machdep.c revision 1.372 1 1.372 thorpej /* $NetBSD: machdep.c,v 1.372 2021/05/24 21:00:12 thorpej Exp $ */
2 1.110 thorpej
3 1.110 thorpej /*-
4 1.368 thorpej * Copyright (c) 1998, 1999, 2000, 2019, 2020 The NetBSD Foundation, Inc.
5 1.110 thorpej * All rights reserved.
6 1.110 thorpej *
7 1.110 thorpej * This code is derived from software contributed to The NetBSD Foundation
8 1.110 thorpej * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.110 thorpej * NASA Ames Research Center and by Chris G. Demetriou.
10 1.110 thorpej *
11 1.110 thorpej * Redistribution and use in source and binary forms, with or without
12 1.110 thorpej * modification, are permitted provided that the following conditions
13 1.110 thorpej * are met:
14 1.110 thorpej * 1. Redistributions of source code must retain the above copyright
15 1.110 thorpej * notice, this list of conditions and the following disclaimer.
16 1.110 thorpej * 2. Redistributions in binary form must reproduce the above copyright
17 1.110 thorpej * notice, this list of conditions and the following disclaimer in the
18 1.110 thorpej * documentation and/or other materials provided with the distribution.
19 1.110 thorpej *
20 1.110 thorpej * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.110 thorpej * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.110 thorpej * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.110 thorpej * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.110 thorpej * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.110 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.110 thorpej * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.110 thorpej * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.110 thorpej * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.110 thorpej * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.110 thorpej * POSSIBILITY OF SUCH DAMAGE.
31 1.110 thorpej */
32 1.1 cgd
33 1.1 cgd /*
34 1.16 cgd * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35 1.1 cgd * All rights reserved.
36 1.1 cgd *
37 1.1 cgd * Author: Chris G. Demetriou
38 1.337 matt *
39 1.1 cgd * Permission to use, copy, modify and distribute this software and
40 1.1 cgd * its documentation is hereby granted, provided that both the copyright
41 1.1 cgd * notice and this permission notice appear in all copies of the
42 1.1 cgd * software, derivative works or modified versions, and any portions
43 1.1 cgd * thereof, and that both notices appear in supporting documentation.
44 1.337 matt *
45 1.337 matt * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46 1.337 matt * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47 1.1 cgd * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 1.337 matt *
49 1.1 cgd * Carnegie Mellon requests users of this software to return to
50 1.1 cgd *
51 1.1 cgd * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
52 1.1 cgd * School of Computer Science
53 1.1 cgd * Carnegie Mellon University
54 1.1 cgd * Pittsburgh PA 15213-3890
55 1.1 cgd *
56 1.1 cgd * any improvements or extensions that they make and grant Carnegie the
57 1.1 cgd * rights to redistribute these changes.
58 1.1 cgd */
59 1.74 cgd
60 1.129 jonathan #include "opt_ddb.h"
61 1.244 lukem #include "opt_kgdb.h"
62 1.315 apb #include "opt_modular.h"
63 1.147 thorpej #include "opt_multiprocessor.h"
64 1.123 thorpej #include "opt_dec_3000_300.h"
65 1.123 thorpej #include "opt_dec_3000_500.h"
66 1.250 jdolecek #include "opt_execfmt.h"
67 1.112 thorpej
68 1.75 cgd #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
69 1.75 cgd
70 1.372 thorpej __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.372 2021/05/24 21:00:12 thorpej Exp $");
71 1.1 cgd
72 1.1 cgd #include <sys/param.h>
73 1.1 cgd #include <sys/systm.h>
74 1.1 cgd #include <sys/signalvar.h>
75 1.1 cgd #include <sys/kernel.h>
76 1.297 yamt #include <sys/cpu.h>
77 1.1 cgd #include <sys/proc.h>
78 1.264 nathanw #include <sys/ras.h>
79 1.207 thorpej #include <sys/sched.h>
80 1.1 cgd #include <sys/reboot.h>
81 1.28 cgd #include <sys/device.h>
82 1.1 cgd #include <sys/malloc.h>
83 1.354 thorpej #include <sys/module.h>
84 1.110 thorpej #include <sys/mman.h>
85 1.1 cgd #include <sys/msgbuf.h>
86 1.1 cgd #include <sys/ioctl.h>
87 1.1 cgd #include <sys/tty.h>
88 1.1 cgd #include <sys/exec.h>
89 1.320 matt #include <sys/exec_aout.h> /* for MID_* */
90 1.1 cgd #include <sys/exec_ecoff.h>
91 1.43 cgd #include <sys/core.h>
92 1.43 cgd #include <sys/kcore.h>
93 1.261 thorpej #include <sys/ucontext.h>
94 1.258 gehenna #include <sys/conf.h>
95 1.266 ragge #include <sys/ksyms.h>
96 1.290 elad #include <sys/kauth.h>
97 1.303 ad #include <sys/atomic.h>
98 1.303 ad #include <sys/cpu.h>
99 1.303 ad
100 1.43 cgd #include <machine/kcore.h>
101 1.241 ross #include <machine/fpu.h>
102 1.1 cgd
103 1.1 cgd #include <sys/mount.h>
104 1.1 cgd #include <sys/syscallargs.h>
105 1.1 cgd
106 1.327 uebayasi #include <uvm/uvm.h>
107 1.217 mrg #include <sys/sysctl.h>
108 1.112 thorpej
109 1.1 cgd #include <dev/cons.h>
110 1.335 rmind #include <dev/mm.h>
111 1.1 cgd
112 1.81 thorpej #include <machine/autoconf.h>
113 1.1 cgd #include <machine/reg.h>
114 1.1 cgd #include <machine/rpb.h>
115 1.1 cgd #include <machine/prom.h>
116 1.258 gehenna #include <machine/cpuconf.h>
117 1.172 ross #include <machine/ieeefp.h>
118 1.148 thorpej
119 1.81 thorpej #ifdef DDB
120 1.81 thorpej #include <machine/db_machdep.h>
121 1.81 thorpej #include <ddb/db_access.h>
122 1.81 thorpej #include <ddb/db_sym.h>
123 1.81 thorpej #include <ddb/db_extern.h>
124 1.81 thorpej #include <ddb/db_interface.h>
125 1.233 thorpej #endif
126 1.233 thorpej
127 1.233 thorpej #ifdef KGDB
128 1.233 thorpej #include <sys/kgdb.h>
129 1.81 thorpej #endif
130 1.81 thorpej
131 1.229 sommerfe #ifdef DEBUG
132 1.229 sommerfe #include <machine/sigdebug.h>
133 1.346 uebayasi int sigdebug = 0x0;
134 1.346 uebayasi int sigpid = 0;
135 1.229 sommerfe #endif
136 1.229 sommerfe
137 1.155 ross #include <machine/alpha.h>
138 1.143 matt
139 1.266 ragge #include "ksyms.h"
140 1.266 ragge
141 1.245 chs struct vm_map *phys_map = NULL;
142 1.1 cgd
143 1.295 christos void *msgbufaddr;
144 1.86 leo
145 1.1 cgd int maxmem; /* max memory per process */
146 1.7 cgd
147 1.7 cgd int totalphysmem; /* total amount of physical memory in system */
148 1.1 cgd int resvmem; /* amount of memory reserved for PROM */
149 1.7 cgd int unusedmem; /* amount of memory for OS that we don't use */
150 1.7 cgd int unknownmem; /* amount of memory with an unknown use */
151 1.1 cgd
152 1.1 cgd int cputype; /* system type, from the RPB */
153 1.365 thorpej bool alpha_is_qemu; /* true if we've detected runnnig in qemu */
154 1.210 thorpej
155 1.210 thorpej int bootdev_debug = 0; /* patchable, or from DDB */
156 1.1 cgd
157 1.1 cgd /*
158 1.1 cgd * XXX We need an address to which we can assign things so that they
159 1.1 cgd * won't be optimized away because we didn't use the value.
160 1.1 cgd */
161 1.337 matt uint32_t no_optimize;
162 1.1 cgd
163 1.1 cgd /* the following is used externally (sysctl_hw) */
164 1.79 veego char machine[] = MACHINE; /* from <machine/param.h> */
165 1.79 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
166 1.1 cgd
167 1.1 cgd /* Number of machine cycles per microsecond */
168 1.337 matt uint64_t cycles_per_usec;
169 1.1 cgd
170 1.280 wiz /* number of CPUs in the box. really! */
171 1.7 cgd int ncpus;
172 1.7 cgd
173 1.102 cgd struct bootinfo_kernel bootinfo;
174 1.81 thorpej
175 1.123 thorpej /* For built-in TCDS */
176 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
177 1.347 flxd uint8_t dec_3000_scsiid[3], dec_3000_scsifast[3];
178 1.123 thorpej #endif
179 1.123 thorpej
180 1.89 mjacob struct platform platform;
181 1.89 mjacob
182 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR)
183 1.81 thorpej /* start and end of kernel symbol table */
184 1.81 thorpej void *ksym_start, *ksym_end;
185 1.81 thorpej #endif
186 1.81 thorpej
187 1.30 cgd /* for cpu_sysctl() */
188 1.36 cgd int alpha_unaligned_print = 1; /* warn about unaligned accesses */
189 1.36 cgd int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
190 1.36 cgd int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
191 1.241 ross int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
192 1.30 cgd
193 1.110 thorpej /*
194 1.110 thorpej * XXX This should be dynamically sized, but we have the chicken-egg problem!
195 1.110 thorpej * XXX it should also be larger than it is, because not all of the mddt
196 1.110 thorpej * XXX clusters end up being used for VM.
197 1.110 thorpej */
198 1.110 thorpej phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
199 1.110 thorpej int mem_cluster_cnt;
200 1.110 thorpej
201 1.316 dsl int cpu_dump(void);
202 1.316 dsl int cpu_dumpsize(void);
203 1.316 dsl u_long cpu_dump_mempagecnt(void);
204 1.316 dsl void dumpsys(void);
205 1.316 dsl void identifycpu(void);
206 1.316 dsl void printregs(struct reg *);
207 1.33 cgd
208 1.334 matt const pcu_ops_t fpu_ops = {
209 1.334 matt .pcu_id = PCU_FPU,
210 1.334 matt .pcu_state_load = fpu_state_load,
211 1.334 matt .pcu_state_save = fpu_state_save,
212 1.334 matt .pcu_state_release = fpu_state_release,
213 1.334 matt };
214 1.334 matt
215 1.334 matt const pcu_ops_t * const pcu_ops_md_defs[PCU_UNIT_COUNT] = {
216 1.334 matt [PCU_FPU] = &fpu_ops,
217 1.334 matt };
218 1.334 matt
219 1.368 thorpej static void
220 1.368 thorpej alpha_page_physload(unsigned long const start_pfn, unsigned long const end_pfn)
221 1.368 thorpej {
222 1.368 thorpej
223 1.368 thorpej /*
224 1.368 thorpej * Some Alpha platforms may have unique requirements about
225 1.368 thorpej * how physical memory is managed (e.g. reserving memory
226 1.368 thorpej * ranges due to lack of SGMAP DMA).
227 1.368 thorpej */
228 1.368 thorpej if (platform.page_physload != NULL) {
229 1.368 thorpej (*platform.page_physload)(start_pfn, end_pfn);
230 1.368 thorpej return;
231 1.368 thorpej }
232 1.368 thorpej
233 1.368 thorpej uvm_page_physload(start_pfn, end_pfn, start_pfn, end_pfn,
234 1.368 thorpej VM_FREELIST_DEFAULT);
235 1.368 thorpej }
236 1.368 thorpej
237 1.368 thorpej void
238 1.368 thorpej alpha_page_physload_sheltered(unsigned long const start_pfn,
239 1.368 thorpej unsigned long const end_pfn, unsigned long const shelter_start_pfn,
240 1.368 thorpej unsigned long const shelter_end_pfn)
241 1.368 thorpej {
242 1.368 thorpej
243 1.368 thorpej /*
244 1.368 thorpej * If the added region ends before or starts after the sheltered
245 1.368 thorpej * region, then it just goes on the default freelist.
