machdep.c revision 1.37 1 1.37 cgd /* $NetBSD: machdep.c,v 1.37 1996/07/14 20:00:15 cgd Exp $ */
2 1.1 cgd
3 1.1 cgd /*
4 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
5 1.1 cgd * All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Author: Chris G. Demetriou
8 1.1 cgd *
9 1.1 cgd * Permission to use, copy, modify and distribute this software and
10 1.1 cgd * its documentation is hereby granted, provided that both the copyright
11 1.1 cgd * notice and this permission notice appear in all copies of the
12 1.1 cgd * software, derivative works or modified versions, and any portions
13 1.1 cgd * thereof, and that both notices appear in supporting documentation.
14 1.1 cgd *
15 1.1 cgd * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
16 1.1 cgd * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
17 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
18 1.1 cgd *
19 1.1 cgd * Carnegie Mellon requests users of this software to return to
20 1.1 cgd *
21 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
22 1.1 cgd * School of Computer Science
23 1.1 cgd * Carnegie Mellon University
24 1.1 cgd * Pittsburgh PA 15213-3890
25 1.1 cgd *
26 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
27 1.1 cgd * rights to redistribute these changes.
28 1.1 cgd */
29 1.1 cgd
30 1.1 cgd #include <sys/param.h>
31 1.1 cgd #include <sys/systm.h>
32 1.1 cgd #include <sys/signalvar.h>
33 1.1 cgd #include <sys/kernel.h>
34 1.1 cgd #include <sys/map.h>
35 1.1 cgd #include <sys/proc.h>
36 1.1 cgd #include <sys/buf.h>
37 1.1 cgd #include <sys/reboot.h>
38 1.28 cgd #include <sys/device.h>
39 1.1 cgd #include <sys/conf.h>
40 1.1 cgd #include <sys/file.h>
41 1.1 cgd #ifdef REAL_CLISTS
42 1.1 cgd #include <sys/clist.h>
43 1.1 cgd #endif
44 1.1 cgd #include <sys/callout.h>
45 1.1 cgd #include <sys/malloc.h>
46 1.1 cgd #include <sys/mbuf.h>
47 1.1 cgd #include <sys/msgbuf.h>
48 1.1 cgd #include <sys/ioctl.h>
49 1.1 cgd #include <sys/tty.h>
50 1.1 cgd #include <sys/user.h>
51 1.1 cgd #include <sys/exec.h>
52 1.1 cgd #include <sys/exec_ecoff.h>
53 1.1 cgd #include <sys/sysctl.h>
54 1.1 cgd #ifdef SYSVMSG
55 1.1 cgd #include <sys/msg.h>
56 1.1 cgd #endif
57 1.1 cgd #ifdef SYSVSEM
58 1.1 cgd #include <sys/sem.h>
59 1.1 cgd #endif
60 1.1 cgd #ifdef SYSVSHM
61 1.1 cgd #include <sys/shm.h>
62 1.1 cgd #endif
63 1.1 cgd
64 1.1 cgd #include <sys/mount.h>
65 1.1 cgd #include <sys/syscallargs.h>
66 1.1 cgd
67 1.1 cgd #include <vm/vm_kern.h>
68 1.1 cgd
69 1.1 cgd #include <dev/cons.h>
70 1.1 cgd
71 1.1 cgd #include <machine/cpu.h>
72 1.1 cgd #include <machine/reg.h>
73 1.1 cgd #include <machine/rpb.h>
74 1.1 cgd #include <machine/prom.h>
75 1.1 cgd
76 1.8 cgd #ifdef DEC_3000_500
77 1.8 cgd #include <alpha/alpha/dec_3000_500.h>
78 1.8 cgd #endif
79 1.8 cgd #ifdef DEC_3000_300
80 1.8 cgd #include <alpha/alpha/dec_3000_300.h>
81 1.8 cgd #endif
82 1.8 cgd #ifdef DEC_2100_A50
83 1.8 cgd #include <alpha/alpha/dec_2100_a50.h>
84 1.8 cgd #endif
85 1.12 cgd #ifdef DEC_KN20AA
86 1.12 cgd #include <alpha/alpha/dec_kn20aa.h>
87 1.12 cgd #endif
88 1.12 cgd #ifdef DEC_AXPPCI_33
89 1.12 cgd #include <alpha/alpha/dec_axppci_33.h>
90 1.12 cgd #endif
91 1.12 cgd #ifdef DEC_21000
92 1.12 cgd #include <alpha/alpha/dec_21000.h>
93 1.12 cgd #endif
94 1.8 cgd
95 1.33 cgd #include <net/if.h>
96 1.1 cgd #include <net/netisr.h>
97 1.33 cgd #include <netinet/in.h>
98 1.33 cgd #include <netinet/ip_var.h>
99 1.33 cgd #include <netinet/if_arp.h>
100 1.1 cgd #include "ether.h"
101 1.1 cgd
102 1.17 cgd #include "le_ioasic.h" /* for le_iomem creation */
103 1.1 cgd
104 1.1 cgd vm_map_t buffer_map;
105 1.1 cgd
106 1.7 cgd void dumpsys __P((void));
107 1.7 cgd
108 1.1 cgd /*
109 1.1 cgd * Declare these as initialized data so we can patch them.
110 1.1 cgd */
111 1.1 cgd int nswbuf = 0;
112 1.1 cgd #ifdef NBUF
113 1.1 cgd int nbuf = NBUF;
114 1.1 cgd #else
115 1.1 cgd int nbuf = 0;
116 1.1 cgd #endif
117 1.1 cgd #ifdef BUFPAGES
118 1.1 cgd int bufpages = BUFPAGES;
119 1.1 cgd #else
120 1.1 cgd int bufpages = 0;
121 1.1 cgd #endif
122 1.1 cgd int msgbufmapped = 0; /* set when safe to use msgbuf */
123 1.1 cgd int maxmem; /* max memory per process */
124 1.7 cgd
125 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
126 1.7 cgd int physmem; /* physical memory used by NetBSD + some rsvd */
127 1.7 cgd int firstusablepage; /* first usable memory page */
128 1.7 cgd int lastusablepage; /* last usable memory page */
129 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
130 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
131 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
132 1.1 cgd
133 1.1 cgd int cputype; /* system type, from the RPB */
134 1.1 cgd
135 1.1 cgd /*
136 1.1 cgd * XXX We need an address to which we can assign things so that they
137 1.1 cgd * won't be optimized away because we didn't use the value.
138 1.1 cgd */
139 1.1 cgd u_int32_t no_optimize;
140 1.1 cgd
141 1.1 cgd /* the following is used externally (sysctl_hw) */
142 1.1 cgd char machine[] = "alpha";
143 1.29 cgd char cpu_model[128];
144 1.1 cgd char *model_names[] = {
145 1.2 cgd "UNKNOWN (0)",
146 1.2 cgd "Alpha Demonstration Unit",
147 1.2 cgd "DEC 4000 (\"Cobra\")",
148 1.2 cgd "DEC 7000 (\"Ruby\")",
149 1.2 cgd "DEC 3000/500 (\"Flamingo\") family",
150 1.2 cgd "UNKNOWN (5)",
151 1.2 cgd "DEC 2000/300 (\"Jensen\")",
152 1.2 cgd "DEC 3000/300 (\"Pelican\")",
153 1.2 cgd "UNKNOWN (8)",
154 1.2 cgd "DEC 2100/A500 (\"Sable\")",
155 1.2 cgd "AXPvme 64",
156 1.2 cgd "AXPpci 33 (\"NoName\")",
157 1.12 cgd "DEC 21000 (\"TurboLaser\")",
158 1.7 cgd "DEC 2100/A50 (\"Avanti\") family",
159 1.2 cgd "Mustang",
160 1.12 cgd "DEC KN20AA",
161 1.12 cgd "UNKNOWN (16)",
162 1.2 cgd "DEC 1000 (\"Mikasa\")",
163 1.1 cgd };
164 1.1 cgd int nmodel_names = sizeof model_names/sizeof model_names[0];
165 1.1 cgd
166 1.1 cgd struct user *proc0paddr;
167 1.1 cgd
168 1.1 cgd /* Number of machine cycles per microsecond */
169 1.1 cgd u_int64_t cycles_per_usec;
170 1.1 cgd
171 1.1 cgd /* some memory areas for device DMA. "ick." */
172 1.1 cgd caddr_t le_iomem; /* XXX iomem for LANCE DMA */
173 1.1 cgd
174 1.1 cgd /* Interrupt vectors (in locore) */
175 1.1 cgd extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
176 1.1 cgd
177 1.7 cgd /* number of cpus in the box. really! */
178 1.7 cgd int ncpus;
179 1.7 cgd
180 1.8 cgd /* various CPU-specific functions. */
181 1.8 cgd char *(*cpu_modelname) __P((void));
182 1.24 cgd void (*cpu_consinit) __P((void));
183 1.28 cgd void (*cpu_device_register) __P((struct device *dev, void *aux));
184 1.8 cgd char *cpu_iobus;
185 1.8 cgd
186 1.25 cgd char boot_flags[64];
187 1.8 cgd
188 1.30 cgd /* for cpu_sysctl() */
189 1.36 cgd char root_device[17];
190 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
191 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
192 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
193 1.30 cgd
194 1.36 cgd void identifycpu();
195 1.33 cgd
196 1.1 cgd int
197 1.25 cgd alpha_init(pfn, ptb)
198 1.1 cgd u_long pfn; /* first free PFN number */
199 1.1 cgd u_long ptb; /* PFN of current level 1 page table */
200 1.1 cgd {
201 1.2 cgd extern char _end[];
202 1.1 cgd caddr_t start, v;
203 1.1 cgd struct mddt *mddtp;
204 1.7 cgd int i, mddtweird;
205 1.1 cgd char *p;
206 1.1 cgd
207 1.1 cgd /*
208 1.1 cgd * Turn off interrupts and floating point.
