1.1 cgd dumpsys();
1020 1.6 cgd
1021 1.12 cgd haltsys:
1022 1.12 cgd
1023 1.6 cgd /* run any shutdown hooks */
1024 1.6 cgd doshutdownhooks();
1025 1.148 thorpej
1026 1.308 dyoung pmf_system_shutdown(boothowto);
1027 1.308 dyoung
1028 1.7 cgd #ifdef BOOTKEY
1029 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1030 1.117 drochner cnpollc(1); /* for proper keyboard command handling */
1031 1.7 cgd cngetc();
1032 1.117 drochner cnpollc(0);
1033 1.46 christos printf("\n");
1034 1.7 cgd #endif
1035 1.7 cgd
1036 1.124 thorpej /* Finally, powerdown/halt/reboot the system. */
1037 1.225 thorpej if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1038 1.124 thorpej platform.powerdown != NULL) {
1039 1.124 thorpej (*platform.powerdown)();
1040 1.124 thorpej printf("WARNING: powerdown failed!\n");
1041 1.124 thorpej }
1042 1.225 thorpej printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1043 1.225 thorpej #if defined(MULTIPROCESSOR)
1044 1.225 thorpej if (cpu_id != hwrpb->rpb_primary_cpu_id)
1045 1.225 thorpej cpu_halt();
1046 1.225 thorpej else
1047 1.225 thorpej #endif
1048 1.225 thorpej prom_halt(boothowto & RB_HALT);
1049 1.1 cgd /*NOTREACHED*/
1050 1.1 cgd }
1051 1.1 cgd
1052 1.7 cgd /*
1053 1.7 cgd * These variables are needed by /sbin/savecore
1054 1.7 cgd */
1055 1.253 tsutsui u_int32_t dumpmag = 0x8fca0101; /* magic number */
1056 1.7 cgd int dumpsize = 0; /* pages */
1057 1.7 cgd long dumplo = 0; /* blocks */
1058 1.7 cgd
1059 1.7 cgd /*
1060 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1061 1.43 cgd */
1062 1.43 cgd int
1063 1.319 cegger cpu_dumpsize(void)
1064 1.43 cgd {
1065 1.43 cgd int size;
1066 1.43 cgd
1067 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1068 1.110 thorpej ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1069 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
1070 1.43 cgd return -1;
1071 1.43 cgd
1072 1.43 cgd return (1);
1073 1.43 cgd }
1074 1.43 cgd
1075 1.43 cgd /*
1076 1.110 thorpej * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1077 1.110 thorpej */
1078 1.110 thorpej u_long
1079 1.319 cegger cpu_dump_mempagecnt(void)
1080 1.110 thorpej {
1081 1.110 thorpej u_long i, n;
1082 1.110 thorpej
1083 1.110 thorpej n = 0;
1084 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++)
1085 1.110 thorpej n += atop(mem_clusters[i].size);
1086 1.110 thorpej return (n);
1087 1.110 thorpej }
1088 1.110 thorpej
1089 1.110 thorpej /*
1090 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
1091 1.43 cgd */
1092 1.43 cgd int
1093 1.319 cegger cpu_dump(void)
1094 1.43 cgd {
1095 1.316 dsl int (*dump)(dev_t, daddr_t, void *, size_t);
1096 1.107 cgd char buf[dbtob(1)];
1097 1.107 cgd kcore_seg_t *segp;
1098 1.107 cgd cpu_kcore_hdr_t *cpuhdrp;
1099 1.107 cgd phys_ram_seg_t *memsegp;
1100 1.258 gehenna const struct bdevsw *bdev;
1101 1.110 thorpej int i;
1102 1.43 cgd
1103 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1104 1.258 gehenna if (bdev == NULL)
1105 1.258 gehenna return (ENXIO);
1106 1.258 gehenna dump = bdev->d_dump;
1107 1.43 cgd
1108 1.246 thorpej memset(buf, 0, sizeof buf);
1109 1.43 cgd segp = (kcore_seg_t *)buf;
1110 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1111 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1112 1.107 cgd ALIGN(sizeof(*cpuhdrp))];
1113 1.43 cgd
1114 1.43 cgd /*
1115 1.43 cgd * Generate a segment header.
1116 1.43 cgd */
1117 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1118 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1119 1.43 cgd
1120 1.43 cgd /*
1121 1.107 cgd * Add the machine-dependent header info.
1122 1.43 cgd */
1123 1.140 thorpej cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1124 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
1125 1.110 thorpej cpuhdrp->nmemsegs = mem_cluster_cnt;
1126 1.107 cgd
1127 1.107 cgd /*
1128 1.107 cgd * Fill in the memory segment descriptors.
1129 1.107 cgd */
1130 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1131 1.110 thorpej memsegp[i].start = mem_clusters[i].start;
1132 1.110 thorpej memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1133 1.110 thorpej }
1134 1.43 cgd
1135 1.295 christos return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1136 1.43 cgd }
1137 1.43 cgd
1138 1.43 cgd /*
1139 1.68 gwr * This is called by main to set dumplo and dumpsize.
1140 1.262 thorpej * Dumps always skip the first PAGE_SIZE of disk space
1141 1.7 cgd * in case there might be a disk label stored there.