246 1.368 thorpej */
247 1.368 thorpej if (end_pfn <= shelter_start_pfn || start_pfn >= shelter_end_pfn) {
248 1.368 thorpej uvm_page_physload(start_pfn, end_pfn,
249 1.368 thorpej start_pfn, end_pfn, VM_FREELIST_DEFAULT);
250 1.368 thorpej return;
251 1.368 thorpej }
252 1.368 thorpej
253 1.368 thorpej /*
254 1.368 thorpej * Load any portion that comes before the sheltered region.
255 1.368 thorpej */
256 1.368 thorpej if (start_pfn < shelter_start_pfn) {
257 1.368 thorpej KASSERT(end_pfn > shelter_start_pfn);
258 1.368 thorpej uvm_page_physload(start_pfn, shelter_start_pfn,
259 1.368 thorpej start_pfn, shelter_start_pfn, VM_FREELIST_DEFAULT);
260 1.368 thorpej }
261 1.368 thorpej
262 1.368 thorpej /*
263 1.368 thorpej * Load the portion that overlaps that sheltered region.
264 1.368 thorpej */
265 1.368 thorpej const unsigned long ov_start = MAX(start_pfn, shelter_start_pfn);
266 1.368 thorpej const unsigned long ov_end = MIN(end_pfn, shelter_end_pfn);
267 1.368 thorpej KASSERT(ov_start >= shelter_start_pfn);
268 1.368 thorpej KASSERT(ov_end <= shelter_end_pfn);
269 1.368 thorpej uvm_page_physload(ov_start, ov_end, ov_start, ov_end,
270 1.368 thorpej VM_FREELIST_SHELTERED);
271 1.368 thorpej
272 1.368 thorpej /*
273 1.368 thorpej * Load any portion that comes after the sheltered region.
274 1.368 thorpej */
275 1.368 thorpej if (end_pfn > shelter_end_pfn) {
276 1.368 thorpej KASSERT(start_pfn < shelter_end_pfn);
277 1.368 thorpej uvm_page_physload(shelter_end_pfn, end_pfn,
278 1.368 thorpej shelter_end_pfn, end_pfn, VM_FREELIST_DEFAULT);
279 1.368 thorpej }
280 1.368 thorpej }
281 1.368 thorpej
282 1.55 cgd void
283 1.358 thorpej alpha_init(u_long xxx_pfn __unused, u_long ptb, u_long bim, u_long bip,
284 1.358 thorpej u_long biv)
285 1.358 thorpej /* pfn: first free PFN number (no longer used) */
286 1.318 dsl /* ptb: PFN of current level 1 page table */
287 1.318 dsl /* bim: bootinfo magic */
288 1.318 dsl /* bip: bootinfo pointer */
289 1.318 dsl /* biv: bootinfo version */
290 1.1 cgd {
291 1.95 thorpej extern char kernel_text[], _end[];
292 1.1 cgd struct mddt *mddtp;
293 1.110 thorpej struct mddt_cluster *memc;
294 1.7 cgd int i, mddtweird;
295 1.324 rmind struct pcb *pcb0;
296 1.324 rmind vaddr_t kernstart, kernend, v;
297 1.140 thorpej paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
298 1.211 thorpej cpuid_t cpu_id;
299 1.211 thorpej struct cpu_info *ci;
300 1.1 cgd char *p;
301 1.209 thorpej const char *bootinfo_msg;
302 1.209 thorpej const struct cpuinit *c;
303 1.106 cgd
304 1.106 cgd /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
305 1.1 cgd
306 1.1 cgd /*
307 1.77 cgd * Turn off interrupts (not mchecks) and floating point.
308 1.1 cgd * Make sure the instruction and data streams are consistent.
309 1.1 cgd */
310 1.77 cgd (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
311 1.32 cgd alpha_pal_wrfen(0);
312 1.37 cgd ALPHA_TBIA();
313 1.32 cgd alpha_pal_imb();
314 1.248 thorpej
315 1.248 thorpej /* Initialize the SCB. */
316 1.248 thorpej scb_init();
317 1.1 cgd
318 1.211 thorpej cpu_id = cpu_number();
319 1.211 thorpej
320 1.364 thorpej ci = &cpu_info_primary;
321 1.364 thorpej ci->ci_cpuid = cpu_id;
322 1.364 thorpej
323 1.189 thorpej #if defined(MULTIPROCESSOR)
324 1.189 thorpej /*
325 1.364 thorpej * Set the SysValue to &lwp0, after making sure that lwp0
326 1.364 thorpej * is pointing at the primary CPU. Secondary processors do
327 1.364 thorpej * this in their spinup trampoline.
328 1.189 thorpej */
329 1.364 thorpej lwp0.l_cpu = ci;
330 1.364 thorpej cpu_info[cpu_id] = ci;
331 1.364 thorpej alpha_pal_wrval((u_long)&lwp0);
332 1.189 thorpej #endif
333 1.189 thorpej
334 1.1 cgd /*
335 1.106 cgd * Get critical system information (if possible, from the
336 1.106 cgd * information provided by the boot program).
337 1.81 thorpej */
338 1.106 cgd bootinfo_msg = NULL;
339 1.81 thorpej if (bim == BOOTINFO_MAGIC) {
340 1.102 cgd if (biv == 0) { /* backward compat */
341 1.102 cgd biv = *(u_long *)bip;
342 1.102 cgd bip += 8;
343 1.102 cgd }
344 1.102 cgd switch (biv) {
345 1.102 cgd case 1: {
346 1.102 cgd struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
347 1.102 cgd
348 1.102 cgd bootinfo.ssym = v1p->ssym;
349 1.102 cgd bootinfo.esym = v1p->esym;
350 1.106 cgd /* hwrpb may not be provided by boot block in v1 */
351 1.106 cgd if (v1p->hwrpb != NULL) {
352 1.106 cgd bootinfo.hwrpb_phys =
353 1.106 cgd ((struct rpb *)v1p->hwrpb)->rpb_phys;
354 1.106 cgd bootinfo.hwrpb_size = v1p->hwrpbsize;
355 1.106 cgd } else {
356 1.106 cgd bootinfo.hwrpb_phys =
357 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_phys;
358 1.106 cgd bootinfo.hwrpb_size =
359 1.106 cgd ((struct rpb *)HWRPB_ADDR)->rpb_size;
360 1.106 cgd }
361 1.247 thorpej memcpy(bootinfo.boot_flags, v1p->boot_flags,
362 1.351 riastrad uimin(sizeof v1p->boot_flags,
363 1.102 cgd sizeof bootinfo.boot_flags));
364 1.247 thorpej memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
365 1.351 riastrad uimin(sizeof v1p->booted_kernel,
366 1.102 cgd sizeof bootinfo.booted_kernel));
367 1.106 cgd /* booted dev not provided in bootinfo */
368 1.363 thorpej init_prom_interface(ptb, (struct rpb *)
369 1.106 cgd ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
370 1.337 matt prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
371 1.102 cgd sizeof bootinfo.booted_dev);
372 1.81 thorpej break;
373 1.102 cgd }
374 1.81 thorpej default:
375 1.106 cgd bootinfo_msg = "unknown bootinfo version";
376 1.102 cgd goto nobootinfo;
377 1.81 thorpej }
378 1.102 cgd } else {
379 1.106 cgd bootinfo_msg = "boot program did not pass bootinfo";
380 1.102 cgd nobootinfo:
381 1.102 cgd bootinfo.ssym = (u_long)_end;
382 1.102 cgd bootinfo.esym = (u_long)_end;
383 1.106 cgd bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
384 1.106 cgd bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
385 1.363 thorpej init_prom_interface(ptb, (struct rpb *)HWRPB_ADDR);
386 1.366 thorpej if (alpha_is_qemu) {
387 1.366 thorpej /*
388 1.366 thorpej * Grab boot flags from kernel command line.
389 1.366 thorpej * Assume autoboot if not supplied.
390 1.366 thorpej */
391 1.366 thorpej if (! prom_qemu_getenv("flags", bootinfo.boot_flags,
392 1.366 thorpej sizeof(bootinfo.boot_flags))) {
393 1.366 thorpej strlcpy(bootinfo.boot_flags, "A",
394 1.366 thorpej sizeof(bootinfo.boot_flags));
395 1.366 thorpej }
396 1.366 thorpej } else {
397 1.366 thorpej prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
398 1.366 thorpej sizeof bootinfo.boot_flags);
399 1.366 thorpej prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
400 1.366 thorpej sizeof bootinfo.booted_kernel);
401 1.366 thorpej prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
402 1.366 thorpej sizeof bootinfo.booted_dev);
403 1.366 thorpej }
404 1.102 cgd }
405 1.102 cgd
406 1.81 thorpej /*
407 1.106 cgd * Initialize the kernel's mapping of the RPB. It's needed for
408 1.106 cgd * lots of things.
409 1.106 cgd */
410 1.106 cgd hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
411 1.123 thorpej
412 1.123 thorpej #if defined(DEC_3000_300) || defined(DEC_3000_500)
413 1.123 thorpej if (hwrpb->rpb_type == ST_DEC_3000_300 ||
414 1.123 thorpej hwrpb->rpb_type == ST_DEC_3000_500) {
415 1.123 thorpej prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
416 1.123 thorpej sizeof(dec_3000_scsiid));
417 1.123 thorpej prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
418 1.123 thorpej sizeof(dec_3000_scsifast));
419 1.123 thorpej }
420 1.123 thorpej #endif
421 1.106 cgd
422 1.106 cgd /*
423 1.337 matt * Remember how many cycles there are per microsecond,
424 1.106 cgd * so that we can use delay(). Round up, for safety.
425 1.106 cgd */
426 1.106 cgd cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
427 1.106 cgd
428 1.106 cgd /*
429 1.251 wiz * Initialize the (temporary) bootstrap console interface, so
430 1.106 cgd * we can use printf until the VM system starts being setup.
431 1.106 cgd * The real console is initialized before then.
432 1.106 cgd */
433 1.106 cgd init_bootstrap_console();
434 1.106 cgd
435 1.106 cgd /* OUTPUT NOW ALLOWED */
436 1.106 cgd
437 1.106 cgd /* delayed from above */
438 1.106 cgd if (bootinfo_msg)
439 1.106 cgd printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
440 1.106 cgd bootinfo_msg, bim, bip, biv);
441 1.106 cgd
442 1.147 thorpej /* Initialize the trap vectors on the primary processor. */
443 1.147 thorpej trap_init();
444 1.1 cgd
445 1.1 cgd /*
446 1.263 thorpej * Find out this system's page size, and initialize
447 1.263 thorpej * PAGE_SIZE-dependent variables.
448 1.243 thorpej */
449 1.263 thorpej if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
450 1.263 thorpej panic("page size %lu != %d?!", hwrpb->rpb_page_size,
451 1.263 thorpej ALPHA_PGBYTES);
452 1.263 thorpej uvmexp.pagesize = hwrpb->rpb_page_size;
453 1.348 cherry uvm_md_init();
454 1.243 thorpej
455 1.243 thorpej /*
456 1.363 thorpej * cputype has been initialized in init_prom_interface().
457 1.363 thorpej * Perform basic platform initialization using this info.
458 1.106 cgd */
459 1.363 thorpej KASSERT(prom_interface_initialized);
460 1.209 thorpej c = platform_lookup(cputype);
461 1.209 thorpej if (c == NULL) {
462 1.106 cgd platform_not_supported();
463 1.106 cgd /* NOTREACHED */
464 1.106 cgd }
465 1.209 thorpej (*c->init)();
466 1.344 christos cpu_setmodel("%s", platform.model);
467 1.106 cgd
468 1.106 cgd /*
469 1.251 wiz * Initialize the real console, so that the bootstrap console is
470 1.106 cgd * no longer necessary.