209 1.1 cgd * Make sure the instruction and data streams are consistent.
210 1.1 cgd */
211 1.1 cgd (void)splhigh();
212 1.32 cgd alpha_pal_wrfen(0);
213 1.37 cgd ALPHA_TBIA();
214 1.32 cgd alpha_pal_imb();
215 1.1 cgd
216 1.1 cgd /*
217 1.1 cgd * get address of the restart block, while we the bootstrap
218 1.1 cgd * mapping is still around.
219 1.1 cgd */
220 1.32 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(
221 1.32 cgd (vm_offset_t)(*(struct rpb **)HWRPB_ADDR));
222 1.1 cgd
223 1.1 cgd /*
224 1.1 cgd * Remember how many cycles there are per microsecond,
225 1.7 cgd * so that we can use delay(). Round up, for safety.
226 1.1 cgd */
227 1.7 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
228 1.1 cgd
229 1.1 cgd /*
230 1.1 cgd * Init the PROM interface, so we can use printf
231 1.1 cgd * until PROM mappings go away in consinit.
232 1.1 cgd */
233 1.1 cgd init_prom_interface();
234 1.1 cgd
235 1.1 cgd /*
236 1.1 cgd * Point interrupt/exception vectors to our own.
237 1.1 cgd */
238 1.36 cgd alpha_pal_wrent(XentInt, ALPHA_KENTRY_INT);
239 1.36 cgd alpha_pal_wrent(XentArith, ALPHA_KENTRY_ARITH);
240 1.36 cgd alpha_pal_wrent(XentMM, ALPHA_KENTRY_MM);
241 1.36 cgd alpha_pal_wrent(XentIF, ALPHA_KENTRY_IF);
242 1.36 cgd alpha_pal_wrent(XentUna, ALPHA_KENTRY_UNA);
243 1.36 cgd alpha_pal_wrent(XentSys, ALPHA_KENTRY_SYS);
244 1.36 cgd
245 1.36 cgd /*
246 1.36 cgd * Disable System and Processor Correctable Error reporting.
247 1.36 cgd * Clear pending machine checks and error reports, etc.
248 1.36 cgd */
249 1.36 cgd alpha_pal_wrmces(alpha_pal_rdmces() | ALPHA_MCES_SCE | ALPHA_MCES_PCE);
250 1.1 cgd
251 1.1 cgd /*
252 1.1 cgd * Find out how much memory is available, by looking at
253 1.7 cgd * the memory cluster descriptors. This also tries to do
254 1.7 cgd * its best to detect things things that have never been seen
255 1.7 cgd * before...
256 1.7 cgd *
257 1.1 cgd * XXX Assumes that the first "system" cluster is the
258 1.7 cgd * only one we can use. Is the second (etc.) system cluster
259 1.7 cgd * (if one happens to exist) guaranteed to be contiguous? or...?
260 1.1 cgd */
261 1.1 cgd mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
262 1.7 cgd
263 1.7 cgd /*
264 1.7 cgd * BEGIN MDDT WEIRDNESS CHECKING
265 1.7 cgd */
266 1.7 cgd mddtweird = 0;
267 1.7 cgd
268 1.7 cgd #define cnt mddtp->mddt_cluster_cnt
269 1.7 cgd #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
270 1.7 cgd if (cnt != 2 && cnt != 3) {
271 1.33 cgd printf("WARNING: weird number (%ld) of mem clusters\n", cnt);
272 1.7 cgd mddtweird = 1;
273 1.7 cgd } else if (usage(0) != MDDT_PALCODE ||
274 1.7 cgd usage(1) != MDDT_SYSTEM ||
275 1.7 cgd (cnt == 3 && usage(2) != MDDT_PALCODE)) {
276 1.7 cgd mddtweird = 1;
277 1.33 cgd printf("WARNING: %ld mem clusters, but weird config\n", cnt);
278 1.7 cgd }
279 1.7 cgd
280 1.7 cgd for (i = 0; i < cnt; i++) {
281 1.7 cgd if ((usage(i) & MDDT_mbz) != 0) {
282 1.7 cgd printf("WARNING: mem cluster %d has weird usage %lx\n",
283 1.7 cgd i, usage(i));
284 1.7 cgd mddtweird = 1;
285 1.7 cgd }
286 1.7 cgd if (mddtp->mddt_clusters[i].mddt_pg_cnt == 0) {
287 1.7 cgd printf("WARNING: mem cluster %d has pg cnt == 0\n", i);
288 1.7 cgd mddtweird = 1;
289 1.7 cgd }
290 1.7 cgd /* XXX other things to check? */
291 1.7 cgd }
292 1.7 cgd #undef cnt
293 1.7 cgd #undef usage
294 1.7 cgd
295 1.7 cgd if (mddtweird) {
296 1.7 cgd printf("\n");
297 1.7 cgd printf("complete memory cluster information:\n");
298 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
299 1.2 cgd printf("mddt %d:\n", i);
300 1.2 cgd printf("\tpfn %lx\n",
301 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
302 1.2 cgd printf("\tcnt %lx\n",
303 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
304 1.2 cgd printf("\ttest %lx\n",
305 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
306 1.2 cgd printf("\tbva %lx\n",
307 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
308 1.2 cgd printf("\tbpa %lx\n",
309 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
310 1.2 cgd printf("\tbcksum %lx\n",
311 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
312 1.2 cgd printf("\tusage %lx\n",
313 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
314 1.2 cgd }
315 1.7 cgd printf("\n");
316 1.2 cgd }
317 1.7 cgd /*
318 1.7 cgd * END MDDT WEIRDNESS CHECKING
319 1.7 cgd */
320 1.2 cgd
321 1.1 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
322 1.7 cgd totalphysmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
323 1.7 cgd #define usage(n) mddtp->mddt_clusters[(n)].mddt_usage
324 1.7 cgd #define pgcnt(n) mddtp->mddt_clusters[(n)].mddt_pg_cnt
325 1.7 cgd if ((usage(i) & MDDT_mbz) != 0)
326 1.7 cgd unknownmem += pgcnt(i);
327 1.7 cgd else if ((usage(i) & ~MDDT_mbz) == MDDT_PALCODE)
328 1.7 cgd resvmem += pgcnt(i);
329 1.7 cgd else if ((usage(i) & ~MDDT_mbz) == MDDT_SYSTEM) {
330 1.7 cgd /*
331 1.7 cgd * assumes that the system cluster listed is
332 1.7 cgd * one we're in...
333 1.7 cgd */
334 1.7 cgd if (physmem != resvmem) {
335 1.7 cgd physmem += pgcnt(i);
336 1.7 cgd firstusablepage =
337 1.7 cgd mddtp->mddt_clusters[i].mddt_pfn;
338 1.7 cgd lastusablepage = firstusablepage + pgcnt(i) - 1;
339 1.7 cgd } else
340 1.7 cgd unusedmem += pgcnt(i);
341 1.7 cgd }
342 1.7 cgd #undef usage
343 1.7 cgd #undef pgcnt
344 1.1 cgd }
345 1.7 cgd if (totalphysmem == 0)
346 1.1 cgd panic("can't happen: system seems to have no memory!");
347 1.1 cgd maxmem = physmem;
348 1.1 cgd
349 1.7 cgd #if 0
350 1.7 cgd printf("totalphysmem = %d\n", totalphysmem);
351 1.7 cgd printf("physmem = %d\n", physmem);
352 1.7 cgd printf("firstusablepage = %d\n", firstusablepage);
353 1.7 cgd printf("lastusablepage = %d\n", lastusablepage);
354 1.7 cgd printf("resvmem = %d\n", resvmem);
355 1.7 cgd printf("unusedmem = %d\n", unusedmem);
356 1.7 cgd printf("unknownmem = %d\n", unknownmem);
357 1.7 cgd #endif
358 1.7 cgd
359 1.1 cgd /*
360 1.1 cgd * find out this CPU's page size
361 1.1 cgd */
362 1.1 cgd PAGE_SIZE = hwrpb->rpb_page_size;
363 1.12 cgd if (PAGE_SIZE != 8192)
364 1.12 cgd panic("page size %d != 8192?!", PAGE_SIZE);
365 1.1 cgd
366 1.2 cgd v = (caddr_t)alpha_round_page(_end);
367 1.1 cgd /*
368 1.1 cgd * Init mapping for u page(s) for proc 0
369 1.1 cgd */
370 1.1 cgd start = v;
371 1.1 cgd curproc->p_addr = proc0paddr = (struct user *)v;
372 1.1 cgd v += UPAGES * NBPG;
373 1.1 cgd
374 1.1 cgd /*
375 1.1 cgd * Find out what hardware we're on, and remember its type name.