1142 1.7 cgd * If there is extra space, put dump at the end to
1143 1.7 cgd * reduce the chance that swapping trashes it.
1144 1.7 cgd */
1145 1.7 cgd void
1146 1.319 cegger cpu_dumpconf(void)
1147 1.7 cgd {
1148 1.258 gehenna const struct bdevsw *bdev;
1149 1.43 cgd int nblks, dumpblks; /* size of dump area */
1150 1.7 cgd
1151 1.7 cgd if (dumpdev == NODEV)
1152 1.43 cgd goto bad;
1153 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1154 1.289 mrg if (bdev == NULL) {
1155 1.289 mrg dumpdev = NODEV;
1156 1.289 mrg goto bad;
1157 1.289 mrg }
1158 1.258 gehenna if (bdev->d_psize == NULL)
1159 1.43 cgd goto bad;
1160 1.258 gehenna nblks = (*bdev->d_psize)(dumpdev);
1161 1.7 cgd if (nblks <= ctod(1))
1162 1.43 cgd goto bad;
1163 1.43 cgd
1164 1.43 cgd dumpblks = cpu_dumpsize();
1165 1.43 cgd if (dumpblks < 0)
1166 1.43 cgd goto bad;
1167 1.110 thorpej dumpblks += ctod(cpu_dump_mempagecnt());
1168 1.43 cgd
1169 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
1170 1.43 cgd if (dumpblks > (nblks - ctod(1)))
1171 1.43 cgd goto bad;
1172 1.43 cgd
1173 1.43 cgd /* Put dump at end of partition */
1174 1.43 cgd dumplo = nblks - dumpblks;
1175 1.7 cgd
1176 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1177 1.110 thorpej dumpsize = cpu_dump_mempagecnt();
1178 1.43 cgd return;
1179 1.7 cgd
1180 1.43 cgd bad:
1181 1.43 cgd dumpsize = 0;
1182 1.43 cgd return;
1183 1.7 cgd }
1184 1.7 cgd
1185 1.7 cgd /*
1186 1.42 cgd * Dump the kernel's image to the swap partition.
1187 1.7 cgd */
1188 1.262 thorpej #define BYTES_PER_DUMP PAGE_SIZE
1189 1.42 cgd
1190 1.7 cgd void
1191 1.319 cegger dumpsys(void)
1192 1.7 cgd {
1193 1.258 gehenna const struct bdevsw *bdev;
1194 1.110 thorpej u_long totalbytesleft, bytes, i, n, memcl;
1195 1.110 thorpej u_long maddr;
1196 1.110 thorpej int psize;
1197 1.42 cgd daddr_t blkno;
1198 1.316 dsl int (*dump)(dev_t, daddr_t, void *, size_t);
1199 1.42 cgd int error;
1200 1.42 cgd
1201 1.42 cgd /* Save registers. */
1202 1.42 cgd savectx(&dumppcb);
1203 1.7 cgd
1204 1.7 cgd if (dumpdev == NODEV)
1205 1.7 cgd return;
1206 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1207 1.258 gehenna if (bdev == NULL || bdev->d_psize == NULL)
1208 1.258 gehenna return;
1209 1.42 cgd
1210 1.42 cgd /*
1211 1.42 cgd * For dumps during autoconfiguration,
1212 1.42 cgd * if dump device has already configured...
1213 1.42 cgd */
1214 1.42 cgd if (dumpsize == 0)
1215 1.68 gwr cpu_dumpconf();
1216 1.47 cgd if (dumplo <= 0) {
1217 1.314 he printf("\ndump to dev %u,%u not possible\n",
1218 1.313 rtr major(dumpdev), minor(dumpdev));
1219 1.42 cgd return;
1220 1.43 cgd }
1221 1.314 he printf("\ndumping to dev %u,%u offset %ld\n",
1222 1.313 rtr major(dumpdev), minor(dumpdev), dumplo);
1223 1.7 cgd
1224 1.258 gehenna psize = (*bdev->d_psize)(dumpdev);
1225 1.46 christos printf("dump ");
1226 1.42 cgd if (psize == -1) {
1227 1.46 christos printf("area unavailable\n");
1228 1.42 cgd return;
1229 1.42 cgd }
1230 1.42 cgd
1231 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1232 1.42 cgd
1233 1.43 cgd if ((error = cpu_dump()) != 0)
1234 1.43 cgd goto err;
1235 1.43 cgd
1236 1.110 thorpej totalbytesleft = ptoa(cpu_dump_mempagecnt());
1237 1.43 cgd blkno = dumplo + cpu_dumpsize();
1238 1.258 gehenna dump = bdev->d_dump;
1239 1.42 cgd error = 0;
1240 1.42 cgd
1241 1.110 thorpej for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1242 1.110 thorpej maddr = mem_clusters[memcl].start;
1243 1.110 thorpej bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1244 1.110 thorpej
1245 1.110 thorpej for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1246 1.110 thorpej
1247 1.110 thorpej /* Print out how many MBs we to go. */
1248 1.110 thorpej if ((totalbytesleft % (1024*1024)) == 0)
1249 1.311 ad printf_nolog("%ld ",
1250 1.311 ad totalbytesleft / (1024 * 1024));
1251 1.110 thorpej
1252 1.110 thorpej /* Limit size for next transfer. */
1253 1.110 thorpej n = bytes - i;
1254 1.110 thorpej if (n > BYTES_PER_DUMP)
1255 1.110 thorpej n = BYTES_PER_DUMP;
1256 1.110 thorpej
1257 1.110 thorpej error = (*dump)(dumpdev, blkno,
1258 1.295 christos (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1259 1.110 thorpej if (error)
1260 1.110 thorpej goto err;
1261 1.110 thorpej maddr += n;
1262 1.110 thorpej blkno += btodb(n); /* XXX? */
1263 1.42 cgd
1264 1.110 thorpej /* XXX should look for keystrokes, to cancel. */
1265 1.110 thorpej }
1266 1.42 cgd }
1267 1.42 cgd
1268 1.43 cgd err:
1269 1.42 cgd switch (error) {
1270 1.7 cgd
1271 1.7 cgd case ENXIO:
1272 1.46 christos printf("device bad\n");
1273 1.7 cgd break;
1274 1.7 cgd
1275 1.7 cgd case EFAULT:
1276 1.46 christos printf("device not ready\n");
1277 1.7 cgd break;
1278 1.7 cgd
1279 1.7 cgd case EINVAL:
1280 1.46 christos printf("area improper\n");
1281 1.7 cgd break;
1282 1.7 cgd
1283 1.7 cgd case EIO:
1284 1.46 christos printf("i/o error\n");
1285 1.7 cgd break;
1286 1.7 cgd
1287 1.7 cgd case EINTR:
1288 1.46 christos printf("aborted from console\n");
1289 1.7 cgd break;
1290 1.7 cgd
1291 1.42 cgd case 0:
1292 1.46 christos printf("succeeded\n");
1293 1.42 cgd break;
1294 1.42 cgd
1295 1.7 cgd default:
1296 1.46 christos printf("error %d\n", error);
1297 1.7 cgd break;