471 1.106 cgd */
472 1.169 thorpej (*platform.cons_init)();
473 1.106 cgd
474 1.106 cgd #ifdef DIAGNOSTIC
475 1.106 cgd /* Paranoid sanity checking */
476 1.106 cgd
477 1.199 soren /* We should always be running on the primary. */
478 1.211 thorpej assert(hwrpb->rpb_primary_cpu_id == cpu_id);
479 1.106 cgd
480 1.116 mjacob /*
481 1.116 mjacob * On single-CPU systypes, the primary should always be CPU 0,
482 1.116 mjacob * except on Alpha 8200 systems where the CPU id is related
483 1.116 mjacob * to the VID, which is related to the Turbo Laser node id.
484 1.116 mjacob */
485 1.106 cgd if (cputype != ST_DEC_21000)
486 1.106 cgd assert(hwrpb->rpb_primary_cpu_id == 0);
487 1.106 cgd #endif
488 1.106 cgd
489 1.106 cgd /* NO MORE FIRMWARE ACCESS ALLOWED */
490 1.363 thorpej /* XXX Unless prom_uses_prom_console() evaluates to non-zero.) */
491 1.95 thorpej
492 1.95 thorpej /*
493 1.101 cgd * Find the beginning and end of the kernel (and leave a
494 1.101 cgd * bit of space before the beginning for the bootstrap
495 1.101 cgd * stack).
496 1.95 thorpej */
497 1.201 kleink kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
498 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR)
499 1.102 cgd ksym_start = (void *)bootinfo.ssym;
500 1.102 cgd ksym_end = (void *)bootinfo.esym;
501 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
502 1.102 cgd #else
503 1.201 kleink kernend = (vaddr_t)round_page((vaddr_t)_end);
504 1.95 thorpej #endif
505 1.95 thorpej
506 1.110 thorpej kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
507 1.110 thorpej kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
508 1.110 thorpej
509 1.95 thorpej /*
510 1.1 cgd * Find out how much memory is available, by looking at
511 1.7 cgd * the memory cluster descriptors. This also tries to do
512 1.7 cgd * its best to detect things things that have never been seen
513 1.7 cgd * before...
514 1.1 cgd */
515 1.296 yamt mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
516 1.7 cgd
517 1.110 thorpej /* MDDT SANITY CHECKING */
518 1.7 cgd mddtweird = 0;
519 1.110 thorpej if (mddtp->mddt_cluster_cnt < 2) {
520 1.7 cgd mddtweird = 1;
521 1.160 thorpej printf("WARNING: weird number of mem clusters: %lu\n",
522 1.110 thorpej mddtp->mddt_cluster_cnt);
523 1.7 cgd }
524 1.7 cgd
525 1.110 thorpej #if 0
526 1.359 thorpej printf("Memory cluster count: %" PRIu64 "\n", mddtp->mddt_cluster_cnt);
527 1.110 thorpej #endif
528 1.110 thorpej
529 1.110 thorpej for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
530 1.110 thorpej memc = &mddtp->mddt_clusters[i];
531 1.110 thorpej #if 0
532 1.110 thorpej printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
533 1.110 thorpej memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
534 1.110 thorpej #endif
535 1.110 thorpej totalphysmem += memc->mddt_pg_cnt;
536 1.110 thorpej if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
537 1.110 thorpej mem_clusters[mem_cluster_cnt].start =
538 1.110 thorpej ptoa(memc->mddt_pfn);
539 1.110 thorpej mem_clusters[mem_cluster_cnt].size =
540 1.110 thorpej ptoa(memc->mddt_pg_cnt);
541 1.110 thorpej if (memc->mddt_usage & MDDT_mbz ||
542 1.110 thorpej memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
543 1.110 thorpej memc->mddt_usage & MDDT_PALCODE)
544 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
545 1.110 thorpej PROT_READ;
546 1.110 thorpej else
547 1.110 thorpej mem_clusters[mem_cluster_cnt].size |=
548 1.110 thorpej PROT_READ | PROT_WRITE | PROT_EXEC;
549 1.110 thorpej mem_cluster_cnt++;
550 1.110 thorpej }
551 1.110 thorpej
552 1.110 thorpej if (memc->mddt_usage & MDDT_mbz) {
553 1.7 cgd mddtweird = 1;
554 1.110 thorpej printf("WARNING: mem cluster %d has weird "
555 1.110 thorpej "usage 0x%lx\n", i, memc->mddt_usage);
556 1.110 thorpej unknownmem += memc->mddt_pg_cnt;
557 1.110 thorpej continue;
558 1.7 cgd }
559 1.110 thorpej if (memc->mddt_usage & MDDT_NONVOLATILE) {
560 1.110 thorpej /* XXX should handle these... */
561 1.110 thorpej printf("WARNING: skipping non-volatile mem "
562 1.110 thorpej "cluster %d\n", i);
563 1.110 thorpej unusedmem += memc->mddt_pg_cnt;
564 1.110 thorpej continue;
565 1.110 thorpej }
566 1.110 thorpej if (memc->mddt_usage & MDDT_PALCODE) {
567 1.110 thorpej resvmem += memc->mddt_pg_cnt;
568 1.110 thorpej continue;
569 1.110 thorpej }
570 1.110 thorpej
571 1.110 thorpej /*
572 1.110 thorpej * We have a memory cluster available for system
573 1.110 thorpej * software use. We must determine if this cluster
574 1.110 thorpej * holds the kernel.
575 1.110 thorpej */
576 1.363 thorpej
577 1.110 thorpej /*
578 1.110 thorpej * XXX If the kernel uses the PROM console, we only use the
579 1.110 thorpej * XXX memory after the kernel in the first system segment,
580 1.110 thorpej * XXX to avoid clobbering prom mapping, data, etc.
581 1.110 thorpej */
582 1.110 thorpej physmem += memc->mddt_pg_cnt;
583 1.110 thorpej pfn0 = memc->mddt_pfn;
584 1.110 thorpej pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
585 1.110 thorpej if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
586 1.110 thorpej /*
587 1.110 thorpej * Must compute the location of the kernel
588 1.110 thorpej * within the segment.
589 1.110 thorpej */
590 1.110 thorpej #if 0
591 1.110 thorpej printf("Cluster %d contains kernel\n", i);
592 1.110 thorpej #endif
593 1.363 thorpej if (pfn0 < kernstartpfn && !prom_uses_prom_console()) {
594 1.110 thorpej /*
595 1.110 thorpej * There is a chunk before the kernel.
596 1.110 thorpej */
597 1.110 thorpej #if 0
598 1.110 thorpej printf("Loading chunk before kernel: "
599 1.110 thorpej "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
600 1.110 thorpej #endif
601 1.368 thorpej alpha_page_physload(pfn0, kernstartpfn);
602 1.110 thorpej }
603 1.110 thorpej if (kernendpfn < pfn1) {
604 1.110 thorpej /*
605 1.110 thorpej * There is a chunk after the kernel.
606 1.110 thorpej */
607 1.110 thorpej #if 0
608 1.110 thorpej printf("Loading chunk after kernel: "
609 1.110 thorpej "0x%lx / 0x%lx\n", kernendpfn, pfn1);
610 1.110 thorpej #endif
611 1.368 thorpej alpha_page_physload(kernendpfn, pfn1);
612 1.110 thorpej }
613 1.110 thorpej } else {
614 1.110 thorpej /*
615 1.110 thorpej * Just load this cluster as one chunk.
616 1.110 thorpej */
617 1.110 thorpej #if 0
618 1.110 thorpej printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
619 1.110 thorpej pfn0, pfn1);
620 1.110 thorpej #endif
621 1.368 thorpej alpha_page_physload(pfn0, pfn1);
622 1.7 cgd }
623 1.7 cgd }
624 1.7 cgd
625 1.110 thorpej /*
626 1.110 thorpej * Dump out the MDDT if it looks odd...
627 1.110 thorpej */
628 1.7 cgd if (mddtweird) {
629 1.46 christos printf("\n");
630 1.46 christos printf("complete memory cluster information:\n");
631 1.2 cgd for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
632 1.46 christos printf("mddt %d:\n", i);
633 1.46 christos printf("\tpfn %lx\n",
634 1.2 cgd mddtp->mddt_clusters[i].mddt_pfn);
635 1.46 christos printf("\tcnt %lx\n",
636 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_cnt);
637 1.46 christos printf("\ttest %lx\n",
638 1.2 cgd mddtp->mddt_clusters[i].mddt_pg_test);
639 1.46 christos printf("\tbva %lx\n",
640 1.2 cgd mddtp->mddt_clusters[i].mddt_v_bitaddr);
641 1.46 christos printf("\tbpa %lx\n",
642 1.2 cgd mddtp->mddt_clusters[i].mddt_p_bitaddr);
643 1.46 christos printf("\tbcksum %lx\n",
644 1.2 cgd mddtp->mddt_clusters[i].mddt_bit_cksum);
645 1.46 christos printf("\tusage %lx\n",
646 1.2 cgd mddtp->mddt_clusters[i].mddt_usage);
647 1.2 cgd }
648 1.46 christos printf("\n");
649 1.2 cgd }
650 1.2 cgd
651 1.7 cgd if (totalphysmem == 0)
652 1.1 cgd panic("can't happen: system seems to have no memory!");
653 1.1 cgd maxmem = physmem;
654 1.7 cgd #if 0
655 1.46 christos printf("totalphysmem = %d\n", totalphysmem);
656 1.359 thorpej printf("physmem = %lu\n", physmem);
657 1.46 christos printf("resvmem = %d\n", resvmem);
658 1.46 christos printf("unusedmem = %d\n", unusedmem);
659 1.46 christos printf("unknownmem = %d\n", unknownmem);
660 1.7 cgd #endif
661 1.7 cgd
662 1.1 cgd /*
663 1.1 cgd * Initialize error message buffer (at end of core).
664 1.1 cgd */
665 1.110 thorpej {
666 1.349 cherry paddr_t end;
667 1.204 enami vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
668 1.203 enami vsize_t reqsz = sz;
669 1.349 cherry uvm_physseg_t bank;
670 1.110 thorpej
671 1.349 cherry bank = uvm_physseg_get_last();
672 1.110 thorpej
673 1.110 thorpej /* shrink so that it'll fit in the last segment */
674 1.349 cherry if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < atop(sz))
675 1.349 cherry sz = ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank));
676 1.349 cherry
677 1.349 cherry end = uvm_physseg_get_end(bank);
678 1.349 cherry end -= atop(sz);
679 1.349 cherry
680 1.349 cherry uvm_physseg_unplug(end, atop(sz));
681 1.349 cherry msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(end));
682 1.110 thorpej
683 1.110 thorpej initmsgbuf(msgbufaddr, sz);
684 1.110 thorpej
685 1.110 thorpej /* warn if the message buffer had to be shrunk */
686 1.203 enami if (sz != reqsz)
687 1.203 enami printf("WARNING: %ld bytes not available for msgbuf "
688 1.203 enami "in last cluster (%ld used)\n", reqsz, sz);
689 1.268 thorpej
690 1.110 thorpej }
691 1.239 thorpej
692 1.239 thorpej /*
693 1.268 thorpej * NOTE: It is safe to use uvm_pageboot_alloc() before
694 1.268 thorpej * pmap_bootstrap() because our pmap_virtual_space()
695 1.268 thorpej * returns compile-time constants.
696 1.268 thorpej */
697 1.268 thorpej
698 1.268 thorpej /*
699 1.324 rmind * Allocate uarea page for lwp0 and set it.
700 1.1 cgd */
701 1.324 rmind v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
702 1.324 rmind uvm_lwp_setuarea(&lwp0, v);
703 1.1 cgd
704 1.1 cgd /*
705 1.1 cgd * Initialize the virtual memory system, and set the
706 1.1 cgd * page table base register in proc 0's PCB.