376 1.1 cgd */
377 1.1 cgd cputype = hwrpb->rpb_type;
378 1.1 cgd switch (cputype) {
379 1.2 cgd #ifdef DEC_3000_500 /* and 400, [6-9]00 */
380 1.1 cgd case ST_DEC_3000_500:
381 1.8 cgd cpu_modelname = dec_3000_500_modelname;
382 1.8 cgd cpu_consinit = dec_3000_500_consinit;
383 1.28 cgd cpu_device_register = dec_3000_500_device_register;
384 1.13 cgd cpu_iobus = "tcasic";
385 1.2 cgd break;
386 1.2 cgd #endif
387 1.2 cgd
388 1.2 cgd #ifdef DEC_3000_300
389 1.2 cgd case ST_DEC_3000_300:
390 1.8 cgd cpu_modelname = dec_3000_300_modelname;
391 1.8 cgd cpu_consinit = dec_3000_300_consinit;
392 1.28 cgd cpu_device_register = dec_3000_300_device_register;
393 1.13 cgd cpu_iobus = "tcasic";
394 1.2 cgd break;
395 1.2 cgd #endif
396 1.2 cgd
397 1.2 cgd #ifdef DEC_2100_A50
398 1.2 cgd case ST_DEC_2100_A50:
399 1.8 cgd cpu_modelname = dec_2100_a50_modelname;
400 1.8 cgd cpu_consinit = dec_2100_a50_consinit;
401 1.28 cgd cpu_device_register = dec_2100_a50_device_register;
402 1.8 cgd cpu_iobus = "apecs";
403 1.2 cgd break;
404 1.2 cgd #endif
405 1.2 cgd
406 1.12 cgd #ifdef DEC_KN20AA
407 1.12 cgd case ST_DEC_KN20AA:
408 1.12 cgd cpu_modelname = dec_kn20aa_modelname;
409 1.12 cgd cpu_consinit = dec_kn20aa_consinit;
410 1.28 cgd cpu_device_register = dec_kn20aa_device_register;
411 1.12 cgd cpu_iobus = "cia";
412 1.12 cgd break;
413 1.12 cgd #endif
414 1.12 cgd
415 1.12 cgd #ifdef DEC_AXPPCI_33
416 1.12 cgd case ST_DEC_AXPPCI_33:
417 1.12 cgd cpu_modelname = dec_axppci_33_modelname;
418 1.12 cgd cpu_consinit = dec_axppci_33_consinit;
419 1.28 cgd cpu_device_register = dec_axppci_33_device_register;
420 1.12 cgd cpu_iobus = "lca";
421 1.12 cgd break;
422 1.12 cgd #endif
423 1.12 cgd
424 1.8 cgd #ifdef DEC_2000_300
425 1.8 cgd case ST_DEC_2000_300:
426 1.8 cgd cpu_modelname = dec_2000_300_modelname;
427 1.8 cgd cpu_consinit = dec_2000_300_consinit;
428 1.28 cgd cpu_device_register = dec_2000_300_device_register;
429 1.8 cgd cpu_iobus = "ibus";
430 1.8 cgd XXX DEC 2000/300 NOT SUPPORTED
431 1.12 cgd break;
432 1.2 cgd #endif
433 1.2 cgd
434 1.12 cgd #ifdef DEC_21000
435 1.12 cgd case ST_DEC_21000:
436 1.12 cgd cpu_modelname = dec_21000_modelname;
437 1.12 cgd cpu_consinit = dec_21000_consinit;
438 1.28 cgd cpu_device_register = dec_21000_device_register;
439 1.12 cgd cpu_iobus = "tlsb";
440 1.27 cgd XXX DEC 21000 NOT SUPPORTED
441 1.12 cgd break;
442 1.2 cgd #endif
443 1.2 cgd
444 1.1 cgd default:
445 1.1 cgd if (cputype > nmodel_names)
446 1.1 cgd panic("Unknown system type %d", cputype);
447 1.1 cgd else
448 1.1 cgd panic("Support for %s system type not in kernel.",
449 1.1 cgd model_names[cputype]);
450 1.1 cgd }
451 1.8 cgd
452 1.29 cgd if ((*cpu_modelname)() != NULL)
453 1.29 cgd strncpy(cpu_model, (*cpu_modelname)(), sizeof cpu_model - 1);
454 1.29 cgd else
455 1.29 cgd strncpy(cpu_model, model_names[cputype], sizeof cpu_model - 1);
456 1.29 cgd cpu_model[sizeof cpu_model - 1] = '\0';
457 1.1 cgd
458 1.17 cgd #if NLE_IOASIC > 0
459 1.1 cgd /*
460 1.1 cgd * Grab 128K at the top of physical memory for the lance chip
461 1.1 cgd * on machines where it does dma through the I/O ASIC.
462 1.1 cgd * It must be physically contiguous and aligned on a 128K boundary.
463 1.17 cgd *
464 1.17 cgd * Note that since this is conditional on the presence of
465 1.17 cgd * IOASIC-attached 'le' units in the kernel config, the
466 1.17 cgd * message buffer may move on these systems. This shouldn't
467 1.17 cgd * be a problem, because once people have a kernel config that
468 1.17 cgd * they use, they're going to stick with it.
469 1.1 cgd */
470 1.1 cgd if (cputype == ST_DEC_3000_500 ||
471 1.1 cgd cputype == ST_DEC_3000_300) { /* XXX possibly others? */
472 1.7 cgd lastusablepage -= btoc(128 * 1024);
473 1.32 cgd le_iomem =
474 1.32 cgd (caddr_t)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
475 1.1 cgd }
476 1.17 cgd #endif /* NLE_IOASIC */
477 1.1 cgd
478 1.1 cgd /*
479 1.1 cgd * Initialize error message buffer (at end of core).
480 1.1 cgd */
481 1.7 cgd lastusablepage -= btoc(sizeof (struct msgbuf));
482 1.32 cgd msgbufp =
483 1.32 cgd (struct msgbuf *)ALPHA_PHYS_TO_K0SEG(ctob(lastusablepage + 1));
484 1.1 cgd msgbufmapped = 1;
485 1.1 cgd
486 1.1 cgd /*
487 1.1 cgd * Allocate space for system data structures.
488 1.1 cgd * The first available kernel virtual address is in "v".
489 1.1 cgd * As pages of kernel virtual memory are allocated, "v" is incremented.
490 1.1 cgd *
491 1.1 cgd * These data structures are allocated here instead of cpu_startup()
492 1.1 cgd * because physical memory is directly addressable. We don't have
493 1.1 cgd * to map these into virtual address space.
494 1.1 cgd */
495 1.1 cgd #define valloc(name, type, num) \
496 1.12 cgd (name) = (type *)v; v = (caddr_t)ALIGN((name)+(num))
497 1.1 cgd #define valloclim(name, type, num, lim) \
498 1.12 cgd (name) = (type *)v; v = (caddr_t)ALIGN((lim) = ((name)+(num)))
499 1.1 cgd #ifdef REAL_CLISTS
500 1.1 cgd valloc(cfree, struct cblock, nclist);
501 1.1 cgd #endif
502 1.1 cgd valloc(callout, struct callout, ncallout);
503 1.1 cgd valloc(swapmap, struct map, nswapmap = maxproc * 2);
504 1.1 cgd #ifdef SYSVSHM
505 1.1 cgd valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
506 1.1 cgd #endif
507 1.1 cgd #ifdef SYSVSEM
508 1.1 cgd valloc(sema, struct semid_ds, seminfo.semmni);
509 1.1 cgd valloc(sem, struct sem, seminfo.semmns);
510 1.1 cgd /* This is pretty disgusting! */
511 1.1 cgd valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
512 1.1 cgd #endif
513 1.1 cgd #ifdef SYSVMSG
514 1.1 cgd valloc(msgpool, char, msginfo.msgmax);
515 1.1 cgd valloc(msgmaps, struct msgmap, msginfo.msgseg);
516 1.1 cgd valloc(msghdrs, struct msg, msginfo.msgtql);
517 1.1 cgd valloc(msqids, struct msqid_ds, msginfo.msgmni);
518 1.1 cgd #endif
519 1.1 cgd
520 1.1 cgd /*
521 1.1 cgd * Determine how many buffers to allocate.
522 1.31 cgd * We allocate 10% of memory for buffer space. Insure a
523 1.1 cgd * minimum of 16 buffers. We allocate 1/2 as many swap buffer
524 1.1 cgd * headers as file i/o buffers.