1298 1.7 cgd }
1299 1.46 christos printf("\n\n");
1300 1.7 cgd delay(1000);
1301 1.7 cgd }
1302 1.7 cgd
1303 1.1 cgd void
1304 1.317 dsl frametoreg(const struct trapframe *framep, struct reg *regp)
1305 1.1 cgd {
1306 1.1 cgd
1307 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1308 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1309 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1310 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1311 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1312 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1313 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1314 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1315 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1316 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1317 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1318 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1319 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1320 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1321 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1322 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1323 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1324 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1325 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1326 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1327 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1328 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1329 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1330 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1331 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1332 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1333 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1334 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1335 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1336 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1337 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1338 1.1 cgd regp->r_regs[R_ZERO] = 0;
1339 1.1 cgd }
1340 1.1 cgd
1341 1.1 cgd void
1342 1.317 dsl regtoframe(const struct reg *regp, struct trapframe *framep)
1343 1.1 cgd {
1344 1.1 cgd
1345 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1346 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1347 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1348 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1349 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1350 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1351 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1352 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1353 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1354 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1355 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1356 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1357 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1358 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1359 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1360 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1361 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1362 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1363 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1364 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1365 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1366 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1367 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1368 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1369 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1370 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1371 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1372 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1373 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1374 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1375 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1376 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1377 1.1 cgd }
1378 1.1 cgd
1379 1.1 cgd void
1380 1.317 dsl printregs(struct reg *regp)
1381 1.1 cgd {
1382 1.1 cgd int i;
1383 1.1 cgd
1384 1.1 cgd for (i = 0; i < 32; i++)
1385 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1386 1.1 cgd i & 1 ? "\n" : "\t");
1387 1.1 cgd }
1388 1.1 cgd
1389 1.1 cgd void
1390 1.317 dsl regdump(struct trapframe *framep)
1391 1.1 cgd {
1392 1.1 cgd struct reg reg;
1393 1.1 cgd
1394 1.1 cgd frametoreg(framep, ®);
1395 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1396 1.35 cgd
1397 1.46 christos printf("REGISTERS:\n");
1398 1.1 cgd printregs(®);
1399 1.1 cgd }
1400 1.1 cgd
1401 1.1 cgd
1402 1.274 skd
1403 1.274 skd void *
1404 1.274 skd getframe(const struct lwp *l, int sig, int *onstack)
1405 1.274 skd {
1406 1.295 christos void *frame;
1407 1.274 skd
1408 1.274 skd /* Do we need to jump onto the signal stack? */
1409 1.274 skd *onstack =
1410 1.293 ad (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1411 1.293 ad (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1412 1.274 skd
1413 1.274 skd if (*onstack)
1414 1.296 yamt frame = (void *)((char *)l->l_sigstk.ss_sp +
