Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.33
      1  1.33       cgd /*	$NetBSD: machdep.c,v 1.33 1996/07/11 03:53:29 cgd Exp $	*/
      2   1.1       cgd 
      3   1.1       cgd /*
      4  1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
      5   1.1       cgd  * All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * Author: Chris G. Demetriou
      8   1.1       cgd  *
      9   1.1       cgd  * Permission to use, copy, modify and distribute this software and
     10   1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     11   1.1       cgd  * notice and this permission notice appear in all copies of the
     12   1.1       cgd  * software, derivative works or modified versions, and any portions
     13   1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     14   1.1       cgd  *
     15   1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16   1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17   1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18   1.1       cgd  *
     19   1.1       cgd  * Carnegie Mellon requests users of this software to return to
     20   1.1       cgd  *
     21   1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22   1.1       cgd  *  School of Computer Science
     23   1.1       cgd  *  Carnegie Mellon University
     24   1.1       cgd  *  Pittsburgh PA 15213-3890
     25   1.1       cgd  *
     26   1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     27   1.1       cgd  * rights to redistribute these changes.
     28   1.1       cgd  */
     29   1.1       cgd 
     30   1.1       cgd #include <sys/param.h>
     31   1.1       cgd #include <sys/systm.h>
     32   1.1       cgd #include <sys/signalvar.h>
     33   1.1       cgd #include <sys/kernel.h>
     34   1.1       cgd #include <sys/map.h>
     35   1.1       cgd #include <sys/proc.h>
     36   1.1       cgd #include <sys/buf.h>
     37   1.1       cgd #include <sys/reboot.h>
     38  1.28       cgd #include <sys/device.h>
     39   1.1       cgd #include <sys/conf.h>
     40   1.1       cgd #include <sys/file.h>
     41   1.1       cgd #ifdef REAL_CLISTS
     42   1.1       cgd #include <sys/clist.h>
     43   1.1       cgd #endif
     44   1.1       cgd #include <sys/callout.h>
     45   1.1       cgd #include <sys/malloc.h>
     46   1.1       cgd #include <sys/mbuf.h>
     47   1.1       cgd #include <sys/msgbuf.h>
     48   1.1       cgd #include <sys/ioctl.h>
     49   1.1       cgd #include <sys/tty.h>
     50   1.1       cgd #include <sys/user.h>
     51   1.1       cgd #include <sys/exec.h>
     52   1.1       cgd #include <sys/exec_ecoff.h>
     53   1.1       cgd #include <sys/sysctl.h>
     54   1.1       cgd #ifdef SYSVMSG
     55   1.1       cgd #include <sys/msg.h>
     56   1.1       cgd #endif
     57   1.1       cgd #ifdef SYSVSEM
     58   1.1       cgd #include <sys/sem.h>
     59   1.1       cgd #endif
     60   1.1       cgd #ifdef SYSVSHM
     61   1.1       cgd #include <sys/shm.h>
     62   1.1       cgd #endif
     63   1.1       cgd 
     64   1.1       cgd #include <sys/mount.h>
     65   1.1       cgd #include <sys/syscallargs.h>
     66   1.1       cgd 
     67   1.1       cgd #include <vm/vm_kern.h>
     68   1.1       cgd 
     69   1.1       cgd #include <dev/cons.h>
     70   1.1       cgd 
     71   1.1       cgd #include <machine/cpu.h>
     72   1.1       cgd #include <machine/reg.h>
     73   1.1       cgd #include <machine/rpb.h>
     74   1.1       cgd #include <machine/prom.h>
     75   1.1       cgd 
     76   1.8       cgd #ifdef DEC_3000_500
     77   1.8       cgd #include <alpha/alpha/dec_3000_500.h>
     78   1.8       cgd #endif
     79   1.8       cgd #ifdef DEC_3000_300
     80   1.8       cgd #include <alpha/alpha/dec_3000_300.h>
     81   1.8       cgd #endif
     82   1.8       cgd #ifdef DEC_2100_A50
     83   1.8       cgd #include <alpha/alpha/dec_2100_a50.h>
     84   1.8       cgd #endif
     85  1.12       cgd #ifdef DEC_KN20AA
     86  1.12       cgd #include <alpha/alpha/dec_kn20aa.h>
     87  1.12       cgd #endif
     88  1.12       cgd #ifdef DEC_AXPPCI_33
     89  1.12       cgd #include <alpha/alpha/dec_axppci_33.h>
     90  1.12       cgd #endif
     91  1.12       cgd #ifdef DEC_21000
     92  1.12       cgd #include <alpha/alpha/dec_21000.h>
     93  1.12       cgd #endif
     94   1.8       cgd 
     95  1.33       cgd #include <net/if.h>
     96   1.1       cgd #include <net/netisr.h>
     97  1.33       cgd #include <netinet/in.h>
     98  1.33       cgd #include <netinet/ip_var.h>
     99  1.33       cgd #include <netinet/if_arp.h>
    100   1.1       cgd #include "ether.h"
    101   1.1       cgd 
    102  1.17       cgd #include "le_ioasic.h"			/* for le_iomem creation */
    103   1.1       cgd 
    104   1.1       cgd vm_map_t buffer_map;
    105   1.1       cgd 
    106   1.7       cgd void dumpsys __P((void));
    107   1.7       cgd 
    108   1.1       cgd /*
    109   1.1       cgd  * Declare these as initialized data so we can patch them.
    110   1.1       cgd  */
    111   1.1       cgd int	nswbuf = 0;
    112   1.1       cgd #ifdef	NBUF
    113   1.1       cgd int	nbuf = NBUF;
    114   1.1       cgd #else
    115   1.1       cgd int	nbuf = 0;
    116   1.1       cgd #endif
    117   1.1       cgd #ifdef	BUFPAGES
    118   1.1       cgd int	bufpages = BUFPAGES;
    119   1.1       cgd #else
    120   1.1       cgd int	bufpages = 0;
    121   1.1       cgd #endif
    122   1.1       cgd int	msgbufmapped = 0;	/* set when safe to use msgbuf */
    123   1.1       cgd int	maxmem;			/* max memory per process */
    124   1.7       cgd 
    125   1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    126   1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    127   1.7       cgd int	firstusablepage;	/* first usable memory page */
    128   1.7       cgd int	lastusablepage;		/* last usable memory page */
    129   1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    130   1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    131   1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    132   1.1       cgd 
    133   1.1       cgd int	cputype;		/* system type, from the RPB */
    134   1.1       cgd 
    135   1.1       cgd /*
    136   1.1       cgd  * XXX We need an address to which we can assign things so that they
    137   1.1       cgd  * won't be optimized away because we didn't use the value.
    138   1.1       cgd  */
    139   1.1       cgd u_int32_t no_optimize;
    140   1.1       cgd 
    141   1.1       cgd /* the following is used externally (sysctl_hw) */
    142   1.1       cgd char	machine[] = "alpha";
    143  1.29       cgd char	cpu_model[128];
    144   1.1       cgd char	*model_names[] = {
    145   1.2       cgd 	"UNKNOWN (0)",
    146   1.2       cgd 	"Alpha Demonstration Unit",
    147   1.2       cgd 	"DEC 4000 (\"Cobra\")",
    148   1.2       cgd 	"DEC 7000 (\"Ruby\")",
    149   1.2       cgd 	"DEC 3000/500 (\"Flamingo\") family",
    150   1.2       cgd 	"UNKNOWN (5)",
    151   1.2       cgd 	"DEC 2000/300 (\"Jensen\")",
    152   1.2       cgd 	"DEC 3000/300 (\"Pelican\")",
    153   1.2       cgd 	"UNKNOWN (8)",
    154   1.2       cgd 	"DEC 2100/A500 (\"Sable\")",
    155   1.2       cgd 	"AXPvme 64",
    156   1.2       cgd 	"AXPpci 33 (\"NoName\")",
    157  1.12       cgd 	"DEC 21000 (\"TurboLaser\")",
    158   1.7       cgd 	"DEC 2100/A50 (\"Avanti\") family",
    159   1.2       cgd 	"Mustang",
    160  1.12       cgd 	"DEC KN20AA",
    161  1.12       cgd 	"UNKNOWN (16)",
    162   1.2       cgd 	"DEC 1000 (\"Mikasa\")",
    163   1.1       cgd };
    164   1.1       cgd int	nmodel_names = sizeof model_names/sizeof model_names[0];
    165   1.1       cgd 
    166   1.1       cgd struct	user *proc0paddr;
    167   1.1       cgd 
    168   1.1       cgd /* Number of machine cycles per microsecond */
    169   1.1       cgd u_int64_t	cycles_per_usec;
    170   1.1       cgd 
    171   1.1       cgd /* some memory areas for device DMA.  "ick." */
    172   1.1       cgd caddr_t		le_iomem;		/* XXX iomem for LANCE DMA */
    173   1.1       cgd 
    174   1.1       cgd /* Interrupt vectors (in locore) */
    175   1.1       cgd extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
    176   1.1       cgd 
    177   1.7       cgd /* number of cpus in the box.  really! */
    178   1.7       cgd int		ncpus;
    179   1.7       cgd 
    180   1.8       cgd /* various CPU-specific functions. */
    181   1.8       cgd char		*(*cpu_modelname) __P((void));
    182  1.24       cgd void		(*cpu_consinit) __P((void));
    183  1.28       cgd void		(*cpu_device_register) __P((struct device *dev, void *aux));
    184   1.8       cgd char		*cpu_iobus;
    185   1.8       cgd 
    186  1.25       cgd char boot_flags[64];
    187   1.8       cgd 
    188  1.30       cgd /* for cpu_sysctl() */
    189  1.30       cgd char		root_device[17];
    190  1.30       cgd 
    191  1.33       cgd void		identifycpu();
    192  1.33       cgd 
    193   1.1       cgd int
    194  1.25       cgd alpha_init(pfn, ptb)
    195   1.1       cgd 	u_long pfn;		/* first free PFN number */
    196   1.1       cgd 	u_long ptb;		/* PFN of current level 1 page table */
    197   1.1       cgd {
    198   1.2       cgd 	extern char _end[];
    199   1.1       cgd 	caddr_t start, v;
    200   1.1       cgd 	struct mddt *mddtp;
    201   1.7       cgd 	int i, mddtweird;
    202   1.1       cgd 	char *p;
    203   1.1       cgd 
    204   1.1       cgd 	/*
    205   1.1       cgd 	 * Turn off interrupts and floating point.