525 1.1 cgd */
526 1.1 cgd if (bufpages == 0)
527 1.31 cgd bufpages = (physmem * 10) / (CLSIZE * 100);
528 1.1 cgd if (nbuf == 0) {
529 1.1 cgd nbuf = bufpages;
530 1.1 cgd if (nbuf < 16)
531 1.1 cgd nbuf = 16;
532 1.1 cgd }
533 1.1 cgd if (nswbuf == 0) {
534 1.1 cgd nswbuf = (nbuf / 2) &~ 1; /* force even */
535 1.1 cgd if (nswbuf > 256)
536 1.1 cgd nswbuf = 256; /* sanity */
537 1.1 cgd }
538 1.1 cgd valloc(swbuf, struct buf, nswbuf);
539 1.1 cgd valloc(buf, struct buf, nbuf);
540 1.1 cgd
541 1.1 cgd /*
542 1.1 cgd * Clear allocated memory.
543 1.1 cgd */
544 1.1 cgd bzero(start, v - start);
545 1.1 cgd
546 1.1 cgd /*
547 1.1 cgd * Initialize the virtual memory system, and set the
548 1.1 cgd * page table base register in proc 0's PCB.
549 1.1 cgd */
550 1.32 cgd pmap_bootstrap((vm_offset_t)v, ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT));
551 1.1 cgd
552 1.1 cgd /*
553 1.3 cgd * Initialize the rest of proc 0's PCB, and cache its physical
554 1.3 cgd * address.
555 1.3 cgd */
556 1.3 cgd proc0.p_md.md_pcbpaddr =
557 1.32 cgd (struct pcb *)ALPHA_K0SEG_TO_PHYS((vm_offset_t)&proc0paddr->u_pcb);
558 1.3 cgd
559 1.3 cgd /*
560 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
561 1.3 cgd * and make proc0's trapframe pointer point to it for sanity.
562 1.3 cgd */
563 1.33 cgd proc0paddr->u_pcb.pcb_hw.apcb_ksp =
564 1.3 cgd (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
565 1.33 cgd proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
566 1.1 cgd
567 1.1 cgd /*
568 1.25 cgd * Look at arguments passed to us and compute boothowto.
569 1.8 cgd */
570 1.25 cgd prom_getenv(PROM_E_BOOTED_OSFLAGS, boot_flags, sizeof(boot_flags));
571 1.25 cgd #if 0
572 1.25 cgd printf("boot flags = \"%s\"\n", boot_flags);
573 1.25 cgd #endif
574 1.1 cgd
575 1.8 cgd boothowto = RB_SINGLE;
576 1.1 cgd #ifdef KADB
577 1.1 cgd boothowto |= RB_KDB;
578 1.1 cgd #endif
579 1.8 cgd for (p = boot_flags; p && *p != '\0'; p++) {
580 1.26 cgd /*
581 1.26 cgd * Note that we'd really like to differentiate case here,
582 1.26 cgd * but the Alpha AXP Architecture Reference Manual
583 1.26 cgd * says that we shouldn't.
584 1.26 cgd */
585 1.8 cgd switch (*p) {
586 1.26 cgd case 'a': /* autoboot */
587 1.26 cgd case 'A':
588 1.26 cgd boothowto &= ~RB_SINGLE;
589 1.21 cgd break;
590 1.21 cgd
591 1.36 cgd case 'h': /* always halt, never reboot */
592 1.36 cgd case 'H':
593 1.36 cgd boothowto |= RB_HALT;
594 1.8 cgd break;
595 1.8 cgd
596 1.21 cgd #if 0
597 1.8 cgd case 'm': /* mini root present in memory */
598 1.26 cgd case 'M':
599 1.8 cgd boothowto |= RB_MINIROOT;
600 1.8 cgd break;
601 1.21 cgd #endif
602 1.36 cgd
603 1.36 cgd case 'n': /* askname */
604 1.36 cgd case 'N':
605 1.36 cgd boothowto |= RB_ASKNAME;
606 1.36 cgd break;
607 1.1 cgd }
608 1.1 cgd }
609 1.1 cgd
610 1.7 cgd /*
611 1.7 cgd * Figure out the number of cpus in the box, from RPB fields.
612 1.7 cgd * Really. We mean it.
613 1.7 cgd */
614 1.7 cgd for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
615 1.7 cgd struct pcs *pcsp;
616 1.7 cgd
617 1.7 cgd pcsp = (struct pcs *)((char *)hwrpb + hwrpb->rpb_pcs_off +
618 1.7 cgd (i * hwrpb->rpb_pcs_size));
619 1.7 cgd if ((pcsp->pcs_flags & PCS_PP) != 0)
620 1.7 cgd ncpus++;
621 1.7 cgd }
622 1.7 cgd
623 1.1 cgd return (0);
624 1.1 cgd }
625 1.1 cgd
626 1.18 cgd void
627 1.1 cgd consinit()
628 1.1 cgd {
629 1.1 cgd
630 1.24 cgd (*cpu_consinit)();
631 1.1 cgd pmap_unmap_prom();
632 1.1 cgd }
633 1.1 cgd
634 1.18 cgd void
635 1.1 cgd cpu_startup()
636 1.1 cgd {
637 1.1 cgd register unsigned i;
638 1.1 cgd int base, residual;
639 1.1 cgd vm_offset_t minaddr, maxaddr;
640 1.1 cgd vm_size_t size;
641 1.33 cgd #if defined(DEBUG) && defined(OLD_PMAP)
642 1.1 cgd extern int pmapdebug;
643 1.1 cgd int opmapdebug = pmapdebug;
644 1.1 cgd
645 1.1 cgd pmapdebug = 0;
646 1.1 cgd #endif
647 1.1 cgd
648 1.1 cgd /*
649 1.1 cgd * Good {morning,afternoon,evening,night}.
650 1.1 cgd */
651 1.1 cgd printf(version);
652 1.1 cgd identifycpu();
653 1.7 cgd printf("real mem = %d (%d reserved for PROM, %d used by NetBSD)\n",
654 1.7 cgd ctob(totalphysmem), ctob(resvmem), ctob(physmem));
655 1.7 cgd if (unusedmem)
656 1.7 cgd printf("WARNING: unused memory = %d bytes\n", ctob(unusedmem));
657 1.7 cgd if (unknownmem)
658 1.7 cgd printf("WARNING: %d bytes of memory with unknown purpose\n",
659 1.7 cgd ctob(unknownmem));
660 1.1 cgd
661 1.1 cgd /*
662 1.1 cgd * Allocate virtual address space for file I/O buffers.
663 1.1 cgd * Note they are different than the array of headers, 'buf',
664 1.1 cgd * and usually occupy more virtual memory than physical.
665 1.1 cgd */
666 1.1 cgd size = MAXBSIZE * nbuf;
667 1.1 cgd buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
668 1.1 cgd &maxaddr, size, TRUE);
669 1.1 cgd minaddr = (vm_offset_t)buffers;
670 1.1 cgd if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
671 1.1 cgd &minaddr, size, FALSE) != KERN_SUCCESS)
672 1.1 cgd panic("startup: cannot allocate buffers");
673 1.1 cgd base = bufpages / nbuf;
674 1.1 cgd residual = bufpages % nbuf;
675 1.1 cgd for (i = 0; i < nbuf; i++) {
676 1.1 cgd vm_size_t curbufsize;
677 1.1 cgd vm_offset_t curbuf;
678 1.1 cgd
679 1.1 cgd /*
680 1.1 cgd * First <residual> buffers get (base+1) physical pages
681 1.1 cgd * allocated for them. The rest get (base) physical pages.
682 1.1 cgd *
683 1.1 cgd * The rest of each buffer occupies virtual space,
684 1.1 cgd * but has no physical memory allocated for it.
685 1.1 cgd */
686 1.1 cgd curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
687 1.1 cgd curbufsize = CLBYTES * (i < residual ? base+1 : base);
688 1.1 cgd vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
689 1.1 cgd vm_map_simplify(buffer_map, curbuf);
690 1.1 cgd }
691 1.1 cgd /*
692 1.1 cgd * Allocate a submap for exec arguments. This map effectively
693 1.1 cgd * limits the number of processes exec'ing at any time.
694 1.1 cgd */
695 1.1 cgd exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
696 1.1 cgd 16 * NCARGS, TRUE);
697 1.1 cgd
698 1.1 cgd /*
699 1.1 cgd * Allocate a submap for physio
700 1.1 cgd */
701 1.1 cgd phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
702 1.1 cgd VM_PHYS_SIZE, TRUE);
703 1.1 cgd
704 1.1 cgd /*
705 1.1 cgd * Finally, allocate mbuf pool. Since mclrefcnt is an off-size
706 1.1 cgd * we use the more space efficient malloc in place of kmem_alloc.