1415 1.293 ad l->l_sigstk.ss_size);
1416 1.274 skd else
1417 1.274 skd frame = (void *)(alpha_pal_rdusp());
1418 1.274 skd return (frame);
1419 1.274 skd }
1420 1.274 skd
1421 1.274 skd void
1422 1.274 skd buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1423 1.274 skd {
1424 1.274 skd struct trapframe *tf = l->l_md.md_tf;
1425 1.274 skd
1426 1.274 skd tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
1427 1.274 skd tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
1428 1.274 skd tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
1429 1.274 skd alpha_pal_wrusp((unsigned long)fp);
1430 1.274 skd }
1431 1.274 skd
1432 1.274 skd
1433 1.1 cgd /*
1434 1.274 skd * Send an interrupt to process, new style
1435 1.1 cgd */
1436 1.1 cgd void
1437 1.274 skd sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1438 1.1 cgd {
1439 1.261 thorpej struct lwp *l = curlwp;
1440 1.261 thorpej struct proc *p = l->l_proc;
1441 1.256 thorpej struct sigacts *ps = p->p_sigacts;
1442 1.293 ad int onstack, sig = ksi->ksi_signo, error;
1443 1.274 skd struct sigframe_siginfo *fp, frame;
1444 1.274 skd struct trapframe *tf;
1445 1.274 skd sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1446 1.1 cgd
1447 1.274 skd fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1448 1.274 skd tf = l->l_md.md_tf;
1449 1.141 thorpej
1450 1.141 thorpej /* Allocate space for the signal handler context. */
1451 1.274 skd fp--;
1452 1.141 thorpej
1453 1.1 cgd #ifdef DEBUG
1454 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1455 1.274 skd printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1456 1.276 nathanw sig, &onstack, fp);
1457 1.125 ross #endif
1458 1.1 cgd
1459 1.141 thorpej /* Build stack frame for signal trampoline. */
1460 1.1 cgd
1461 1.275 enami frame.sf_si._info = ksi->ksi_info;
1462 1.274 skd frame.sf_uc.uc_flags = _UC_SIGMASK;
1463 1.274 skd frame.sf_uc.uc_sigmask = *mask;
1464 1.299 pooka frame.sf_uc.uc_link = l->l_ctxlink;
1465 1.274 skd memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
1466 1.293 ad sendsig_reset(l, sig);
1467 1.304 ad mutex_exit(p->p_lock);
1468 1.274 skd cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1469 1.293 ad error = copyout(&frame, fp, sizeof(frame));
1470 1.304 ad mutex_enter(p->p_lock);
1471 1.1 cgd
1472 1.293 ad if (error != 0) {
1473 1.141 thorpej /*
1474 1.141 thorpej * Process has trashed its stack; give it an illegal
1475 1.141 thorpej * instruction to halt it in its tracks.
1476 1.141 thorpej */
1477 1.141 thorpej #ifdef DEBUG
1478 1.141 thorpej if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1479 1.274 skd printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1480 1.141 thorpej p->p_pid, sig);
1481 1.141 thorpej #endif
1482 1.261 thorpej sigexit(l, SIGILL);
1483 1.141 thorpej /* NOTREACHED */
1484 1.141 thorpej }
1485 1.274 skd
1486 1.1 cgd #ifdef DEBUG
1487 1.1 cgd if (sigdebug & SDB_FOLLOW)
1488 1.276 nathanw printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1489 1.276 nathanw p->p_pid, sig, fp, ksi->ksi_code);
1490 1.1 cgd #endif
1491 1.1 cgd
1492 1.256 thorpej /*
1493 1.256 thorpej * Set up the registers to directly invoke the signal handler. The
1494 1.256 thorpej * signal trampoline is then used to return from the signal. Note
1495 1.256 thorpej * the trampoline version numbers are coordinated with machine-
1496 1.256 thorpej * dependent code in libc.
1497 1.256 thorpej */
1498 1.274 skd
1499 1.274 skd tf->tf_regs[FRAME_A0] = sig;
1500 1.274 skd tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
1501 1.274 skd tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
1502 1.256 thorpej
1503 1.274 skd buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1504 1.142 mycroft
1505 1.142 mycroft /* Remember that we're now on the signal stack. */
1506 1.142 mycroft if (onstack)
1507 1.293 ad l->l_sigstk.ss_flags |= SS_ONSTACK;
1508 1.1 cgd
1509 1.1 cgd #ifdef DEBUG
1510 1.1 cgd if (sigdebug & SDB_FOLLOW)
1511 1.274 skd printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1512 1.276 nathanw tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1513 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1514 1.274 skd printf("sendsig_siginfo(%d): sig %d returns\n",
1515 1.1 cgd p->p_pid, sig);
1516 1.1 cgd #endif
1517 1.1 cgd }
1518 1.1 cgd
1519 1.261 thorpej
1520 1.307 wrstuden void
1521 1.307 wrstuden cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
1522 1.307 wrstuden {
1523 1.307 wrstuden struct trapframe *tf;
1524 1.307 wrstuden
1525 1.307 wrstuden tf = l->l_md.md_tf;
1526 1.307 wrstuden
1527 1.307 wrstuden tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
1528 1.307 wrstuden tf->tf_regs[FRAME_RA] = 0;
1529 1.307 wrstuden tf->tf_regs[FRAME_A0] = type;
1530 1.307 wrstuden tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
1531 1.307 wrstuden tf->tf_regs[FRAME_A2] = nevents;
1532 1.307 wrstuden tf->tf_regs[FRAME_A3] = ninterrupted;
1533 1.307 wrstuden tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
1534 1.307 wrstuden tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
1535 1.307 wrstuden alpha_pal_wrusp((unsigned long)sp);
1536 1.307 wrstuden }
1537 1.307 wrstuden
1538 1.1 cgd /*
1539 1.1 cgd * machine dependent system variables.
