Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.332
      1  1.332    martin /* $NetBSD: machdep.c,v 1.332 2011/04/15 21:24:00 martin Exp $ */
      2  1.110   thorpej 
      3  1.110   thorpej /*-
      4  1.211   thorpej  * Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
      5  1.110   thorpej  * All rights reserved.
      6  1.110   thorpej  *
      7  1.110   thorpej  * This code is derived from software contributed to The NetBSD Foundation
      8  1.110   thorpej  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  1.110   thorpej  * NASA Ames Research Center and by Chris G. Demetriou.
     10  1.110   thorpej  *
     11  1.110   thorpej  * Redistribution and use in source and binary forms, with or without
     12  1.110   thorpej  * modification, are permitted provided that the following conditions
     13  1.110   thorpej  * are met:
     14  1.110   thorpej  * 1. Redistributions of source code must retain the above copyright
     15  1.110   thorpej  *    notice, this list of conditions and the following disclaimer.
     16  1.110   thorpej  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.110   thorpej  *    notice, this list of conditions and the following disclaimer in the
     18  1.110   thorpej  *    documentation and/or other materials provided with the distribution.
     19  1.110   thorpej  *
     20  1.110   thorpej  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  1.110   thorpej  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  1.110   thorpej  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  1.110   thorpej  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  1.110   thorpej  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.110   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.110   thorpej  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.110   thorpej  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.110   thorpej  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.110   thorpej  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.110   thorpej  * POSSIBILITY OF SUCH DAMAGE.
     31  1.110   thorpej  */
     32    1.1       cgd 
     33    1.1       cgd /*
     34   1.16       cgd  * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
     35    1.1       cgd  * All rights reserved.
     36    1.1       cgd  *
     37    1.1       cgd  * Author: Chris G. Demetriou
     38    1.1       cgd  *
     39    1.1       cgd  * Permission to use, copy, modify and distribute this software and
     40    1.1       cgd  * its documentation is hereby granted, provided that both the copyright
     41    1.1       cgd  * notice and this permission notice appear in all copies of the
     42    1.1       cgd  * software, derivative works or modified versions, and any portions
     43    1.1       cgd  * thereof, and that both notices appear in supporting documentation.
     44    1.1       cgd  *
     45    1.1       cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     46    1.1       cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     47    1.1       cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     48    1.1       cgd  *
     49    1.1       cgd  * Carnegie Mellon requests users of this software to return to
     50    1.1       cgd  *
     51    1.1       cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     52    1.1       cgd  *  School of Computer Science
     53    1.1       cgd  *  Carnegie Mellon University
     54    1.1       cgd  *  Pittsburgh PA 15213-3890
     55    1.1       cgd  *
     56    1.1       cgd  * any improvements or extensions that they make and grant Carnegie the
     57    1.1       cgd  * rights to redistribute these changes.
     58    1.1       cgd  */
     59   1.74       cgd 
     60  1.129  jonathan #include "opt_ddb.h"
     61  1.244     lukem #include "opt_kgdb.h"
     62  1.315       apb #include "opt_modular.h"
     63  1.147   thorpej #include "opt_multiprocessor.h"
     64  1.123   thorpej #include "opt_dec_3000_300.h"
     65  1.123   thorpej #include "opt_dec_3000_500.h"
     66  1.127   thorpej #include "opt_compat_osf1.h"
     67  1.250  jdolecek #include "opt_execfmt.h"
     68  1.112   thorpej 
     69   1.75       cgd #include <sys/cdefs.h>			/* RCS ID & Copyright macro defns */
     70   1.75       cgd 
     71  1.332    martin __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.332 2011/04/15 21:24:00 martin Exp $");
     72    1.1       cgd 
     73    1.1       cgd #include <sys/param.h>
     74    1.1       cgd #include <sys/systm.h>
     75    1.1       cgd #include <sys/signalvar.h>
     76    1.1       cgd #include <sys/kernel.h>
     77  1.297      yamt #include <sys/cpu.h>
     78    1.1       cgd #include <sys/proc.h>
     79  1.264   nathanw #include <sys/ras.h>
     80  1.307  wrstuden #include <sys/sa.h>
     81  1.307  wrstuden #include <sys/savar.h>
     82  1.207   thorpej #include <sys/sched.h>
     83    1.1       cgd #include <sys/reboot.h>
     84   1.28       cgd #include <sys/device.h>
     85    1.1       cgd #include <sys/malloc.h>
     86  1.110   thorpej #include <sys/mman.h>
     87    1.1       cgd #include <sys/msgbuf.h>
     88    1.1       cgd #include <sys/ioctl.h>
     89    1.1       cgd #include <sys/tty.h>
     90    1.1       cgd #include <sys/exec.h>
     91  1.320      matt #include <sys/exec_aout.h>		/* for MID_* */
     92    1.1       cgd #include <sys/exec_ecoff.h>
     93   1.43       cgd #include <sys/core.h>
     94   1.43       cgd #include <sys/kcore.h>
     95  1.261   thorpej #include <sys/ucontext.h>
     96  1.258   gehenna #include <sys/conf.h>
     97  1.266     ragge #include <sys/ksyms.h>
     98  1.290      elad #include <sys/kauth.h>
     99  1.303        ad #include <sys/atomic.h>
    100  1.303        ad #include <sys/cpu.h>
    101  1.303        ad 
    102   1.43       cgd #include <machine/kcore.h>
    103  1.241      ross #include <machine/fpu.h>
    104    1.1       cgd 
    105    1.1       cgd #include <sys/mount.h>
    106    1.1       cgd #include <sys/syscallargs.h>
    107    1.1       cgd 
    108  1.327  uebayasi #include <uvm/uvm.h>
    109  1.217       mrg #include <sys/sysctl.h>
    110  1.112   thorpej 
    111    1.1       cgd #include <dev/cons.h>
    112    1.1       cgd 
    113   1.81   thorpej #include <machine/autoconf.h>
    114    1.1       cgd #include <machine/reg.h>
    115    1.1       cgd #include <machine/rpb.h>
    116    1.1       cgd #include <machine/prom.h>
    117  1.258   gehenna #include <machine/cpuconf.h>
    118  1.172      ross #include <machine/ieeefp.h>
    119  1.148   thorpej 
    120   1.81   thorpej #ifdef DDB
    121   1.81   thorpej #include <machine/db_machdep.h>
    122   1.81   thorpej #include <ddb/db_access.h>
    123   1.81   thorpej #include <ddb/db_sym.h>
    124   1.81   thorpej #include <ddb/db_extern.h>
    125   1.81   thorpej #include <ddb/db_interface.h>
    126  1.233   thorpej #endif
    127  1.233   thorpej 
    128  1.233   thorpej #ifdef KGDB
    129  1.233   thorpej #include <sys/kgdb.h>
    130   1.81   thorpej #endif
    131   1.81   thorpej 
    132  1.229  sommerfe #ifdef DEBUG
    133  1.229  sommerfe #include <machine/sigdebug.h>
    134  1.229  sommerfe #endif
    135  1.229  sommerfe 
    136  1.155      ross #include <machine/alpha.h>
    137  1.143      matt 
    138  1.266     ragge #include "ksyms.h"
    139  1.266     ragge 
    140  1.245       chs struct vm_map *phys_map = NULL;
    141    1.1       cgd 
    142  1.295  christos void *msgbufaddr;
    143   1.86       leo 
    144    1.1       cgd int	maxmem;			/* max memory per process */
    145    1.7       cgd 
    146    1.7       cgd int	totalphysmem;		/* total amount of physical memory in system */
    147    1.7       cgd int	physmem;		/* physical memory used by NetBSD + some rsvd */
    148    1.1       cgd int	resvmem;		/* amount of memory reserved for PROM */
    149    1.7       cgd int	unusedmem;		/* amount of memory for OS that we don't use */
    150    1.7       cgd int	unknownmem;		/* amount of memory with an unknown use */
    151    1.1       cgd 
    152    1.1       cgd int	cputype;		/* system type, from the RPB */
    153  1.210   thorpej 
    154  1.210   thorpej int	bootdev_debug = 0;	/* patchable, or from DDB */
    155    1.1       cgd 
    156    1.1       cgd /*
    157    1.1       cgd  * XXX We need an address to which we can assign things so that they
    158    1.1       cgd  * won't be optimized away because we didn't use the value.
    159    1.1       cgd  */
    160    1.1       cgd u_int32_t no_optimize;
    161    1.1       cgd 
    162    1.1       cgd /* the following is used externally (sysctl_hw) */
    163   1.79     veego char	machine[] = MACHINE;		/* from <machine/param.h> */
    164   1.79     veego char	machine_arch[] = MACHINE_ARCH;	/* from <machine/param.h> */
    165   1.29       cgd char	cpu_model[128];
    166    1.1       cgd 
    167    1.1       cgd /* Number of machine cycles per microsecond */
    168    1.1       cgd u_int64_t	cycles_per_usec;
    169    1.1       cgd 
    170  1.280       wiz /* number of CPUs in the box.  really! */
    171    1.7       cgd int		ncpus;
    172    1.7       cgd 
    173  1.102       cgd struct bootinfo_kernel bootinfo;
    174   1.81   thorpej 
    175  1.123   thorpej /* For built-in TCDS */
    176  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    177  1.123   thorpej u_int8_t	dec_3000_scsiid[2], dec_3000_scsifast[2];
    178  1.123   thorpej #endif
    179  1.123   thorpej 
    180   1.89    mjacob struct platform platform;
    181   1.89    mjacob 
    182  1.309        ad #if NKSYMS || defined(DDB) || defined(MODULAR)
    183   1.81   thorpej /* start and end of kernel symbol table */
    184   1.81   thorpej void	*ksym_start, *ksym_end;
    185   1.81   thorpej #endif
    186   1.81   thorpej 
    187   1.30       cgd /* for cpu_sysctl() */
    188   1.36       cgd int	alpha_unaligned_print = 1;	/* warn about unaligned accesses */
    189   1.36       cgd int	alpha_unaligned_fix = 1;	/* fix up unaligned accesses */
    190   1.36       cgd int	alpha_unaligned_sigbus = 0;	/* don't SIGBUS on fixed-up accesses */
    191  1.241      ross int	alpha_fp_sync_complete = 0;	/* fp fixup if sync even without /s */
    192   1.30       cgd 
    193  1.110   thorpej /*
    194  1.110   thorpej  * XXX This should be dynamically sized, but we have the chicken-egg problem!
    195  1.110   thorpej  * XXX it should also be larger than it is, because not all of the mddt
    196  1.110   thorpej  * XXX clusters end up being used for VM.
    197  1.110   thorpej  */
    198  1.110   thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];	/* low size bits overloaded */
    199  1.110   thorpej int	mem_cluster_cnt;
    200  1.110   thorpej 
    201  1.316       dsl int	cpu_dump(void);
    202  1.316       dsl int	cpu_dumpsize(void);
    203  1.316       dsl u_long	cpu_dump_mempagecnt(void);
    204  1.316       dsl void	dumpsys(void);
    205  1.316       dsl void	identifycpu(void);
    206  1.316       dsl void	printregs(struct reg *);
    207   1.33       cgd 
    208   1.55       cgd void
    209  1.318       dsl alpha_init(u_long pfn, u_long ptb, u_long bim, u_long bip, u_long biv)
    210  1.318       dsl 	/* pfn:		 first free PFN number */
    211  1.318       dsl 	/* ptb:		 PFN of current level 1 page table */
    212  1.318       dsl 	/* bim:		 bootinfo magic */
    213  1.318       dsl 	/* bip:		 bootinfo pointer */
    214  1.318       dsl 	/* biv:		 bootinfo version */
    215    1.1       cgd {
    216   1.95   thorpej 	extern char kernel_text[], _end[];
    217    1.1       cgd 	struct mddt *mddtp;
    218  1.110   thorpej 	struct mddt_cluster *memc;
    219    1.7       cgd 	int i, mddtweird;
    220  1.110   thorpej 	struct vm_physseg *vps;
    221  1.324     rmind 	struct pcb *pcb0;
    222  1.324     rmind 	vaddr_t kernstart, kernend, v;
    223  1.140   thorpej 	paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
    224  1.211   thorpej 	cpuid_t cpu_id;
    225  1.211   thorpej 	struct cpu_info *ci;
    226    1.1       cgd 	char *p;
    227  1.209   thorpej 	const char *bootinfo_msg;
    228  1.209   thorpej 	const struct cpuinit *c;
    229  1.106       cgd 
    230  1.106       cgd 	/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
    231    1.1       cgd 
    232    1.1       cgd 	/*
    233   1.77       cgd 	 * Turn off interrupts (not mchecks) and floating point.
    234    1.1       cgd 	 * Make sure the instruction and data streams are consistent.
    235    1.1       cgd 	 */
    236   1.77       cgd 	(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
    237   1.32       cgd 	alpha_pal_wrfen(0);
    238   1.37       cgd 	ALPHA_TBIA();
    239   1.32       cgd 	alpha_pal_imb();
    240  1.248   thorpej 
    241  1.248   thorpej 	/* Initialize the SCB. */
    242  1.248   thorpej 	scb_init();
    243    1.1       cgd 
    244  1.211   thorpej 	cpu_id = cpu_number();
    245  1.211   thorpej 
    246  1.189   thorpej #if defined(MULTIPROCESSOR)
    247  1.189   thorpej 	/*
    248  1.189   thorpej 	 * Set our SysValue to the address of our cpu_info structure.