707 1.1 cgd */
708 1.110 thorpej pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
709 1.144 thorpej hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
710 1.1 cgd
711 1.1 cgd /*
712 1.324 rmind * Initialize the rest of lwp0's PCB and cache its physical address.
713 1.3 cgd */
714 1.324 rmind pcb0 = lwp_getpcb(&lwp0);
715 1.324 rmind lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
716 1.3 cgd
717 1.3 cgd /*
718 1.3 cgd * Set the kernel sp, reserving space for an (empty) trapframe,
719 1.323 matt * and make lwp0's trapframe pointer point to it for sanity.
720 1.3 cgd */
721 1.324 rmind pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
722 1.324 rmind lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
723 1.189 thorpej
724 1.323 matt /* Indicate that lwp0 has a CPU. */
725 1.261 thorpej lwp0.l_cpu = ci;
726 1.1 cgd
727 1.1 cgd /*
728 1.25 cgd * Look at arguments passed to us and compute boothowto.
729 1.8 cgd */
730 1.1 cgd
731 1.8 cgd boothowto = RB_SINGLE;
732 1.1 cgd #ifdef KADB
733 1.1 cgd boothowto |= RB_KDB;
734 1.1 cgd #endif
735 1.102 cgd for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
736 1.26 cgd /*
737 1.26 cgd * Note that we'd really like to differentiate case here,
738 1.26 cgd * but the Alpha AXP Architecture Reference Manual
739 1.26 cgd * says that we shouldn't.
740 1.26 cgd */
741 1.8 cgd switch (*p) {
742 1.26 cgd case 'a': /* autoboot */
743 1.26 cgd case 'A':
744 1.26 cgd boothowto &= ~RB_SINGLE;
745 1.21 cgd break;
746 1.21 cgd
747 1.43 cgd #ifdef DEBUG
748 1.43 cgd case 'c': /* crash dump immediately after autoconfig */
749 1.43 cgd case 'C':
750 1.43 cgd boothowto |= RB_DUMP;
751 1.43 cgd break;
752 1.43 cgd #endif
753 1.43 cgd
754 1.81 thorpej #if defined(KGDB) || defined(DDB)
755 1.81 thorpej case 'd': /* break into the kernel debugger ASAP */
756 1.81 thorpej case 'D':
757 1.81 thorpej boothowto |= RB_KDB;
758 1.81 thorpej break;
759 1.81 thorpej #endif
760 1.81 thorpej
761 1.36 cgd case 'h': /* always halt, never reboot */
762 1.36 cgd case 'H':
763 1.36 cgd boothowto |= RB_HALT;
764 1.8 cgd break;
765 1.8 cgd
766 1.21 cgd #if 0
767 1.8 cgd case 'm': /* mini root present in memory */
768 1.26 cgd case 'M':
769 1.8 cgd boothowto |= RB_MINIROOT;
770 1.8 cgd break;
771 1.21 cgd #endif
772 1.36 cgd
773 1.36 cgd case 'n': /* askname */
774 1.36 cgd case 'N':
775 1.36 cgd boothowto |= RB_ASKNAME;
776 1.65 cgd break;
777 1.65 cgd
778 1.65 cgd case 's': /* single-user (default, supported for sanity) */
779 1.65 cgd case 'S':
780 1.65 cgd boothowto |= RB_SINGLE;
781 1.221 jdolecek break;
782 1.221 jdolecek
783 1.221 jdolecek case 'q': /* quiet boot */
784 1.221 jdolecek case 'Q':
785 1.221 jdolecek boothowto |= AB_QUIET;
786 1.221 jdolecek break;
787 1.362 riastrad
788 1.221 jdolecek case 'v': /* verbose boot */
789 1.221 jdolecek case 'V':
790 1.221 jdolecek boothowto |= AB_VERBOSE;
791 1.119 thorpej break;
792 1.119 thorpej
793 1.119 thorpej case '-':
794 1.119 thorpej /*
795 1.119 thorpej * Just ignore this. It's not required, but it's
796 1.119 thorpej * common for it to be passed regardless.
797 1.119 thorpej */
798 1.65 cgd break;
799 1.65 cgd
800 1.65 cgd default:
801 1.65 cgd printf("Unrecognized boot flag '%c'.\n", *p);
802 1.36 cgd break;
803 1.1 cgd }
804 1.1 cgd }
805 1.1 cgd
806 1.302 ad /*
807 1.302 ad * Perform any initial kernel patches based on the running system.
808 1.302 ad * We may perform more later if we attach additional CPUs.
809 1.302 ad */
810 1.302 ad alpha_patch(false);
811 1.136 mjacob
812 1.136 mjacob /*
813 1.280 wiz * Figure out the number of CPUs in the box, from RPB fields.
814 1.136 mjacob * Really. We mean it.
815 1.136 mjacob */
816 1.136 mjacob for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
817 1.136 mjacob struct pcs *pcsp;
818 1.136 mjacob
819 1.144 thorpej pcsp = LOCATE_PCS(hwrpb, i);
820 1.136 mjacob if ((pcsp->pcs_flags & PCS_PP) != 0)
821 1.136 mjacob ncpus++;
822 1.136 mjacob }
823 1.136 mjacob
824 1.7 cgd /*
825 1.106 cgd * Initialize debuggers, and break into them if appropriate.
826 1.106 cgd */
827 1.309 ad #if NKSYMS || defined(DDB) || defined(MODULAR)
828 1.337 matt ksyms_addsyms_elf((int)((uint64_t)ksym_end - (uint64_t)ksym_start),
829 1.159 mjacob ksym_start, ksym_end);
830 1.234 thorpej #endif
831 1.234 thorpej
832 1.234 thorpej if (boothowto & RB_KDB) {
833 1.234 thorpej #if defined(KGDB)
834 1.234 thorpej kgdb_debug_init = 1;
835 1.234 thorpej kgdb_connect(1);
836 1.234 thorpej #elif defined(DDB)
837 1.106 cgd Debugger();
838 1.106 cgd #endif
839 1.234 thorpej }
840 1.234 thorpej
841 1.298 tsutsui #ifdef DIAGNOSTIC
842 1.106 cgd /*
843 1.298 tsutsui * Check our clock frequency, from RPB fields.
844 1.106 cgd */
845 1.298 tsutsui if ((hwrpb->rpb_intr_freq >> 12) != 1024)
846 1.106 cgd printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
847 1.106 cgd hwrpb->rpb_intr_freq, hz);
848 1.106 cgd #endif
849 1.95 thorpej }
850 1.95 thorpej
851 1.354 thorpej #ifdef MODULAR
852 1.354 thorpej /* Push any modules loaded by the boot loader */
853 1.354 thorpej void
854 1.354 thorpej module_init_md(void)
855 1.354 thorpej {
856 1.354 thorpej /* nada. */
857 1.354 thorpej }
858 1.354 thorpej #endif /* MODULAR */
859 1.354 thorpej
860 1.18 cgd void
861 1.319 cegger consinit(void)
862 1.1 cgd {
863 1.81 thorpej
864 1.106 cgd /*
865 1.106 cgd * Everything related to console initialization is done
866 1.106 cgd * in alpha_init().
867 1.106 cgd */
868 1.363 thorpej #if defined(DIAGNOSTIC) && defined(_PROM_MAY_USE_PROM_CONSOLE)
869 1.106 cgd printf("consinit: %susing prom console\n",
870 1.363 thorpej prom_uses_prom_console() ? "" : "not ");
871 1.81 thorpej #endif
872 1.1 cgd }
873 1.118 thorpej
874 1.18 cgd void
875 1.319 cegger cpu_startup(void)
876 1.1 cgd {
877 1.331 martin extern struct evcnt fpevent_use, fpevent_reuse;
878 1.140 thorpej vaddr_t minaddr, maxaddr;
879 1.173 lukem char pbuf[9];
880 1.40 cgd #if defined(DEBUG)
881 1.1 cgd extern int pmapdebug;
882 1.1 cgd int opmapdebug = pmapdebug;
883 1.1 cgd
884 1.1 cgd pmapdebug = 0;
885 1.1 cgd #endif
886 1.1 cgd
887 1.1 cgd /*
888 1.1 cgd * Good {morning,afternoon,evening,night}.
889 1.1 cgd */
890 1.284 lukem printf("%s%s", copyright, version);
891 1.1 cgd identifycpu();
892 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
893 1.173 lukem printf("total memory = %s\n", pbuf);
894 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
895 1.173 lukem printf("(%s reserved for PROM, ", pbuf);
896 1.173 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
897 1.173 lukem printf("%s used by NetBSD)\n", pbuf);
898 1.173 lukem if (unusedmem) {
899 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
900 1.173 lukem printf("WARNING: unused memory = %s\n", pbuf);
901 1.173 lukem }
902 1.173 lukem if (unknownmem) {
903 1.185 thorpej format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
904 1.173 lukem printf("WARNING: %s of memory with unknown purpose\n", pbuf);
905 1.173 lukem }
906 1.1 cgd
907 1.279 pk minaddr = 0;
908 1.240 thorpej
909 1.1 cgd /*
910 1.1 cgd * Allocate a submap for physio
911 1.1 cgd */
912 1.112 thorpej phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
913 1.294 thorpej VM_PHYS_SIZE, 0, false, NULL);
914 1.1 cgd
915 1.1 cgd /*
916 1.164 thorpej * No need to allocate an mbuf cluster submap. Mbuf clusters
917 1.164 thorpej * are allocated via the pool allocator, and we use K0SEG to
918 1.164 thorpej * map those pages.
919 1.1 cgd */
920 1.1 cgd
921 1.40 cgd #if defined(DEBUG)
922 1.1 cgd pmapdebug = opmapdebug;
923 1.1 cgd #endif
924 1.360 ad format_bytes(pbuf, sizeof(pbuf), ptoa(uvm_availmem(false)));
925 1.173 lukem printf("avail memory = %s\n", pbuf);
926 1.139 thorpej #if 0
927 1.139 thorpej {
928 1.139 thorpej extern u_long pmap_pages_stolen;
929 1.173 lukem
930 1.173 lukem format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
931 1.173 lukem printf("stolen memory for VM structures = %s\n", pbuf);
932 1.139 thorpej }
933 1.112 thorpej #endif
934 1.151 thorpej
935 1.151 thorpej /*
936 1.151 thorpej * Set up the HWPCB so that it's safe to configure secondary
937 1.151 thorpej * CPUs.
938 1.151 thorpej */
939 1.151 thorpej hwrpb_primary_init();
940 1.331 martin
941 1.331 martin /*
942 1.331 martin * Initialize some trap event counters.
943 1.331 martin */
944 1.332 martin evcnt_attach_dynamic_nozero(&fpevent_use, EVCNT_TYPE_MISC, NULL,
945 1.331 martin "FP", "proc use");
946 1.332 martin evcnt_attach_dynamic_nozero(&fpevent_reuse, EVCNT_TYPE_MISC, NULL,
947 1.331 martin "FP", "proc re-use");
948 1.104 thorpej }
949 1.104 thorpej
950 1.104 thorpej /*
951 1.104 thorpej * Retrieve the platform name from the DSR.
952 1.104 thorpej */
953 1.104 thorpej const char *
954 1.319 cegger alpha_dsr_sysname(void)
955 1.104 thorpej {
956 1.104 thorpej struct dsrdb *dsr;
957 1.104 thorpej const char *sysname;
958 1.104 thorpej
959 1.104 thorpej /*
960 1.104 thorpej * DSR does not exist on early HWRPB versions.
961 1.104 thorpej */
962 1.104 thorpej if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
963 1.104 thorpej return (NULL);
964 1.104 thorpej
965 1.296 yamt dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
966 1.296 yamt sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
967 1.337 matt sizeof(uint64_t)));
968 1.104 thorpej return (sysname);
969 1.104 thorpej }
970 1.104 thorpej
971 1.104 thorpej /*
972 1.104 thorpej * Lookup the system specified system variation in the provided table,
973 1.104 thorpej * returning the model string on match.