1540 1.1 cgd */
1541 1.278 atatat SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1542 1.1 cgd {
1543 1.241 ross
1544 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1545 1.282 atatat CTLFLAG_PERMANENT,
1546 1.278 atatat CTLTYPE_NODE, "machdep", NULL,
1547 1.278 atatat NULL, 0, NULL, 0,
1548 1.278 atatat CTL_MACHDEP, CTL_EOL);
1549 1.278 atatat
1550 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1551 1.282 atatat CTLFLAG_PERMANENT,
1552 1.278 atatat CTLTYPE_STRUCT, "console_device", NULL,
1553 1.278 atatat sysctl_consdev, 0, NULL, sizeof(dev_t),
1554 1.278 atatat CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1555 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1556 1.282 atatat CTLFLAG_PERMANENT,
1557 1.278 atatat CTLTYPE_STRING, "root_device", NULL,
1558 1.278 atatat sysctl_root_device, 0, NULL, 0,
1559 1.278 atatat CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1560 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1561 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1562 1.278 atatat CTLTYPE_INT, "unaligned_print", NULL,
1563 1.278 atatat NULL, 0, &alpha_unaligned_print, 0,
1564 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1565 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1566 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1567 1.278 atatat CTLTYPE_INT, "unaligned_fix", NULL,
1568 1.278 atatat NULL, 0, &alpha_unaligned_fix, 0,
1569 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1570 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1571 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1572 1.278 atatat CTLTYPE_INT, "unaligned_sigbus", NULL,
1573 1.278 atatat NULL, 0, &alpha_unaligned_sigbus, 0,
1574 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1575 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1576 1.282 atatat CTLFLAG_PERMANENT,
1577 1.278 atatat CTLTYPE_STRING, "booted_kernel", NULL,
1578 1.278 atatat NULL, 0, bootinfo.booted_kernel, 0,
1579 1.278 atatat CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1580 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1581 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1582 1.278 atatat CTLTYPE_INT, "fp_sync_complete", NULL,
1583 1.278 atatat NULL, 0, &alpha_fp_sync_complete, 0,
1584 1.278 atatat CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1585 1.1 cgd }
1586 1.1 cgd
1587 1.1 cgd /*
1588 1.1 cgd * Set registers on exec.
1589 1.1 cgd */
1590 1.1 cgd void
1591 1.325 matt setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
1592 1.1 cgd {
1593 1.261 thorpej struct trapframe *tfp = l->l_md.md_tf;
1594 1.322 rmind struct pcb *pcb;
1595 1.56 cgd #ifdef DEBUG
1596 1.1 cgd int i;
1597 1.56 cgd #endif
1598 1.43 cgd
1599 1.43 cgd #ifdef DEBUG
1600 1.43 cgd /*
1601 1.43 cgd * Crash and dump, if the user requested it.
1602 1.43 cgd */
1603 1.43 cgd if (boothowto & RB_DUMP)
1604 1.43 cgd panic("crash requested by boot flags");
1605 1.43 cgd #endif
1606 1.1 cgd
1607 1.1 cgd #ifdef DEBUG
1608 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1609 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1610 1.1 cgd #else
1611 1.246 thorpej memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1612 1.1 cgd #endif
1613 1.322 rmind pcb = lwp_getpcb(l);
1614 1.322 rmind memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
1615 1.35 cgd alpha_pal_wrusp(stack);
1616 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1617 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1618 1.41 cgd
1619 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1620 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1621 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1622 1.261 thorpej tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
1623 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1624 1.1 cgd
1625 1.261 thorpej l->l_md.md_flags &= ~MDP_FPUSED;
1626 1.261 thorpej if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1627 1.261 thorpej l->l_md.md_flags &= ~MDP_FP_C;
1628 1.322 rmind pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1629 1.241 ross }
1630 1.322 rmind if (pcb->pcb_fpcpu != NULL)
1631 1.261 thorpej fpusave_proc(l, 0);
1632 1.219 thorpej }
1633 1.219 thorpej
1634 1.219 thorpej /*
1635 1.219 thorpej * Release the FPU.