707 1.1 cgd */
708 1.1 cgd mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
709 1.1 cgd M_MBUF, M_NOWAIT);
710 1.1 cgd bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
711 1.1 cgd mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
712 1.1 cgd VM_MBUF_SIZE, FALSE);
713 1.1 cgd /*
714 1.1 cgd * Initialize callouts
715 1.1 cgd */
716 1.1 cgd callfree = callout;
717 1.1 cgd for (i = 1; i < ncallout; i++)
718 1.1 cgd callout[i-1].c_next = &callout[i];
719 1.1 cgd callout[i-1].c_next = NULL;
720 1.1 cgd
721 1.33 cgd #if defined(DEBUG) && defined(OLD_PMAP)
722 1.1 cgd pmapdebug = opmapdebug;
723 1.1 cgd #endif
724 1.1 cgd printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
725 1.1 cgd printf("using %ld buffers containing %ld bytes of memory\n",
726 1.1 cgd (long)nbuf, (long)(bufpages * CLBYTES));
727 1.1 cgd
728 1.1 cgd /*
729 1.1 cgd * Set up buffers, so they can be used to read disk labels.
730 1.1 cgd */
731 1.1 cgd bufinit();
732 1.1 cgd
733 1.1 cgd /*
734 1.1 cgd * Configure the system.
735 1.1 cgd */
736 1.1 cgd configure();
737 1.1 cgd }
738 1.1 cgd
739 1.33 cgd void
740 1.1 cgd identifycpu()
741 1.1 cgd {
742 1.1 cgd
743 1.7 cgd /*
744 1.7 cgd * print out CPU identification information.
745 1.7 cgd */
746 1.33 cgd printf("%s, %ldMHz\n", cpu_model,
747 1.7 cgd hwrpb->rpb_cc_freq / 1000000); /* XXX true for 21164? */
748 1.33 cgd printf("%ld byte page size, %d processor%s.\n",
749 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
750 1.7 cgd #if 0
751 1.7 cgd /* this isn't defined for any systems that we run on? */
752 1.7 cgd printf("serial number 0x%lx 0x%lx\n",
753 1.1 cgd ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
754 1.7 cgd
755 1.7 cgd /* and these aren't particularly useful! */
756 1.1 cgd printf("variation: 0x%lx, revision 0x%lx\n",
757 1.1 cgd hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
758 1.7 cgd #endif
759 1.1 cgd }
760 1.1 cgd
761 1.1 cgd int waittime = -1;
762 1.7 cgd struct pcb dumppcb;
763 1.1 cgd
764 1.18 cgd void
765 1.1 cgd boot(howto)
766 1.1 cgd int howto;
767 1.1 cgd {
768 1.1 cgd extern int cold;
769 1.1 cgd
770 1.1 cgd /* If system is cold, just halt. */
771 1.1 cgd if (cold) {
772 1.1 cgd howto |= RB_HALT;
773 1.1 cgd goto haltsys;
774 1.1 cgd }
775 1.1 cgd
776 1.36 cgd /* If "always halt" was specified as a boot flag, obey. */
777 1.36 cgd if ((boothowto & RB_HALT) != 0)
778 1.36 cgd howto |= RB_HALT;
779 1.36 cgd
780 1.7 cgd boothowto = howto;
781 1.7 cgd if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
782 1.1 cgd waittime = 0;
783 1.7 cgd vfs_shutdown();
784 1.1 cgd /*
785 1.1 cgd * If we've been adjusting the clock, the todr
786 1.1 cgd * will be out of synch; adjust it now.
787 1.1 cgd */
788 1.1 cgd resettodr();
789 1.1 cgd }
790 1.1 cgd
791 1.1 cgd /* Disable interrupts. */
792 1.1 cgd splhigh();
793 1.1 cgd
794 1.7 cgd /* If rebooting and a dump is requested do it. */
795 1.7 cgd if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
796 1.7 cgd savectx(&dumppcb, 0);
797 1.1 cgd dumpsys();
798 1.7 cgd }
799 1.6 cgd
800 1.12 cgd haltsys:
801 1.12 cgd
802 1.6 cgd /* run any shutdown hooks */
803 1.6 cgd doshutdownhooks();
804 1.1 cgd
805 1.7 cgd #ifdef BOOTKEY
806 1.7 cgd printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
807 1.7 cgd cngetc();
808 1.7 cgd printf("\n");
809 1.7 cgd #endif
810 1.7 cgd
811 1.1 cgd /* Finally, halt/reboot the system. */
812 1.1 cgd printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
813 1.1 cgd prom_halt(howto & RB_HALT);
814 1.1 cgd /*NOTREACHED*/
815 1.1 cgd }
816 1.1 cgd
817 1.7 cgd /*
818 1.7 cgd * These variables are needed by /sbin/savecore
819 1.7 cgd */
820 1.7 cgd u_long dumpmag = 0x8fca0101; /* magic number */
821 1.7 cgd int dumpsize = 0; /* pages */
822 1.7 cgd long dumplo = 0; /* blocks */
823 1.7 cgd
824 1.7 cgd /*
825 1.7 cgd * This is called by configure to set dumplo and dumpsize.
826 1.7 cgd * Dumps always skip the first CLBYTES of disk space
827 1.7 cgd * in case there might be a disk label stored there.
828 1.7 cgd * If there is extra space, put dump at the end to
829 1.7 cgd * reduce the chance that swapping trashes it.
830 1.7 cgd */
831 1.7 cgd void
832 1.7 cgd dumpconf()
833 1.7 cgd {
834 1.7 cgd int nblks; /* size of dump area */
835 1.7 cgd int maj;
836 1.7 cgd
837 1.7 cgd if (dumpdev == NODEV)
838 1.7 cgd return;
839 1.7 cgd maj = major(dumpdev);
840 1.7 cgd if (maj < 0 || maj >= nblkdev)
841 1.7 cgd panic("dumpconf: bad dumpdev=0x%x", dumpdev);
842 1.7 cgd if (bdevsw[maj].d_psize == NULL)
843 1.7 cgd return;
844 1.7 cgd nblks = (*bdevsw[maj].d_psize)(dumpdev);
845 1.7 cgd if (nblks <= ctod(1))
846 1.7 cgd return;
847 1.7 cgd
848 1.7 cgd /* XXX XXX XXX STARTING MEMORY LOCATION */
849 1.7 cgd dumpsize = physmem;
850 1.7 cgd
851 1.7 cgd /* Always skip the first CLBYTES, in case there is a label there. */
852 1.7 cgd if (dumplo < ctod(1))
853 1.7 cgd dumplo = ctod(1);
854 1.7 cgd
855 1.7 cgd /* Put dump at end of partition, and make it fit. */
856 1.7 cgd if (dumpsize > dtoc(nblks - dumplo))
857 1.7 cgd dumpsize = dtoc(nblks - dumplo);
858 1.7 cgd if (dumplo < nblks - ctod(dumpsize))
859 1.7 cgd dumplo = nblks - ctod(dumpsize);
860 1.7 cgd }
861 1.7 cgd
862 1.7 cgd /*
863 1.7 cgd * Doadump comes here after turning off memory management and
864 1.7 cgd * getting on the dump stack, either when called above, or by
865 1.7 cgd * the auto-restart code.