974 1.104 thorpej */
975 1.104 thorpej const char *
976 1.337 matt alpha_variation_name(uint64_t variation, const struct alpha_variation_table *avtp)
977 1.104 thorpej {
978 1.104 thorpej int i;
979 1.104 thorpej
980 1.104 thorpej for (i = 0; avtp[i].avt_model != NULL; i++)
981 1.104 thorpej if (avtp[i].avt_variation == variation)
982 1.104 thorpej return (avtp[i].avt_model);
983 1.104 thorpej return (NULL);
984 1.104 thorpej }
985 1.104 thorpej
986 1.104 thorpej /*
987 1.104 thorpej * Generate a default platform name based for unknown system variations.
988 1.104 thorpej */
989 1.104 thorpej const char *
990 1.319 cegger alpha_unknown_sysname(void)
991 1.104 thorpej {
992 1.105 thorpej static char s[128]; /* safe size */
993 1.104 thorpej
994 1.343 christos snprintf(s, sizeof(s), "%s family, unknown model variation 0x%lx",
995 1.105 thorpej platform.family, hwrpb->rpb_variation & SV_ST_MASK);
996 1.104 thorpej return ((const char *)s);
997 1.1 cgd }
998 1.1 cgd
999 1.33 cgd void
1000 1.319 cegger identifycpu(void)
1001 1.1 cgd {
1002 1.344 christos const char *s;
1003 1.218 thorpej int i;
1004 1.1 cgd
1005 1.7 cgd /*
1006 1.7 cgd * print out CPU identification information.
1007 1.7 cgd */
1008 1.344 christos printf("%s", cpu_getmodel());
1009 1.344 christos for(s = cpu_getmodel(); *s; ++s)
1010 1.177 ross if(strncasecmp(s, "MHz", 3) == 0)
1011 1.177 ross goto skipMHz;
1012 1.177 ross printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1013 1.177 ross skipMHz:
1014 1.218 thorpej printf(", s/n ");
1015 1.218 thorpej for (i = 0; i < 10; i++)
1016 1.218 thorpej printf("%c", hwrpb->rpb_ssn[i]);
1017 1.177 ross printf("\n");
1018 1.46 christos printf("%ld byte page size, %d processor%s.\n",
1019 1.7 cgd hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1020 1.1 cgd }
1021 1.1 cgd
1022 1.1 cgd int waittime = -1;
1023 1.7 cgd struct pcb dumppcb;
1024 1.1 cgd
1025 1.18 cgd void
1026 1.317 dsl cpu_reboot(int howto, char *bootstr)
1027 1.1 cgd {
1028 1.148 thorpej #if defined(MULTIPROCESSOR)
1029 1.225 thorpej u_long cpu_id = cpu_number();
1030 1.321 mhitch u_long wait_mask;
1031 1.225 thorpej int i;
1032 1.148 thorpej #endif
1033 1.148 thorpej
1034 1.225 thorpej /* If "always halt" was specified as a boot flag, obey. */
1035 1.225 thorpej if ((boothowto & RB_HALT) != 0)
1036 1.225 thorpej howto |= RB_HALT;
1037 1.225 thorpej
1038 1.225 thorpej boothowto = howto;
1039 1.1 cgd
1040 1.1 cgd /* If system is cold, just halt. */
1041 1.1 cgd if (cold) {
1042 1.225 thorpej boothowto |= RB_HALT;
1043 1.1 cgd goto haltsys;
1044 1.1 cgd }
1045 1.1 cgd
1046 1.225 thorpej if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1047 1.1 cgd waittime = 0;
1048 1.7 cgd vfs_shutdown();
1049 1.1 cgd /*
1050 1.1 cgd * If we've been adjusting the clock, the todr
1051 1.1 cgd * will be out of synch; adjust it now.
1052 1.1 cgd */
1053 1.1 cgd resettodr();
1054 1.1 cgd }
1055 1.1 cgd
1056 1.1 cgd /* Disable interrupts. */
1057 1.1 cgd splhigh();
1058 1.1 cgd
1059 1.225 thorpej #if defined(MULTIPROCESSOR)
1060 1.225 thorpej /*
1061 1.225 thorpej * Halt all other CPUs. If we're not the primary, the
1062 1.225 thorpej * primary will spin, waiting for us to halt.
1063 1.225 thorpej */
1064 1.321 mhitch cpu_id = cpu_number(); /* may have changed cpu */
1065 1.321 mhitch wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
1066 1.321 mhitch
1067 1.225 thorpej alpha_broadcast_ipi(ALPHA_IPI_HALT);
1068 1.225 thorpej
1069 1.283 mhitch /* Ensure any CPUs paused by DDB resume execution so they can halt */
1070 1.283 mhitch cpus_paused = 0;
1071 1.283 mhitch
1072 1.225 thorpej for (i = 0; i < 10000; i++) {
1073 1.225 thorpej alpha_mb();
1074 1.225 thorpej if (cpus_running == wait_mask)
1075 1.225 thorpej break;
1076 1.225 thorpej delay(1000);
1077 1.225 thorpej }
1078 1.225 thorpej alpha_mb();
1079 1.225 thorpej if (cpus_running != wait_mask)
1080 1.225 thorpej printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1081 1.225 thorpej cpus_running);
1082 1.225 thorpej #endif /* MULTIPROCESSOR */
1083 1.225 thorpej
1084 1.7 cgd /* If rebooting and a dump is requested do it. */
1085 1.42 cgd #if 0
1086 1.225 thorpej if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1087 1.42 cgd #else
1088 1.225 thorpej if (boothowto & RB_DUMP)
1089 1.42 cgd #endif
1090 1.1 cgd dumpsys();
1091 1.6 cgd
1092 1.12 cgd haltsys:
1093 1.12 cgd
1094 1.6 cgd /* run any shutdown hooks */
1095 1.6 cgd doshutdownhooks();
1096 1.148 thorpej
1097 1.308 dyoung pmf_system_shutdown(boothowto);
1098 1.308 dyoung
1099 1.7 cgd #ifdef BOOTKEY
1100 1.46 christos printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1101 1.117 drochner cnpollc(1); /* for proper keyboard command handling */
1102 1.7 cgd cngetc();
1103 1.117 drochner cnpollc(0);
1104 1.46 christos printf("\n");
1105 1.7 cgd #endif
1106 1.7 cgd
1107 1.124 thorpej /* Finally, powerdown/halt/reboot the system. */
1108 1.225 thorpej if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1109 1.124 thorpej platform.powerdown != NULL) {
1110 1.124 thorpej (*platform.powerdown)();
1111 1.124 thorpej printf("WARNING: powerdown failed!\n");
1112 1.124 thorpej }
1113 1.225 thorpej printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1114 1.225 thorpej #if defined(MULTIPROCESSOR)
1115 1.225 thorpej if (cpu_id != hwrpb->rpb_primary_cpu_id)
1116 1.225 thorpej cpu_halt();
1117 1.225 thorpej else
1118 1.225 thorpej #endif
1119 1.225 thorpej prom_halt(boothowto & RB_HALT);
1120 1.1 cgd /*NOTREACHED*/
1121 1.1 cgd }
1122 1.1 cgd
1123 1.7 cgd /*
1124 1.7 cgd * These variables are needed by /sbin/savecore
1125 1.7 cgd */
1126 1.337 matt uint32_t dumpmag = 0x8fca0101; /* magic number */
1127 1.7 cgd int dumpsize = 0; /* pages */
1128 1.7 cgd long dumplo = 0; /* blocks */
1129 1.7 cgd
1130 1.7 cgd /*
1131 1.43 cgd * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1132 1.43 cgd */
1133 1.43 cgd int
1134 1.319 cegger cpu_dumpsize(void)
1135 1.43 cgd {
1136 1.43 cgd int size;
1137 1.43 cgd
1138 1.108 cgd size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1139 1.110 thorpej ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1140 1.43 cgd if (roundup(size, dbtob(1)) != dbtob(1))
1141 1.43 cgd return -1;
1142 1.43 cgd
1143 1.43 cgd return (1);
1144 1.43 cgd }
1145 1.43 cgd
1146 1.43 cgd /*
1147 1.110 thorpej * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1148 1.110 thorpej */
1149 1.110 thorpej u_long
1150 1.319 cegger cpu_dump_mempagecnt(void)
1151 1.110 thorpej {
1152 1.110 thorpej u_long i, n;
1153 1.110 thorpej
1154 1.110 thorpej n = 0;
1155 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++)
1156 1.110 thorpej n += atop(mem_clusters[i].size);
1157 1.110 thorpej return (n);
1158 1.110 thorpej }
1159 1.110 thorpej
1160 1.110 thorpej /*
1161 1.43 cgd * cpu_dump: dump machine-dependent kernel core dump headers.
1162 1.43 cgd */
1163 1.43 cgd int
1164 1.319 cegger cpu_dump(void)
1165 1.43 cgd {
1166 1.316 dsl int (*dump)(dev_t, daddr_t, void *, size_t);
1167 1.107 cgd char buf[dbtob(1)];
1168 1.107 cgd kcore_seg_t *segp;
1169 1.107 cgd cpu_kcore_hdr_t *cpuhdrp;
1170 1.107 cgd phys_ram_seg_t *memsegp;
1171 1.258 gehenna const struct bdevsw *bdev;
1172 1.110 thorpej int i;
1173 1.43 cgd
1174 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1175 1.258 gehenna if (bdev == NULL)
1176 1.258 gehenna return (ENXIO);
1177 1.258 gehenna dump = bdev->d_dump;
1178 1.43 cgd
1179 1.246 thorpej memset(buf, 0, sizeof buf);
1180 1.43 cgd segp = (kcore_seg_t *)buf;
1181 1.107 cgd cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1182 1.107 cgd memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1183 1.107 cgd ALIGN(sizeof(*cpuhdrp))];
1184 1.43 cgd
1185 1.43 cgd /*
1186 1.43 cgd * Generate a segment header.
1187 1.43 cgd */
1188 1.43 cgd CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1189 1.43 cgd segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1190 1.43 cgd
1191 1.43 cgd /*
1192 1.107 cgd * Add the machine-dependent header info.
1193 1.43 cgd */
1194 1.140 thorpej cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1195 1.43 cgd cpuhdrp->page_size = PAGE_SIZE;
1196 1.110 thorpej cpuhdrp->nmemsegs = mem_cluster_cnt;
1197 1.107 cgd
1198 1.107 cgd /*
1199 1.107 cgd * Fill in the memory segment descriptors.
1200 1.107 cgd */
1201 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1202 1.110 thorpej memsegp[i].start = mem_clusters[i].start;
1203 1.110 thorpej memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1204 1.110 thorpej }
1205 1.43 cgd
1206 1.295 christos return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1207 1.43 cgd }
1208 1.43 cgd
1209 1.43 cgd /*
1210 1.68 gwr * This is called by main to set dumplo and dumpsize.
1211 1.262 thorpej * Dumps always skip the first PAGE_SIZE of disk space
1212 1.7 cgd * in case there might be a disk label stored there.
1213 1.7 cgd * If there is extra space, put dump at the end to
1214 1.7 cgd * reduce the chance that swapping trashes it.