    206   1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    207   1.1       cgd 	 */
    208   1.1       cgd 	(void)splhigh();
    209  1.32       cgd 	alpha_pal_wrfen(0);
    210   1.1       cgd 	TBIA();
    211  1.32       cgd 	alpha_pal_imb();
    212   1.1       cgd 
    213   1.1       cgd 	/*
    214   1.1       cgd 	 * get address of the restart block, while we the bootstrap
    215   1.1       cgd 	 * mapping is still around.
    216   1.1       cgd 	 */
    217  1.32       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
    218  1.32       cgd 	    (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
    219   1.1       cgd 
    220   1.1       cgd 	/*
    221   1.1       cgd 	 * Remember how many cycles there are per microsecond,
    222   1.7       cgd 	 * so that we can use delay().  Round up, for safety.
    223   1.1       cgd 	 */
    224   1.7       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    225   1.1       cgd 
    226   1.1       cgd 	/*
    227   1.1       cgd 	 * Init the PROM interface, so we can use printf
    228   1.1       cgd 	 * until PROM mappings go away in consinit.
    229   1.1       cgd 	 */
    230   1.1       cgd 	init_prom_interface();
    231   1.1       cgd 
    232   1.1       cgd 	/*
    233   1.1       cgd 	 * Point interrupt/exception vectors to our own.
    234   1.1       cgd 	 */
    235  1.32       cgd 	alpha_pal_wrent(XentInt, 0);
    236  1.32       cgd 	alpha_pal_wrent(XentArith, 1);
    237  1.32       cgd 	alpha_pal_wrent(XentMM, 2);
    238  1.32       cgd 	alpha_pal_wrent(XentIF, 3);
    239  1.32       cgd 	alpha_pal_wrent(XentUna, 4);
    240  1.32       cgd 	alpha_pal_wrent(XentSys, 5);
    241   1.1       cgd 
    242   1.1       cgd 	/*
    243   1.1       cgd 	 * Find out how much memory is available, by looking at
    244   1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    245   1.7       cgd 	 * its best to detect things things that have never been seen
    246   1.7       cgd 	 * before...
    247   1.7       cgd 	 *
    248   1.1       cgd 	 * XXX Assumes that the first "system" cluster is the
    249   1.7       cgd 	 * only one we can use. Is the second (etc.) system cluster
    250   1.7       cgd 	 * (if one happens to exist) guaranteed to be contiguous?  or...?
    251   1.1       cgd 	 */
    252   1.1       cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    253   1.7       cgd 
    254   1.7       cgd 	/*
    255   1.7       cgd 	 * BEGIN MDDT WEIRDNESS CHECKING
    256   1.7       cgd 	 */
    257   1.7       cgd 	mddtweird = 0;
    258   1.7       cgd 
    259   1.7       cgd #define cnt	 mddtp->mddt_cluster_cnt
    260   1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    261   1.7       cgd 	if (cnt != 2 && cnt != 3) {
    262  1.33       cgd 		printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
    263   1.7       cgd 		mddtweird = 1;
    264   1.7       cgd 	} else if (usage(0) != MDDT_PALCODE ||
    265   1.7       cgd 		   usage(1) != MDDT_SYSTEM ||
    266   1.7       cgd 	           (cnt == 3 && usage(2) != MDDT_PALCODE)) {
    267   1.7       cgd 		mddtweird = 1;
    268  1.33       cgd 		printf("WARNING: %ld mem clusters, but weird config\n", cnt);
    269   1.7       cgd 	}
    270   1.7       cgd 
    271   1.7       cgd 	for (i = 0; i < cnt; i++) {
    272   1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0) {
    273   1.7       cgd 			printf("WARNING: mem cluster %d has weird usage %lx\n",
    274   1.7       cgd 			    i, usage(i));
    275   1.7       cgd 			mddtweird = 1;
    276   1.7       cgd 		}
    277   1.7       cgd 		if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
    278   1.7       cgd 			printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
    279   1.7       cgd 			mddtweird = 1;
    280   1.7       cgd 		}
    281   1.7       cgd 		/* XXX other things to check? */
    282   1.7       cgd 	}
    283   1.7       cgd #undef cnt
    284   1.7       cgd #undef usage
    285   1.7       cgd 
    286   1.7       cgd 	if (mddtweird) {
    287   1.7       cgd 		printf("\n");
    288   1.7       cgd 		printf("complete memory cluster information:\n");
    289   1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    290   1.2       cgd 			printf("mddt %d:\n", i);
    291   1.2       cgd 			printf("\tpfn %lx\n",
    292   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    293   1.2       cgd 			printf("\tcnt %lx\n",
    294   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    295   1.2       cgd 			printf("\ttest %lx\n",
    296   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    297   1.2       cgd 			printf("\tbva %lx\n",
    298   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    299   1.2       cgd 			printf("\tbpa %lx\n",
    300   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    301   1.2       cgd 			printf("\tbcksum %lx\n",
    302   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    303   1.2       cgd 			printf("\tusage %lx\n",
    304   1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    305   1.2       cgd 		}
    306   1.7       cgd 		printf("\n");
    307   1.2       cgd 	}
    308   1.7       cgd 	/*
    309   1.7       cgd 	 * END MDDT WEIRDNESS CHECKING
    310   1.7       cgd 	 */
    311   1.2       cgd 
    312   1.1       cgd 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    313   1.7       cgd 		totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    314   1.7       cgd #define	usage(n) mddtp->mddt_clusters[(n)].mddt_usage
    315   1.7       cgd #define	pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
    316   1.7       cgd 		if ((usage(i) & MDDT_mbz) != 0)
    317   1.7       cgd 			unknownmem += pgcnt(i);
    318   1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
    319   1.7       cgd 			resvmem += pgcnt(i);
    320   1.7       cgd 		else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
    321   1.7       cgd 			/*
    322   1.7       cgd 			 * assumes that the system cluster listed is
    323   1.7       cgd 			 * one we're in...
    324   1.7       cgd 			 */
    325   1.7       cgd 			if (physmem != resvmem) {
    326   1.7       cgd 				physmem += pgcnt(i);
    327   1.7       cgd 				firstusablepage =
    328   1.7       cgd 				    mddtp->mddt_clusters[i].mddt_pfn;
    329   1.7       cgd 				lastusablepage = firstusablepage + pgcnt(i) - 1;
    330   1.7       cgd 			} else
    331   1.7       cgd 				unusedmem += pgcnt(i);
    332   1.7       cgd 		}
    333   1.7       cgd #undef usage
    334   1.7       cgd #undef pgcnt
    335   1.1       cgd 	}
    336   1.7       cgd 	if (totalphysmem == 0)
    337   1.1       cgd 		panic("can't happen: system seems to have no memory!");
    338   1.1       cgd 	maxmem = physmem;
    339   1.1       cgd 
    340   1.7       cgd #if 0
    341   1.7       cgd 	printf("totalphysmem = %d\n", totalphysmem);
    342   1.7       cgd 	printf("physmem = %d\n", physmem);
    343   1.7       cgd 	printf("firstusablepage = %d\n", firstusablepage);
    344   1.7       cgd 	printf("lastusablepage = %d\n", lastusablepage);
    345   1.7       cgd 	printf("resvmem = %d\n", resvmem);
    346   1.7       cgd 	printf("unusedmem = %d\n", unusedmem);
    347   1.7       cgd 	printf("unknownmem = %d\n", unknownmem);
    348   1.7       cgd #endif
    349   1.7       cgd 
    350   1.1       cgd 	/*
    351   1.1       cgd 	 * find out this CPU's page size
    352   1.1       cgd 	 */
    353   1.1       cgd 	PAGE_SIZE = hwrpb->rpb_page_size;
    354  1.12       cgd 	if (PAGE_SIZE != 8192)
    355  1.12       cgd 		panic("page size %d != 8192?!", PAGE_SIZE);
    356   1.1       cgd 
    357   1.2       cgd 	v = (caddr_t)alpha_round_page(_end);
    358   1.1       cgd 	/*
    359   1.1       cgd 	 * Init mapping for u page(s) for proc 0
    360   1.1       cgd 	 */
    361   1.1       cgd 	start = v;
    362   1.1       cgd 	curproc->p_addr = proc0paddr = (struct user *)v;
    363   1.1       cgd 	v += UPAGES * NBPG;
    364   1.1       cgd 
    365   1.1       cgd 	/*
    366   1.1       cgd 	 * Find out what hardware we're on, and remember its type name.