866 1.7 cgd */
867 1.7 cgd void
868 1.7 cgd dumpsys()
869 1.7 cgd {
870 1.7 cgd
871 1.7 cgd msgbufmapped = 0;
872 1.7 cgd if (dumpdev == NODEV)
873 1.7 cgd return;
874 1.7 cgd if (dumpsize == 0) {
875 1.7 cgd dumpconf();
876 1.7 cgd if (dumpsize == 0)
877 1.7 cgd return;
878 1.7 cgd }
879 1.33 cgd printf("\ndumping to dev %x, offset %ld\n", dumpdev, dumplo);
880 1.7 cgd
881 1.7 cgd printf("dump ");
882 1.7 cgd switch ((*bdevsw[major(dumpdev)].d_dump)(dumpdev)) {
883 1.7 cgd
884 1.7 cgd case ENXIO:
885 1.7 cgd printf("device bad\n");
886 1.7 cgd break;
887 1.7 cgd
888 1.7 cgd case EFAULT:
889 1.7 cgd printf("device not ready\n");
890 1.7 cgd break;
891 1.7 cgd
892 1.7 cgd case EINVAL:
893 1.7 cgd printf("area improper\n");
894 1.7 cgd break;
895 1.7 cgd
896 1.7 cgd case EIO:
897 1.7 cgd printf("i/o error\n");
898 1.7 cgd break;
899 1.7 cgd
900 1.7 cgd case EINTR:
901 1.7 cgd printf("aborted from console\n");
902 1.7 cgd break;
903 1.7 cgd
904 1.7 cgd default:
905 1.7 cgd printf("succeeded\n");
906 1.7 cgd break;
907 1.7 cgd }
908 1.7 cgd printf("\n\n");
909 1.7 cgd delay(1000);
910 1.7 cgd }
911 1.7 cgd
912 1.1 cgd void
913 1.1 cgd frametoreg(framep, regp)
914 1.1 cgd struct trapframe *framep;
915 1.1 cgd struct reg *regp;
916 1.1 cgd {
917 1.1 cgd
918 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
919 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
920 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
921 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
922 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
923 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
924 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
925 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
926 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
927 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
928 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
929 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
930 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
931 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
932 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
933 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
934 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
935 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
936 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
937 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
938 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
939 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
940 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
941 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
942 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
943 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
944 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
945 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
946 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
947 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
948 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
949 1.1 cgd regp->r_regs[R_ZERO] = 0;
950 1.1 cgd }
951 1.1 cgd
952 1.1 cgd void
953 1.1 cgd regtoframe(regp, framep)
954 1.1 cgd struct reg *regp;
955 1.1 cgd struct trapframe *framep;
956 1.1 cgd {
957 1.1 cgd
958 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
959 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
960 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
961 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
962 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
963 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
964 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
965 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
966 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
967 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
968 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
969 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
970 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
971 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
972 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
973 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
974 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
975 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
976 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
977 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
978 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
979 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
980 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
981 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
982 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
983 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
984 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
985 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
986 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
987 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
988 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
989 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
990 1.1 cgd }
991 1.1 cgd
992 1.1 cgd void
993 1.1 cgd printregs(regp)
994 1.1 cgd struct reg *regp;
995 1.1 cgd {
996 1.1 cgd int i;
997 1.1 cgd
998 1.1 cgd for (i = 0; i < 32; i++)
999 1.1 cgd printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1000 1.1 cgd i & 1 ? "\n" : "\t");
1001 1.1 cgd }
1002 1.1 cgd
1003 1.1 cgd void
1004 1.1 cgd regdump(framep)
1005 1.1 cgd struct trapframe *framep;
1006 1.1 cgd {
1007 1.1 cgd struct reg reg;
1008 1.1 cgd
1009 1.1 cgd frametoreg(framep, ®);
1010 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1011 1.35 cgd
1012 1.1 cgd printf("REGISTERS:\n");
1013 1.1 cgd printregs(®);
1014 1.1 cgd }
1015 1.1 cgd
1016 1.1 cgd #ifdef DEBUG
1017 1.1 cgd int sigdebug = 0;
1018 1.1 cgd int sigpid = 0;
1019 1.1 cgd #define SDB_FOLLOW 0x01
1020 1.1 cgd #define SDB_KSTACK 0x02
1021 1.1 cgd #endif
1022 1.1 cgd
1023 1.1 cgd /*
1024 1.1 cgd * Send an interrupt to process.
1025 1.1 cgd */
1026 1.1 cgd void
1027 1.1 cgd sendsig(catcher, sig, mask, code)
1028 1.1 cgd sig_t catcher;
1029 1.1 cgd int sig, mask;
1030 1.1 cgd u_long code;
1031 1.1 cgd {
1032 1.1 cgd struct proc *p = curproc;
1033 1.1 cgd struct sigcontext *scp, ksc;
1034 1.1 cgd struct trapframe *frame;
1035 1.1 cgd struct sigacts *psp = p->p_sigacts;
1036 1.1 cgd int oonstack, fsize, rndfsize;
1037 1.1 cgd extern char sigcode[], esigcode[];
1038 1.1 cgd extern struct proc *fpcurproc;
1039 1.1 cgd
1040 1.1 cgd frame = p->p_md.md_tf;
1041 1.9 mycroft oonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
1042 1.1 cgd fsize = sizeof ksc;
1043 1.1 cgd rndfsize = ((fsize + 15) / 16) * 16;
1044 1.1 cgd /*
1045 1.1 cgd * Allocate and validate space for the signal handler
1046 1.1 cgd * context. Note that if the stack is in P0 space, the
1047 1.1 cgd * call to grow() is a nop, and the useracc() check
1048 1.1 cgd * will fail if the process has not already allocated
1049 1.1 cgd * the space with a `brk'.
1050 1.1 cgd */
1051 1.1 cgd if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
1052 1.1 cgd (psp->ps_sigonstack & sigmask(sig))) {
1053 1.14 jtc scp = (struct sigcontext *)(psp->ps_sigstk.ss_sp +
1054 1.1 cgd psp->ps_sigstk.ss_size - rndfsize);
1055 1.9 mycroft psp->ps_sigstk.ss_flags |= SS_ONSTACK;
1056 1.1 cgd } else
1057 1.35 cgd scp = (struct sigcontext *)(alpha_pal_rdusp() - rndfsize);
1058 1.1 cgd if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
1059 1.1 cgd (void)grow(p, (u_long)scp);
1060 1.1 cgd #ifdef DEBUG
1061 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1062 1.33 cgd printf("sendsig(%d): sig %d ssp %p usp %p\n", p->p_pid,
1063 1.1 cgd sig, &oonstack, scp);
1064 1.1 cgd #endif
1065 1.1 cgd if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
1066 1.1 cgd #ifdef DEBUG
1067 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1068 1.1 cgd printf("sendsig(%d): useracc failed on sig %d\n",
1069 1.1 cgd p->p_pid, sig);
1070 1.1 cgd #endif
1071 1.1 cgd /*
1072 1.1 cgd * Process has trashed its stack; give it an illegal
1073 1.1 cgd * instruction to halt it in its tracks.
1074 1.1 cgd */
1075 1.1 cgd SIGACTION(p, SIGILL) = SIG_DFL;
1076 1.1 cgd sig = sigmask(SIGILL);
1077 1.1 cgd p->p_sigignore &= ~sig;
1078 1.1 cgd p->p_sigcatch &= ~sig;
1079 1.1 cgd p->p_sigmask &= ~sig;
1080 1.1 cgd psignal(p, SIGILL);
1081 1.1 cgd return;
1082 1.1 cgd }
1083 1.1 cgd
1084 1.1 cgd /*
1085 1.1 cgd * Build the signal context to be used by sigreturn.
1086 1.1 cgd */
1087 1.1 cgd ksc.sc_onstack = oonstack;
1088 1.1 cgd ksc.sc_mask = mask;
1089 1.34 cgd ksc.sc_pc = frame->tf_regs[FRAME_PC];
1090 1.34 cgd ksc.sc_ps = frame->tf_regs[FRAME_PS];
1091 1.1 cgd
1092 1.1 cgd /* copy the registers. */
1093 1.1 cgd frametoreg(frame, (struct reg *)ksc.sc_regs);
1094 1.1 cgd ksc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */
1095 1.35 cgd ksc.sc_regs[R_SP] = alpha_pal_rdusp();
1096 1.1 cgd
1097 1.1 cgd /* save the floating-point state, if necessary, then copy it. */
1098 1.1 cgd if (p == fpcurproc) {
1099 1.32 cgd alpha_pal_wrfen(1);
1100 1.1 cgd savefpstate(&p->p_addr->u_pcb.pcb_fp);
1101 1.32 cgd alpha_pal_wrfen(0);
1102 1.1 cgd fpcurproc = NULL;
1103 1.1 cgd }
1104 1.1 cgd ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
1105 1.1 cgd bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
1106 1.1 cgd sizeof(struct fpreg));
1107 1.1 cgd ksc.sc_fp_control = 0; /* XXX ? */
1108 1.1 cgd bzero(ksc.sc_reserved, sizeof ksc.sc_reserved); /* XXX */
1109 1.1 cgd bzero(ksc.sc_xxx, sizeof ksc.sc_xxx); /* XXX */
1110 1.1 cgd
1111 1.1 cgd
1112 1.1 cgd #ifdef COMPAT_OSF1
1113 1.1 cgd /*
1114 1.1 cgd * XXX Create an OSF/1-style sigcontext and associated goo.
1115 1.1 cgd */
1116 1.1 cgd #endif
1117 1.1 cgd
1118 1.1 cgd /*
1119 1.1 cgd * copy the frame out to userland.
1120 1.1 cgd */
1121 1.1 cgd (void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
1122 1.1 cgd #ifdef DEBUG
1123 1.1 cgd if (sigdebug & SDB_FOLLOW)
1124 1.33 cgd printf("sendsig(%d): sig %d scp %p code %lx\n", p->p_pid, sig,
1125 1.1 cgd scp, code);
1126 1.1 cgd #endif
1127 1.1 cgd
1128 1.1 cgd /*
1129 1.1 cgd * Set up the registers to return to sigcode.