    249  1.189   thorpej 	 * Secondary processors do this in their spinup trampoline.
    250  1.189   thorpej 	 */
    251  1.237   thorpej 	alpha_pal_wrval((u_long)&cpu_info_primary);
    252  1.237   thorpej 	cpu_info[cpu_id] = &cpu_info_primary;
    253  1.189   thorpej #endif
    254  1.189   thorpej 
    255  1.211   thorpej 	ci = curcpu();
    256  1.211   thorpej 	ci->ci_cpuid = cpu_id;
    257  1.211   thorpej 
    258    1.1       cgd 	/*
    259  1.106       cgd 	 * Get critical system information (if possible, from the
    260  1.106       cgd 	 * information provided by the boot program).
    261   1.81   thorpej 	 */
    262  1.106       cgd 	bootinfo_msg = NULL;
    263   1.81   thorpej 	if (bim == BOOTINFO_MAGIC) {
    264  1.102       cgd 		if (biv == 0) {		/* backward compat */
    265  1.102       cgd 			biv = *(u_long *)bip;
    266  1.102       cgd 			bip += 8;
    267  1.102       cgd 		}
    268  1.102       cgd 		switch (biv) {
    269  1.102       cgd 		case 1: {
    270  1.102       cgd 			struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
    271  1.102       cgd 
    272  1.102       cgd 			bootinfo.ssym = v1p->ssym;
    273  1.102       cgd 			bootinfo.esym = v1p->esym;
    274  1.106       cgd 			/* hwrpb may not be provided by boot block in v1 */
    275  1.106       cgd 			if (v1p->hwrpb != NULL) {
    276  1.106       cgd 				bootinfo.hwrpb_phys =
    277  1.106       cgd 				    ((struct rpb *)v1p->hwrpb)->rpb_phys;
    278  1.106       cgd 				bootinfo.hwrpb_size = v1p->hwrpbsize;
    279  1.106       cgd 			} else {
    280  1.106       cgd 				bootinfo.hwrpb_phys =
    281  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    282  1.106       cgd 				bootinfo.hwrpb_size =
    283  1.106       cgd 				    ((struct rpb *)HWRPB_ADDR)->rpb_size;
    284  1.106       cgd 			}
    285  1.247   thorpej 			memcpy(bootinfo.boot_flags, v1p->boot_flags,
    286  1.102       cgd 			    min(sizeof v1p->boot_flags,
    287  1.102       cgd 			      sizeof bootinfo.boot_flags));
    288  1.247   thorpej 			memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
    289  1.102       cgd 			    min(sizeof v1p->booted_kernel,
    290  1.102       cgd 			      sizeof bootinfo.booted_kernel));
    291  1.106       cgd 			/* booted dev not provided in bootinfo */
    292  1.106       cgd 			init_prom_interface((struct rpb *)
    293  1.106       cgd 			    ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
    294  1.102       cgd                 	prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    295  1.102       cgd 			    sizeof bootinfo.booted_dev);
    296   1.81   thorpej 			break;
    297  1.102       cgd 		}
    298   1.81   thorpej 		default:
    299  1.106       cgd 			bootinfo_msg = "unknown bootinfo version";
    300  1.102       cgd 			goto nobootinfo;
    301   1.81   thorpej 		}
    302  1.102       cgd 	} else {
    303  1.106       cgd 		bootinfo_msg = "boot program did not pass bootinfo";
    304  1.102       cgd nobootinfo:
    305  1.102       cgd 		bootinfo.ssym = (u_long)_end;
    306  1.102       cgd 		bootinfo.esym = (u_long)_end;
    307  1.106       cgd 		bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
    308  1.106       cgd 		bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
    309  1.106       cgd 		init_prom_interface((struct rpb *)HWRPB_ADDR);
    310  1.102       cgd 		prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
    311  1.102       cgd 		    sizeof bootinfo.boot_flags);
    312  1.102       cgd 		prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
    313  1.102       cgd 		    sizeof bootinfo.booted_kernel);
    314  1.102       cgd 		prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
    315  1.102       cgd 		    sizeof bootinfo.booted_dev);
    316  1.102       cgd 	}
    317  1.102       cgd 
    318   1.81   thorpej 	/*
    319  1.106       cgd 	 * Initialize the kernel's mapping of the RPB.  It's needed for
    320  1.106       cgd 	 * lots of things.
    321  1.106       cgd 	 */
    322  1.106       cgd 	hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
    323  1.123   thorpej 
    324  1.123   thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
    325  1.123   thorpej 	if (hwrpb->rpb_type == ST_DEC_3000_300 ||
    326  1.123   thorpej 	    hwrpb->rpb_type == ST_DEC_3000_500) {
    327  1.123   thorpej 		prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
    328  1.123   thorpej 		    sizeof(dec_3000_scsiid));
    329  1.123   thorpej 		prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
    330  1.123   thorpej 		    sizeof(dec_3000_scsifast));
    331  1.123   thorpej 	}
    332  1.123   thorpej #endif
    333  1.106       cgd 
    334  1.106       cgd 	/*
    335  1.106       cgd 	 * Remember how many cycles there are per microsecond,
    336  1.106       cgd 	 * so that we can use delay().  Round up, for safety.
    337  1.106       cgd 	 */
    338  1.106       cgd 	cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
    339  1.106       cgd 
    340  1.106       cgd 	/*
    341  1.251       wiz 	 * Initialize the (temporary) bootstrap console interface, so
    342  1.106       cgd 	 * we can use printf until the VM system starts being setup.
    343  1.106       cgd 	 * The real console is initialized before then.
    344  1.106       cgd 	 */
    345  1.106       cgd 	init_bootstrap_console();
    346  1.106       cgd 
    347  1.106       cgd 	/* OUTPUT NOW ALLOWED */
    348  1.106       cgd 
    349  1.106       cgd 	/* delayed from above */
    350  1.106       cgd 	if (bootinfo_msg)
    351  1.106       cgd 		printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
    352  1.106       cgd 		    bootinfo_msg, bim, bip, biv);
    353  1.106       cgd 
    354  1.147   thorpej 	/* Initialize the trap vectors on the primary processor. */
    355  1.147   thorpej 	trap_init();
    356    1.1       cgd 
    357    1.1       cgd 	/*
    358  1.263   thorpej 	 * Find out this system's page size, and initialize
    359  1.263   thorpej 	 * PAGE_SIZE-dependent variables.
    360  1.243   thorpej 	 */
    361  1.263   thorpej 	if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
    362  1.263   thorpej 		panic("page size %lu != %d?!", hwrpb->rpb_page_size,
    363  1.263   thorpej 		    ALPHA_PGBYTES);
    364  1.263   thorpej 	uvmexp.pagesize = hwrpb->rpb_page_size;
    365  1.243   thorpej 	uvm_setpagesize();
    366  1.243   thorpej 
    367  1.243   thorpej 	/*
    368  1.106       cgd 	 * Find out what hardware we're on, and do basic initialization.
    369  1.106       cgd 	 */
    370  1.106       cgd 	cputype = hwrpb->rpb_type;
    371  1.167       cgd 	if (cputype < 0) {
    372  1.167       cgd 		/*
    373  1.167       cgd 		 * At least some white-box systems have SRM which
    374  1.167       cgd 		 * reports a systype that's the negative of their
    375  1.167       cgd 		 * blue-box counterpart.
    376  1.167       cgd 		 */
    377  1.167       cgd 		cputype = -cputype;
    378  1.167       cgd 	}
    379  1.209   thorpej 	c = platform_lookup(cputype);
    380  1.209   thorpej 	if (c == NULL) {
    381  1.106       cgd 		platform_not_supported();
    382  1.106       cgd 		/* NOTREACHED */
    383  1.106       cgd 	}
    384  1.209   thorpej 	(*c->init)();
    385  1.106       cgd 	strcpy(cpu_model, platform.model);
    386  1.106       cgd 
    387  1.106       cgd 	/*
    388  1.251       wiz 	 * Initialize the real console, so that the bootstrap console is
    389  1.106       cgd 	 * no longer necessary.
    390  1.106       cgd 	 */
    391  1.169   thorpej 	(*platform.cons_init)();
    392  1.106       cgd 
    393  1.106       cgd #ifdef DIAGNOSTIC
    394  1.106       cgd 	/* Paranoid sanity checking */
    395  1.106       cgd 
    396  1.199     soren 	/* We should always be running on the primary. */
    397  1.211   thorpej 	assert(hwrpb->rpb_primary_cpu_id == cpu_id);
    398  1.106       cgd 
    399  1.116    mjacob 	/*
    400  1.116    mjacob 	 * On single-CPU systypes, the primary should always be CPU 0,
    401  1.116    mjacob 	 * except on Alpha 8200 systems where the CPU id is related
    402  1.116    mjacob 	 * to the VID, which is related to the Turbo Laser node id.
    403  1.116    mjacob 	 */
    404  1.106       cgd 	if (cputype != ST_DEC_21000)
    405  1.106       cgd 		assert(hwrpb->rpb_primary_cpu_id == 0);
    406  1.106       cgd #endif
    407  1.106       cgd 
    408  1.106       cgd 	/* NO MORE FIRMWARE ACCESS ALLOWED */
    409  1.106       cgd #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    410  1.106       cgd 	/*
    411  1.106       cgd 	 * XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
    412  1.106       cgd 	 * XXX pmap_uses_prom_console() evaluates to non-zero.)
    413  1.106       cgd 	 */
    414  1.106       cgd #endif
    415   1.95   thorpej 
    416   1.95   thorpej 	/*
    417  1.101       cgd 	 * Find the beginning and end of the kernel (and leave a
    418  1.101       cgd 	 * bit of space before the beginning for the bootstrap
    419  1.101       cgd 	 * stack).
    420   1.95   thorpej 	 */
    421  1.201    kleink 	kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
    422  1.309        ad #if NKSYMS || defined(DDB) || defined(MODULAR)
    423  1.102       cgd 	ksym_start = (void *)bootinfo.ssym;
    424  1.102       cgd 	ksym_end   = (void *)bootinfo.esym;
    425  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
    426  1.102       cgd #else
    427  1.201    kleink 	kernend = (vaddr_t)round_page((vaddr_t)_end);
    428   1.95   thorpej #endif
    429   1.95   thorpej 
    430  1.110   thorpej 	kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
    431  1.110   thorpej 	kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
    432  1.110   thorpej 
    433   1.95   thorpej 	/*
    434    1.1       cgd 	 * Find out how much memory is available, by looking at
    435    1.7       cgd 	 * the memory cluster descriptors.  This also tries to do
    436    1.7       cgd 	 * its best to detect things things that have never been seen
    437    1.7       cgd 	 * before...
    438    1.1       cgd 	 */
    439  1.296      yamt 	mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
    440    1.7       cgd 
    441  1.110   thorpej 	/* MDDT SANITY CHECKING */
    442    1.7       cgd 	mddtweird = 0;
    443  1.110   thorpej 	if (mddtp->mddt_cluster_cnt < 2) {
    444    1.7       cgd 		mddtweird = 1;
    445  1.160   thorpej 		printf("WARNING: weird number of mem clusters: %lu\n",
    446  1.110   thorpej 		    mddtp->mddt_cluster_cnt);
    447    1.7       cgd 	}
    448    1.7       cgd 
    449  1.110   thorpej #if 0
    450  1.110   thorpej 	printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
    451  1.110   thorpej #endif
    452  1.110   thorpej 
    453  1.110   thorpej 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    454  1.110   thorpej 		memc = &mddtp->mddt_clusters[i];
    455  1.110   thorpej #if 0
    456  1.110   thorpej 		printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
    457  1.110   thorpej 		    memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
    458  1.110   thorpej #endif
    459  1.110   thorpej 		totalphysmem += memc->mddt_pg_cnt;
    460  1.110   thorpej 		if (mem_cluster_cnt < VM_PHYSSEG_MAX) {	/* XXX */
    461  1.110   thorpej 			mem_clusters[mem_cluster_cnt].start =
    462  1.110   thorpej 			    ptoa(memc->mddt_pfn);
    463  1.110   thorpej 			mem_clusters[mem_cluster_cnt].size =
    464  1.110   thorpej 			    ptoa(memc->mddt_pg_cnt);
    465  1.110   thorpej 			if (memc->mddt_usage & MDDT_mbz ||
    466  1.110   thorpej 			    memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
    467  1.110   thorpej 			    memc->mddt_usage & MDDT_PALCODE)
    468  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    469  1.110   thorpej 				    PROT_READ;
    470  1.110   thorpej 			else
    471  1.110   thorpej 				mem_clusters[mem_cluster_cnt].size |=
    472  1.110   thorpej 				    PROT_READ | PROT_WRITE | PROT_EXEC;
    473  1.110   thorpej 			mem_cluster_cnt++;
    474  1.110   thorpej 		}
    475  1.110   thorpej 
    476  1.110   thorpej 		if (memc->mddt_usage & MDDT_mbz) {
    477    1.7       cgd 			mddtweird = 1;
    478  1.110   thorpej 			printf("WARNING: mem cluster %d has weird "
    479  1.110   thorpej 			    "usage 0x%lx\n", i, memc->mddt_usage);
    480  1.110   thorpej 			unknownmem += memc->mddt_pg_cnt;
    481  1.110   thorpej 			continue;
    482    1.7       cgd 		}
    483  1.110   thorpej 		if (memc->mddt_usage & MDDT_NONVOLATILE) {
    484  1.110   thorpej 			/* XXX should handle these... */
    485  1.110   thorpej 			printf("WARNING: skipping non-volatile mem "
    486  1.110   thorpej 			    "cluster %d\n", i);
    487  1.110   thorpej 			unusedmem += memc->mddt_pg_cnt;
    488  1.110   thorpej 			continue;
    489  1.110   thorpej 		}
    490  1.110   thorpej 		if (memc->mddt_usage & MDDT_PALCODE) {
    491  1.110   thorpej 			resvmem += memc->mddt_pg_cnt;
    492  1.110   thorpej 			continue;
    493  1.110   thorpej 		}
    494  1.110   thorpej 
    495  1.110   thorpej 		/*
    496  1.110   thorpej 		 * We have a memory cluster available for system
    497  1.110   thorpej 		 * software use.  We must determine if this cluster
    498  1.110   thorpej 		 * holds the kernel.