    367   1.1       cgd 	 */
    368   1.1       cgd 	cputype = hwrpb->rpb_type;
    369   1.1       cgd 	switch (cputype) {
    370   1.2       cgd #ifdef DEC_3000_500				/* and 400, [6-9]00 */
    371   1.1       cgd 	case ST_DEC_3000_500:
    372   1.8       cgd 		cpu_modelname = dec_3000_500_modelname;
    373   1.8       cgd 		cpu_consinit = dec_3000_500_consinit;
    374  1.28       cgd 		cpu_device_register = dec_3000_500_device_register;
    375  1.13       cgd 		cpu_iobus = "tcasic";
    376   1.2       cgd 		break;
    377   1.2       cgd #endif
    378   1.2       cgd 
    379   1.2       cgd #ifdef DEC_3000_300
    380   1.2       cgd 	case ST_DEC_3000_300:
    381   1.8       cgd 		cpu_modelname = dec_3000_300_modelname;
    382   1.8       cgd 		cpu_consinit = dec_3000_300_consinit;
    383  1.28       cgd 		cpu_device_register = dec_3000_300_device_register;
    384  1.13       cgd 		cpu_iobus = "tcasic";
    385   1.2       cgd 		break;
    386   1.2       cgd #endif
    387   1.2       cgd 
    388   1.2       cgd #ifdef DEC_2100_A50
    389   1.2       cgd 	case ST_DEC_2100_A50:
    390   1.8       cgd 		cpu_modelname = dec_2100_a50_modelname;
    391   1.8       cgd 		cpu_consinit = dec_2100_a50_consinit;
    392  1.28       cgd 		cpu_device_register = dec_2100_a50_device_register;
    393   1.8       cgd 		cpu_iobus = "apecs";
    394   1.2       cgd 		break;
    395   1.2       cgd #endif
    396   1.2       cgd 
    397  1.12       cgd #ifdef DEC_KN20AA
    398  1.12       cgd 	case ST_DEC_KN20AA:
    399  1.12       cgd 		cpu_modelname = dec_kn20aa_modelname;
    400  1.12       cgd 		cpu_consinit = dec_kn20aa_consinit;
    401  1.28       cgd 		cpu_device_register = dec_kn20aa_device_register;
    402  1.12       cgd 		cpu_iobus = "cia";
    403  1.12       cgd 		break;
    404  1.12       cgd #endif
    405  1.12       cgd 
    406  1.12       cgd #ifdef DEC_AXPPCI_33
    407  1.12       cgd 	case ST_DEC_AXPPCI_33:
    408  1.12       cgd 		cpu_modelname = dec_axppci_33_modelname;
    409  1.12       cgd 		cpu_consinit = dec_axppci_33_consinit;
    410  1.28       cgd 		cpu_device_register = dec_axppci_33_device_register;
    411  1.12       cgd 		cpu_iobus = "lca";
    412  1.12       cgd 		break;
    413  1.12       cgd #endif
    414  1.12       cgd 
    415   1.8       cgd #ifdef DEC_2000_300
    416   1.8       cgd 	case ST_DEC_2000_300:
    417   1.8       cgd 		cpu_modelname = dec_2000_300_modelname;
    418   1.8       cgd 		cpu_consinit = dec_2000_300_consinit;
    419  1.28       cgd 		cpu_device_register = dec_2000_300_device_register;
    420   1.8       cgd 		cpu_iobus = "ibus";
    421   1.8       cgd 	XXX DEC 2000/300 NOT SUPPORTED
    422  1.12       cgd 		break;
    423   1.2       cgd #endif
    424   1.2       cgd 
    425  1.12       cgd #ifdef DEC_21000
    426  1.12       cgd 	case ST_DEC_21000:
    427  1.12       cgd 		cpu_modelname = dec_21000_modelname;
    428  1.12       cgd 		cpu_consinit = dec_21000_consinit;
    429  1.28       cgd 		cpu_device_register = dec_21000_device_register;
    430  1.12       cgd 		cpu_iobus = "tlsb";
    431  1.27       cgd 	XXX DEC 21000 NOT SUPPORTED
    432  1.12       cgd 		break;
    433   1.2       cgd #endif
    434   1.2       cgd 
    435   1.1       cgd 	default:
    436   1.1       cgd 		if (cputype > nmodel_names)
    437   1.1       cgd 			panic("Unknown system type %d", cputype);
    438   1.1       cgd 		else
    439   1.1       cgd 			panic("Support for %s system type not in kernel.",
    440   1.1       cgd 			    model_names[cputype]);
    441   1.1       cgd 	}
    442   1.8       cgd 
    443  1.29       cgd 	if ((*cpu_modelname)() != NULL)
    444  1.29       cgd 		strncpy(cpu_model, (*cpu_modelname)(), sizeof cpu_model - 1);
    445  1.29       cgd 	else
    446  1.29       cgd 		strncpy(cpu_model, model_names[cputype], sizeof cpu_model - 1);
    447  1.29       cgd 	cpu_model[sizeof cpu_model - 1] = '\0';
    448   1.1       cgd 
    449  1.17       cgd #if NLE_IOASIC > 0
    450   1.1       cgd 	/*
    451   1.1       cgd 	 * Grab 128K at the top of physical memory for the lance chip
    452   1.1       cgd 	 * on machines where it does dma through the I/O ASIC.
    453   1.1       cgd 	 * It must be physically contiguous and aligned on a 128K boundary.
    454  1.17       cgd 	 *
    455  1.17       cgd 	 * Note that since this is conditional on the presence of
    456  1.17       cgd 	 * IOASIC-attached 'le' units in the kernel config, the
    457  1.17       cgd 	 * message buffer may move on these systems.  This shouldn't
    458  1.17       cgd 	 * be a problem, because once people have a kernel config that
    459  1.17       cgd 	 * they use, they're going to stick with it.
    460   1.1       cgd 	 */
    461   1.1       cgd 	if (cputype == ST_DEC_3000_500 ||
    462   1.1       cgd 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    463   1.7       cgd 		lastusablepage -= btoc(128 * 1024);
    464  1.32       cgd 		le_iomem =
    465  1.32       cgd 		    (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
    466   1.1       cgd 	}
    467  1.17       cgd #endif /* NLE_IOASIC */
    468   1.1       cgd 
    469   1.1       cgd 	/*
    470   1.1       cgd 	 * Initialize error message buffer (at end of core).
    471   1.1       cgd 	 */
    472   1.7       cgd 	lastusablepage -= btoc(sizeof (struct msgbuf));
    473  1.32       cgd 	msgbufp =
    474  1.32       cgd 	    (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
    475   1.1       cgd 	msgbufmapped = 1;
    476   1.1       cgd 
    477   1.1       cgd 	/*
    478   1.1       cgd 	 * Allocate space for system data structures.
    479   1.1       cgd 	 * The first available kernel virtual address is in "v".
    480   1.1       cgd 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
    481   1.1       cgd 	 *
    482   1.1       cgd 	 * These data structures are allocated here instead of cpu_startup()
    483   1.1       cgd 	 * because physical memory is directly addressable. We don't have
    484   1.1       cgd 	 * to map these into virtual address space.
    485   1.1       cgd 	 */
    486   1.1       cgd #define valloc(name, type, num) \
    487  1.12       cgd 	    (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
    488   1.1       cgd #define valloclim(name, type, num, lim) \
    489  1.12       cgd 	    (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
    490   1.1       cgd #ifdef REAL_CLISTS
    491   1.1       cgd 	valloc(cfree, struct cblock, nclist);
    492   1.1       cgd #endif
    493   1.1       cgd 	valloc(callout, struct callout, ncallout);
    494   1.1       cgd 	valloc(swapmap, struct map, nswapmap = maxproc * 2);
    495   1.1       cgd #ifdef SYSVSHM
    496   1.1       cgd 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    497   1.1       cgd #endif
    498   1.1       cgd #ifdef SYSVSEM
    499   1.1       cgd 	valloc(sema, struct semid_ds, seminfo.semmni);
    500   1.1       cgd 	valloc(sem, struct sem, seminfo.semmns);
    501   1.1       cgd 	/* This is pretty disgusting! */
    502   1.1       cgd 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    503   1.1       cgd #endif
    504   1.1       cgd #ifdef SYSVMSG
    505   1.1       cgd 	valloc(msgpool, char, msginfo.msgmax);
    506   1.1       cgd 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    507   1.1       cgd 	valloc(msghdrs, struct msg, msginfo.msgtql);
    508   1.1       cgd 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    509   1.1       cgd #endif
    510   1.1       cgd 
    511   1.1       cgd 	/*
    512   1.1       cgd 	 * Determine how many buffers to allocate.
    513  1.31       cgd 	 * We allocate 10% of memory for buffer space.  Insure a
    514   1.1       cgd 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    515   1.1       cgd 	 * headers as file i/o buffers.