1636 1.219 thorpej */
1637 1.219 thorpej void
1638 1.225 thorpej fpusave_cpu(struct cpu_info *ci, int save)
1639 1.219 thorpej {
1640 1.261 thorpej struct lwp *l;
1641 1.322 rmind struct pcb *pcb;
1642 1.225 thorpej #if defined(MULTIPROCESSOR)
1643 1.219 thorpej int s;
1644 1.225 thorpej #endif
1645 1.219 thorpej
1646 1.225 thorpej KDASSERT(ci == curcpu());
1647 1.225 thorpej
1648 1.235 thorpej #if defined(MULTIPROCESSOR)
1649 1.287 thorpej s = splhigh(); /* block IPIs for the duration */
1650 1.303 ad atomic_or_ulong(&ci->ci_flags, CPUF_FPUSAVE);
1651 1.235 thorpej #endif
1652 1.235 thorpej
1653 1.261 thorpej l = ci->ci_fpcurlwp;
1654 1.261 thorpej if (l == NULL)
1655 1.235 thorpej goto out;
1656 1.219 thorpej
1657 1.322 rmind pcb = lwp_getpcb(l);
1658 1.219 thorpej if (save) {
1659 1.219 thorpej alpha_pal_wrfen(1);
1660 1.322 rmind savefpstate(&pcb->pcb_fp);
1661 1.225 thorpej }
1662 1.225 thorpej
1663 1.225 thorpej alpha_pal_wrfen(0);
1664 1.225 thorpej
1665 1.322 rmind FPCPU_LOCK(pcb);
1666 1.235 thorpej
1667 1.322 rmind pcb->pcb_fpcpu = NULL;
1668 1.261 thorpej ci->ci_fpcurlwp = NULL;
1669 1.235 thorpej
1670 1.322 rmind FPCPU_UNLOCK(pcb);
1671 1.235 thorpej
1672 1.235 thorpej out:
1673 1.219 thorpej #if defined(MULTIPROCESSOR)
1674 1.303 ad atomic_and_ulong(&ci->ci_flags, ~CPUF_FPUSAVE);
1675 1.287 thorpej splx(s);
1676 1.219 thorpej #endif
1677 1.235 thorpej return;
1678 1.219 thorpej }
1679 1.219 thorpej
1680 1.219 thorpej /*
1681 1.219 thorpej * Synchronize FP state for this process.
1682 1.219 thorpej */
1683 1.219 thorpej void
1684 1.261 thorpej fpusave_proc(struct lwp *l, int save)
1685 1.219 thorpej {
1686 1.225 thorpej struct cpu_info *ci = curcpu();
1687 1.225 thorpej struct cpu_info *oci;
1688 1.322 rmind struct pcb *pcb;
1689 1.235 thorpej #if defined(MULTIPROCESSOR)
1690 1.235 thorpej u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
1691 1.236 thorpej int s, spincount;
1692 1.235 thorpej #endif
1693 1.219 thorpej
1694 1.322 rmind pcb = lwp_getpcb(l);
1695 1.322 rmind KDASSERT(pcb != NULL);
1696 1.225 thorpej
1697 1.287 thorpej #if defined(MULTIPROCESSOR)
1698 1.287 thorpej s = splhigh(); /* block IPIs for the duration */
1699 1.287 thorpej #endif
1700 1.322 rmind FPCPU_LOCK(pcb);
1701 1.235 thorpej
1702 1.322 rmind oci = pcb->pcb_fpcpu;
1703 1.235 thorpej if (oci == NULL) {
1704 1.322 rmind FPCPU_UNLOCK(pcb);
1705 1.287 thorpej #if defined(MULTIPROCESSOR)
1706 1.287 thorpej splx(s);
1707 1.287 thorpej #endif
1708 1.219 thorpej return;
1709 1.235 thorpej }
1710 1.219 thorpej
1711 1.219 thorpej #if defined(MULTIPROCESSOR)
1712 1.225 thorpej if (oci == ci) {
1713 1.261 thorpej KASSERT(ci->ci_fpcurlwp == l);
1714 1.322 rmind FPCPU_UNLOCK(pcb);
1715 1.287 thorpej splx(s);
1716 1.225 thorpej fpusave_cpu(ci, save);
1717 1.235 thorpej return;
1718 1.235 thorpej }
1719 1.235 thorpej
1720 1.261 thorpej KASSERT(oci->ci_fpcurlwp == l);
1721 1.235 thorpej alpha_send_ipi(oci->ci_cpuid, ipi);
1722 1.322 rmind FPCPU_UNLOCK(pcb);
1723 1.235 thorpej
1724 1.235 thorpej spincount = 0;
1725 1.322 rmind while (pcb->pcb_fpcpu != NULL) {
1726 1.235 thorpej spincount++;
1727 1.235 thorpej delay(1000); /* XXX */
1728 1.235 thorpej if (spincount > 10000)
1729 1.235 thorpej panic("fpsave ipi didn't");
1730 1.219 thorpej }
1731 1.219 thorpej #else
1732 1.261 thorpej KASSERT(ci->ci_fpcurlwp == l);
1733 1.322 rmind FPCPU_UNLOCK(pcb);
1734 1.225 thorpej fpusave_cpu(ci, save);
1735 1.219 thorpej #endif /* MULTIPROCESSOR */
1736 1.15 cgd }
1737 1.15 cgd
1738 1.15 cgd /*
1739 1.15 cgd * Wait "n" microseconds.
1740 1.15 cgd */
1741 1.32 cgd void
1742 1.317 dsl delay(unsigned long n)
1743 1.15 cgd {
1744 1.216 thorpej unsigned long pcc0, pcc1, curcycle, cycles, usec;
1745 1.15 cgd
1746 1.216 thorpej if (n == 0)
1747 1.216 thorpej return;
1748 1.216 thorpej
1749 1.216 thorpej pcc0 = alpha_rpcc() & 0xffffffffUL;
1750 1.216 thorpej cycles = 0;
1751 1.216 thorpej usec = 0;
1752 1.216 thorpej
1753 1.216 thorpej while (usec <= n) {
1754 1.216 thorpej /*
1755 1.216 thorpej * Get the next CPU cycle count- assumes that we cannot
1756 1.216 thorpej * have had more than one 32 bit overflow.