    499  1.110   thorpej 		 */
    500  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    501  1.110   thorpej 		/*
    502  1.110   thorpej 		 * XXX If the kernel uses the PROM console, we only use the
    503  1.110   thorpej 		 * XXX memory after the kernel in the first system segment,
    504  1.110   thorpej 		 * XXX to avoid clobbering prom mapping, data, etc.
    505  1.110   thorpej 		 */
    506  1.110   thorpej 	    if (!pmap_uses_prom_console() || physmem == 0) {
    507  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    508  1.110   thorpej 		physmem += memc->mddt_pg_cnt;
    509  1.110   thorpej 		pfn0 = memc->mddt_pfn;
    510  1.110   thorpej 		pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
    511  1.110   thorpej 		if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
    512  1.110   thorpej 			/*
    513  1.110   thorpej 			 * Must compute the location of the kernel
    514  1.110   thorpej 			 * within the segment.
    515  1.110   thorpej 			 */
    516  1.110   thorpej #if 0
    517  1.110   thorpej 			printf("Cluster %d contains kernel\n", i);
    518  1.110   thorpej #endif
    519  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    520  1.110   thorpej 		    if (!pmap_uses_prom_console()) {
    521  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    522  1.110   thorpej 			if (pfn0 < kernstartpfn) {
    523  1.110   thorpej 				/*
    524  1.110   thorpej 				 * There is a chunk before the kernel.
    525  1.110   thorpej 				 */
    526  1.110   thorpej #if 0
    527  1.110   thorpej 				printf("Loading chunk before kernel: "
    528  1.110   thorpej 				    "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
    529  1.110   thorpej #endif
    530  1.112   thorpej 				uvm_page_physload(pfn0, kernstartpfn,
    531  1.135   thorpej 				    pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
    532  1.110   thorpej 			}
    533  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    534  1.110   thorpej 		    }
    535  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    536  1.110   thorpej 			if (kernendpfn < pfn1) {
    537  1.110   thorpej 				/*
    538  1.110   thorpej 				 * There is a chunk after the kernel.
    539  1.110   thorpej 				 */
    540  1.110   thorpej #if 0
    541  1.110   thorpej 				printf("Loading chunk after kernel: "
    542  1.110   thorpej 				    "0x%lx / 0x%lx\n", kernendpfn, pfn1);
    543  1.110   thorpej #endif
    544  1.112   thorpej 				uvm_page_physload(kernendpfn, pfn1,
    545  1.135   thorpej 				    kernendpfn, pfn1, VM_FREELIST_DEFAULT);
    546  1.110   thorpej 			}
    547  1.110   thorpej 		} else {
    548  1.110   thorpej 			/*
    549  1.110   thorpej 			 * Just load this cluster as one chunk.
    550  1.110   thorpej 			 */
    551  1.110   thorpej #if 0
    552  1.110   thorpej 			printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
    553  1.110   thorpej 			    pfn0, pfn1);
    554  1.110   thorpej #endif
    555  1.135   thorpej 			uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
    556  1.135   thorpej 			    VM_FREELIST_DEFAULT);
    557    1.7       cgd 		}
    558  1.110   thorpej #ifdef _PMAP_MAY_USE_PROM_CONSOLE
    559  1.110   thorpej 	    }
    560  1.110   thorpej #endif /* _PMAP_MAY_USE_PROM_CONSOLE */
    561    1.7       cgd 	}
    562    1.7       cgd 
    563  1.110   thorpej 	/*
    564  1.110   thorpej 	 * Dump out the MDDT if it looks odd...
    565  1.110   thorpej 	 */
    566    1.7       cgd 	if (mddtweird) {
    567   1.46  christos 		printf("\n");
    568   1.46  christos 		printf("complete memory cluster information:\n");
    569    1.2       cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    570   1.46  christos 			printf("mddt %d:\n", i);
    571   1.46  christos 			printf("\tpfn %lx\n",
    572    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    573   1.46  christos 			printf("\tcnt %lx\n",
    574    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    575   1.46  christos 			printf("\ttest %lx\n",
    576    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    577   1.46  christos 			printf("\tbva %lx\n",
    578    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    579   1.46  christos 			printf("\tbpa %lx\n",
    580    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    581   1.46  christos 			printf("\tbcksum %lx\n",
    582    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    583   1.46  christos 			printf("\tusage %lx\n",
    584    1.2       cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    585    1.2       cgd 		}
    586   1.46  christos 		printf("\n");
    587    1.2       cgd 	}
    588    1.2       cgd 
    589    1.7       cgd 	if (totalphysmem == 0)
    590    1.1       cgd 		panic("can't happen: system seems to have no memory!");
    591    1.1       cgd 	maxmem = physmem;
    592    1.7       cgd #if 0
    593   1.46  christos 	printf("totalphysmem = %d\n", totalphysmem);
    594   1.46  christos 	printf("physmem = %d\n", physmem);
    595   1.46  christos 	printf("resvmem = %d\n", resvmem);
    596   1.46  christos 	printf("unusedmem = %d\n", unusedmem);
    597   1.46  christos 	printf("unknownmem = %d\n", unknownmem);
    598    1.7       cgd #endif
    599    1.7       cgd 
    600    1.1       cgd 	/*
    601    1.1       cgd 	 * Initialize error message buffer (at end of core).
    602    1.1       cgd 	 */
    603  1.110   thorpej 	{
    604  1.204     enami 		vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
    605  1.203     enami 		vsize_t reqsz = sz;
    606  1.110   thorpej 
    607  1.328  uebayasi 		vps = VM_PHYSMEM_PTR(vm_nphysseg - 1);
    608  1.110   thorpej 
    609  1.110   thorpej 		/* shrink so that it'll fit in the last segment */
    610  1.110   thorpej 		if ((vps->avail_end - vps->avail_start) < atop(sz))
    611  1.110   thorpej 			sz = ptoa(vps->avail_end - vps->avail_start);
    612  1.110   thorpej 
    613  1.110   thorpej 		vps->end -= atop(sz);
    614  1.110   thorpej 		vps->avail_end -= atop(sz);
    615  1.295  christos 		msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
    616  1.110   thorpej 		initmsgbuf(msgbufaddr, sz);
    617  1.110   thorpej 
    618  1.110   thorpej 		/* Remove the last segment if it now has no pages. */
    619  1.110   thorpej 		if (vps->start == vps->end)
    620  1.110   thorpej 			vm_nphysseg--;
    621  1.110   thorpej 
    622  1.110   thorpej 		/* warn if the message buffer had to be shrunk */
    623  1.203     enami 		if (sz != reqsz)
    624  1.203     enami 			printf("WARNING: %ld bytes not available for msgbuf "
    625  1.203     enami 			    "in last cluster (%ld used)\n", reqsz, sz);
    626  1.268   thorpej 
    627  1.110   thorpej 	}
    628  1.239   thorpej 
    629  1.239   thorpej 	/*
    630  1.268   thorpej 	 * NOTE: It is safe to use uvm_pageboot_alloc() before
    631  1.268   thorpej 	 * pmap_bootstrap() because our pmap_virtual_space()
    632  1.268   thorpej 	 * returns compile-time constants.
    633  1.268   thorpej 	 */
    634  1.268   thorpej 
    635  1.268   thorpej 	/*
    636  1.324     rmind 	 * Allocate uarea page for lwp0 and set it.
    637    1.1       cgd 	 */
    638  1.324     rmind 	v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
    639  1.324     rmind 	uvm_lwp_setuarea(&lwp0, v);
    640    1.1       cgd 
    641    1.1       cgd 	/*
    642    1.1       cgd 	 * Initialize the virtual memory system, and set the
    643    1.1       cgd 	 * page table base register in proc 0's PCB.
    644    1.1       cgd 	 */
    645  1.110   thorpej 	pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
    646  1.144   thorpej 	    hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
    647    1.1       cgd 
    648    1.1       cgd 	/*
    649  1.324     rmind 	 * Initialize the rest of lwp0's PCB and cache its physical address.
    650    1.3       cgd 	 */
    651  1.324     rmind 	pcb0 = lwp_getpcb(&lwp0);
    652  1.324     rmind 	lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
    653    1.3       cgd 
    654    1.3       cgd 	/*
    655    1.3       cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    656  1.323      matt 	 * and make lwp0's trapframe pointer point to it for sanity.
    657    1.3       cgd 	 */
    658  1.324     rmind 	pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
    659  1.324     rmind 	lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
    660  1.324     rmind 	simple_lock_init(&pcb0->pcb_fpcpu_slock);
    661  1.189   thorpej 
    662  1.323      matt 	/* Indicate that lwp0 has a CPU. */
    663  1.261   thorpej 	lwp0.l_cpu = ci;
    664    1.1       cgd 
    665    1.1       cgd 	/*
    666   1.25       cgd 	 * Look at arguments passed to us and compute boothowto.
    667    1.8       cgd 	 */
    668    1.1       cgd 
    669    1.8       cgd 	boothowto = RB_SINGLE;
    670    1.1       cgd #ifdef KADB
    671    1.1       cgd 	boothowto |= RB_KDB;
    672    1.1       cgd #endif
    673  1.102       cgd 	for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
    674   1.26       cgd 		/*
    675   1.26       cgd 		 * Note that we'd really like to differentiate case here,
    676   1.26       cgd 		 * but the Alpha AXP Architecture Reference Manual
    677   1.26       cgd 		 * says that we shouldn't.
    678   1.26       cgd 		 */
    679    1.8       cgd 		switch (*p) {
    680   1.26       cgd 		case 'a': /* autoboot */
    681   1.26       cgd 		case 'A':
    682   1.26       cgd 			boothowto &= ~RB_SINGLE;
    683   1.21       cgd 			break;
    684   1.21       cgd 
    685   1.43       cgd #ifdef DEBUG
    686   1.43       cgd 		case 'c': /* crash dump immediately after autoconfig */
    687   1.43       cgd 		case 'C':
    688   1.43       cgd 			boothowto |= RB_DUMP;
    689   1.43       cgd 			break;
    690   1.43       cgd #endif
    691   1.43       cgd 
    692   1.81   thorpej #if defined(KGDB) || defined(DDB)
    693   1.81   thorpej 		case 'd': /* break into the kernel debugger ASAP */
    694   1.81   thorpej 		case 'D':
    695   1.81   thorpej 			boothowto |= RB_KDB;
    696   1.81   thorpej 			break;
    697   1.81   thorpej #endif
    698   1.81   thorpej 
    699   1.36       cgd 		case 'h': /* always halt, never reboot */
    700   1.36       cgd 		case 'H':
    701   1.36       cgd 			boothowto |= RB_HALT;
    702    1.8       cgd 			break;
    703    1.8       cgd 
    704   1.21       cgd #if 0
    705    1.8       cgd 		case 'm': /* mini root present in memory */
    706   1.26       cgd 		case 'M':
    707    1.8       cgd 			boothowto |= RB_MINIROOT;
    708    1.8       cgd 			break;
    709   1.21       cgd #endif
    710   1.36       cgd 
    711   1.36       cgd 		case 'n': /* askname */
    712   1.36       cgd 		case 'N':
    713   1.36       cgd 			boothowto |= RB_ASKNAME;
    714   1.65       cgd 			break;
    715   1.65       cgd 
    716   1.65       cgd 		case 's': /* single-user (default, supported for sanity) */
    717   1.65       cgd 		case 'S':
    718   1.65       cgd 			boothowto |= RB_SINGLE;
    719  1.221  jdolecek 			break;
    720  1.221  jdolecek 
    721  1.221  jdolecek 		case 'q': /* quiet boot */
    722  1.221  jdolecek 		case 'Q':
    723  1.221  jdolecek 			boothowto |= AB_QUIET;
    724  1.221  jdolecek 			break;
    725  1.221  jdolecek 
    726  1.221  jdolecek 		case 'v': /* verbose boot */
    727  1.221  jdolecek 		case 'V':
    728  1.221  jdolecek 			boothowto |= AB_VERBOSE;
    729  1.119   thorpej 			break;
    730  1.119   thorpej 
    731  1.119   thorpej 		case '-':
    732  1.119   thorpej 			/*
    733  1.119   thorpej 			 * Just ignore this.  It's not required, but it's
    734  1.119   thorpej 			 * common for it to be passed regardless.