    516   1.1       cgd 	 */
    517   1.1       cgd 	if (bufpages == 0)
    518  1.31       cgd 		bufpages = (physmem * 10) / (CLSIZE * 100);
    519   1.1       cgd 	if (nbuf == 0) {
    520   1.1       cgd 		nbuf = bufpages;
    521   1.1       cgd 		if (nbuf < 16)
    522   1.1       cgd 			nbuf = 16;
    523   1.1       cgd 	}
    524   1.1       cgd 	if (nswbuf == 0) {
    525   1.1       cgd 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    526   1.1       cgd 		if (nswbuf > 256)
    527   1.1       cgd 			nswbuf = 256;		/* sanity */
    528   1.1       cgd 	}
    529   1.1       cgd 	valloc(swbuf, struct buf, nswbuf);
    530   1.1       cgd 	valloc(buf, struct buf, nbuf);
    531   1.1       cgd 
    532   1.1       cgd 	/*
    533   1.1       cgd 	 * Clear allocated memory.
    534   1.1       cgd 	 */
    535   1.1       cgd 	bzero(start, v - start);
    536   1.1       cgd 
    537   1.1       cgd 	/*
    538   1.1       cgd 	 * Initialize the virtual memory system, and set the
    539   1.1       cgd 	 * page table base register in proc 0's PCB.
    540   1.1       cgd 	 */
    541  1.32       cgd 	pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
    542   1.1       cgd 
    543   1.1       cgd 	/*
    544   1.3       cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    545   1.3       cgd 	 * address.
    546   1.3       cgd 	 */
    547   1.3       cgd 	proc0.p_md.md_pcbpaddr =
    548  1.32       cgd 	    (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
    549   1.3       cgd 
    550   1.3       cgd 	/*
    551   1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    552   1.3       cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    553   1.3       cgd 	 */
    554  1.33       cgd 	proc0paddr->u_pcb.pcb_hw.apcb_ksp =
    555   1.3       cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    556  1.33       cgd 	proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
    557   1.1       cgd 
    558   1.1       cgd 	/*
    559  1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    560   1.8       cgd 	 */
    561  1.25       cgd 	prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
    562  1.25       cgd #if 0
    563  1.25       cgd 	printf("boot flags = \"%s\"\n", boot_flags);
    564  1.25       cgd #endif
    565   1.1       cgd 
    566   1.8       cgd 	boothowto = RB_SINGLE;
    567   1.1       cgd #ifdef KADB
    568   1.1       cgd 	boothowto |= RB_KDB;
    569   1.1       cgd #endif
    570   1.8       cgd 	for (p = boot_flags; p && *p != '\0'; p++) {
    571  1.26       cgd 		/*
    572  1.26       cgd 		 * Note that we'd really like to differentiate case here,
    573  1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    574  1.26       cgd 		 * says that we shouldn't.
    575  1.26       cgd 		 */
    576   1.8       cgd 		switch (*p) {
    577  1.26       cgd 		case 'a': /* autoboot */
    578  1.26       cgd 		case 'A':
    579  1.26       cgd 			boothowto &= ~RB_SINGLE;
    580  1.21       cgd 			break;
    581  1.21       cgd 
    582  1.26       cgd 		case 'n': /* askname */
    583  1.26       cgd 		case 'N':
    584  1.26       cgd 			boothowto |= RB_ASKNAME;
    585   1.8       cgd 			break;
    586   1.8       cgd 
    587  1.21       cgd #if 0
    588   1.8       cgd 		case 'm': /* mini root present in memory */
    589  1.26       cgd 		case 'M':
    590   1.8       cgd 			boothowto |= RB_MINIROOT;
    591   1.8       cgd 			break;
    592  1.21       cgd #endif
    593   1.1       cgd 		}
    594   1.1       cgd 	}
    595   1.1       cgd 
    596   1.7       cgd 	/*
    597   1.7       cgd 	 * Figure out the number of cpus in the box, from RPB fields.
    598   1.7       cgd 	 * Really.  We mean it.
    599   1.7       cgd 	 */
    600   1.7       cgd 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    601   1.7       cgd 		struct pcs *pcsp;
    602   1.7       cgd 
    603   1.7       cgd 		pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
    604   1.7       cgd 		    (i * hwrpb->rpb_pcs_size));
    605   1.7       cgd 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    606   1.7       cgd 			ncpus++;
    607   1.7       cgd 	}
    608   1.7       cgd 
    609   1.1       cgd 	return (0);
    610   1.1       cgd }
    611   1.1       cgd 
    612  1.18       cgd void
    613   1.1       cgd consinit()
    614   1.1       cgd {
    615   1.1       cgd 
    616  1.24       cgd 	(*cpu_consinit)();
    617   1.1       cgd 	pmap_unmap_prom();
    618   1.1       cgd }
    619   1.1       cgd 
    620  1.18       cgd void
    621   1.1       cgd cpu_startup()
    622   1.1       cgd {
    623   1.1       cgd 	register unsigned i;
    624   1.1       cgd 	int base, residual;
    625   1.1       cgd 	vm_offset_t minaddr, maxaddr;
    626   1.1       cgd 	vm_size_t size;
    627  1.33       cgd #if defined(DEBUG) && defined(OLD_PMAP)
    628   1.1       cgd 	extern int pmapdebug;
    629   1.1       cgd 	int opmapdebug = pmapdebug;
    630   1.1       cgd 
    631   1.1       cgd 	pmapdebug = 0;
    632   1.1       cgd #endif
    633   1.1       cgd 
    634   1.1       cgd 	/*
    635   1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    636   1.1       cgd 	 */
    637   1.1       cgd 	printf(version);
    638   1.1       cgd 	identifycpu();
    639   1.7       cgd 	printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
    640   1.7       cgd 	    ctob(totalphysmem), ctob(resvmem), ctob(physmem));
    641   1.7       cgd 	if (unusedmem)
    642   1.7       cgd 		printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
    643   1.7       cgd 	if (unknownmem)
    644   1.7       cgd 		printf("WARNING: %d bytes of memory with unknown purpose\n",
    645   1.7       cgd 		    ctob(unknownmem));
    646   1.1       cgd 
    647   1.1       cgd 	/*
    648   1.1       cgd 	 * Allocate virtual address space for file I/O buffers.
    649   1.1       cgd 	 * Note they are different than the array of headers, 'buf',
    650   1.1       cgd 	 * and usually occupy more virtual memory than physical.
    651   1.1       cgd 	 */
    652   1.1       cgd 	size = MAXBSIZE * nbuf;
    653   1.1       cgd 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    654   1.1       cgd 	    &maxaddr, size, TRUE);
    655   1.1       cgd 	minaddr = (vm_offset_t)buffers;
    656   1.1       cgd 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    657   1.1       cgd 			&minaddr, size, FALSE) != KERN_SUCCESS)
    658   1.1       cgd 		panic("startup: cannot allocate buffers");
    659   1.1       cgd 	base = bufpages / nbuf;
    660   1.1       cgd 	residual = bufpages % nbuf;
    661   1.1       cgd 	for (i = 0; i < nbuf; i++) {
    662   1.1       cgd 		vm_size_t curbufsize;
    663   1.1       cgd 		vm_offset_t curbuf;
    664   1.1       cgd 
    665   1.1       cgd 		/*
    666   1.1       cgd 		 * First <residual> buffers get (base+1) physical pages
    667   1.1       cgd 		 * allocated for them.  The rest get (base) physical pages.
    668   1.1       cgd 		 *
    669   1.1       cgd 		 * The rest of each buffer occupies virtual space,
    670   1.1       cgd 		 * but has no physical memory allocated for it.
    671   1.1       cgd 		 */
    672   1.1       cgd 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    673   1.1       cgd 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    674   1.1       cgd 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    675   1.1       cgd 		vm_map_simplify(buffer_map, curbuf);
    676   1.1       cgd 	}
    677   1.1       cgd 	/*
    678   1.1       cgd 	 * Allocate a submap for exec arguments.  This map effectively
    679   1.1       cgd 	 * limits the number of processes exec'ing at any time.
    680   1.1       cgd 	 */
    681   1.1       cgd 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    682   1.1       cgd 				 16 * NCARGS, TRUE);
    683   1.1       cgd 
    684   1.1       cgd 	/*
    685   1.1       cgd 	 * Allocate a submap for physio
    686   1.1       cgd 	 */
    687   1.1       cgd 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    688   1.1       cgd 				 VM_PHYS_SIZE, TRUE);
    689   1.1       cgd 
    690   1.1       cgd 	/*
    691   1.1       cgd 	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
    692   1.1       cgd 	 * we use the more space efficient malloc in place of kmem_alloc.
    693   1.1       cgd 	 */
    694   1.1       cgd 	mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
    695   1.1       cgd 	    M_MBUF, M_NOWAIT);
    696   1.1       cgd 	bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
    697   1.1       cgd 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    698   1.1       cgd 	    VM_MBUF_SIZE, FALSE);
    699   1.1       cgd 	/*
    700   1.1       cgd 	 * Initialize callouts
    701   1.1       cgd 	 */
    702   1.1       cgd 	callfree = callout;
    703   1.1       cgd 	for (i = 1; i < ncallout; i++)
    704   1.1       cgd 		callout[i-1].c_next = &callout[i];
    705   1.1       cgd 	callout[i-1].c_next = NULL;
    706   1.1       cgd 
    707  1.33       cgd #if defined(DEBUG) && defined(OLD_PMAP)
    708   1.1       cgd 	pmapdebug = opmapdebug;
    709   1.1       cgd #endif
    710   1.1       cgd 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
    711   1.1       cgd 	printf("using %ld buffers containing %ld bytes of memory\n",
    712   1.1       cgd 		(long)nbuf, (long)(bufpages * CLBYTES));
    713   1.1       cgd 
    714   1.1       cgd 	/*
    715   1.1       cgd 	 * Set up buffers, so they can be used to read disk labels.