1130 1.1 cgd */
1131 1.34 cgd frame->tf_regs[FRAME_PC] =
1132 1.34 cgd (u_int64_t)PS_STRINGS - (esigcode - sigcode);
1133 1.34 cgd frame->tf_regs[FRAME_A0] = sig;
1134 1.34 cgd frame->tf_regs[FRAME_A1] = code;
1135 1.34 cgd frame->tf_regs[FRAME_A2] = (u_int64_t)scp;
1136 1.1 cgd frame->tf_regs[FRAME_T12] = (u_int64_t)catcher; /* t12 is pv */
1137 1.35 cgd alpha_pal_wrusp((unsigned long)scp);
1138 1.1 cgd
1139 1.1 cgd #ifdef DEBUG
1140 1.1 cgd if (sigdebug & SDB_FOLLOW)
1141 1.1 cgd printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
1142 1.34 cgd frame->tf_regs[FRAME_PC], frame->tf_regs[FRAME_A3]);
1143 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1144 1.1 cgd printf("sendsig(%d): sig %d returns\n",
1145 1.1 cgd p->p_pid, sig);
1146 1.1 cgd #endif
1147 1.1 cgd }
1148 1.1 cgd
1149 1.1 cgd /*
1150 1.1 cgd * System call to cleanup state after a signal
1151 1.1 cgd * has been taken. Reset signal mask and
1152 1.1 cgd * stack state from context left by sendsig (above).
1153 1.1 cgd * Return to previous pc and psl as specified by
1154 1.1 cgd * context left by sendsig. Check carefully to
1155 1.1 cgd * make sure that the user has not modified the
1156 1.1 cgd * psl to gain improper priviledges or to cause
1157 1.1 cgd * a machine fault.
1158 1.1 cgd */
1159 1.1 cgd /* ARGSUSED */
1160 1.11 mycroft int
1161 1.11 mycroft sys_sigreturn(p, v, retval)
1162 1.1 cgd struct proc *p;
1163 1.10 thorpej void *v;
1164 1.10 thorpej register_t *retval;
1165 1.10 thorpej {
1166 1.11 mycroft struct sys_sigreturn_args /* {
1167 1.1 cgd syscallarg(struct sigcontext *) sigcntxp;
1168 1.10 thorpej } */ *uap = v;
1169 1.1 cgd struct sigcontext *scp, ksc;
1170 1.1 cgd extern struct proc *fpcurproc;
1171 1.1 cgd
1172 1.1 cgd scp = SCARG(uap, sigcntxp);
1173 1.1 cgd #ifdef DEBUG
1174 1.1 cgd if (sigdebug & SDB_FOLLOW)
1175 1.33 cgd printf("sigreturn: pid %d, scp %p\n", p->p_pid, scp);
1176 1.1 cgd #endif
1177 1.1 cgd
1178 1.1 cgd if (ALIGN(scp) != (u_int64_t)scp)
1179 1.1 cgd return (EINVAL);
1180 1.1 cgd
1181 1.1 cgd /*
1182 1.1 cgd * Test and fetch the context structure.
1183 1.1 cgd * We grab it all at once for speed.
1184 1.1 cgd */
1185 1.1 cgd if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
1186 1.1 cgd copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
1187 1.1 cgd return (EINVAL);
1188 1.1 cgd
1189 1.1 cgd if (ksc.sc_regs[R_ZERO] != 0xACEDBADE) /* magic number */
1190 1.1 cgd return (EINVAL);
1191 1.1 cgd /*
1192 1.1 cgd * Restore the user-supplied information
1193 1.1 cgd */
1194 1.1 cgd if (ksc.sc_onstack)
1195 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
1196 1.1 cgd else
1197 1.9 mycroft p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
1198 1.1 cgd p->p_sigmask = ksc.sc_mask &~ sigcantmask;
1199 1.1 cgd
1200 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PC] = ksc.sc_pc;
1201 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_PS] =
1202 1.32 cgd (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR;
1203 1.1 cgd
1204 1.1 cgd regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
1205 1.35 cgd alpha_pal_wrusp(ksc.sc_regs[R_SP]);
1206 1.1 cgd
1207 1.1 cgd /* XXX ksc.sc_ownedfp ? */
1208 1.1 cgd if (p == fpcurproc)
1209 1.1 cgd fpcurproc = NULL;
1210 1.1 cgd bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
1211 1.1 cgd sizeof(struct fpreg));
1212 1.1 cgd /* XXX ksc.sc_fp_control ? */
1213 1.1 cgd
1214 1.1 cgd #ifdef DEBUG
1215 1.1 cgd if (sigdebug & SDB_FOLLOW)
1216 1.1 cgd printf("sigreturn(%d): returns\n", p->p_pid);
1217 1.1 cgd #endif
1218 1.1 cgd return (EJUSTRETURN);
1219 1.1 cgd }
1220 1.1 cgd
1221 1.1 cgd /*
1222 1.1 cgd * machine dependent system variables.
1223 1.1 cgd */
1224 1.33 cgd int
1225 1.1 cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
1226 1.1 cgd int *name;
1227 1.1 cgd u_int namelen;
1228 1.1 cgd void *oldp;
1229 1.1 cgd size_t *oldlenp;
1230 1.1 cgd void *newp;
1231 1.1 cgd size_t newlen;
1232 1.1 cgd struct proc *p;
1233 1.1 cgd {
1234 1.1 cgd dev_t consdev;
1235 1.1 cgd
1236 1.1 cgd /* all sysctl names at this level are terminal */
1237 1.1 cgd if (namelen != 1)
1238 1.1 cgd return (ENOTDIR); /* overloaded */
1239 1.1 cgd
1240 1.1 cgd switch (name[0]) {
1241 1.1 cgd case CPU_CONSDEV:
1242 1.1 cgd if (cn_tab != NULL)
1243 1.1 cgd consdev = cn_tab->cn_dev;
1244 1.1 cgd else
1245 1.1 cgd consdev = NODEV;
1246 1.1 cgd return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
1247 1.1 cgd sizeof consdev));
1248 1.30 cgd
1249 1.30 cgd case CPU_ROOT_DEVICE:
1250 1.30 cgd return (sysctl_rdstring(oldp, oldlenp, newp, root_device));
1251 1.36 cgd
1252 1.36 cgd case CPU_UNALIGNED_PRINT:
1253 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1254 1.36 cgd &alpha_unaligned_print));
1255 1.36 cgd
1256 1.36 cgd case CPU_UNALIGNED_FIX:
1257 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1258 1.36 cgd &alpha_unaligned_fix));
1259 1.36 cgd
1260 1.36 cgd case CPU_UNALIGNED_SIGBUS:
1261 1.36 cgd return (sysctl_int(oldp, oldlenp, newp, newlen,
1262 1.36 cgd &alpha_unaligned_sigbus));
1263 1.30 cgd
1264 1.1 cgd default:
1265 1.1 cgd return (EOPNOTSUPP);
1266 1.1 cgd }
1267 1.1 cgd /* NOTREACHED */
1268 1.1 cgd }
1269 1.1 cgd
1270 1.1 cgd /*
1271 1.1 cgd * Set registers on exec.
1272 1.1 cgd */
1273 1.1 cgd void
1274 1.5 christos setregs(p, pack, stack, retval)
1275 1.1 cgd register struct proc *p;
1276 1.5 christos struct exec_package *pack;
1277 1.1 cgd u_long stack;
1278 1.1 cgd register_t *retval;
1279 1.1 cgd {
1280 1.1 cgd struct trapframe *tfp = p->p_md.md_tf;
1281 1.1 cgd int i;
1282 1.1 cgd extern struct proc *fpcurproc;
1283 1.1 cgd
1284 1.1 cgd #ifdef DEBUG
1285 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1286 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1287 1.1 cgd #else
1288 1.34 cgd bzero(tfp->tf_regs, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1289 1.1 cgd #endif
1290 1.1 cgd bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
1291 1.7 cgd #define FP_RN 2 /* XXX */
1292 1.7 cgd p->p_addr->u_pcb.pcb_fp.fpr_cr = (long)FP_RN << 58;
1293 1.35 cgd alpha_pal_wrusp(stack);
1294 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1295 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1296 1.1 cgd
1297 1.33 cgd p->p_md.md_flags &= ~MDP_FPUSED;
1298 1.1 cgd if (fpcurproc == p)
1299 1.1 cgd fpcurproc = NULL;
1300 1.1 cgd
1301 1.1 cgd retval[0] = retval[1] = 0;
1302 1.1 cgd }
1303 1.1 cgd
1304 1.1 cgd void
1305 1.1 cgd netintr()
1306 1.1 cgd {
1307 1.1 cgd #ifdef INET
1308 1.1 cgd #if NETHER > 0
1309 1.1 cgd if (netisr & (1 << NETISR_ARP)) {
1310 1.1 cgd netisr &= ~(1 << NETISR_ARP);
1311 1.1 cgd arpintr();
1312 1.1 cgd }
1313 1.1 cgd #endif
1314 1.1 cgd if (netisr & (1 << NETISR_IP)) {
1315 1.1 cgd netisr &= ~(1 << NETISR_IP);
1316 1.1 cgd ipintr();
1317 1.1 cgd }
1318 1.1 cgd #endif
1319 1.1 cgd #ifdef NS
1320 1.1 cgd if (netisr & (1 << NETISR_NS)) {
1321 1.1 cgd netisr &= ~(1 << NETISR_NS);
1322 1.1 cgd nsintr();
1323 1.1 cgd }
1324 1.1 cgd #endif
1325 1.1 cgd #ifdef ISO
1326 1.1 cgd if (netisr & (1 << NETISR_ISO)) {
1327 1.1 cgd netisr &= ~(1 << NETISR_ISO);
1328 1.1 cgd clnlintr();
1329 1.1 cgd }
1330 1.1 cgd #endif
1331 1.1 cgd #ifdef CCITT
1332 1.1 cgd if (netisr & (1 << NETISR_CCITT)) {
1333 1.1 cgd netisr &= ~(1 << NETISR_CCITT);
1334 1.1 cgd ccittintr();
1335 1.1 cgd }
1336 1.1 cgd #endif
1337 1.8 cgd #ifdef PPP
1338 1.8 cgd if (netisr & (1 << NETISR_PPP)) {
1339 1.20 cgd netisr &= ~(1 << NETISR_PPP);
1340 1.8 cgd pppintr();
1341 1.8 cgd }
1342 1.8 cgd #endif
1343 1.1 cgd }
1344 1.1 cgd
1345 1.1 cgd void
1346 1.1 cgd do_sir()
1347 1.1 cgd {
1348 1.1 cgd
1349 1.1 cgd if (ssir & SIR_NET) {
1350 1.1 cgd siroff(SIR_NET);
1351 1.1 cgd cnt.v_soft++;
1352 1.1 cgd netintr();
1353 1.1 cgd }
1354 1.1 cgd if (ssir & SIR_CLOCK) {
1355 1.1 cgd siroff(SIR_CLOCK);
1356 1.1 cgd cnt.v_soft++;
1357 1.1 cgd softclock();
1358 1.1 cgd }
1359 1.1 cgd }
1360 1.1 cgd
1361 1.1 cgd int
1362 1.1 cgd spl0()
1363 1.1 cgd {
1364 1.1 cgd
1365 1.1 cgd if (ssir) {
1366 1.1 cgd splsoft();
1367 1.1 cgd do_sir();
1368 1.1 cgd }
1369 1.1 cgd
1370 1.32 cgd return (alpha_pal_swpipl(ALPHA_PSL_IPL_0));
1371 1.1 cgd }
1372 1.1 cgd
1373 1.1 cgd /*
1374 1.1 cgd * The following primitives manipulate the run queues. _whichqs tells which
1375 1.1 cgd * of the 32 queues _qs have processes in them. Setrunqueue puts processes
1376 1.1 cgd * into queues, Remrq removes them from queues. The running process is on
1377 1.1 cgd * no queue, other processes are on a queue related to p->p_priority, divided
1378 1.1 cgd * by 4 actually to shrink the 0-127 range of priorities into the 32 available
1379 1.1 cgd * queues.