    735  1.119   thorpej 			 */
    736   1.65       cgd 			break;
    737   1.65       cgd 
    738   1.65       cgd 		default:
    739   1.65       cgd 			printf("Unrecognized boot flag '%c'.\n", *p);
    740   1.36       cgd 			break;
    741    1.1       cgd 		}
    742    1.1       cgd 	}
    743    1.1       cgd 
    744  1.302        ad 	/*
    745  1.302        ad 	 * Perform any initial kernel patches based on the running system.
    746  1.302        ad 	 * We may perform more later if we attach additional CPUs.
    747  1.302        ad 	 */
    748  1.302        ad 	alpha_patch(false);
    749  1.136    mjacob 
    750  1.136    mjacob 	/*
    751  1.280       wiz 	 * Figure out the number of CPUs in the box, from RPB fields.
    752  1.136    mjacob 	 * Really.  We mean it.
    753  1.136    mjacob 	 */
    754  1.136    mjacob 	for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
    755  1.136    mjacob 		struct pcs *pcsp;
    756  1.136    mjacob 
    757  1.144   thorpej 		pcsp = LOCATE_PCS(hwrpb, i);
    758  1.136    mjacob 		if ((pcsp->pcs_flags & PCS_PP) != 0)
    759  1.136    mjacob 			ncpus++;
    760  1.136    mjacob 	}
    761  1.136    mjacob 
    762    1.7       cgd 	/*
    763  1.106       cgd 	 * Initialize debuggers, and break into them if appropriate.
    764  1.106       cgd 	 */
    765  1.309        ad #if NKSYMS || defined(DDB) || defined(MODULAR)
    766  1.312    martin 	ksyms_addsyms_elf((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
    767  1.159    mjacob 	    ksym_start, ksym_end);
    768  1.234   thorpej #endif
    769  1.234   thorpej 
    770  1.234   thorpej 	if (boothowto & RB_KDB) {
    771  1.234   thorpej #if defined(KGDB)
    772  1.234   thorpej 		kgdb_debug_init = 1;
    773  1.234   thorpej 		kgdb_connect(1);
    774  1.234   thorpej #elif defined(DDB)
    775  1.106       cgd 		Debugger();
    776  1.106       cgd #endif
    777  1.234   thorpej 	}
    778  1.234   thorpej 
    779  1.298   tsutsui #ifdef DIAGNOSTIC
    780  1.106       cgd 	/*
    781  1.298   tsutsui 	 * Check our clock frequency, from RPB fields.
    782  1.106       cgd 	 */
    783  1.298   tsutsui 	if ((hwrpb->rpb_intr_freq >> 12) != 1024)
    784  1.106       cgd 		printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
    785  1.106       cgd 			hwrpb->rpb_intr_freq, hz);
    786  1.106       cgd #endif
    787   1.95   thorpej }
    788   1.95   thorpej 
    789   1.18       cgd void
    790  1.319    cegger consinit(void)
    791    1.1       cgd {
    792   1.81   thorpej 
    793  1.106       cgd 	/*
    794  1.106       cgd 	 * Everything related to console initialization is done
    795  1.106       cgd 	 * in alpha_init().
    796  1.106       cgd 	 */
    797  1.106       cgd #if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
    798  1.106       cgd 	printf("consinit: %susing prom console\n",
    799  1.106       cgd 	    pmap_uses_prom_console() ? "" : "not ");
    800   1.81   thorpej #endif
    801    1.1       cgd }
    802  1.118   thorpej 
    803   1.18       cgd void
    804  1.319    cegger cpu_startup(void)
    805    1.1       cgd {
    806  1.331    martin 	extern struct evcnt fpevent_use, fpevent_reuse;
    807  1.140   thorpej 	vaddr_t minaddr, maxaddr;
    808  1.173     lukem 	char pbuf[9];
    809   1.40       cgd #if defined(DEBUG)
    810    1.1       cgd 	extern int pmapdebug;
    811    1.1       cgd 	int opmapdebug = pmapdebug;
    812    1.1       cgd 
    813    1.1       cgd 	pmapdebug = 0;
    814    1.1       cgd #endif
    815    1.1       cgd 
    816    1.1       cgd 	/*
    817    1.1       cgd 	 * Good {morning,afternoon,evening,night}.
    818    1.1       cgd 	 */
    819  1.284     lukem 	printf("%s%s", copyright, version);
    820    1.1       cgd 	identifycpu();
    821  1.185   thorpej 	format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
    822  1.173     lukem 	printf("total memory = %s\n", pbuf);
    823  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
    824  1.173     lukem 	printf("(%s reserved for PROM, ", pbuf);
    825  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
    826  1.173     lukem 	printf("%s used by NetBSD)\n", pbuf);
    827  1.173     lukem 	if (unusedmem) {
    828  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
    829  1.173     lukem 		printf("WARNING: unused memory = %s\n", pbuf);
    830  1.173     lukem 	}
    831  1.173     lukem 	if (unknownmem) {
    832  1.185   thorpej 		format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
    833  1.173     lukem 		printf("WARNING: %s of memory with unknown purpose\n", pbuf);
    834  1.173     lukem 	}
    835    1.1       cgd 
    836  1.279        pk 	minaddr = 0;
    837  1.240   thorpej 
    838    1.1       cgd 	/*
    839    1.1       cgd 	 * Allocate a submap for physio
    840    1.1       cgd 	 */
    841  1.112   thorpej 	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
    842  1.294   thorpej 				   VM_PHYS_SIZE, 0, false, NULL);
    843    1.1       cgd 
    844    1.1       cgd 	/*
    845  1.164   thorpej 	 * No need to allocate an mbuf cluster submap.  Mbuf clusters
    846  1.164   thorpej 	 * are allocated via the pool allocator, and we use K0SEG to
    847  1.164   thorpej 	 * map those pages.
    848    1.1       cgd 	 */
    849    1.1       cgd 
    850   1.40       cgd #if defined(DEBUG)
    851    1.1       cgd 	pmapdebug = opmapdebug;
    852    1.1       cgd #endif
    853  1.173     lukem 	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
    854  1.173     lukem 	printf("avail memory = %s\n", pbuf);
    855  1.139   thorpej #if 0
    856  1.139   thorpej 	{
    857  1.139   thorpej 		extern u_long pmap_pages_stolen;
    858  1.173     lukem 
    859  1.173     lukem 		format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
    860  1.173     lukem 		printf("stolen memory for VM structures = %s\n", pbuf);
    861  1.139   thorpej 	}
    862  1.112   thorpej #endif
    863  1.151   thorpej 
    864  1.151   thorpej 	/*
    865  1.151   thorpej 	 * Set up the HWPCB so that it's safe to configure secondary
    866  1.151   thorpej 	 * CPUs.
    867  1.151   thorpej 	 */
    868  1.151   thorpej 	hwrpb_primary_init();
    869  1.331    martin 
    870  1.331    martin 	/*
    871  1.331    martin 	 * Initialize some trap event counters.
    872  1.331    martin 	 */
    873  1.332    martin 	evcnt_attach_dynamic_nozero(&fpevent_use, EVCNT_TYPE_MISC, NULL,
    874  1.331    martin 	    "FP", "proc use");
    875  1.332    martin 	evcnt_attach_dynamic_nozero(&fpevent_reuse, EVCNT_TYPE_MISC, NULL,
    876  1.331    martin 	    "FP", "proc re-use");
    877  1.104   thorpej }
    878  1.104   thorpej 
    879  1.104   thorpej /*
    880  1.104   thorpej  * Retrieve the platform name from the DSR.
    881  1.104   thorpej  */
    882  1.104   thorpej const char *
    883  1.319    cegger alpha_dsr_sysname(void)
    884  1.104   thorpej {
    885  1.104   thorpej 	struct dsrdb *dsr;
    886  1.104   thorpej 	const char *sysname;
    887  1.104   thorpej 
    888  1.104   thorpej 	/*
    889  1.104   thorpej 	 * DSR does not exist on early HWRPB versions.
    890  1.104   thorpej 	 */
    891  1.104   thorpej 	if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
    892  1.104   thorpej 		return (NULL);
    893  1.104   thorpej 
    894  1.296      yamt 	dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
    895  1.296      yamt 	sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
    896  1.104   thorpej 	    sizeof(u_int64_t)));
    897  1.104   thorpej 	return (sysname);
    898  1.104   thorpej }
    899  1.104   thorpej 
    900  1.104   thorpej /*
    901  1.104   thorpej  * Lookup the system specified system variation in the provided table,
    902  1.104   thorpej  * returning the model string on match.
    903  1.104   thorpej  */
    904  1.104   thorpej const char *
    905  1.317       dsl alpha_variation_name(u_int64_t variation, const struct alpha_variation_table *avtp)
    906  1.104   thorpej {
    907  1.104   thorpej 	int i;
    908  1.104   thorpej 
    909  1.104   thorpej 	for (i = 0; avtp[i].avt_model != NULL; i++)
    910  1.104   thorpej 		if (avtp[i].avt_variation == variation)
    911  1.104   thorpej 			return (avtp[i].avt_model);
    912  1.104   thorpej 	return (NULL);
    913  1.104   thorpej }
    914  1.104   thorpej 
    915  1.104   thorpej /*
    916  1.104   thorpej  * Generate a default platform name based for unknown system variations.
    917  1.104   thorpej  */
    918  1.104   thorpej const char *
    919  1.319    cegger alpha_unknown_sysname(void)
    920  1.104   thorpej {
    921  1.105   thorpej 	static char s[128];		/* safe size */
    922  1.104   thorpej 
    923  1.105   thorpej 	sprintf(s, "%s family, unknown model variation 0x%lx",
    924  1.105   thorpej 	    platform.family, hwrpb->rpb_variation & SV_ST_MASK);
    925  1.104   thorpej 	return ((const char *)s);
    926    1.1       cgd }
    927    1.1       cgd 
    928   1.33       cgd void
    929  1.319    cegger identifycpu(void)
    930    1.1       cgd {
    931  1.177      ross 	char *s;
    932  1.218   thorpej 	int i;
    933    1.1       cgd 
    934    1.7       cgd 	/*
    935    1.7       cgd 	 * print out CPU identification information.
    936    1.7       cgd 	 */
    937  1.177      ross 	printf("%s", cpu_model);
    938  1.177      ross 	for(s = cpu_model; *s; ++s)
    939  1.177      ross 		if(strncasecmp(s, "MHz", 3) == 0)
    940  1.177      ross 			goto skipMHz;
    941  1.177      ross 	printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
    942  1.177      ross skipMHz:
    943  1.218   thorpej 	printf(", s/n ");
    944  1.218   thorpej 	for (i = 0; i < 10; i++)
    945  1.218   thorpej 		printf("%c", hwrpb->rpb_ssn[i]);
    946  1.177      ross 	printf("\n");
    947   1.46  christos 	printf("%ld byte page size, %d processor%s.\n",
    948    1.7       cgd 	    hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
    949    1.7       cgd #if 0
    950    1.7       cgd 	/* this isn't defined for any systems that we run on? */
    951   1.46  christos 	printf("serial number 0x%lx 0x%lx\n",
    952    1.1       cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    953    1.7       cgd 
    954    1.7       cgd 	/* and these aren't particularly useful! */
    955   1.46  christos 	printf("variation: 0x%lx, revision 0x%lx\n",
    956    1.1       cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    957    1.7       cgd #endif
    958    1.1       cgd }
    959    1.1       cgd 
    960    1.1       cgd int	waittime = -1;
    961    1.7       cgd struct pcb dumppcb;
    962    1.1       cgd 
    963   1.18       cgd void
    964  1.317       dsl cpu_reboot(int howto, char *bootstr)
    965    1.1       cgd {
    966  1.148   thorpej #if defined(MULTIPROCESSOR)
    967  1.225   thorpej 	u_long cpu_id = cpu_number();
    968  1.321    mhitch 	u_long wait_mask;
    969  1.225   thorpej 	int i;
    970  1.148   thorpej #endif
    971  1.148   thorpej 
    972  1.225   thorpej 	/* If "always halt" was specified as a boot flag, obey. */
    973  1.225   thorpej 	if ((boothowto & RB_HALT) != 0)
    974  1.225   thorpej 		howto |= RB_HALT;
    975  1.225   thorpej 
    976  1.225   thorpej 	boothowto = howto;
    977    1.1       cgd 
    978    1.1       cgd 	/* If system is cold, just halt. */
    979    1.1       cgd 	if (cold) {
    980  1.225   thorpej 		boothowto |= RB_HALT;
    981    1.1       cgd 		goto haltsys;
    982    1.1       cgd 	}
    983    1.1       cgd 
    984  1.225   thorpej 	if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
    985    1.1       cgd 		waittime = 0;
    986    1.7       cgd 		vfs_shutdown();
    987    1.1       cgd 		/*
    988    1.1       cgd 		 * If we've been adjusting the clock, the todr
    989    1.1       cgd 		 * will be out of synch; adjust it now.