    716   1.1       cgd 	 */
    717   1.1       cgd 	bufinit();
    718   1.1       cgd 
    719   1.1       cgd 	/*
    720   1.1       cgd 	 * Configure the system.
    721   1.1       cgd 	 */
    722   1.1       cgd 	configure();
    723   1.1       cgd }
    724   1.1       cgd 
    725  1.33       cgd void
    726   1.1       cgd identifycpu()
    727   1.1       cgd {
    728   1.1       cgd 
    729   1.7       cgd 	/*
    730   1.7       cgd 	 * print out CPU identification information.
    731   1.7       cgd 	 */
    732  1.33       cgd 	printf("%s, %ldMHz\n", cpu_model,
    733   1.7       cgd 	    hwrpb->rpb_cc_freq / 1000000);	/* XXX true for 21164? */
    734  1.33       cgd 	printf("%ld byte page size, %d processor%s.\n",
    735   1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    736   1.7       cgd #if 0
    737   1.7       cgd 	/* this isn't defined for any systems that we run on? */
    738   1.7       cgd 	printf("serial number 0x%lx 0x%lx\n",
    739   1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    740   1.7       cgd 
    741   1.7       cgd 	/* and these aren't particularly useful! */
    742   1.1       cgd 	printf("variation: 0x%lx, revision 0x%lx\n",
    743   1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    744   1.7       cgd #endif
    745   1.1       cgd }
    746   1.1       cgd 
    747   1.1       cgd int	waittime = -1;
    748   1.7       cgd struct pcb dumppcb;
    749   1.1       cgd 
    750  1.18       cgd void
    751   1.1       cgd boot(howto)
    752   1.1       cgd 	int howto;
    753   1.1       cgd {
    754   1.1       cgd 	extern int cold;
    755   1.1       cgd 
    756   1.1       cgd 	/* If system is cold, just halt. */
    757   1.1       cgd 	if (cold) {
    758   1.1       cgd 		howto |= RB_HALT;
    759   1.1       cgd 		goto haltsys;
    760   1.1       cgd 	}
    761   1.1       cgd 
    762   1.7       cgd 	boothowto = howto;
    763   1.7       cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
    764   1.1       cgd 		waittime = 0;
    765   1.7       cgd 		vfs_shutdown();
    766   1.1       cgd 		/*
    767   1.1       cgd 		 * If we've been adjusting the clock, the todr
    768   1.1       cgd 		 * will be out of synch; adjust it now.
    769   1.1       cgd 		 */
    770   1.1       cgd 		resettodr();
    771   1.1       cgd 	}
    772   1.1       cgd 
    773   1.1       cgd 	/* Disable interrupts. */
    774   1.1       cgd 	splhigh();
    775   1.1       cgd 
    776   1.7       cgd 	/* If rebooting and a dump is requested do it. */
    777   1.7       cgd 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
    778   1.7       cgd 		savectx(&dumppcb, 0);
    779   1.1       cgd 		dumpsys();
    780   1.7       cgd 	}
    781   1.6       cgd 
    782  1.12       cgd haltsys:
    783  1.12       cgd 
    784   1.6       cgd 	/* run any shutdown hooks */
    785   1.6       cgd 	doshutdownhooks();
    786   1.1       cgd 
    787   1.7       cgd #ifdef BOOTKEY
    788   1.7       cgd 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
    789   1.7       cgd 	cngetc();
    790   1.7       cgd 	printf("\n");
    791   1.7       cgd #endif
    792   1.7       cgd 
    793   1.1       cgd 	/* Finally, halt/reboot the system. */
    794   1.1       cgd 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
    795   1.1       cgd 	prom_halt(howto & RB_HALT);
    796   1.1       cgd 	/*NOTREACHED*/
    797   1.1       cgd }
    798   1.1       cgd 
    799   1.7       cgd /*
    800   1.7       cgd  * These variables are needed by /sbin/savecore
    801   1.7       cgd  */
    802   1.7       cgd u_long	dumpmag = 0x8fca0101;	/* magic number */
    803   1.7       cgd int 	dumpsize = 0;		/* pages */
    804   1.7       cgd long	dumplo = 0; 		/* blocks */
    805   1.7       cgd 
    806   1.7       cgd /*
    807   1.7       cgd  * This is called by configure to set dumplo and dumpsize.
    808   1.7       cgd  * Dumps always skip the first CLBYTES of disk space
    809   1.7       cgd  * in case there might be a disk label stored there.
    810   1.7       cgd  * If there is extra space, put dump at the end to
    811   1.7       cgd  * reduce the chance that swapping trashes it.
    812   1.7       cgd  */
    813   1.7       cgd void
    814   1.7       cgd dumpconf()
    815   1.7       cgd {
    816   1.7       cgd 	int nblks;	/* size of dump area */
    817   1.7       cgd 	int maj;
    818   1.7       cgd 
    819   1.7       cgd 	if (dumpdev == NODEV)
    820   1.7       cgd 		return;
    821   1.7       cgd 	maj = major(dumpdev);
    822   1.7       cgd 	if (maj < 0 || maj >= nblkdev)
    823   1.7       cgd 		panic("dumpconf: bad dumpdev=0x%x", dumpdev);
    824   1.7       cgd 	if (bdevsw[maj].d_psize == NULL)
    825   1.7       cgd 		return;
    826   1.7       cgd 	nblks = (*bdevsw[maj].d_psize)(dumpdev);
    827   1.7       cgd 	if (nblks <= ctod(1))
    828   1.7       cgd 		return;
    829   1.7       cgd 
    830   1.7       cgd 	/* XXX XXX XXX STARTING MEMORY LOCATION */
    831   1.7       cgd 	dumpsize = physmem;
    832   1.7       cgd 
    833   1.7       cgd 	/* Always skip the first CLBYTES, in case there is a label there. */
    834   1.7       cgd 	if (dumplo < ctod(1))
    835   1.7       cgd 		dumplo = ctod(1);
    836   1.7       cgd 
    837   1.7       cgd 	/* Put dump at end of partition, and make it fit. */
    838   1.7       cgd 	if (dumpsize > dtoc(nblks - dumplo))
    839   1.7       cgd 		dumpsize = dtoc(nblks - dumplo);
    840   1.7       cgd 	if (dumplo < nblks - ctod(dumpsize))
    841   1.7       cgd 		dumplo = nblks - ctod(dumpsize);
    842   1.7       cgd }
    843   1.7       cgd 
    844   1.7       cgd /*
    845   1.7       cgd  * Doadump comes here after turning off memory management and
    846   1.7       cgd  * getting on the dump stack, either when called above, or by
    847   1.7       cgd  * the auto-restart code.