1380 1.1 cgd */
1381 1.1 cgd /*
1382 1.1 cgd * setrunqueue(p)
1383 1.1 cgd * proc *p;
1384 1.1 cgd *
1385 1.1 cgd * Call should be made at splclock(), and p->p_stat should be SRUN.
1386 1.1 cgd */
1387 1.1 cgd
1388 1.1 cgd void
1389 1.1 cgd setrunqueue(p)
1390 1.1 cgd struct proc *p;
1391 1.1 cgd {
1392 1.1 cgd int bit;
1393 1.1 cgd
1394 1.1 cgd /* firewall: p->p_back must be NULL */
1395 1.1 cgd if (p->p_back != NULL)
1396 1.1 cgd panic("setrunqueue");
1397 1.1 cgd
1398 1.1 cgd bit = p->p_priority >> 2;
1399 1.1 cgd whichqs |= (1 << bit);
1400 1.1 cgd p->p_forw = (struct proc *)&qs[bit];
1401 1.1 cgd p->p_back = qs[bit].ph_rlink;
1402 1.1 cgd p->p_back->p_forw = p;
1403 1.1 cgd qs[bit].ph_rlink = p;
1404 1.1 cgd }
1405 1.1 cgd
1406 1.1 cgd /*
1407 1.1 cgd * Remrq(p)
1408 1.1 cgd *
1409 1.1 cgd * Call should be made at splclock().
1410 1.1 cgd */
1411 1.1 cgd void
1412 1.1 cgd remrq(p)
1413 1.1 cgd struct proc *p;
1414 1.1 cgd {
1415 1.1 cgd int bit;
1416 1.1 cgd
1417 1.1 cgd bit = p->p_priority >> 2;
1418 1.1 cgd if ((whichqs & (1 << bit)) == 0)
1419 1.1 cgd panic("remrq");
1420 1.1 cgd
1421 1.1 cgd p->p_back->p_forw = p->p_forw;
1422 1.1 cgd p->p_forw->p_back = p->p_back;
1423 1.1 cgd p->p_back = NULL; /* for firewall checking. */
1424 1.1 cgd
1425 1.1 cgd if ((struct proc *)&qs[bit] == qs[bit].ph_link)
1426 1.1 cgd whichqs &= ~(1 << bit);
1427 1.1 cgd }
1428 1.1 cgd
1429 1.1 cgd /*
1430 1.1 cgd * Return the best possible estimate of the time in the timeval
1431 1.1 cgd * to which tvp points. Unfortunately, we can't read the hardware registers.
1432 1.1 cgd * We guarantee that the time will be greater than the value obtained by a
1433 1.1 cgd * previous call.
1434 1.1 cgd */
1435 1.1 cgd void
1436 1.1 cgd microtime(tvp)
1437 1.1 cgd register struct timeval *tvp;
1438 1.1 cgd {
1439 1.1 cgd int s = splclock();
1440 1.1 cgd static struct timeval lasttime;
1441 1.1 cgd
1442 1.1 cgd *tvp = time;
1443 1.1 cgd #ifdef notdef
1444 1.1 cgd tvp->tv_usec += clkread();
1445 1.1 cgd while (tvp->tv_usec > 1000000) {
1446 1.1 cgd tvp->tv_sec++;
1447 1.1 cgd tvp->tv_usec -= 1000000;
1448 1.1 cgd }
1449 1.1 cgd #endif
1450 1.1 cgd if (tvp->tv_sec == lasttime.tv_sec &&
1451 1.1 cgd tvp->tv_usec <= lasttime.tv_usec &&
1452 1.1 cgd (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
1453 1.1 cgd tvp->tv_sec++;
1454 1.1 cgd tvp->tv_usec -= 1000000;
1455 1.1 cgd }
1456 1.1 cgd lasttime = *tvp;
1457 1.1 cgd splx(s);
1458 1.15 cgd }
1459 1.15 cgd
1460 1.15 cgd /*
1461 1.15 cgd * Wait "n" microseconds.
1462 1.15 cgd */
1463 1.32 cgd void
1464 1.15 cgd delay(n)
1465 1.32 cgd unsigned long n;
1466 1.15 cgd {
1467 1.15 cgd long N = cycles_per_usec * (n);
1468 1.15 cgd
1469 1.15 cgd while (N > 0) /* XXX */
1470 1.15 cgd N -= 3; /* XXX */
1471 1.1 cgd }
1472 1.1 cgd
1473 1.8 cgd #if defined(COMPAT_OSF1) || 1 /* XXX */
1474 1.1 cgd void
1475 1.19 cgd cpu_exec_ecoff_setregs(p, epp, stack, retval)
1476 1.1 cgd struct proc *p;
1477 1.19 cgd struct exec_package *epp;
1478 1.5 christos u_long stack;
1479 1.5 christos register_t *retval;
1480 1.1 cgd {
1481 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1482 1.1 cgd
1483 1.19 cgd setregs(p, epp, stack, retval);
1484 1.34 cgd p->p_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1485 1.1 cgd }
1486 1.1 cgd
1487 1.1 cgd /*
1488 1.1 cgd * cpu_exec_ecoff_hook():
1489 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1490 1.1 cgd *
1491 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1492 1.1 cgd *
1493 1.1 cgd */
1494 1.1 cgd int
1495 1.19 cgd cpu_exec_ecoff_hook(p, epp)
1496 1.1 cgd struct proc *p;
1497 1.1 cgd struct exec_package *epp;
1498 1.1 cgd {
1499 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1500 1.5 christos extern struct emul emul_netbsd;
1501 1.5 christos #ifdef COMPAT_OSF1
1502 1.5 christos extern struct emul emul_osf1;
1503 1.5 christos #endif
1504 1.1 cgd
1505 1.19 cgd switch (execp->f.f_magic) {
1506 1.5 christos #ifdef COMPAT_OSF1
1507 1.1 cgd case ECOFF_MAGIC_ALPHA:
1508 1.5 christos epp->ep_emul = &emul_osf1;
1509 1.1 cgd break;
1510 1.5 christos #endif
1511 1.1 cgd
1512 1.1 cgd case ECOFF_MAGIC_NETBSD_ALPHA:
1513 1.5 christos epp->ep_emul = &emul_netbsd;
1514 1.1 cgd break;
1515 1.1 cgd
1516 1.1 cgd default:
1517 1.12 cgd return ENOEXEC;
1518 1.1 cgd }
1519 1.1 cgd return 0;
1520 1.1 cgd }
1521 1.1 cgd #endif
1522