    990    1.1       cgd 		 */
    991    1.1       cgd 		resettodr();
    992    1.1       cgd 	}
    993    1.1       cgd 
    994    1.1       cgd 	/* Disable interrupts. */
    995    1.1       cgd 	splhigh();
    996    1.1       cgd 
    997  1.225   thorpej #if defined(MULTIPROCESSOR)
    998  1.225   thorpej 	/*
    999  1.225   thorpej 	 * Halt all other CPUs.  If we're not the primary, the
   1000  1.225   thorpej 	 * primary will spin, waiting for us to halt.
   1001  1.225   thorpej 	 */
   1002  1.321    mhitch 	cpu_id = cpu_number();		/* may have changed cpu */
   1003  1.321    mhitch 	wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
   1004  1.321    mhitch 
   1005  1.225   thorpej 	alpha_broadcast_ipi(ALPHA_IPI_HALT);
   1006  1.225   thorpej 
   1007  1.283    mhitch 	/* Ensure any CPUs paused by DDB resume execution so they can halt */
   1008  1.283    mhitch 	cpus_paused = 0;
   1009  1.283    mhitch 
   1010  1.225   thorpej 	for (i = 0; i < 10000; i++) {
   1011  1.225   thorpej 		alpha_mb();
   1012  1.225   thorpej 		if (cpus_running == wait_mask)
   1013  1.225   thorpej 			break;
   1014  1.225   thorpej 		delay(1000);
   1015  1.225   thorpej 	}
   1016  1.225   thorpej 	alpha_mb();
   1017  1.225   thorpej 	if (cpus_running != wait_mask)
   1018  1.225   thorpej 		printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
   1019  1.225   thorpej 		    cpus_running);
   1020  1.225   thorpej #endif /* MULTIPROCESSOR */
   1021  1.225   thorpej 
   1022    1.7       cgd 	/* If rebooting and a dump is requested do it. */
   1023   1.42       cgd #if 0
   1024  1.225   thorpej 	if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
   1025   1.42       cgd #else
   1026  1.225   thorpej 	if (boothowto & RB_DUMP)
   1027   1.42       cgd #endif
   1028    1.1       cgd 		dumpsys();
   1029    1.6       cgd 
   1030   1.12       cgd haltsys:
   1031   1.12       cgd 
   1032    1.6       cgd 	/* run any shutdown hooks */
   1033    1.6       cgd 	doshutdownhooks();
   1034  1.148   thorpej 
   1035  1.308    dyoung 	pmf_system_shutdown(boothowto);
   1036  1.308    dyoung 
   1037    1.7       cgd #ifdef BOOTKEY
   1038   1.46  christos 	printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
   1039  1.117  drochner 	cnpollc(1);	/* for proper keyboard command handling */
   1040    1.7       cgd 	cngetc();
   1041  1.117  drochner 	cnpollc(0);
   1042   1.46  christos 	printf("\n");
   1043    1.7       cgd #endif
   1044    1.7       cgd 
   1045  1.124   thorpej 	/* Finally, powerdown/halt/reboot the system. */
   1046  1.225   thorpej 	if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
   1047  1.124   thorpej 	    platform.powerdown != NULL) {
   1048  1.124   thorpej 		(*platform.powerdown)();
   1049  1.124   thorpej 		printf("WARNING: powerdown failed!\n");
   1050  1.124   thorpej 	}
   1051  1.225   thorpej 	printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
   1052  1.225   thorpej #if defined(MULTIPROCESSOR)
   1053  1.225   thorpej 	if (cpu_id != hwrpb->rpb_primary_cpu_id)
   1054  1.225   thorpej 		cpu_halt();
   1055  1.225   thorpej 	else
   1056  1.225   thorpej #endif
   1057  1.225   thorpej 		prom_halt(boothowto & RB_HALT);
   1058    1.1       cgd 	/*NOTREACHED*/
   1059    1.1       cgd }
   1060    1.1       cgd 
   1061    1.7       cgd /*
   1062    1.7       cgd  * These variables are needed by /sbin/savecore
   1063    1.7       cgd  */
   1064  1.253   tsutsui u_int32_t dumpmag = 0x8fca0101;	/* magic number */
   1065    1.7       cgd int 	dumpsize = 0;		/* pages */
   1066    1.7       cgd long	dumplo = 0; 		/* blocks */
   1067    1.7       cgd 
   1068    1.7       cgd /*
   1069   1.43       cgd  * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
   1070   1.43       cgd  */
   1071   1.43       cgd int
   1072  1.319    cegger cpu_dumpsize(void)
   1073   1.43       cgd {
   1074   1.43       cgd 	int size;
   1075   1.43       cgd 
   1076  1.108       cgd 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
   1077  1.110   thorpej 	    ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
   1078   1.43       cgd 	if (roundup(size, dbtob(1)) != dbtob(1))
   1079   1.43       cgd 		return -1;
   1080   1.43       cgd 
   1081   1.43       cgd 	return (1);
   1082   1.43       cgd }
   1083   1.43       cgd 
   1084   1.43       cgd /*
   1085  1.110   thorpej  * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
   1086  1.110   thorpej  */
   1087  1.110   thorpej u_long
   1088  1.319    cegger cpu_dump_mempagecnt(void)
   1089  1.110   thorpej {
   1090  1.110   thorpej 	u_long i, n;
   1091  1.110   thorpej 
   1092  1.110   thorpej 	n = 0;
   1093  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++)
   1094  1.110   thorpej 		n += atop(mem_clusters[i].size);
   1095  1.110   thorpej 	return (n);
   1096  1.110   thorpej }
   1097  1.110   thorpej 
   1098  1.110   thorpej /*
   1099   1.43       cgd  * cpu_dump: dump machine-dependent kernel core dump headers.
   1100   1.43       cgd  */
   1101   1.43       cgd int
   1102  1.319    cegger cpu_dump(void)
   1103   1.43       cgd {
   1104  1.316       dsl 	int (*dump)(dev_t, daddr_t, void *, size_t);
   1105  1.107       cgd 	char buf[dbtob(1)];
   1106  1.107       cgd 	kcore_seg_t *segp;
   1107  1.107       cgd 	cpu_kcore_hdr_t *cpuhdrp;
   1108  1.107       cgd 	phys_ram_seg_t *memsegp;
   1109  1.258   gehenna 	const struct bdevsw *bdev;
   1110  1.110   thorpej 	int i;
   1111   1.43       cgd 
   1112  1.258   gehenna 	bdev = bdevsw_lookup(dumpdev);
   1113  1.258   gehenna 	if (bdev == NULL)
   1114  1.258   gehenna 		return (ENXIO);
   1115  1.258   gehenna 	dump = bdev->d_dump;
   1116   1.43       cgd 
   1117  1.246   thorpej 	memset(buf, 0, sizeof buf);
   1118   1.43       cgd 	segp = (kcore_seg_t *)buf;
   1119  1.107       cgd 	cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
   1120  1.107       cgd 	memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
   1121  1.107       cgd 	    ALIGN(sizeof(*cpuhdrp))];
   1122   1.43       cgd 
   1123   1.43       cgd 	/*
   1124   1.43       cgd 	 * Generate a segment header.
   1125   1.43       cgd 	 */
   1126   1.43       cgd 	CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
   1127   1.43       cgd 	segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
   1128   1.43       cgd 
   1129   1.43       cgd 	/*
   1130  1.107       cgd 	 * Add the machine-dependent header info.
   1131   1.43       cgd 	 */
   1132  1.140   thorpej 	cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
   1133   1.43       cgd 	cpuhdrp->page_size = PAGE_SIZE;
   1134  1.110   thorpej 	cpuhdrp->nmemsegs = mem_cluster_cnt;
   1135  1.107       cgd 
   1136  1.107       cgd 	/*
   1137  1.107       cgd 	 * Fill in the memory segment descriptors.
   1138  1.107       cgd 	 */
   1139  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1140  1.110   thorpej 		memsegp[i].start = mem_clusters[i].start;
   1141  1.110   thorpej 		memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
   1142  1.110   thorpej 	}
   1143   1.43       cgd 
   1144  1.295  christos 	return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
   1145   1.43       cgd }
   1146   1.43       cgd 
   1147   1.43       cgd /*
   1148   1.68       gwr  * This is called by main to set dumplo and dumpsize.
   1149  1.262   thorpej  * Dumps always skip the first PAGE_SIZE of disk space
   1150    1.7       cgd  * in case there might be a disk label stored there.
   1151    1.7       cgd  * If there is extra space, put dump at the end to
   1152    1.7       cgd  * reduce the chance that swapping trashes it.
   1153    1.7       cgd  */
   1154    1.7       cgd void
   1155  1.319    cegger cpu_dumpconf(void)
   1156    1.7       cgd {
   1157  1.258   gehenna 	const struct bdevsw *bdev;
   1158   1.43       cgd 	int nblks, dumpblks;	/* size of dump area */
   1159    1.7       cgd 
   1160    1.7       cgd 	if (dumpdev == NODEV)
   1161   1.43       cgd 		goto bad;
   1162  1.258   gehenna 	bdev = bdevsw_lookup(dumpdev);
   1163  1.289       mrg 	if (bdev == NULL) {
   1164  1.289       mrg 		dumpdev = NODEV;
   1165  1.289       mrg 		goto bad;
   1166  1.289       mrg 	}
   1167  1.258   gehenna 	if (bdev->d_psize == NULL)
   1168   1.43       cgd 		goto bad;
   1169  1.258   gehenna 	nblks = (*bdev->d_psize)(dumpdev);
   1170    1.7       cgd 	if (nblks <= ctod(1))
   1171   1.43       cgd 		goto bad;
   1172   1.43       cgd 
   1173   1.43       cgd 	dumpblks = cpu_dumpsize();
   1174   1.43       cgd 	if (dumpblks < 0)
   1175   1.43       cgd 		goto bad;
   1176  1.110   thorpej 	dumpblks += ctod(cpu_dump_mempagecnt());
   1177   1.43       cgd 
   1178   1.43       cgd 	/* If dump won't fit (incl. room for possible label), punt. */
   1179   1.43       cgd 	if (dumpblks > (nblks - ctod(1)))
   1180   1.43       cgd 		goto bad;
   1181   1.43       cgd 
   1182   1.43       cgd 	/* Put dump at end of partition */
   1183   1.43       cgd 	dumplo = nblks - dumpblks;
   1184    1.7       cgd 
   1185   1.43       cgd 	/* dumpsize is in page units, and doesn't include headers. */
   1186  1.110   thorpej 	dumpsize = cpu_dump_mempagecnt();
   1187   1.43       cgd 	return;
   1188    1.7       cgd 
   1189   1.43       cgd bad:
   1190   1.43       cgd 	dumpsize = 0;
   1191   1.43       cgd 	return;
   1192    1.7       cgd }
   1193    1.7       cgd 
   1194    1.7       cgd /*
   1195   1.42       cgd  * Dump the kernel's image to the swap partition.
   1196    1.7       cgd  */
   1197  1.262   thorpej #define	BYTES_PER_DUMP	PAGE_SIZE
   1198   1.42       cgd 
   1199    1.7       cgd void
   1200  1.319    cegger dumpsys(void)
   1201    1.7       cgd {
   1202  1.258   gehenna 	const struct bdevsw *bdev;
   1203  1.110   thorpej 	u_long totalbytesleft, bytes, i, n, memcl;
   1204  1.110   thorpej 	u_long maddr;
   1205  1.110   thorpej 	int psize;
   1206   1.42       cgd 	daddr_t blkno;
   1207  1.316       dsl 	int (*dump)(dev_t, daddr_t, void *, size_t);
   1208   1.42       cgd 	int error;
   1209   1.42       cgd 
   1210   1.42       cgd 	/* Save registers. */
   1211   1.42       cgd 	savectx(&dumppcb);
   1212    1.7       cgd 
   1213    1.7       cgd 	if (dumpdev == NODEV)
   1214    1.7       cgd 		return;
   1215  1.258   gehenna 	bdev = bdevsw_lookup(dumpdev);
   1216  1.258   gehenna 	if (bdev == NULL || bdev->d_psize == NULL)
   1217  1.258   gehenna 		return;
   1218   1.42       cgd 
   1219   1.42       cgd 	/*
   1220   1.42       cgd 	 * For dumps during autoconfiguration,
   1221   1.42       cgd 	 * if dump device has already configured...