    848   1.7       cgd  */
    849   1.7       cgd void
    850   1.7       cgd dumpsys()
    851   1.7       cgd {
    852   1.7       cgd 
    853   1.7       cgd 	msgbufmapped = 0;
    854   1.7       cgd 	if (dumpdev == NODEV)
    855   1.7       cgd 		return;
    856   1.7       cgd 	if (dumpsize == 0) {
    857   1.7       cgd 		dumpconf();
    858   1.7       cgd 		if (dumpsize == 0)
    859   1.7       cgd 			return;
    860   1.7       cgd 	}
    861  1.33       cgd 	printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
    862   1.7       cgd 
    863   1.7       cgd 	printf("dump ");
    864   1.7       cgd 	switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
    865   1.7       cgd 
    866   1.7       cgd 	case ENXIO:
    867   1.7       cgd 		printf("device bad\n");
    868   1.7       cgd 		break;
    869   1.7       cgd 
    870   1.7       cgd 	case EFAULT:
    871   1.7       cgd 		printf("device not ready\n");
    872   1.7       cgd 		break;
    873   1.7       cgd 
    874   1.7       cgd 	case EINVAL:
    875   1.7       cgd 		printf("area improper\n");
    876   1.7       cgd 		break;
    877   1.7       cgd 
    878   1.7       cgd 	case EIO:
    879   1.7       cgd 		printf("i/o error\n");
    880   1.7       cgd 		break;
    881   1.7       cgd 
    882   1.7       cgd 	case EINTR:
    883   1.7       cgd 		printf("aborted from console\n");
    884   1.7       cgd 		break;
    885   1.7       cgd 
    886   1.7       cgd 	default:
    887   1.7       cgd 		printf("succeeded\n");
    888   1.7       cgd 		break;
    889   1.7       cgd 	}
    890   1.7       cgd 	printf("\n\n");
    891   1.7       cgd 	delay(1000);
    892   1.7       cgd }
    893   1.7       cgd 
    894   1.1       cgd void
    895   1.1       cgd frametoreg(framep, regp)
    896   1.1       cgd 	struct trapframe *framep;
    897   1.1       cgd 	struct reg *regp;
    898   1.1       cgd {
    899   1.1       cgd 
    900   1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
    901   1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
    902   1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
    903   1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
    904   1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
    905   1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
    906   1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
    907   1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
    908   1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
    909   1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
    910   1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
    911   1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
    912   1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
    913   1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
    914   1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
    915   1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
    916  1.33       cgd 	regp->r_regs[R_A0] = framep->tf_af.af_a0;
    917  1.33       cgd 	regp->r_regs[R_A1] = framep->tf_af.af_a1;
    918  1.33       cgd 	regp->r_regs[R_A2] = framep->tf_af.af_a2;
    919   1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
    920   1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
    921   1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
    922   1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
    923   1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
    924   1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
    925   1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
    926   1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
    927   1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
    928   1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
    929  1.33       cgd 	regp->r_regs[R_GP] = framep->tf_af.af_gp;
    930   1.1       cgd 	regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
    931   1.1       cgd 	regp->r_regs[R_ZERO] = 0;
    932   1.1       cgd }
    933   1.1       cgd 
    934   1.1       cgd void
    935   1.1       cgd regtoframe(regp, framep)
    936   1.1       cgd 	struct reg *regp;
    937   1.1       cgd 	struct trapframe *framep;
    938   1.1       cgd {
    939   1.1       cgd 
    940   1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
    941   1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
    942   1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
    943   1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
    944   1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
    945   1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
    946   1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
    947   1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
    948   1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
    949   1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
    950   1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
    951   1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
    952   1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
    953   1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
    954   1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
    955   1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
    956  1.33       cgd 	framep->tf_af.af_a0 = regp->r_regs[R_A0];
    957  1.33       cgd 	framep->tf_af.af_a1 = regp->r_regs[R_A1];
    958  1.33       cgd 	framep->tf_af.af_a2 = regp->r_regs[R_A2];
    959   1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
    960   1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
    961   1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
    962   1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
    963   1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
    964   1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
    965   1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
    966   1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
    967   1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
    968   1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
    969  1.33       cgd 	framep->tf_af.af_gp = regp->r_regs[R_GP];
    970   1.1       cgd 	framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
    971   1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
    972   1.1       cgd }
    973   1.1       cgd 
    974   1.1       cgd void
    975   1.1       cgd printregs(regp)
    976   1.1       cgd 	struct reg *regp;
    977   1.1       cgd {
    978   1.1       cgd 	int i;
    979   1.1       cgd 
    980   1.1       cgd 	for (i = 0; i < 32; i++)
    981   1.1       cgd 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
    982   1.1       cgd 		   i & 1 ? "\n" : "\t");
    983   1.1       cgd }
    984   1.1       cgd 
    985   1.1       cgd void
    986   1.1       cgd regdump(framep)
    987   1.1       cgd 	struct trapframe *framep;
    988   1.1       cgd {
    989   1.1       cgd 	struct reg reg;
    990   1.1       cgd 
    991   1.1       cgd 	frametoreg(framep, &reg);
    992   1.1       cgd 	printf("REGISTERS:\n");
    993   1.1       cgd 	printregs(&reg);
    994   1.1       cgd }
    995   1.1       cgd 
    996   1.1       cgd #ifdef DEBUG
    997   1.1       cgd int sigdebug = 0;
    998   1.1       cgd int sigpid = 0;
    999   1.1       cgd #define	SDB_FOLLOW	0x01
   1000   1.1       cgd #define	SDB_KSTACK	0x02
   1001   1.1       cgd #endif
   1002   1.1       cgd 
   1003   1.1       cgd /*
   1004   1.1       cgd  * Send an interrupt to process.
   1005   1.1       cgd  */
   1006   1.1       cgd void
   1007   1.1       cgd sendsig(catcher, sig, mask, code)
   1008   1.1       cgd 	sig_t catcher;
   1009   1.1       cgd 	int sig, mask;
   1010   1.1       cgd 	u_long code;
   1011   1.1       cgd {
   1012   1.1       cgd 	struct proc *p = curproc;
   1013   1.1       cgd 	struct sigcontext *scp, ksc;
   1014   1.1       cgd 	struct trapframe *frame;
   1015   1.1       cgd 	struct sigacts *psp = p->p_sigacts;
   1016   1.1       cgd 	int oonstack, fsize, rndfsize;
   1017   1.1       cgd 	extern char sigcode[], esigcode[];
   1018   1.1       cgd 	extern struct proc *fpcurproc;
   1019   1.1       cgd 
   1020   1.1       cgd 	frame = p->p_md.md_tf;
   1021   1.9   mycroft 	oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
   1022   1.1       cgd 	fsize = sizeof ksc;
   1023   1.1       cgd 	rndfsize = ((fsize + 15) / 16) * 16;
   1024   1.1       cgd 	/*
   1025   1.1       cgd 	 * Allocate and validate space for the signal handler
   1026   1.1       cgd 	 * context. Note that if the stack is in P0 space, the
   1027   1.1       cgd 	 * call to grow() is a nop, and the useracc() check
   1028   1.1       cgd 	 * will fail if the process has not already allocated
   1029   1.1       cgd 	 * the space with a `brk'.
   1030   1.1       cgd 	 */
   1031   1.1       cgd 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
   1032   1.1       cgd 	    (psp->ps_sigonstack & sigmask(sig))) {
   1033  1.14       jtc 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
   1034   1.1       cgd 		    psp->ps_sigstk.ss_size - rndfsize);
   1035   1.9   mycroft 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
   1036   1.1       cgd 	} else
   1037   1.1       cgd 		scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
   1038   1.1       cgd 		    rndfsize);
   1039   1.1       cgd 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
   1040   1.1       cgd 		(void)grow(p, (u_long)scp);
   1041   1.1       cgd #ifdef DEBUG
   1042   1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1043  1.33       cgd 		printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1044   1.1       cgd 		    sig, &oonstack, scp);
   1045   1.1       cgd #endif
   1046   1.1       cgd 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
   1047   1.1       cgd #ifdef DEBUG
   1048   1.1       cgd 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1049   1.1       cgd 			printf("sendsig(%d): useracc failed on sig %d\n",
   1050   1.1       cgd 			    p->p_pid, sig);
   1051   1.1       cgd #endif
   1052   1.1       cgd 		/*
   1053   1.1       cgd 		 * Process has trashed its stack; give it an illegal
   1054   1.1       cgd 		 * instruction to halt it in its tracks.
   1055   1.1       cgd 		 */
   1056   1.1       cgd 		SIGACTION(p, SIGILL) = SIG_DFL;
   1057   1.1       cgd 		sig = sigmask(SIGILL);
   1058   1.1       cgd 		p->p_sigignore &= ~sig;
   1059   1.1       cgd 		p->p_sigcatch &= ~sig;
   1060   1.1       cgd 		p->p_sigmask &= ~sig;
   1061   1.1       cgd 		psignal(p, SIGILL);
   1062   1.1       cgd 		return;
   1063   1.1       cgd 	}
   1064   1.1       cgd 
   1065   1.1       cgd 	/*
   1066   1.1       cgd 	 * Build the signal context to be used by sigreturn.
   1067   1.1       cgd 	 */
   1068   1.1       cgd 	ksc.sc_onstack = oonstack;
   1069   1.1       cgd 	ksc.sc_mask = mask;
   1070  1.33       cgd 	ksc.sc_pc = frame->tf_af.af_pc;
   1071  1.33       cgd 	ksc.sc_ps = frame->tf_af.af_ps;
   1072   1.1       cgd 
   1073   1.1       cgd 	/* copy the registers. */
   1074   1.1       cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
   1075   1.1       cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
   1076   1.1       cgd 
   1077   1.1       cgd 	/* save the floating-point state, if necessary, then copy it. */
   1078   1.1       cgd 	if (p == fpcurproc) {
   1079  1.32       cgd 		alpha_pal_wrfen(1);
   1080   1.1       cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
   1081  1.32       cgd 		alpha_pal_wrfen(0);
   1082   1.1       cgd 		fpcurproc = NULL;
   1083   1.1       cgd 	}
   1084   1.1       cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
   1085   1.1       cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
   1086   1.1       cgd 	    sizeof(struct fpreg));
   1087   1.1       cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
   1088   1.1       cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
   1089   1.1       cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
   1090   1.1       cgd 
   1091   1.1       cgd 
   1092   1.1       cgd #ifdef COMPAT_OSF1
   1093   1.1       cgd 	/*
   1094   1.1       cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
   1095   1.1       cgd 	 */
   1096   1.1       cgd #endif
   1097   1.1       cgd 
   1098   1.1       cgd 	/*
   1099   1.1       cgd 	 * copy the frame out to userland.
   1100   1.1       cgd 	 */
   1101   1.1       cgd 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
   1102   1.1       cgd #ifdef DEBUG
   1103   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1104  1.33       cgd 		printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
   1105   1.1       cgd 		    scp, code);
   1106   1.1       cgd #endif
   1107   1.1       cgd 
   1108   1.1       cgd 	/*
   1109   1.1       cgd 	 * Set up the registers to return to sigcode.
   1110   1.1       cgd 	 */
   1111  1.33       cgd 	frame->tf_af.af_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
   1112   1.1       cgd 	frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
   1113  1.33       cgd 	frame->tf_af.af_a0 = sig;
   1114  1.33       cgd 	frame->tf_af.af_a1 = code;
   1115  1.33       cgd 	frame->tf_af.af_a2 = (u_int64_t)scp;
   1116   1.1       cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1117   1.1       cgd 
   1118   1.1       cgd #ifdef DEBUG
   1119   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1120   1.1       cgd 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1121  1.33       cgd 		    frame->tf_af.af_pc, frame->tf_regs[FRAME_A3]);
   1122   1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1123   1.1       cgd 		printf("sendsig(%d): sig %d returns\n",
   1124   1.1       cgd 		    p->p_pid, sig);
   1125   1.1       cgd #endif
   1126   1.1       cgd }
   1127   1.1       cgd 
   1128   1.1       cgd /*
   1129   1.1       cgd  * System call to cleanup state after a signal
   1130   1.1       cgd  * has been taken.  Reset signal mask and
   1131   1.1       cgd  * stack state from context left by sendsig (above).