1757 1.216 thorpej */
1758 1.216 thorpej pcc1 = alpha_rpcc() & 0xffffffffUL;
1759 1.216 thorpej if (pcc1 < pcc0)
1760 1.216 thorpej curcycle = (pcc1 + 0x100000000UL) - pcc0;
1761 1.216 thorpej else
1762 1.216 thorpej curcycle = pcc1 - pcc0;
1763 1.186 thorpej
1764 1.216 thorpej /*
1765 1.216 thorpej * We now have the number of processor cycles since we
1766 1.216 thorpej * last checked. Add the current cycle count to the
1767 1.216 thorpej * running total. If it's over cycles_per_usec, increment
1768 1.216 thorpej * the usec counter.
1769 1.216 thorpej */
1770 1.216 thorpej cycles += curcycle;
1771 1.216 thorpej while (cycles > cycles_per_usec) {
1772 1.216 thorpej usec++;
1773 1.216 thorpej cycles -= cycles_per_usec;
1774 1.216 thorpej }
1775 1.216 thorpej pcc0 = pcc1;
1776 1.216 thorpej }
1777 1.1 cgd }
1778 1.225 thorpej
1779 1.250 jdolecek #ifdef EXEC_ECOFF
1780 1.1 cgd void
1781 1.325 matt cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
1782 1.1 cgd {
1783 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1784 1.1 cgd
1785 1.261 thorpej l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1786 1.1 cgd }
1787 1.1 cgd
1788 1.1 cgd /*
1789 1.1 cgd * cpu_exec_ecoff_hook():
1790 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1791 1.1 cgd *
1792 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1793 1.1 cgd *
1794 1.1 cgd */
1795 1.1 cgd int
1796 1.317 dsl cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
1797 1.1 cgd {
1798 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1799 1.171 cgd int error;
1800 1.1 cgd
1801 1.224 jdolecek if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1802 1.171 cgd error = 0;
1803 1.224 jdolecek else
1804 1.224 jdolecek error = ENOEXEC;
1805 1.1 cgd
1806 1.171 cgd return (error);
1807 1.1 cgd }
1808 1.250 jdolecek #endif /* EXEC_ECOFF */
1809 1.110 thorpej
1810 1.110 thorpej int
1811 1.317 dsl alpha_pa_access(u_long pa)
1812 1.110 thorpej {
1813 1.110 thorpej int i;
1814 1.110 thorpej
1815 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1816 1.110 thorpej if (pa < mem_clusters[i].start)
1817 1.110 thorpej continue;
1818 1.110 thorpej if ((pa - mem_clusters[i].start) >=
1819 1.110 thorpej (mem_clusters[i].size & ~PAGE_MASK))
1820 1.110 thorpej continue;
1821 1.110 thorpej return (mem_clusters[i].size & PAGE_MASK); /* prot */
1822 1.110 thorpej }
1823 1.197 thorpej
1824 1.197 thorpej /*
1825 1.197 thorpej * Address is not a memory address. If we're secure, disallow
1826 1.197 thorpej * access. Otherwise, grant read/write.
1827 1.197 thorpej */
1828 1.291 elad if (kauth_authorize_machdep(kauth_cred_get(),
1829 1.291 elad KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
1830 1.197 thorpej return (PROT_NONE);
1831 1.197 thorpej else
1832 1.197 thorpej return (PROT_READ | PROT_WRITE);
1833 1.110 thorpej }
1834 1.50 cgd
1835 1.50 cgd /* XXX XXX BEGIN XXX XXX */
1836 1.140 thorpej paddr_t alpha_XXX_dmamap_or; /* XXX */
1837 1.50 cgd /* XXX */
1838 1.140 thorpej paddr_t /* XXX */
1839 1.50 cgd alpha_XXX_dmamap(v) /* XXX */
1840 1.140 thorpej vaddr_t v; /* XXX */
1841 1.50 cgd { /* XXX */
1842 1.50 cgd /* XXX */
1843 1.51 cgd return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
1844 1.50 cgd } /* XXX */
1845 1.50 cgd /* XXX XXX END XXX XXX */
1846 1.177 ross
1847 1.177 ross char *
1848 1.317 dsl dot_conv(unsigned long x)
1849 1.177 ross {
1850 1.177 ross int i;
1851 1.177 ross char *xc;
1852 1.177 ross static int next;
1853 1.177 ross static char space[2][20];
1854 1.177 ross
1855 1.177 ross xc = space[next ^= 1] + sizeof space[0];
1856 1.177 ross *--xc = '\0';
1857 1.177 ross for (i = 0;; ++i) {
1858 1.177 ross if (i && (i & 3) == 0)
1859 1.177 ross *--xc = '.';
1860 1.285 christos *--xc = hexdigits[x & 0xf];
1861 1.177 ross x >>= 4;
1862 1.177 ross if (x == 0)
1863 1.177 ross break;
1864 1.177 ross }
1865 1.177 ross return xc;
1866 1.261 thorpej }
1867 1.261 thorpej
1868 1.261 thorpej void
1869 1.317 dsl cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
1870 1.261 thorpej {
1871 1.261 thorpej struct trapframe *frame = l->l_md.md_tf;
1872 1.322 rmind struct pcb *pcb = lwp_getpcb(l);
1873 1.261 thorpej __greg_t *gr = mcp->__gregs;
1874 1.264 nathanw __greg_t ras_pc;
1875 1.261 thorpej
1876 1.261 thorpej /* Save register context. */
1877 1.261 thorpej frametoreg(frame, (struct reg *)gr);
1878 1.261 thorpej /* XXX if there's a better, general way to get the USP of
1879 1.261 thorpej * an LWP that might or might not be curlwp, I'd like to know
1880 1.261 thorpej * about it.