   1222   1.42       cgd 	 */
   1223   1.42       cgd 	if (dumpsize == 0)
   1224   1.68       gwr 		cpu_dumpconf();
   1225   1.47       cgd 	if (dumplo <= 0) {
   1226  1.314        he 		printf("\ndump to dev %u,%u not possible\n",
   1227  1.313       rtr 		    major(dumpdev), minor(dumpdev));
   1228   1.42       cgd 		return;
   1229   1.43       cgd 	}
   1230  1.314        he 	printf("\ndumping to dev %u,%u offset %ld\n",
   1231  1.313       rtr 	    major(dumpdev), minor(dumpdev), dumplo);
   1232    1.7       cgd 
   1233  1.258   gehenna 	psize = (*bdev->d_psize)(dumpdev);
   1234   1.46  christos 	printf("dump ");
   1235   1.42       cgd 	if (psize == -1) {
   1236   1.46  christos 		printf("area unavailable\n");
   1237   1.42       cgd 		return;
   1238   1.42       cgd 	}
   1239   1.42       cgd 
   1240   1.42       cgd 	/* XXX should purge all outstanding keystrokes. */
   1241   1.42       cgd 
   1242   1.43       cgd 	if ((error = cpu_dump()) != 0)
   1243   1.43       cgd 		goto err;
   1244   1.43       cgd 
   1245  1.110   thorpej 	totalbytesleft = ptoa(cpu_dump_mempagecnt());
   1246   1.43       cgd 	blkno = dumplo + cpu_dumpsize();
   1247  1.258   gehenna 	dump = bdev->d_dump;
   1248   1.42       cgd 	error = 0;
   1249   1.42       cgd 
   1250  1.110   thorpej 	for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
   1251  1.110   thorpej 		maddr = mem_clusters[memcl].start;
   1252  1.110   thorpej 		bytes = mem_clusters[memcl].size & ~PAGE_MASK;
   1253  1.110   thorpej 
   1254  1.110   thorpej 		for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
   1255  1.110   thorpej 
   1256  1.110   thorpej 			/* Print out how many MBs we to go. */
   1257  1.110   thorpej 			if ((totalbytesleft % (1024*1024)) == 0)
   1258  1.311        ad 				printf_nolog("%ld ",
   1259  1.311        ad 				    totalbytesleft / (1024 * 1024));
   1260  1.110   thorpej 
   1261  1.110   thorpej 			/* Limit size for next transfer. */
   1262  1.110   thorpej 			n = bytes - i;
   1263  1.110   thorpej 			if (n > BYTES_PER_DUMP)
   1264  1.110   thorpej 				n =  BYTES_PER_DUMP;
   1265  1.110   thorpej 
   1266  1.110   thorpej 			error = (*dump)(dumpdev, blkno,
   1267  1.295  christos 			    (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
   1268  1.110   thorpej 			if (error)
   1269  1.110   thorpej 				goto err;
   1270  1.110   thorpej 			maddr += n;
   1271  1.110   thorpej 			blkno += btodb(n);			/* XXX? */
   1272   1.42       cgd 
   1273  1.110   thorpej 			/* XXX should look for keystrokes, to cancel. */
   1274  1.110   thorpej 		}
   1275   1.42       cgd 	}
   1276   1.42       cgd 
   1277   1.43       cgd err:
   1278   1.42       cgd 	switch (error) {
   1279    1.7       cgd 
   1280    1.7       cgd 	case ENXIO:
   1281   1.46  christos 		printf("device bad\n");
   1282    1.7       cgd 		break;
   1283    1.7       cgd 
   1284    1.7       cgd 	case EFAULT:
   1285   1.46  christos 		printf("device not ready\n");
   1286    1.7       cgd 		break;
   1287    1.7       cgd 
   1288    1.7       cgd 	case EINVAL:
   1289   1.46  christos 		printf("area improper\n");
   1290    1.7       cgd 		break;
   1291    1.7       cgd 
   1292    1.7       cgd 	case EIO:
   1293   1.46  christos 		printf("i/o error\n");
   1294    1.7       cgd 		break;
   1295    1.7       cgd 
   1296    1.7       cgd 	case EINTR:
   1297   1.46  christos 		printf("aborted from console\n");
   1298    1.7       cgd 		break;
   1299    1.7       cgd 
   1300   1.42       cgd 	case 0:
   1301   1.46  christos 		printf("succeeded\n");
   1302   1.42       cgd 		break;
   1303   1.42       cgd 
   1304    1.7       cgd 	default:
   1305   1.46  christos 		printf("error %d\n", error);
   1306    1.7       cgd 		break;
   1307    1.7       cgd 	}
   1308   1.46  christos 	printf("\n\n");
   1309    1.7       cgd 	delay(1000);
   1310    1.7       cgd }
   1311    1.7       cgd 
   1312    1.1       cgd void
   1313  1.317       dsl frametoreg(const struct trapframe *framep, struct reg *regp)
   1314    1.1       cgd {
   1315    1.1       cgd 
   1316    1.1       cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
   1317    1.1       cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
   1318    1.1       cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
   1319    1.1       cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
   1320    1.1       cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
   1321    1.1       cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
   1322    1.1       cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
   1323    1.1       cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
   1324    1.1       cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
   1325    1.1       cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
   1326    1.1       cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
   1327    1.1       cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
   1328    1.1       cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
   1329    1.1       cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
   1330    1.1       cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
   1331    1.1       cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
   1332   1.34       cgd 	regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
   1333   1.34       cgd 	regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
   1334   1.34       cgd 	regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
   1335    1.1       cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
   1336    1.1       cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
   1337    1.1       cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
   1338    1.1       cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
   1339    1.1       cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
   1340    1.1       cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
   1341    1.1       cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
   1342    1.1       cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
   1343    1.1       cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
   1344    1.1       cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
   1345   1.34       cgd 	regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
   1346   1.35       cgd 	/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
   1347    1.1       cgd 	regp->r_regs[R_ZERO] = 0;
   1348    1.1       cgd }
   1349    1.1       cgd 
   1350    1.1       cgd void
   1351  1.317       dsl regtoframe(const struct reg *regp, struct trapframe *framep)
   1352    1.1       cgd {
   1353    1.1       cgd 
   1354    1.1       cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
   1355    1.1       cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
   1356    1.1       cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
   1357    1.1       cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
   1358    1.1       cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
   1359    1.1       cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
   1360    1.1       cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
   1361    1.1       cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
   1362    1.1       cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
   1363    1.1       cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
   1364    1.1       cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
   1365    1.1       cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
   1366    1.1       cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
   1367    1.1       cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
   1368    1.1       cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
   1369    1.1       cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
   1370   1.34       cgd 	framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
   1371   1.34       cgd 	framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
   1372   1.34       cgd 	framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
   1373    1.1       cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
   1374    1.1       cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
   1375    1.1       cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
   1376    1.1       cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
   1377    1.1       cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
   1378    1.1       cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
   1379    1.1       cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
   1380    1.1       cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
   1381    1.1       cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
   1382    1.1       cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
   1383   1.34       cgd 	framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
   1384   1.35       cgd 	/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
   1385    1.1       cgd 	/* ??? = regp->r_regs[R_ZERO]; */
   1386    1.1       cgd }
   1387    1.1       cgd 
   1388    1.1       cgd void
   1389  1.317       dsl printregs(struct reg *regp)
   1390    1.1       cgd {
   1391    1.1       cgd 	int i;
   1392    1.1       cgd 
   1393    1.1       cgd 	for (i = 0; i < 32; i++)
   1394   1.46  christos 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
   1395    1.1       cgd 		   i & 1 ? "\n" : "\t");
   1396    1.1       cgd }
   1397    1.1       cgd 
   1398    1.1       cgd void
   1399  1.317       dsl regdump(struct trapframe *framep)
   1400    1.1       cgd {
   1401    1.1       cgd 	struct reg reg;
   1402    1.1       cgd 
   1403    1.1       cgd 	frametoreg(framep, &reg);
   1404   1.35       cgd 	reg.r_regs[R_SP] = alpha_pal_rdusp();
   1405   1.35       cgd 
   1406   1.46  christos 	printf("REGISTERS:\n");
   1407    1.1       cgd 	printregs(&reg);
   1408    1.1       cgd }
   1409    1.1       cgd 
   1410    1.1       cgd 
   1411  1.274       skd 
   1412  1.274       skd void *
   1413  1.274       skd getframe(const struct lwp *l, int sig, int *onstack)
   1414  1.274       skd {
   1415  1.295  christos 	void *frame;
   1416  1.274       skd 
   1417  1.274       skd 	/* Do we need to jump onto the signal stack? */
   1418  1.274       skd 	*onstack =
   1419  1.293        ad 	    (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
   1420  1.293        ad 	    (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
   1421  1.274       skd 
   1422  1.274       skd 	if (*onstack)
   1423  1.296      yamt 		frame = (void *)((char *)l->l_sigstk.ss_sp +
   1424  1.293        ad 					l->l_sigstk.ss_size);
   1425  1.274       skd 	else
   1426  1.274       skd 		frame = (void *)(alpha_pal_rdusp());
   1427  1.274       skd 	return (frame);
   1428  1.274       skd }
   1429  1.274       skd 
   1430  1.274       skd void
   1431  1.274       skd buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
   1432  1.274       skd {
   1433  1.274       skd 	struct trapframe *tf = l->l_md.md_tf;
   1434  1.274       skd 
   1435  1.274       skd 	tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
   1436  1.274       skd 	tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
   1437  1.274       skd 	tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
   1438  1.274       skd 	alpha_pal_wrusp((unsigned long)fp);
   1439  1.274       skd }
   1440  1.274       skd 
   1441  1.274       skd 
   1442    1.1       cgd /*
   1443  1.274       skd  * Send an interrupt to process, new style
   1444    1.1       cgd  */
   1445    1.1       cgd void
   1446  1.274       skd sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
   1447    1.1       cgd {
   1448  1.261   thorpej 	struct lwp *l = curlwp;
   1449  1.261   thorpej 	struct proc *p = l->l_proc;
   1450  1.256   thorpej 	struct sigacts *ps = p->p_sigacts;
   1451  1.293        ad 	int onstack, sig = ksi->ksi_signo, error;
   1452  1.274       skd 	struct sigframe_siginfo *fp, frame;
   1453  1.274       skd 	struct trapframe *tf;
   1454  1.274       skd 	sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
   1455    1.1       cgd 
   1456  1.274       skd 	fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
   1457  1.274       skd 	tf = l->l_md.md_tf;
   1458  1.141   thorpej 
   1459  1.141   thorpej 	/* Allocate space for the signal handler context. */
   1460  1.274       skd 	fp--;
   1461  1.141   thorpej 
   1462    1.1       cgd #ifdef DEBUG
   1463    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1464  1.274       skd 		printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
   1465  1.276   nathanw 		    sig, &onstack, fp);
   1466  1.125      ross #endif
   1467    1.1       cgd 
   1468  1.141   thorpej 	/* Build stack frame for signal trampoline. */
   1469    1.1       cgd 
   1470  1.275     enami 	frame.sf_si._info = ksi->ksi_info;
   1471  1.274       skd 	frame.sf_uc.uc_flags = _UC_SIGMASK;
   1472  1.274       skd 	frame.sf_uc.uc_sigmask = *mask;
   1473  1.299     pooka 	frame.sf_uc.uc_link = l->l_ctxlink;
   1474  1.274       skd 	memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
   1475  1.293        ad 	sendsig_reset(l, sig);
   1476  1.304        ad 	mutex_exit(p->p_lock);
   1477  1.274       skd 	cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
   1478  1.293        ad 	error = copyout(&frame, fp, sizeof(frame));
   1479  1.304        ad 	mutex_enter(p->p_lock);
   1480    1.1       cgd 
   1481  1.293        ad 	if (error != 0) {
   1482  1.141   thorpej 		/*
   1483  1.141   thorpej 		 * Process has trashed its stack; give it an illegal
   1484  1.141   thorpej 		 * instruction to halt it in its tracks.
   1485  1.141   thorpej 		 */
   1486  1.141   thorpej #ifdef DEBUG
   1487  1.141   thorpej 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1488  1.274       skd 			printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
   1489  1.141   thorpej 			    p->p_pid, sig);
   1490  1.141   thorpej #endif
   1491  1.261   thorpej 		sigexit(l, SIGILL);
   1492  1.141   thorpej 		/* NOTREACHED */
   1493  1.141   thorpej 	}
   1494  1.274       skd 
   1495    1.1       cgd #ifdef DEBUG
   1496    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1497  1.276   nathanw 		printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
   1498  1.276   nathanw 		       p->p_pid, sig, fp, ksi->ksi_code);
   1499    1.1       cgd #endif
   1500    1.1       cgd 
   1501  1.256   thorpej 	/*
   1502  1.256   thorpej 	 * Set up the registers to directly invoke the signal handler.  The
   1503  1.256   thorpej 	 * signal trampoline is then used to return from the signal.  Note
   1504  1.256   thorpej 	 * the trampoline version numbers are coordinated with machine-
   1505  1.256   thorpej 	 * dependent code in libc.