   1132   1.1       cgd  * Return to previous pc and psl as specified by
   1133   1.1       cgd  * context left by sendsig. Check carefully to
   1134   1.1       cgd  * make sure that the user has not modified the
   1135   1.1       cgd  * psl to gain improper priviledges or to cause
   1136   1.1       cgd  * a machine fault.
   1137   1.1       cgd  */
   1138   1.1       cgd /* ARGSUSED */
   1139  1.11   mycroft int
   1140  1.11   mycroft sys_sigreturn(p, v, retval)
   1141   1.1       cgd 	struct proc *p;
   1142  1.10   thorpej 	void *v;
   1143  1.10   thorpej 	register_t *retval;
   1144  1.10   thorpej {
   1145  1.11   mycroft 	struct sys_sigreturn_args /* {
   1146   1.1       cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1147  1.10   thorpej 	} */ *uap = v;
   1148   1.1       cgd 	struct sigcontext *scp, ksc;
   1149   1.1       cgd 	extern struct proc *fpcurproc;
   1150   1.1       cgd 
   1151   1.1       cgd 	scp = SCARG(uap, sigcntxp);
   1152   1.1       cgd #ifdef DEBUG
   1153   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1154  1.33       cgd 	    printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
   1155   1.1       cgd #endif
   1156   1.1       cgd 
   1157   1.1       cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1158   1.1       cgd 		return (EINVAL);
   1159   1.1       cgd 
   1160   1.1       cgd 	/*
   1161   1.1       cgd 	 * Test and fetch the context structure.
   1162   1.1       cgd 	 * We grab it all at once for speed.
   1163   1.1       cgd 	 */
   1164   1.1       cgd 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1165   1.1       cgd 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1166   1.1       cgd 		return (EINVAL);
   1167   1.1       cgd 
   1168   1.1       cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1169   1.1       cgd 		return (EINVAL);
   1170   1.1       cgd 	/*
   1171   1.1       cgd 	 * Restore the user-supplied information
   1172   1.1       cgd 	 */
   1173   1.1       cgd 	if (ksc.sc_onstack)
   1174   1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
   1175   1.1       cgd 	else
   1176   1.9   mycroft 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
   1177   1.1       cgd 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1178   1.1       cgd 
   1179  1.33       cgd 	p->p_md.md_tf->tf_af.af_pc = ksc.sc_pc;
   1180  1.33       cgd 	p->p_md.md_tf->tf_af.af_ps =
   1181  1.32       cgd 	    (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
   1182   1.1       cgd 
   1183   1.1       cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1184   1.1       cgd 
   1185   1.1       cgd 	/* XXX ksc.sc_ownedfp ? */
   1186   1.1       cgd 	if (p == fpcurproc)
   1187   1.1       cgd 		fpcurproc = NULL;
   1188   1.1       cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1189   1.1       cgd 	    sizeof(struct fpreg));
   1190   1.1       cgd 	/* XXX ksc.sc_fp_control ? */
   1191   1.1       cgd 
   1192   1.1       cgd #ifdef DEBUG
   1193   1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1194   1.1       cgd 		printf("sigreturn(%d): returns\n", p->p_pid);
   1195   1.1       cgd #endif
   1196   1.1       cgd 	return (EJUSTRETURN);
   1197   1.1       cgd }
   1198   1.1       cgd 
   1199   1.1       cgd /*
   1200   1.1       cgd  * machine dependent system variables.
   1201   1.1       cgd  */
   1202  1.33       cgd int
   1203   1.1       cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1204   1.1       cgd 	int *name;
   1205   1.1       cgd 	u_int namelen;
   1206   1.1       cgd 	void *oldp;
   1207   1.1       cgd 	size_t *oldlenp;
   1208   1.1       cgd 	void *newp;
   1209   1.1       cgd 	size_t newlen;
   1210   1.1       cgd 	struct proc *p;
   1211   1.1       cgd {
   1212   1.1       cgd 	dev_t consdev;
   1213   1.1       cgd 
   1214   1.1       cgd 	/* all sysctl names at this level are terminal */
   1215   1.1       cgd 	if (namelen != 1)
   1216   1.1       cgd 		return (ENOTDIR);		/* overloaded */
   1217   1.1       cgd 
   1218   1.1       cgd 	switch (name[0]) {
   1219   1.1       cgd 	case CPU_CONSDEV:
   1220   1.1       cgd 		if (cn_tab != NULL)
   1221   1.1       cgd 			consdev = cn_tab->cn_dev;
   1222   1.1       cgd 		else
   1223   1.1       cgd 			consdev = NODEV;
   1224   1.1       cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1225   1.1       cgd 			sizeof consdev));
   1226  1.30       cgd 
   1227  1.30       cgd 	case CPU_ROOT_DEVICE:
   1228  1.30       cgd 		return (sysctl_rdstring(oldp, oldlenp, newp, root_device));
   1229  1.30       cgd 
   1230   1.1       cgd 	default:
   1231   1.1       cgd 		return (EOPNOTSUPP);
   1232   1.1       cgd 	}
   1233   1.1       cgd 	/* NOTREACHED */
   1234   1.1       cgd }
   1235   1.1       cgd 
   1236   1.1       cgd /*
   1237   1.1       cgd  * Set registers on exec.
   1238   1.1       cgd  */
   1239   1.1       cgd void
   1240   1.5  christos setregs(p, pack, stack, retval)
   1241   1.1       cgd 	register struct proc *p;
   1242   1.5  christos 	struct exec_package *pack;
   1243   1.1       cgd 	u_long stack;
   1244   1.1       cgd 	register_t *retval;
   1245   1.1       cgd {
   1246   1.1       cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1247   1.1       cgd 	int i;
   1248   1.1       cgd 	extern struct proc *fpcurproc;
   1249   1.1       cgd 
   1250   1.1       cgd #ifdef DEBUG
   1251   1.1       cgd 	for (i = 0; i < FRAME_NSAVEREGS; i++)
   1252   1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1253  1.33       cgd 	tfp->tf_af.af_gp = 0xbabefacedeadbeef;
   1254  1.33       cgd 	tfp->tf_af.af_a0 = 0xbabefacedeadbeef;
   1255  1.33       cgd 	tfp->tf_af.af_a1 = 0xbabefacedeadbeef;
   1256  1.33       cgd 	tfp->tf_af.af_a2 = 0xbabefacedeadbeef;
   1257   1.1       cgd #else
   1258   1.1       cgd 	bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
   1259  1.33       cgd 	tfp->tf_af.af_gp = 0;
   1260  1.33       cgd 	tfp->tf_af.af_a0 = 0;
   1261  1.33       cgd 	tfp->tf_af.af_a1 = 0;
   1262  1.33       cgd 	tfp->tf_af.af_a2 = 0;
   1263   1.1       cgd #endif
   1264   1.1       cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1265   1.7       cgd #define FP_RN 2 /* XXX */
   1266   1.7       cgd 	p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
   1267   1.1       cgd 	tfp->tf_regs[FRAME_SP] = stack;	/* restored to usp in trap return */
   1268  1.33       cgd 	tfp->tf_af.af_ps = ALPHA_PSL_USERSET;
   1269  1.33       cgd 	tfp->tf_af.af_pc = pack->ep_entry & ~3;
   1270   1.1       cgd 
   1271  1.33       cgd 	p->p_md.md_flags &= ~MDP_FPUSED;
   1272   1.1       cgd 	if (fpcurproc == p)
   1273   1.1       cgd 		fpcurproc = NULL;
   1274   1.1       cgd 
   1275   1.1       cgd 	retval[0] = retval[1] = 0;
   1276   1.1       cgd }
   1277   1.1       cgd 
   1278   1.1       cgd void
   1279   1.1       cgd netintr()
   1280   1.1       cgd {
   1281   1.1       cgd #ifdef INET
   1282   1.1       cgd #if NETHER > 0
   1283   1.1       cgd 	if (netisr & (1 << NETISR_ARP)) {
   1284   1.1       cgd 		netisr &= ~(1 << NETISR_ARP);
   1285   1.1       cgd 		arpintr();
   1286   1.1       cgd 	}
   1287   1.1       cgd #endif
   1288   1.1       cgd 	if (netisr & (1 << NETISR_IP)) {
   1289   1.1       cgd 		netisr &= ~(1 << NETISR_IP);
   1290   1.1       cgd 		ipintr();
   1291   1.1       cgd 	}
   1292   1.1       cgd #endif
   1293   1.1       cgd #ifdef NS
   1294   1.1       cgd 	if (netisr & (1 << NETISR_NS)) {
   1295   1.1       cgd 		netisr &= ~(1 << NETISR_NS);
   1296   1.1       cgd 		nsintr();
   1297   1.1       cgd 	}
   1298   1.1       cgd #endif
   1299   1.1       cgd #ifdef ISO
   1300   1.1       cgd 	if (netisr & (1 << NETISR_ISO)) {
   1301   1.1       cgd 		netisr &= ~(1 << NETISR_ISO);
   1302   1.1       cgd 		clnlintr();
   1303   1.1       cgd 	}
   1304   1.1       cgd #endif
   1305   1.1       cgd #ifdef CCITT
   1306   1.1       cgd 	if (netisr & (1 << NETISR_CCITT)) {
   1307   1.1       cgd 		netisr &= ~(1 << NETISR_CCITT);
   1308   1.1       cgd 		ccittintr();
   1309   1.1       cgd 	}
   1310   1.1       cgd #endif
   1311   1.8       cgd #ifdef PPP
   1312   1.8       cgd 	if (netisr & (1 << NETISR_PPP)) {
   1313  1.20       cgd 		netisr &= ~(1 << NETISR_PPP);
   1314   1.8       cgd 		pppintr();
   1315   1.8       cgd 	}
   1316   1.8       cgd #endif
   1317   1.1       cgd }
   1318   1.1       cgd 
   1319   1.1       cgd void
   1320   1.1       cgd do_sir()
   1321   1.1       cgd {
   1322   1.1       cgd 
   1323   1.1       cgd 	if (ssir & SIR_NET) {
   1324   1.1       cgd 		siroff(SIR_NET);
   1325   1.1       cgd 		cnt.v_soft++;
   1326   1.1       cgd 		netintr();
   1327   1.1       cgd 	}
   1328   1.1       cgd 	if (ssir & SIR_CLOCK) {
   1329   1.1       cgd 		siroff(SIR_CLOCK);
   1330   1.1       cgd 		cnt.v_soft++;
   1331   1.1       cgd 		softclock();
   1332   1.1       cgd 	}
   1333   1.1       cgd }
   1334   1.1       cgd 
   1335   1.1       cgd int
   1336   1.1       cgd spl0()
   1337   1.1       cgd {
   1338   1.1       cgd 
   1339   1.1       cgd 	if (ssir) {
   1340   1.1       cgd 		splsoft();
   1341   1.1       cgd 		do_sir();
   1342   1.1       cgd 	}
   1343   1.1       cgd 
   1344  1.32       cgd 	return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
   1345   1.1       cgd }
   1346   1.1       cgd 
   1347   1.1       cgd /*
   1348   1.1       cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1349   1.1       cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1350   1.1       cgd  * into queues, Remrq removes them from queues.  The running process is on
   1351   1.1       cgd  * no queue, other processes are on a queue related to p->p_priority, divided
   1352   1.1       cgd  * by 4 actually to shrink the 0-127 range of priorities into the 32 available
   1353   1.1       cgd  * queues.