1881 1.261 thorpej */
1882 1.261 thorpej if (l == curlwp) {
1883 1.261 thorpej gr[_REG_SP] = alpha_pal_rdusp();
1884 1.261 thorpej gr[_REG_UNIQUE] = alpha_pal_rdunique();
1885 1.261 thorpej } else {
1886 1.322 rmind gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
1887 1.322 rmind gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
1888 1.261 thorpej }
1889 1.261 thorpej gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1890 1.261 thorpej gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1891 1.264 nathanw
1892 1.264 nathanw if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1893 1.295 christos (void *) gr[_REG_PC])) != -1)
1894 1.264 nathanw gr[_REG_PC] = ras_pc;
1895 1.264 nathanw
1896 1.261 thorpej *flags |= _UC_CPU | _UC_UNIQUE;
1897 1.261 thorpej
1898 1.261 thorpej /* Save floating point register context, if any, and copy it. */
1899 1.265 nathanw if (l->l_md.md_flags & MDP_FPUSED) {
1900 1.261 thorpej fpusave_proc(l, 1);
1901 1.322 rmind (void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
1902 1.261 thorpej sizeof (mcp->__fpregs));
1903 1.261 thorpej mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1904 1.261 thorpej *flags |= _UC_FPU;
1905 1.261 thorpej }
1906 1.261 thorpej }
1907 1.261 thorpej
1908 1.261 thorpej
1909 1.261 thorpej int
1910 1.317 dsl cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
1911 1.261 thorpej {
1912 1.261 thorpej struct trapframe *frame = l->l_md.md_tf;
1913 1.322 rmind struct pcb *pcb = lwp_getpcb(l);
1914 1.261 thorpej const __greg_t *gr = mcp->__gregs;
1915 1.261 thorpej
1916 1.261 thorpej /* Restore register context, if any. */
1917 1.261 thorpej if (flags & _UC_CPU) {
1918 1.261 thorpej /* Check for security violations first. */
1919 1.261 thorpej if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1920 1.261 thorpej (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1921 1.261 thorpej return (EINVAL);
1922 1.261 thorpej
1923 1.286 jdc regtoframe((const struct reg *)gr, l->l_md.md_tf);
1924 1.261 thorpej if (l == curlwp)
1925 1.261 thorpej alpha_pal_wrusp(gr[_REG_SP]);
1926 1.261 thorpej else
1927 1.322 rmind pcb->pcb_hw.apcb_usp = gr[_REG_SP];
1928 1.261 thorpej frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1929 1.261 thorpej frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1930 1.261 thorpej }
1931 1.261 thorpej if (flags & _UC_UNIQUE) {
1932 1.261 thorpej if (l == curlwp)
1933 1.261 thorpej alpha_pal_wrunique(gr[_REG_UNIQUE]);
1934 1.261 thorpej else
1935 1.322 rmind pcb->pcb_hw.apcb_unique = gr[_REG_UNIQUE];
1936 1.261 thorpej }
1937 1.261 thorpej /* Restore floating point register context, if any. */
1938 1.261 thorpej if (flags & _UC_FPU) {
1939 1.261 thorpej /* If we have an FP register context, get rid of it. */
1940 1.322 rmind if (pcb->pcb_fpcpu != NULL)
1941 1.261 thorpej fpusave_proc(l, 0);
1942 1.322 rmind (void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
1943 1.322 rmind sizeof (pcb->pcb_fp));
1944 1.261 thorpej l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
1945 1.271 nathanw l->l_md.md_flags |= MDP_FPUSED;
1946 1.261 thorpej }
1947 1.261 thorpej
1948 1.261 thorpej return (0);
1949 1.138 ross }
1950 1.297 yamt
1951 1.297 yamt /*
1952 1.297 yamt * Preempt the current process if in interrupt from user mode,
1953 1.297 yamt * or after the current trap/syscall if in system mode.
1954 1.297 yamt */
1955 1.297 yamt void
1956 1.297 yamt cpu_need_resched(struct cpu_info *ci, int flags)
1957 1.297 yamt {
1958 1.297 yamt #if defined(MULTIPROCESSOR)
1959 1.297 yamt bool immed = (flags & RESCHED_IMMED) != 0;
1960 1.297 yamt #endif /* defined(MULTIPROCESSOR) */
1961 1.297 yamt
1962 1.301 ad aston(ci->ci_data.cpu_onproc);
1963 1.297 yamt ci->ci_want_resched = 1;
1964 1.301 ad if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
1965 1.297 yamt #if defined(MULTIPROCESSOR)
1966 1.297 yamt if (immed && ci != curcpu()) {
1967 1.297 yamt alpha_send_ipi(ci->ci_cpuid, 0);
1968 1.297 yamt }
1969 1.297 yamt #endif /* defined(MULTIPROCESSOR) */
1970 1.297 yamt }
1971 1.297 yamt }
1972