   1506  1.256   thorpej 	 */
   1507  1.274       skd 
   1508  1.274       skd 	tf->tf_regs[FRAME_A0] = sig;
   1509  1.274       skd 	tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
   1510  1.274       skd 	tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
   1511  1.256   thorpej 
   1512  1.274       skd 	buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
   1513  1.142   mycroft 
   1514  1.142   mycroft 	/* Remember that we're now on the signal stack. */
   1515  1.142   mycroft 	if (onstack)
   1516  1.293        ad 		l->l_sigstk.ss_flags |= SS_ONSTACK;
   1517    1.1       cgd 
   1518    1.1       cgd #ifdef DEBUG
   1519    1.1       cgd 	if (sigdebug & SDB_FOLLOW)
   1520  1.274       skd 		printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
   1521  1.276   nathanw 		    tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
   1522    1.1       cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1523  1.274       skd 		printf("sendsig_siginfo(%d): sig %d returns\n",
   1524    1.1       cgd 		    p->p_pid, sig);
   1525    1.1       cgd #endif
   1526    1.1       cgd }
   1527    1.1       cgd 
   1528  1.261   thorpej 
   1529  1.307  wrstuden void
   1530  1.307  wrstuden cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
   1531  1.307  wrstuden {
   1532  1.307  wrstuden        	struct trapframe *tf;
   1533  1.307  wrstuden 
   1534  1.307  wrstuden 	tf = l->l_md.md_tf;
   1535  1.307  wrstuden 
   1536  1.307  wrstuden 	tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
   1537  1.307  wrstuden 	tf->tf_regs[FRAME_RA] = 0;
   1538  1.307  wrstuden 	tf->tf_regs[FRAME_A0] = type;
   1539  1.307  wrstuden 	tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
   1540  1.307  wrstuden 	tf->tf_regs[FRAME_A2] = nevents;
   1541  1.307  wrstuden 	tf->tf_regs[FRAME_A3] = ninterrupted;
   1542  1.307  wrstuden 	tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
   1543  1.307  wrstuden 	tf->tf_regs[FRAME_T12] = (u_int64_t)upcall;  /* t12 is pv */
   1544  1.307  wrstuden 	alpha_pal_wrusp((unsigned long)sp);
   1545  1.307  wrstuden }
   1546  1.307  wrstuden 
   1547    1.1       cgd /*
   1548    1.1       cgd  * machine dependent system variables.
   1549    1.1       cgd  */
   1550  1.278    atatat SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
   1551    1.1       cgd {
   1552  1.241      ross 
   1553  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1554  1.282    atatat 		       CTLFLAG_PERMANENT,
   1555  1.278    atatat 		       CTLTYPE_NODE, "machdep", NULL,
   1556  1.278    atatat 		       NULL, 0, NULL, 0,
   1557  1.278    atatat 		       CTL_MACHDEP, CTL_EOL);
   1558  1.278    atatat 
   1559  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1560  1.282    atatat 		       CTLFLAG_PERMANENT,
   1561  1.278    atatat 		       CTLTYPE_STRUCT, "console_device", NULL,
   1562  1.278    atatat 		       sysctl_consdev, 0, NULL, sizeof(dev_t),
   1563  1.278    atatat 		       CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
   1564  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1565  1.282    atatat 		       CTLFLAG_PERMANENT,
   1566  1.278    atatat 		       CTLTYPE_STRING, "root_device", NULL,
   1567  1.278    atatat 		       sysctl_root_device, 0, NULL, 0,
   1568  1.278    atatat 		       CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
   1569  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1570  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1571  1.278    atatat 		       CTLTYPE_INT, "unaligned_print", NULL,
   1572  1.278    atatat 		       NULL, 0, &alpha_unaligned_print, 0,
   1573  1.278    atatat 		       CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
   1574  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1575  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1576  1.278    atatat 		       CTLTYPE_INT, "unaligned_fix", NULL,
   1577  1.278    atatat 		       NULL, 0, &alpha_unaligned_fix, 0,
   1578  1.278    atatat 		       CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
   1579  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1580  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1581  1.278    atatat 		       CTLTYPE_INT, "unaligned_sigbus", NULL,
   1582  1.278    atatat 		       NULL, 0, &alpha_unaligned_sigbus, 0,
   1583  1.278    atatat 		       CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
   1584  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1585  1.282    atatat 		       CTLFLAG_PERMANENT,
   1586  1.278    atatat 		       CTLTYPE_STRING, "booted_kernel", NULL,
   1587  1.278    atatat 		       NULL, 0, bootinfo.booted_kernel, 0,
   1588  1.278    atatat 		       CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
   1589  1.282    atatat 	sysctl_createv(clog, 0, NULL, NULL,
   1590  1.282    atatat 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1591  1.278    atatat 		       CTLTYPE_INT, "fp_sync_complete", NULL,
   1592  1.278    atatat 		       NULL, 0, &alpha_fp_sync_complete, 0,
   1593  1.278    atatat 		       CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
   1594    1.1       cgd }
   1595    1.1       cgd 
   1596    1.1       cgd /*
   1597    1.1       cgd  * Set registers on exec.
   1598    1.1       cgd  */
   1599    1.1       cgd void
   1600  1.325      matt setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
   1601    1.1       cgd {
   1602  1.261   thorpej 	struct trapframe *tfp = l->l_md.md_tf;
   1603  1.322     rmind 	struct pcb *pcb;
   1604   1.56       cgd #ifdef DEBUG
   1605    1.1       cgd 	int i;
   1606   1.56       cgd #endif
   1607   1.43       cgd 
   1608   1.43       cgd #ifdef DEBUG
   1609   1.43       cgd 	/*
   1610   1.43       cgd 	 * Crash and dump, if the user requested it.
   1611   1.43       cgd 	 */
   1612   1.43       cgd 	if (boothowto & RB_DUMP)
   1613   1.43       cgd 		panic("crash requested by boot flags");
   1614   1.43       cgd #endif
   1615    1.1       cgd 
   1616    1.1       cgd #ifdef DEBUG
   1617   1.34       cgd 	for (i = 0; i < FRAME_SIZE; i++)
   1618    1.1       cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1619    1.1       cgd #else
   1620  1.246   thorpej 	memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
   1621    1.1       cgd #endif
   1622  1.322     rmind 	pcb = lwp_getpcb(l);
   1623  1.322     rmind 	memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
   1624   1.35       cgd 	alpha_pal_wrusp(stack);
   1625   1.34       cgd 	tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
   1626   1.34       cgd 	tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
   1627   1.41       cgd 
   1628   1.62       cgd 	tfp->tf_regs[FRAME_A0] = stack;			/* a0 = sp */
   1629   1.62       cgd 	tfp->tf_regs[FRAME_A1] = 0;			/* a1 = rtld cleanup */
   1630   1.62       cgd 	tfp->tf_regs[FRAME_A2] = 0;			/* a2 = rtld object */
   1631  1.330     joerg 	tfp->tf_regs[FRAME_A3] = l->l_proc->p_psstrp;	/* a3 = ps_strings */
   1632   1.41       cgd 	tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC];	/* a.k.a. PV */
   1633    1.1       cgd 
   1634  1.261   thorpej 	l->l_md.md_flags &= ~MDP_FPUSED;
   1635  1.261   thorpej 	if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
   1636  1.261   thorpej 		l->l_md.md_flags &= ~MDP_FP_C;
   1637  1.322     rmind 		pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
   1638  1.241      ross 	}
   1639  1.322     rmind 	if (pcb->pcb_fpcpu != NULL)
   1640  1.261   thorpej 		fpusave_proc(l, 0);
   1641  1.219   thorpej }
   1642  1.219   thorpej 
   1643  1.219   thorpej /*
   1644  1.219   thorpej  * Release the FPU.
   1645  1.219   thorpej  */
   1646  1.219   thorpej void
   1647  1.225   thorpej fpusave_cpu(struct cpu_info *ci, int save)
   1648  1.219   thorpej {
   1649  1.261   thorpej 	struct lwp *l;
   1650  1.322     rmind 	struct pcb *pcb;
   1651  1.225   thorpej #if defined(MULTIPROCESSOR)
   1652  1.219   thorpej 	int s;
   1653  1.225   thorpej #endif
   1654  1.219   thorpej 
   1655  1.225   thorpej 	KDASSERT(ci == curcpu());
   1656  1.225   thorpej 
   1657  1.235   thorpej #if defined(MULTIPROCESSOR)
   1658  1.287   thorpej 	s = splhigh();		/* block IPIs for the duration */
   1659  1.303        ad 	atomic_or_ulong(&ci->ci_flags, CPUF_FPUSAVE);
   1660  1.235   thorpej #endif
   1661  1.235   thorpej 
   1662  1.261   thorpej 	l = ci->ci_fpcurlwp;
   1663  1.261   thorpej 	if (l == NULL)
   1664  1.235   thorpej 		goto out;
   1665  1.219   thorpej 
   1666  1.322     rmind 	pcb = lwp_getpcb(l);
   1667  1.219   thorpej 	if (save) {
   1668  1.219   thorpej 		alpha_pal_wrfen(1);
   1669  1.322     rmind 		savefpstate(&pcb->pcb_fp);
   1670  1.225   thorpej 	}
   1671  1.225   thorpej 
   1672  1.225   thorpej 	alpha_pal_wrfen(0);
   1673  1.225   thorpej 
   1674  1.322     rmind 	FPCPU_LOCK(pcb);
   1675  1.235   thorpej 
   1676  1.322     rmind 	pcb->pcb_fpcpu = NULL;
   1677  1.261   thorpej 	ci->ci_fpcurlwp = NULL;
   1678  1.235   thorpej 
   1679  1.322     rmind 	FPCPU_UNLOCK(pcb);
   1680  1.235   thorpej 
   1681  1.235   thorpej  out:
   1682  1.219   thorpej #if defined(MULTIPROCESSOR)
   1683  1.303        ad 	atomic_and_ulong(&ci->ci_flags, ~CPUF_FPUSAVE);
   1684  1.287   thorpej 	splx(s);
   1685  1.219   thorpej #endif
   1686  1.235   thorpej 	return;
   1687  1.219   thorpej }
   1688  1.219   thorpej 
   1689  1.219   thorpej /*
   1690  1.219   thorpej  * Synchronize FP state for this process.
   1691  1.219   thorpej  */
   1692  1.219   thorpej void
   1693  1.261   thorpej fpusave_proc(struct lwp *l, int save)
   1694  1.219   thorpej {
   1695  1.225   thorpej 	struct cpu_info *ci = curcpu();
   1696  1.225   thorpej 	struct cpu_info *oci;
   1697  1.322     rmind 	struct pcb *pcb;
   1698  1.235   thorpej #if defined(MULTIPROCESSOR)
   1699  1.235   thorpej 	u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
   1700  1.236   thorpej 	int s, spincount;
   1701  1.235   thorpej #endif
   1702  1.219   thorpej 
   1703  1.322     rmind 	pcb = lwp_getpcb(l);
   1704  1.322     rmind 	KDASSERT(pcb != NULL);
   1705  1.225   thorpej 
   1706  1.287   thorpej #if defined(MULTIPROCESSOR)
   1707  1.287   thorpej 	s = splhigh();		/* block IPIs for the duration */
   1708  1.287   thorpej #endif
   1709  1.322     rmind 	FPCPU_LOCK(pcb);
   1710  1.235   thorpej 
   1711  1.322     rmind 	oci = pcb->pcb_fpcpu;
   1712  1.235   thorpej 	if (oci == NULL) {
   1713  1.322     rmind 		FPCPU_UNLOCK(pcb);
   1714  1.287   thorpej #if defined(MULTIPROCESSOR)
   1715  1.287   thorpej 		splx(s);
   1716  1.287   thorpej #endif
   1717  1.219   thorpej 		return;
   1718  1.235   thorpej 	}
   1719  1.219   thorpej 
   1720  1.219   thorpej #if defined(MULTIPROCESSOR)
   1721  1.225   thorpej 	if (oci == ci) {
   1722  1.261   thorpej 		KASSERT(ci->ci_fpcurlwp == l);
   1723  1.322     rmind 		FPCPU_UNLOCK(pcb);
   1724  1.287   thorpej 		splx(s);
   1725  1.225   thorpej 		fpusave_cpu(ci, save);
   1726  1.235   thorpej 		return;
   1727  1.235   thorpej 	}
   1728  1.235   thorpej 
   1729  1.261   thorpej 	KASSERT(oci->ci_fpcurlwp == l);
   1730  1.235   thorpej 	alpha_send_ipi(oci->ci_cpuid, ipi);
   1731  1.322     rmind 	FPCPU_UNLOCK(pcb);
   1732  1.235   thorpej 
   1733  1.235   thorpej 	spincount = 0;
   1734  1.322     rmind 	while (pcb->pcb_fpcpu != NULL) {
   1735  1.235   thorpej 		spincount++;
   1736  1.235   thorpej 		delay(1000);	/* XXX */
   1737  1.235   thorpej 		if (spincount > 10000)
   1738  1.235   thorpej 			panic("fpsave ipi didn't");
   1739  1.219   thorpej 	}
   1740  1.219   thorpej #else
   1741  1.261   thorpej 	KASSERT(ci->ci_fpcurlwp == l);
   1742  1.322     rmind 	FPCPU_UNLOCK(pcb);
   1743  1.225   thorpej 	fpusave_cpu(ci, save);
   1744  1.219   thorpej #endif /* MULTIPROCESSOR */
   1745   1.15       cgd }
   1746   1.15       cgd 
   1747   1.15       cgd /*
   1748   1.15       cgd  * Wait "n" microseconds.