   1354   1.1       cgd  */
   1355   1.1       cgd /*
   1356   1.1       cgd  * setrunqueue(p)
   1357   1.1       cgd  *	proc *p;
   1358   1.1       cgd  *
   1359   1.1       cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1360   1.1       cgd  */
   1361   1.1       cgd 
   1362   1.1       cgd void
   1363   1.1       cgd setrunqueue(p)
   1364   1.1       cgd 	struct proc *p;
   1365   1.1       cgd {
   1366   1.1       cgd 	int bit;
   1367   1.1       cgd 
   1368   1.1       cgd 	/* firewall: p->p_back must be NULL */
   1369   1.1       cgd 	if (p->p_back != NULL)
   1370   1.1       cgd 		panic("setrunqueue");
   1371   1.1       cgd 
   1372   1.1       cgd 	bit = p->p_priority >> 2;
   1373   1.1       cgd 	whichqs |= (1 << bit);
   1374   1.1       cgd 	p->p_forw = (struct proc *)&qs[bit];
   1375   1.1       cgd 	p->p_back = qs[bit].ph_rlink;
   1376   1.1       cgd 	p->p_back->p_forw = p;
   1377   1.1       cgd 	qs[bit].ph_rlink = p;
   1378   1.1       cgd }
   1379   1.1       cgd 
   1380   1.1       cgd /*
   1381   1.1       cgd  * Remrq(p)
   1382   1.1       cgd  *
   1383   1.1       cgd  * Call should be made at splclock().
   1384   1.1       cgd  */
   1385   1.1       cgd void
   1386   1.1       cgd remrq(p)
   1387   1.1       cgd 	struct proc *p;
   1388   1.1       cgd {
   1389   1.1       cgd 	int bit;
   1390   1.1       cgd 
   1391   1.1       cgd 	bit = p->p_priority >> 2;
   1392   1.1       cgd 	if ((whichqs & (1 << bit)) == 0)
   1393   1.1       cgd 		panic("remrq");
   1394   1.1       cgd 
   1395   1.1       cgd 	p->p_back->p_forw = p->p_forw;
   1396   1.1       cgd 	p->p_forw->p_back = p->p_back;
   1397   1.1       cgd 	p->p_back = NULL;	/* for firewall checking. */
   1398   1.1       cgd 
   1399   1.1       cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1400   1.1       cgd 		whichqs &= ~(1 << bit);
   1401   1.1       cgd }
   1402   1.1       cgd 
   1403   1.1       cgd /*
   1404   1.1       cgd  * Return the best possible estimate of the time in the timeval
   1405   1.1       cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1406   1.1       cgd  * We guarantee that the time will be greater than the value obtained by a
   1407   1.1       cgd  * previous call.
   1408   1.1       cgd  */
   1409   1.1       cgd void
   1410   1.1       cgd microtime(tvp)
   1411   1.1       cgd 	register struct timeval *tvp;
   1412   1.1       cgd {
   1413   1.1       cgd 	int s = splclock();
   1414   1.1       cgd 	static struct timeval lasttime;
   1415   1.1       cgd 
   1416   1.1       cgd 	*tvp = time;
   1417   1.1       cgd #ifdef notdef
   1418   1.1       cgd 	tvp->tv_usec += clkread();
   1419   1.1       cgd 	while (tvp->tv_usec > 1000000) {
   1420   1.1       cgd 		tvp->tv_sec++;
   1421   1.1       cgd 		tvp->tv_usec -= 1000000;
   1422   1.1       cgd 	}
   1423   1.1       cgd #endif
   1424   1.1       cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1425   1.1       cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1426   1.1       cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1427   1.1       cgd 		tvp->tv_sec++;
   1428   1.1       cgd 		tvp->tv_usec -= 1000000;
   1429   1.1       cgd 	}
   1430   1.1       cgd 	lasttime = *tvp;
   1431   1.1       cgd 	splx(s);
   1432  1.15       cgd }
   1433  1.15       cgd 
   1434  1.15       cgd /*
   1435  1.15       cgd  * Wait "n" microseconds.
   1436  1.15       cgd  */
   1437  1.32       cgd void
   1438  1.15       cgd delay(n)
   1439  1.32       cgd 	unsigned long n;
   1440  1.15       cgd {
   1441  1.15       cgd 	long N = cycles_per_usec * (n);
   1442  1.15       cgd 
   1443  1.15       cgd 	while (N > 0)				/* XXX */
   1444  1.15       cgd 		N -= 3;				/* XXX */
   1445   1.1       cgd }
   1446   1.1       cgd 
   1447   1.8       cgd #if defined(COMPAT_OSF1) || 1		/* XXX */
   1448   1.1       cgd void
   1449  1.19       cgd cpu_exec_ecoff_setregs(p, epp, stack, retval)
   1450   1.1       cgd 	struct proc *p;
   1451  1.19       cgd 	struct exec_package *epp;
   1452   1.5  christos 	u_long stack;
   1453   1.5  christos 	register_t *retval;
   1454   1.1       cgd {
   1455  1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1456   1.1       cgd 
   1457  1.19       cgd 	setregs(p, epp, stack, retval);
   1458  1.33       cgd 	p->p_md.md_tf->tf_af.af_gp = execp->a.gp_value;
   1459   1.1       cgd }
   1460   1.1       cgd 
   1461   1.1       cgd /*
   1462   1.1       cgd  * cpu_exec_ecoff_hook():
   1463   1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   1464   1.1       cgd  *
   1465   1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1466   1.1       cgd  *
   1467   1.1       cgd  */
   1468   1.1       cgd int
   1469  1.19       cgd cpu_exec_ecoff_hook(p, epp)
   1470   1.1       cgd 	struct proc *p;
   1471   1.1       cgd 	struct exec_package *epp;
   1472   1.1       cgd {
   1473  1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1474   1.5  christos 	extern struct emul emul_netbsd;
   1475   1.5  christos #ifdef COMPAT_OSF1
   1476   1.5  christos 	extern struct emul emul_osf1;
   1477   1.5  christos #endif
   1478   1.1       cgd 
   1479  1.19       cgd 	switch (execp->f.f_magic) {
   1480   1.5  christos #ifdef COMPAT_OSF1
   1481   1.1       cgd 	case ECOFF_MAGIC_ALPHA:
   1482   1.5  christos 		epp->ep_emul = &emul_osf1;
   1483   1.1       cgd 		break;
   1484   1.5  christos #endif
   1485   1.1       cgd 
   1486   1.1       cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1487   1.5  christos 		epp->ep_emul = &emul_netbsd;
   1488   1.1       cgd 		break;
   1489   1.1       cgd 
   1490   1.1       cgd 	default:
   1491  1.12       cgd 		return ENOEXEC;
   1492   1.1       cgd 	}
   1493   1.1       cgd 	return 0;
   1494   1.1       cgd }
   1495   1.1       cgd #endif
   1496