1215 1.7 cgd */
1216 1.7 cgd void
1217 1.319 cegger cpu_dumpconf(void)
1218 1.7 cgd {
1219 1.43 cgd int nblks, dumpblks; /* size of dump area */
1220 1.7 cgd
1221 1.7 cgd if (dumpdev == NODEV)
1222 1.43 cgd goto bad;
1223 1.336 mrg nblks = bdev_size(dumpdev);
1224 1.7 cgd if (nblks <= ctod(1))
1225 1.43 cgd goto bad;
1226 1.43 cgd
1227 1.43 cgd dumpblks = cpu_dumpsize();
1228 1.43 cgd if (dumpblks < 0)
1229 1.43 cgd goto bad;
1230 1.110 thorpej dumpblks += ctod(cpu_dump_mempagecnt());
1231 1.43 cgd
1232 1.43 cgd /* If dump won't fit (incl. room for possible label), punt. */
1233 1.43 cgd if (dumpblks > (nblks - ctod(1)))
1234 1.43 cgd goto bad;
1235 1.43 cgd
1236 1.43 cgd /* Put dump at end of partition */
1237 1.43 cgd dumplo = nblks - dumpblks;
1238 1.7 cgd
1239 1.43 cgd /* dumpsize is in page units, and doesn't include headers. */
1240 1.110 thorpej dumpsize = cpu_dump_mempagecnt();
1241 1.43 cgd return;
1242 1.7 cgd
1243 1.43 cgd bad:
1244 1.43 cgd dumpsize = 0;
1245 1.43 cgd return;
1246 1.7 cgd }
1247 1.7 cgd
1248 1.7 cgd /*
1249 1.42 cgd * Dump the kernel's image to the swap partition.
1250 1.7 cgd */
1251 1.262 thorpej #define BYTES_PER_DUMP PAGE_SIZE
1252 1.42 cgd
1253 1.7 cgd void
1254 1.319 cegger dumpsys(void)
1255 1.7 cgd {
1256 1.258 gehenna const struct bdevsw *bdev;
1257 1.110 thorpej u_long totalbytesleft, bytes, i, n, memcl;
1258 1.110 thorpej u_long maddr;
1259 1.110 thorpej int psize;
1260 1.42 cgd daddr_t blkno;
1261 1.316 dsl int (*dump)(dev_t, daddr_t, void *, size_t);
1262 1.42 cgd int error;
1263 1.42 cgd
1264 1.42 cgd /* Save registers. */
1265 1.42 cgd savectx(&dumppcb);
1266 1.7 cgd
1267 1.7 cgd if (dumpdev == NODEV)
1268 1.7 cgd return;
1269 1.258 gehenna bdev = bdevsw_lookup(dumpdev);
1270 1.258 gehenna if (bdev == NULL || bdev->d_psize == NULL)
1271 1.258 gehenna return;
1272 1.42 cgd
1273 1.42 cgd /*
1274 1.42 cgd * For dumps during autoconfiguration,
1275 1.42 cgd * if dump device has already configured...
1276 1.42 cgd */
1277 1.42 cgd if (dumpsize == 0)
1278 1.68 gwr cpu_dumpconf();
1279 1.47 cgd if (dumplo <= 0) {
1280 1.314 he printf("\ndump to dev %u,%u not possible\n",
1281 1.313 rtr major(dumpdev), minor(dumpdev));
1282 1.42 cgd return;
1283 1.43 cgd }
1284 1.314 he printf("\ndumping to dev %u,%u offset %ld\n",
1285 1.313 rtr major(dumpdev), minor(dumpdev), dumplo);
1286 1.7 cgd
1287 1.336 mrg psize = bdev_size(dumpdev);
1288 1.46 christos printf("dump ");
1289 1.42 cgd if (psize == -1) {
1290 1.46 christos printf("area unavailable\n");
1291 1.42 cgd return;
1292 1.42 cgd }
1293 1.42 cgd
1294 1.42 cgd /* XXX should purge all outstanding keystrokes. */
1295 1.42 cgd
1296 1.43 cgd if ((error = cpu_dump()) != 0)
1297 1.43 cgd goto err;
1298 1.43 cgd
1299 1.110 thorpej totalbytesleft = ptoa(cpu_dump_mempagecnt());
1300 1.43 cgd blkno = dumplo + cpu_dumpsize();
1301 1.258 gehenna dump = bdev->d_dump;
1302 1.42 cgd error = 0;
1303 1.42 cgd
1304 1.110 thorpej for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1305 1.110 thorpej maddr = mem_clusters[memcl].start;
1306 1.110 thorpej bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1307 1.110 thorpej
1308 1.110 thorpej for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1309 1.110 thorpej
1310 1.110 thorpej /* Print out how many MBs we to go. */
1311 1.110 thorpej if ((totalbytesleft % (1024*1024)) == 0)
1312 1.311 ad printf_nolog("%ld ",
1313 1.311 ad totalbytesleft / (1024 * 1024));
1314 1.110 thorpej
1315 1.110 thorpej /* Limit size for next transfer. */
1316 1.110 thorpej n = bytes - i;
1317 1.110 thorpej if (n > BYTES_PER_DUMP)
1318 1.110 thorpej n = BYTES_PER_DUMP;
1319 1.362 riastrad
1320 1.110 thorpej error = (*dump)(dumpdev, blkno,
1321 1.295 christos (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1322 1.110 thorpej if (error)
1323 1.110 thorpej goto err;
1324 1.110 thorpej maddr += n;
1325 1.110 thorpej blkno += btodb(n); /* XXX? */
1326 1.42 cgd
1327 1.110 thorpej /* XXX should look for keystrokes, to cancel. */
1328 1.110 thorpej }
1329 1.42 cgd }
1330 1.42 cgd
1331 1.43 cgd err:
1332 1.42 cgd switch (error) {
1333 1.7 cgd
1334 1.7 cgd case ENXIO:
1335 1.46 christos printf("device bad\n");
1336 1.7 cgd break;
1337 1.7 cgd
1338 1.7 cgd case EFAULT:
1339 1.46 christos printf("device not ready\n");
1340 1.7 cgd break;
1341 1.7 cgd
1342 1.7 cgd case EINVAL:
1343 1.46 christos printf("area improper\n");
1344 1.7 cgd break;
1345 1.7 cgd
1346 1.7 cgd case EIO:
1347 1.46 christos printf("i/o error\n");
1348 1.7 cgd break;
1349 1.7 cgd
1350 1.7 cgd case EINTR:
1351 1.46 christos printf("aborted from console\n");
1352 1.7 cgd break;
1353 1.7 cgd
1354 1.42 cgd case 0:
1355 1.46 christos printf("succeeded\n");
1356 1.42 cgd break;
1357 1.42 cgd
1358 1.7 cgd default:
1359 1.46 christos printf("error %d\n", error);
1360 1.7 cgd break;
1361 1.7 cgd }
1362 1.46 christos printf("\n\n");
1363 1.7 cgd delay(1000);
1364 1.7 cgd }
1365 1.7 cgd
1366 1.1 cgd void
1367 1.317 dsl frametoreg(const struct trapframe *framep, struct reg *regp)
1368 1.1 cgd {
1369 1.1 cgd
1370 1.1 cgd regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1371 1.1 cgd regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1372 1.1 cgd regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1373 1.1 cgd regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1374 1.1 cgd regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1375 1.1 cgd regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1376 1.1 cgd regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1377 1.1 cgd regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1378 1.1 cgd regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1379 1.1 cgd regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1380 1.1 cgd regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1381 1.1 cgd regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1382 1.1 cgd regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1383 1.1 cgd regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1384 1.1 cgd regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1385 1.1 cgd regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1386 1.34 cgd regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1387 1.34 cgd regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1388 1.34 cgd regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1389 1.1 cgd regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1390 1.1 cgd regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1391 1.1 cgd regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1392 1.1 cgd regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1393 1.1 cgd regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1394 1.1 cgd regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1395 1.1 cgd regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1396 1.1 cgd regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1397 1.1 cgd regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1398 1.1 cgd regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1399 1.34 cgd regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1400 1.35 cgd /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1401 1.1 cgd regp->r_regs[R_ZERO] = 0;
1402 1.1 cgd }
1403 1.1 cgd
1404 1.1 cgd void
1405 1.317 dsl regtoframe(const struct reg *regp, struct trapframe *framep)
1406 1.1 cgd {
1407 1.1 cgd
1408 1.1 cgd framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1409 1.1 cgd framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1410 1.1 cgd framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1411 1.1 cgd framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1412 1.1 cgd framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1413 1.1 cgd framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1414 1.1 cgd framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1415 1.1 cgd framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1416 1.1 cgd framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1417 1.1 cgd framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1418 1.1 cgd framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1419 1.1 cgd framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1420 1.1 cgd framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1421 1.1 cgd framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1422 1.1 cgd framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1423 1.1 cgd framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1424 1.34 cgd framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1425 1.34 cgd framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1426 1.34 cgd framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1427 1.1 cgd framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1428 1.1 cgd framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1429 1.1 cgd framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1430 1.1 cgd framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1431 1.1 cgd framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1432 1.1 cgd framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1433 1.1 cgd framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1434 1.1 cgd framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1435 1.1 cgd framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1436 1.1 cgd framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1437 1.34 cgd framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1438 1.35 cgd /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1439 1.1 cgd /* ??? = regp->r_regs[R_ZERO]; */
1440 1.1 cgd }
1441 1.1 cgd
1442 1.1 cgd void
1443 1.317 dsl printregs(struct reg *regp)
1444 1.1 cgd {
1445 1.1 cgd int i;
1446 1.1 cgd
1447 1.1 cgd for (i = 0; i < 32; i++)
1448 1.46 christos printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1449 1.1 cgd i & 1 ? "\n" : "\t");
1450 1.1 cgd }
1451 1.1 cgd
1452 1.1 cgd void
1453 1.317 dsl regdump(struct trapframe *framep)
1454 1.1 cgd {
1455 1.1 cgd struct reg reg;
1456 1.1 cgd
1457 1.1 cgd frametoreg(framep, ®);
1458 1.35 cgd reg.r_regs[R_SP] = alpha_pal_rdusp();
1459 1.35 cgd
1460 1.46 christos printf("REGISTERS:\n");
1461 1.1 cgd printregs(®);
1462 1.1 cgd }
1463 1.1 cgd
1464 1.1 cgd
1465 1.274 skd
1466 1.274 skd void *
1467 1.274 skd getframe(const struct lwp *l, int sig, int *onstack)
1468 1.274 skd {
1469 1.295 christos void *frame;
1470 1.274 skd
1471 1.274 skd /* Do we need to jump onto the signal stack? */
1472 1.274 skd *onstack =
1473 1.293 ad (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1474 1.293 ad (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1475 1.274 skd
1476 1.274 skd if (*onstack)
1477 1.296 yamt frame = (void *)((char *)l->l_sigstk.ss_sp +
1478 1.293 ad l->l_sigstk.ss_size);
1479 1.274 skd else
1480 1.274 skd frame = (void *)(alpha_pal_rdusp());
1481 1.274 skd return (frame);
1482 1.362 riastrad }
1483 1.274 skd
1484 1.274 skd void
1485 1.274 skd buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1486 1.274 skd {
1487 1.274 skd struct trapframe *tf = l->l_md.md_tf;
1488 1.274 skd
1489 1.337 matt tf->tf_regs[FRAME_RA] = (uint64_t)tramp;
1490 1.337 matt tf->tf_regs[FRAME_PC] = (uint64_t)catcher;
1491 1.337 matt tf->tf_regs[FRAME_T12] = (uint64_t)catcher;
1492 1.274 skd alpha_pal_wrusp((unsigned long)fp);
1493 1.274 skd }
1494 1.274 skd
1495 1.274 skd
1496 1.1 cgd /*
1497 1.274 skd * Send an interrupt to process, new style
1498 1.1 cgd */
1499 1.1 cgd void
1500 1.274 skd sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1501 1.1 cgd {
1502 1.261 thorpej struct lwp *l = curlwp;
1503 1.261 thorpej struct proc *p = l->l_proc;
1504 1.256 thorpej struct sigacts *ps = p->p_sigacts;
1505 1.293 ad int onstack, sig = ksi->ksi_signo, error;
1506 1.274 skd struct sigframe_siginfo *fp, frame;
1507 1.274 skd struct trapframe *tf;
1508 1.274 skd sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1509 1.1 cgd
1510 1.274 skd fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1511 1.274 skd tf = l->l_md.md_tf;
1512 1.141 thorpej
1513 1.141 thorpej /* Allocate space for the signal handler context. */
1514 1.274 skd fp--;
1515 1.141 thorpej
1516 1.1 cgd #ifdef DEBUG
1517 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1518 1.274 skd printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1519 1.276 nathanw sig, &onstack, fp);
1520 1.125 ross #endif
1521 1.1 cgd
1522 1.141 thorpej /* Build stack frame for signal trampoline. */
1523 1.352 maxv memset(&frame, 0, sizeof(frame));
1524 1.275 enami frame.sf_si._info = ksi->ksi_info;
1525 1.274 skd frame.sf_uc.uc_flags = _UC_SIGMASK;
1526 1.274 skd frame.sf_uc.uc_sigmask = *mask;
1527 1.299 pooka frame.sf_uc.uc_link = l->l_ctxlink;
1528 1.372 thorpej frame.sf_uc.uc_flags |= (l->l_sigstk.ss_flags & SS_ONSTACK)
1529 1.372 thorpej ? _UC_SETSTACK : _UC_CLRSTACK;
1530 1.293 ad sendsig_reset(l, sig);
1531 1.304 ad mutex_exit(p->p_lock);
1532 1.274 skd cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1533 1.293 ad error = copyout(&frame, fp, sizeof(frame));
1534 1.304 ad mutex_enter(p->p_lock);
1535 1.1 cgd
1536 1.293 ad if (error != 0) {
1537 1.141 thorpej /*
1538 1.141 thorpej * Process has trashed its stack; give it an illegal
1539 1.141 thorpej * instruction to halt it in its tracks.