   1749   1.15       cgd  */
   1750   1.32       cgd void
   1751  1.317       dsl delay(unsigned long n)
   1752   1.15       cgd {
   1753  1.216   thorpej 	unsigned long pcc0, pcc1, curcycle, cycles, usec;
   1754   1.15       cgd 
   1755  1.216   thorpej 	if (n == 0)
   1756  1.216   thorpej 		return;
   1757  1.216   thorpej 
   1758  1.216   thorpej 	pcc0 = alpha_rpcc() & 0xffffffffUL;
   1759  1.216   thorpej 	cycles = 0;
   1760  1.216   thorpej 	usec = 0;
   1761  1.216   thorpej 
   1762  1.216   thorpej 	while (usec <= n) {
   1763  1.216   thorpej 		/*
   1764  1.216   thorpej 		 * Get the next CPU cycle count- assumes that we cannot
   1765  1.216   thorpej 		 * have had more than one 32 bit overflow.
   1766  1.216   thorpej 		 */
   1767  1.216   thorpej 		pcc1 = alpha_rpcc() & 0xffffffffUL;
   1768  1.216   thorpej 		if (pcc1 < pcc0)
   1769  1.216   thorpej 			curcycle = (pcc1 + 0x100000000UL) - pcc0;
   1770  1.216   thorpej 		else
   1771  1.216   thorpej 			curcycle = pcc1 - pcc0;
   1772  1.186   thorpej 
   1773  1.216   thorpej 		/*
   1774  1.216   thorpej 		 * We now have the number of processor cycles since we
   1775  1.216   thorpej 		 * last checked. Add the current cycle count to the
   1776  1.216   thorpej 		 * running total. If it's over cycles_per_usec, increment
   1777  1.216   thorpej 		 * the usec counter.
   1778  1.216   thorpej 		 */
   1779  1.216   thorpej 		cycles += curcycle;
   1780  1.216   thorpej 		while (cycles > cycles_per_usec) {
   1781  1.216   thorpej 			usec++;
   1782  1.216   thorpej 			cycles -= cycles_per_usec;
   1783  1.216   thorpej 		}
   1784  1.216   thorpej 		pcc0 = pcc1;
   1785  1.216   thorpej 	}
   1786    1.1       cgd }
   1787  1.225   thorpej 
   1788  1.250  jdolecek #ifdef EXEC_ECOFF
   1789    1.1       cgd void
   1790  1.325      matt cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
   1791    1.1       cgd {
   1792   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1793    1.1       cgd 
   1794  1.261   thorpej 	l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
   1795    1.1       cgd }
   1796    1.1       cgd 
   1797    1.1       cgd /*
   1798    1.1       cgd  * cpu_exec_ecoff_hook():
   1799    1.1       cgd  *	cpu-dependent ECOFF format hook for execve().
   1800    1.1       cgd  *
   1801    1.1       cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1802    1.1       cgd  *
   1803    1.1       cgd  */
   1804    1.1       cgd int
   1805  1.317       dsl cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
   1806    1.1       cgd {
   1807   1.19       cgd 	struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
   1808  1.171       cgd 	int error;
   1809    1.1       cgd 
   1810  1.224  jdolecek 	if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
   1811  1.171       cgd 		error = 0;
   1812  1.224  jdolecek 	else
   1813  1.224  jdolecek 		error = ENOEXEC;
   1814    1.1       cgd 
   1815  1.171       cgd 	return (error);
   1816    1.1       cgd }
   1817  1.250  jdolecek #endif /* EXEC_ECOFF */
   1818  1.110   thorpej 
   1819  1.110   thorpej int
   1820  1.317       dsl alpha_pa_access(u_long pa)
   1821  1.110   thorpej {
   1822  1.110   thorpej 	int i;
   1823  1.110   thorpej 
   1824  1.110   thorpej 	for (i = 0; i < mem_cluster_cnt; i++) {
   1825  1.110   thorpej 		if (pa < mem_clusters[i].start)
   1826  1.110   thorpej 			continue;
   1827  1.110   thorpej 		if ((pa - mem_clusters[i].start) >=
   1828  1.110   thorpej 		    (mem_clusters[i].size & ~PAGE_MASK))
   1829  1.110   thorpej 			continue;
   1830  1.110   thorpej 		return (mem_clusters[i].size & PAGE_MASK);	/* prot */
   1831  1.110   thorpej 	}
   1832  1.197   thorpej 
   1833  1.197   thorpej 	/*
   1834  1.197   thorpej 	 * Address is not a memory address.  If we're secure, disallow
   1835  1.197   thorpej 	 * access.  Otherwise, grant read/write.
   1836  1.197   thorpej 	 */
   1837  1.291      elad 	if (kauth_authorize_machdep(kauth_cred_get(),
   1838  1.291      elad 	    KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
   1839  1.197   thorpej 		return (PROT_NONE);
   1840  1.197   thorpej 	else
   1841  1.197   thorpej 		return (PROT_READ | PROT_WRITE);
   1842  1.110   thorpej }
   1843   1.50       cgd 
   1844   1.50       cgd /* XXX XXX BEGIN XXX XXX */
   1845  1.140   thorpej paddr_t alpha_XXX_dmamap_or;					/* XXX */
   1846   1.50       cgd 								/* XXX */
   1847  1.140   thorpej paddr_t								/* XXX */
   1848   1.50       cgd alpha_XXX_dmamap(v)						/* XXX */
   1849  1.140   thorpej 	vaddr_t v;						/* XXX */
   1850   1.50       cgd {								/* XXX */
   1851   1.50       cgd 								/* XXX */
   1852   1.51       cgd 	return (vtophys(v) | alpha_XXX_dmamap_or);		/* XXX */
   1853   1.50       cgd }								/* XXX */
   1854   1.50       cgd /* XXX XXX END XXX XXX */
   1855  1.177      ross 
   1856  1.177      ross char *
   1857  1.317       dsl dot_conv(unsigned long x)
   1858  1.177      ross {
   1859  1.177      ross 	int i;
   1860  1.177      ross 	char *xc;
   1861  1.177      ross 	static int next;
   1862  1.177      ross 	static char space[2][20];
   1863  1.177      ross 
   1864  1.177      ross 	xc = space[next ^= 1] + sizeof space[0];
   1865  1.177      ross 	*--xc = '\0';
   1866  1.177      ross 	for (i = 0;; ++i) {
   1867  1.177      ross 		if (i && (i & 3) == 0)
   1868  1.177      ross 			*--xc = '.';
   1869  1.285  christos 		*--xc = hexdigits[x & 0xf];
   1870  1.177      ross 		x >>= 4;
   1871  1.177      ross 		if (x == 0)
   1872  1.177      ross 			break;
   1873  1.177      ross 	}
   1874  1.177      ross 	return xc;
   1875  1.261   thorpej }
   1876  1.261   thorpej 
   1877  1.261   thorpej void
   1878  1.317       dsl cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
   1879  1.261   thorpej {
   1880  1.261   thorpej 	struct trapframe *frame = l->l_md.md_tf;
   1881  1.322     rmind 	struct pcb *pcb = lwp_getpcb(l);
   1882  1.261   thorpej 	__greg_t *gr = mcp->__gregs;
   1883  1.264   nathanw 	__greg_t ras_pc;
   1884  1.261   thorpej 
   1885  1.261   thorpej 	/* Save register context. */
   1886  1.261   thorpej 	frametoreg(frame, (struct reg *)gr);
   1887  1.261   thorpej 	/* XXX if there's a better, general way to get the USP of
   1888  1.261   thorpej 	 * an LWP that might or might not be curlwp, I'd like to know
   1889  1.261   thorpej 	 * about it.
   1890  1.261   thorpej 	 */
   1891  1.261   thorpej 	if (l == curlwp) {
   1892  1.261   thorpej 		gr[_REG_SP] = alpha_pal_rdusp();
   1893  1.261   thorpej 		gr[_REG_UNIQUE] = alpha_pal_rdunique();
   1894  1.261   thorpej 	} else {
   1895  1.322     rmind 		gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
   1896  1.322     rmind 		gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
   1897  1.261   thorpej 	}
   1898  1.261   thorpej 	gr[_REG_PC] = frame->tf_regs[FRAME_PC];
   1899  1.261   thorpej 	gr[_REG_PS] = frame->tf_regs[FRAME_PS];
   1900  1.264   nathanw 
   1901  1.264   nathanw 	if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
   1902  1.295  christos 	    (void *) gr[_REG_PC])) != -1)
   1903  1.264   nathanw 		gr[_REG_PC] = ras_pc;
   1904  1.264   nathanw 
   1905  1.261   thorpej 	*flags |= _UC_CPU | _UC_UNIQUE;
   1906  1.261   thorpej 
   1907  1.261   thorpej 	/* Save floating point register context, if any, and copy it. */
   1908  1.265   nathanw 	if (l->l_md.md_flags & MDP_FPUSED) {
   1909  1.261   thorpej 		fpusave_proc(l, 1);
   1910  1.322     rmind 		(void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
   1911  1.261   thorpej 		    sizeof (mcp->__fpregs));
   1912  1.261   thorpej 		mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
   1913  1.261   thorpej 		*flags |= _UC_FPU;
   1914  1.261   thorpej 	}
   1915  1.261   thorpej }
   1916  1.261   thorpej 
   1917  1.261   thorpej 
   1918  1.261   thorpej int
   1919  1.317       dsl cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
   1920  1.261   thorpej {
   1921  1.261   thorpej 	struct trapframe *frame = l->l_md.md_tf;
   1922  1.322     rmind 	struct pcb *pcb = lwp_getpcb(l);
   1923  1.261   thorpej 	const __greg_t *gr = mcp->__gregs;
   1924  1.261   thorpej 
   1925  1.261   thorpej 	/* Restore register context, if any. */
   1926  1.261   thorpej 	if (flags & _UC_CPU) {
   1927  1.261   thorpej 		/* Check for security violations first. */
   1928  1.261   thorpej 		if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
   1929  1.261   thorpej 		    (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
   1930  1.261   thorpej 			return (EINVAL);
   1931  1.261   thorpej 
   1932  1.286       jdc 		regtoframe((const struct reg *)gr, l->l_md.md_tf);
   1933  1.261   thorpej 		if (l == curlwp)
   1934  1.261   thorpej 			alpha_pal_wrusp(gr[_REG_SP]);
   1935  1.261   thorpej 		else
   1936  1.322     rmind 			pcb->pcb_hw.apcb_usp = gr[_REG_SP];
   1937  1.261   thorpej 		frame->tf_regs[FRAME_PC] = gr[_REG_PC];
   1938  1.261   thorpej 		frame->tf_regs[FRAME_PS] = gr[_REG_PS];
   1939  1.261   thorpej 	}
   1940  1.329     joerg 	if (flags & _UC_UNIQUE)
   1941  1.329     joerg 		lwp_setprivate(l, (void *)(uintptr_t)gr[_REG_UNIQUE]);
   1942  1.261   thorpej 	/* Restore floating point register context, if any. */
   1943  1.261   thorpej 	if (flags & _UC_FPU) {
   1944  1.261   thorpej 		/* If we have an FP register context, get rid of it. */
   1945  1.322     rmind 		if (pcb->pcb_fpcpu != NULL)
   1946  1.261   thorpej 			fpusave_proc(l, 0);
   1947  1.322     rmind 		(void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
   1948  1.322     rmind 		    sizeof (pcb->pcb_fp));
   1949  1.261   thorpej 		l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
   1950  1.271   nathanw 		l->l_md.md_flags |= MDP_FPUSED;
   1951  1.261   thorpej 	}
   1952  1.261   thorpej 
   1953  1.261   thorpej 	return (0);
   1954  1.138      ross }
   1955  1.297      yamt 
   1956  1.297      yamt /*
   1957  1.297      yamt  * Preempt the current process if in interrupt from user mode,
   1958  1.297      yamt  * or after the current trap/syscall if in system mode.
   1959  1.297      yamt  */
   1960  1.297      yamt void
   1961  1.297      yamt cpu_need_resched(struct cpu_info *ci, int flags)
   1962  1.297      yamt {
   1963  1.297      yamt #if defined(MULTIPROCESSOR)
   1964  1.297      yamt 	bool immed = (flags & RESCHED_IMMED) != 0;
   1965  1.297      yamt #endif /* defined(MULTIPROCESSOR) */
   1966  1.297      yamt 
   1967  1.301        ad 	aston(ci->ci_data.cpu_onproc);
   1968  1.297      yamt 	ci->ci_want_resched = 1;
   1969  1.301        ad 	if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
   1970  1.297      yamt #if defined(MULTIPROCESSOR)
   1971  1.297      yamt 		if (immed && ci != curcpu()) {
   1972  1.297      yamt 			alpha_send_ipi(ci->ci_cpuid, 0);
   1973  1.297      yamt 		}
   1974  1.297      yamt #endif /* defined(MULTIPROCESSOR) */
   1975  1.297      yamt 	}
   1976  1.297      yamt }
   1977