1540 1.141 thorpej */
1541 1.141 thorpej #ifdef DEBUG
1542 1.141 thorpej if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1543 1.274 skd printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1544 1.141 thorpej p->p_pid, sig);
1545 1.141 thorpej #endif
1546 1.261 thorpej sigexit(l, SIGILL);
1547 1.141 thorpej /* NOTREACHED */
1548 1.141 thorpej }
1549 1.274 skd
1550 1.1 cgd #ifdef DEBUG
1551 1.1 cgd if (sigdebug & SDB_FOLLOW)
1552 1.276 nathanw printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1553 1.276 nathanw p->p_pid, sig, fp, ksi->ksi_code);
1554 1.1 cgd #endif
1555 1.1 cgd
1556 1.256 thorpej /*
1557 1.256 thorpej * Set up the registers to directly invoke the signal handler. The
1558 1.256 thorpej * signal trampoline is then used to return from the signal. Note
1559 1.256 thorpej * the trampoline version numbers are coordinated with machine-
1560 1.256 thorpej * dependent code in libc.
1561 1.256 thorpej */
1562 1.362 riastrad
1563 1.274 skd tf->tf_regs[FRAME_A0] = sig;
1564 1.337 matt tf->tf_regs[FRAME_A1] = (uint64_t)&fp->sf_si;
1565 1.337 matt tf->tf_regs[FRAME_A2] = (uint64_t)&fp->sf_uc;
1566 1.256 thorpej
1567 1.274 skd buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1568 1.142 mycroft
1569 1.142 mycroft /* Remember that we're now on the signal stack. */
1570 1.142 mycroft if (onstack)
1571 1.293 ad l->l_sigstk.ss_flags |= SS_ONSTACK;
1572 1.1 cgd
1573 1.1 cgd #ifdef DEBUG
1574 1.1 cgd if (sigdebug & SDB_FOLLOW)
1575 1.274 skd printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1576 1.276 nathanw tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1577 1.1 cgd if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1578 1.274 skd printf("sendsig_siginfo(%d): sig %d returns\n",
1579 1.1 cgd p->p_pid, sig);
1580 1.1 cgd #endif
1581 1.1 cgd }
1582 1.1 cgd
1583 1.1 cgd /*
1584 1.1 cgd * machine dependent system variables.
1585 1.1 cgd */
1586 1.278 atatat SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1587 1.1 cgd {
1588 1.241 ross
1589 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1590 1.282 atatat CTLFLAG_PERMANENT,
1591 1.278 atatat CTLTYPE_NODE, "machdep", NULL,
1592 1.278 atatat NULL, 0, NULL, 0,
1593 1.278 atatat CTL_MACHDEP, CTL_EOL);
1594 1.278 atatat
1595 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1596 1.282 atatat CTLFLAG_PERMANENT,
1597 1.278 atatat CTLTYPE_STRUCT, "console_device", NULL,
1598 1.278 atatat sysctl_consdev, 0, NULL, sizeof(dev_t),
1599 1.278 atatat CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1600 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1601 1.282 atatat CTLFLAG_PERMANENT,
1602 1.278 atatat CTLTYPE_STRING, "root_device", NULL,
1603 1.278 atatat sysctl_root_device, 0, NULL, 0,
1604 1.278 atatat CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1605 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1606 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1607 1.340 njoly CTLTYPE_INT, "unaligned_print",
1608 1.340 njoly SYSCTL_DESCR("Warn about unaligned accesses"),
1609 1.278 atatat NULL, 0, &alpha_unaligned_print, 0,
1610 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1611 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1612 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1613 1.340 njoly CTLTYPE_INT, "unaligned_fix",
1614 1.340 njoly SYSCTL_DESCR("Fix up unaligned accesses"),
1615 1.278 atatat NULL, 0, &alpha_unaligned_fix, 0,
1616 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1617 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1618 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1619 1.340 njoly CTLTYPE_INT, "unaligned_sigbus",
1620 1.340 njoly SYSCTL_DESCR("Do SIGBUS for fixed unaligned accesses"),
1621 1.278 atatat NULL, 0, &alpha_unaligned_sigbus, 0,
1622 1.278 atatat CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1623 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1624 1.282 atatat CTLFLAG_PERMANENT,
1625 1.278 atatat CTLTYPE_STRING, "booted_kernel", NULL,
1626 1.278 atatat NULL, 0, bootinfo.booted_kernel, 0,
1627 1.278 atatat CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1628 1.282 atatat sysctl_createv(clog, 0, NULL, NULL,
1629 1.282 atatat CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1630 1.278 atatat CTLTYPE_INT, "fp_sync_complete", NULL,
1631 1.278 atatat NULL, 0, &alpha_fp_sync_complete, 0,
1632 1.278 atatat CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1633 1.369 thorpej sysctl_createv(clog, 0, NULL, NULL,
1634 1.369 thorpej CTLFLAG_PERMANENT,
1635 1.369 thorpej CTLTYPE_INT, "cctr", NULL,
1636 1.369 thorpej NULL, 0, &alpha_use_cctr, 0,
1637 1.369 thorpej CTL_MACHDEP, CPU_CCTR, CTL_EOL);
1638 1.369 thorpej sysctl_createv(clog, 0, NULL, NULL,
1639 1.369 thorpej CTLFLAG_PERMANENT,
1640 1.369 thorpej CTLTYPE_BOOL, "is_qemu", NULL,
1641 1.369 thorpej NULL, 0, &alpha_is_qemu, 0,
1642 1.369 thorpej CTL_MACHDEP, CPU_IS_QEMU, CTL_EOL);
1643 1.1 cgd }
1644 1.1 cgd
1645 1.1 cgd /*
1646 1.1 cgd * Set registers on exec.
1647 1.1 cgd */
1648 1.1 cgd void
1649 1.325 matt setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
1650 1.1 cgd {
1651 1.261 thorpej struct trapframe *tfp = l->l_md.md_tf;
1652 1.322 rmind struct pcb *pcb;
1653 1.56 cgd #ifdef DEBUG
1654 1.1 cgd int i;
1655 1.56 cgd #endif
1656 1.43 cgd
1657 1.43 cgd #ifdef DEBUG
1658 1.43 cgd /*
1659 1.43 cgd * Crash and dump, if the user requested it.
1660 1.43 cgd */
1661 1.43 cgd if (boothowto & RB_DUMP)
1662 1.43 cgd panic("crash requested by boot flags");
1663 1.43 cgd #endif
1664 1.1 cgd
1665 1.1 cgd #ifdef DEBUG
1666 1.34 cgd for (i = 0; i < FRAME_SIZE; i++)
1667 1.1 cgd tfp->tf_regs[i] = 0xbabefacedeadbeef;
1668 1.1 cgd #else
1669 1.246 thorpej memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1670 1.1 cgd #endif
1671 1.322 rmind pcb = lwp_getpcb(l);
1672 1.322 rmind memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
1673 1.35 cgd alpha_pal_wrusp(stack);
1674 1.34 cgd tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1675 1.34 cgd tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1676 1.41 cgd
1677 1.62 cgd tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1678 1.62 cgd tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1679 1.62 cgd tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1680 1.330 joerg tfp->tf_regs[FRAME_A3] = l->l_proc->p_psstrp; /* a3 = ps_strings */
1681 1.41 cgd tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1682 1.1 cgd
1683 1.261 thorpej if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1684 1.334 matt l->l_md.md_flags &= ~MDLWP_FP_C;
1685 1.322 rmind pcb->pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
1686 1.241 ross }
1687 1.15 cgd }
1688 1.15 cgd
1689 1.366 thorpej void (*alpha_delay_fn)(unsigned long);
1690 1.366 thorpej
1691 1.15 cgd /*
1692 1.15 cgd * Wait "n" microseconds.
1693 1.15 cgd */
1694 1.32 cgd void
1695 1.317 dsl delay(unsigned long n)
1696 1.15 cgd {
1697 1.216 thorpej unsigned long pcc0, pcc1, curcycle, cycles, usec;
1698 1.15 cgd
1699 1.216 thorpej if (n == 0)
1700 1.216 thorpej return;
1701 1.216 thorpej
1702 1.366 thorpej /*
1703 1.366 thorpej * If we have an alternative delay function, go ahead and
1704 1.366 thorpej * use it.
1705 1.366 thorpej */
1706 1.366 thorpej if (alpha_delay_fn != NULL) {
1707 1.366 thorpej (*alpha_delay_fn)(n);
1708 1.366 thorpej return;
1709 1.366 thorpej }
1710 1.366 thorpej
1711 1.370 thorpej lwp_t * const l = curlwp;
1712 1.370 thorpej KPREEMPT_DISABLE(l);
1713 1.370 thorpej
1714 1.216 thorpej pcc0 = alpha_rpcc() & 0xffffffffUL;
1715 1.216 thorpej cycles = 0;
1716 1.216 thorpej usec = 0;
1717 1.216 thorpej
1718 1.216 thorpej while (usec <= n) {
1719 1.216 thorpej /*
1720 1.216 thorpej * Get the next CPU cycle count- assumes that we cannot
1721 1.216 thorpej * have had more than one 32 bit overflow.
1722 1.216 thorpej */
1723 1.216 thorpej pcc1 = alpha_rpcc() & 0xffffffffUL;
1724 1.216 thorpej if (pcc1 < pcc0)
1725 1.216 thorpej curcycle = (pcc1 + 0x100000000UL) - pcc0;
1726 1.216 thorpej else
1727 1.216 thorpej curcycle = pcc1 - pcc0;
1728 1.186 thorpej
1729 1.216 thorpej /*
1730 1.216 thorpej * We now have the number of processor cycles since we
1731 1.216 thorpej * last checked. Add the current cycle count to the
1732 1.216 thorpej * running total. If it's over cycles_per_usec, increment
1733 1.216 thorpej * the usec counter.
1734 1.216 thorpej */
1735 1.216 thorpej cycles += curcycle;
1736 1.216 thorpej while (cycles > cycles_per_usec) {
1737 1.216 thorpej usec++;
1738 1.216 thorpej cycles -= cycles_per_usec;
1739 1.216 thorpej }
1740 1.216 thorpej pcc0 = pcc1;
1741 1.216 thorpej }
1742 1.370 thorpej
1743 1.370 thorpej KPREEMPT_ENABLE(l);
1744 1.1 cgd }
1745 1.225 thorpej
1746 1.250 jdolecek #ifdef EXEC_ECOFF
1747 1.1 cgd void
1748 1.325 matt cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
1749 1.1 cgd {
1750 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1751 1.1 cgd
1752 1.261 thorpej l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1753 1.1 cgd }
1754 1.1 cgd
1755 1.1 cgd /*
1756 1.1 cgd * cpu_exec_ecoff_hook():
1757 1.1 cgd * cpu-dependent ECOFF format hook for execve().
1758 1.337 matt *
1759 1.1 cgd * Do any machine-dependent diddling of the exec package when doing ECOFF.
1760 1.1 cgd *
1761 1.1 cgd */
1762 1.1 cgd int
1763 1.317 dsl cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
1764 1.1 cgd {
1765 1.19 cgd struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1766 1.171 cgd int error;
1767 1.1 cgd
1768 1.224 jdolecek if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1769 1.171 cgd error = 0;
1770 1.224 jdolecek else
1771 1.224 jdolecek error = ENOEXEC;
1772 1.1 cgd
1773 1.171 cgd return (error);
1774 1.1 cgd }
1775 1.250 jdolecek #endif /* EXEC_ECOFF */
1776 1.110 thorpej
1777 1.110 thorpej int
1778 1.335 rmind mm_md_physacc(paddr_t pa, vm_prot_t prot)
1779 1.110 thorpej {
1780 1.335 rmind u_quad_t size;
1781 1.110 thorpej int i;
1782 1.110 thorpej
1783 1.110 thorpej for (i = 0; i < mem_cluster_cnt; i++) {
1784 1.110 thorpej if (pa < mem_clusters[i].start)
1785 1.110 thorpej continue;
1786 1.335 rmind size = mem_clusters[i].size & ~PAGE_MASK;
1787 1.335 rmind if (pa >= (mem_clusters[i].start + size))
1788 1.110 thorpej continue;
1789 1.335 rmind if ((prot & mem_clusters[i].size & PAGE_MASK) == prot)
1790 1.335 rmind return 0;
1791 1.110 thorpej }
1792 1.335 rmind return EFAULT;
1793 1.335 rmind }
1794 1.335 rmind
1795 1.335 rmind bool
1796 1.335 rmind mm_md_direct_mapped_io(void *addr, paddr_t *paddr)
1797 1.335 rmind {
1798 1.335 rmind vaddr_t va = (vaddr_t)addr;
1799 1.335 rmind
1800 1.335 rmind if (va >= ALPHA_K0SEG_BASE && va <= ALPHA_K0SEG_END) {
1801 1.335 rmind *paddr = ALPHA_K0SEG_TO_PHYS(va);
1802 1.335 rmind return true;
1803 1.335 rmind }
1804 1.335 rmind return false;
1805 1.335 rmind }
1806 1.337 matt
1807 1.335 rmind bool
1808 1.335 rmind mm_md_direct_mapped_phys(paddr_t paddr, vaddr_t *vaddr)
1809 1.335 rmind {
1810 1.197 thorpej
1811 1.335 rmind *vaddr = ALPHA_PHYS_TO_K0SEG(paddr);
1812 1.335 rmind return true;
1813 1.110 thorpej }
1814 1.50 cgd
1815 1.261 thorpej void
1816 1.317 dsl cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
1817 1.261 thorpej {
1818 1.261 thorpej struct trapframe *frame = l->l_md.md_tf;
1819 1.322 rmind struct pcb *pcb = lwp_getpcb(l);
1820 1.261 thorpej __greg_t *gr = mcp->__gregs;
1821 1.264 nathanw __greg_t ras_pc;
1822 1.261 thorpej
1823 1.261 thorpej /* Save register context. */
1824 1.261 thorpej frametoreg(frame, (struct reg *)gr);
1825 1.261 thorpej /* XXX if there's a better, general way to get the USP of
1826 1.261 thorpej * an LWP that might or might not be curlwp, I'd like to know
1827 1.261 thorpej * about it.
1828 1.261 thorpej */
1829 1.261 thorpej if (l == curlwp) {
1830 1.261 thorpej gr[_REG_SP] = alpha_pal_rdusp();
1831 1.261 thorpej gr[_REG_UNIQUE] = alpha_pal_rdunique();
1832 1.261 thorpej } else {
1833 1.322 rmind gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
1834 1.322 rmind gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
1835 1.261 thorpej }
1836 1.261 thorpej gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1837 1.261 thorpej gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1838 1.264 nathanw
1839 1.264 nathanw if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1840 1.295 christos (void *) gr[_REG_PC])) != -1)
1841 1.264 nathanw gr[_REG_PC] = ras_pc;
1842 1.264 nathanw
1843 1.342 manu *flags |= _UC_CPU | _UC_TLSBASE;
1844 1.261 thorpej
1845 1.261 thorpej /* Save floating point register context, if any, and copy it. */
1846 1.345 matt if (fpu_valid_p(l)) {
1847 1.350 chs fpu_save(l);
1848 1.322 rmind (void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
1849 1.261 thorpej sizeof (mcp->__fpregs));
1850 1.261 thorpej mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1851 1.261 thorpej *flags |= _UC_FPU;
1852 1.261 thorpej }
1853 1.261 thorpej }
1854 1.261 thorpej
1855 1.339 martin int
1856 1.339 martin cpu_mcontext_validate(struct lwp *l, const mcontext_t *mcp)
1857 1.339 martin {
1858 1.339 martin const __greg_t *gr = mcp->__gregs;
1859 1.339 martin
1860 1.339 martin if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1861 1.339 martin (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1862 1.339 martin return EINVAL;
1863 1.339 martin
1864 1.339 martin return 0;
1865 1.339 martin }
1866 1.261 thorpej
1867 1.261 thorpej int
1868 1.317 dsl cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
1869 1.261 thorpej {
1870 1.261 thorpej struct trapframe *frame = l->l_md.md_tf;
1871 1.322 rmind struct pcb *pcb = lwp_getpcb(l);
1872 1.261 thorpej const __greg_t *gr = mcp->__gregs;
1873 1.339 martin int error;
1874 1.261 thorpej
1875 1.261 thorpej /* Restore register context, if any. */
1876 1.261 thorpej if (flags & _UC_CPU) {
1877 1.261 thorpej /* Check for security violations first. */
1878 1.339 martin error = cpu_mcontext_validate(l, mcp);
1879 1.339 martin if (error)
1880 1.339 martin return error;
1881 1.261 thorpej
1882 1.286 jdc regtoframe((const struct reg *)gr, l->l_md.md_tf);
1883 1.261 thorpej if (l == curlwp)
1884 1.261 thorpej alpha_pal_wrusp(gr[_REG_SP]);
1885 1.261 thorpej else
1886 1.322 rmind pcb->pcb_hw.apcb_usp = gr[_REG_SP];
1887 1.261 thorpej frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1888 1.261 thorpej frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1889 1.261 thorpej }
1890 1.372 thorpej
1891 1.342 manu if (flags & _UC_TLSBASE)
1892 1.329 joerg lwp_setprivate(l, (void *)(uintptr_t)gr[_REG_UNIQUE]);
1893 1.372 thorpej
1894 1.261 thorpej /* Restore floating point register context, if any. */
1895 1.261 thorpej if (flags & _UC_FPU) {
1896 1.261 thorpej /* If we have an FP register context, get rid of it. */
1897 1.350 chs fpu_discard(l, true);
1898 1.322 rmind (void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
1899 1.322 rmind sizeof (pcb->pcb_fp));
1900 1.334 matt l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDLWP_FP_C;
1901 1.261 thorpej }
1902 1.261 thorpej
1903 1.372 thorpej mutex_enter(l->l_proc->p_lock);
1904 1.372 thorpej if (flags & _UC_SETSTACK)
1905 1.372 thorpej l->l_sigstk.ss_flags |= SS_ONSTACK;
1906 1.372 thorpej if (flags & _UC_CLRSTACK)
1907 1.372 thorpej l->l_sigstk.ss_flags &= ~SS_ONSTACK;
1908 1.372 thorpej mutex_exit(l->l_proc->p_lock);
1909 1.372 thorpej
1910 1.261 thorpej return (0);
1911 1.138 ross }
1912 1.297 yamt
1913 1.361 thorpej static void
1914 1.361 thorpej cpu_kick(struct cpu_info * const ci)
1915 1.361 thorpej {
1916 1.361 thorpej #if defined(MULTIPROCESSOR)
1917 1.361 thorpej alpha_send_ipi(ci->ci_cpuid, ALPHA_IPI_AST);
1918 1.361 thorpej #endif /* MULTIPROCESSOR */
1919 1.361 thorpej }
1920 1.361 thorpej
1921 1.297 yamt /*
1922 1.297 yamt * Preempt the current process if in interrupt from user mode,
1923 1.297 yamt * or after the current trap/syscall if in system mode.
1924 1.297 yamt */
1925 1.297 yamt void
1926 1.355 ad cpu_need_resched(struct cpu_info *ci, struct lwp *l, int flags)
1927 1.297 yamt {
1928 1.361 thorpej
1929 1.361 thorpej KASSERT(kpreempt_disabled());
1930 1.361 thorpej
1931 1.361 thorpej if ((flags & RESCHED_IDLE) != 0) {
1932 1.361 thorpej /*
1933 1.361 thorpej * Nothing to do here; we are not currently using WTINT
1934 1.361 thorpej * in cpu_idle().
1935 1.361 thorpej */
1936 1.361 thorpej return;
1937 1.361 thorpej }
1938 1.361 thorpej
1939 1.361 thorpej /* XXX RESCHED_KPREEMPT XXX */
1940 1.361 thorpej
1941 1.361 thorpej KASSERT((flags & RESCHED_UPREEMPT) != 0);
1942 1.361 thorpej if ((flags & RESCHED_REMOTE) != 0) {
1943 1.361 thorpej cpu_kick(ci);
1944 1.361 thorpej } else {
1945 1.361 thorpej aston(l);
1946 1.361 thorpej }
1947 1.361 thorpej }
1948 1.361 thorpej
1949 1.361 thorpej /*
1950 1.361 thorpej * Notify the current lwp (l) that it has a signal pending,
1951 1.361 thorpej * process as soon as possible.
1952 1.361 thorpej */
1953 1.361 thorpej void
1954 1.361 thorpej cpu_signotify(struct lwp *l)
1955 1.361 thorpej {
1956 1.362 riastrad
1957 1.361 thorpej KASSERT(kpreempt_disabled());
1958 1.361 thorpej
1959 1.361 thorpej if (l->l_cpu != curcpu()) {
1960 1.361 thorpej cpu_kick(l->l_cpu);
1961 1.361 thorpej } else {
1962 1.361 thorpej aston(l);
1963 1.297 yamt }
1964 1.297 yamt }
1965 1.361 thorpej
1966 1.361 thorpej /*
1967 1.361 thorpej * Give a profiling tick to the current process when the user profiling
1968 1.361 thorpej * buffer pages are invalid. On the alpha, request an AST to send us
1969 1.361 thorpej * through trap, marking the proc as needing a profiling tick.
1970 1.361 thorpej */
1971 1.361 thorpej void
1972 1.361 thorpej cpu_need_proftick(struct lwp *l)
1973 1.361 thorpej {
1974 1.361 thorpej
1975 1.361 thorpej KASSERT(kpreempt_disabled());
1976 1.361 thorpej KASSERT(l->l_cpu == curcpu());
1977 1.361 thorpej
1978 1.361 thorpej l->l_pflag |= LP_OWEUPC;
1979 1.361 thorpej aston(l);
1980 1.361 thorpej }
1981