Home | History | Annotate | Line # | Download | only in alpha
machdep.c revision 1.4
      1  1.4  cgd /*	$NetBSD: machdep.c,v 1.4 1995/04/22 12:42:01 cgd Exp $	*/
      2  1.1  cgd 
      3  1.1  cgd /*
      4  1.1  cgd  * Copyright (c) 1994, 1995 Carnegie-Mellon University.
      5  1.1  cgd  * All rights reserved.
      6  1.1  cgd  *
      7  1.1  cgd  * Author: Chris G. Demetriou
      8  1.1  cgd  *
      9  1.1  cgd  * Permission to use, copy, modify and distribute this software and
     10  1.1  cgd  * its documentation is hereby granted, provided that both the copyright
     11  1.1  cgd  * notice and this permission notice appear in all copies of the
     12  1.1  cgd  * software, derivative works or modified versions, and any portions
     13  1.1  cgd  * thereof, and that both notices appear in supporting documentation.
     14  1.1  cgd  *
     15  1.1  cgd  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16  1.1  cgd  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17  1.1  cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18  1.1  cgd  *
     19  1.1  cgd  * Carnegie Mellon requests users of this software to return to
     20  1.1  cgd  *
     21  1.1  cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22  1.1  cgd  *  School of Computer Science
     23  1.1  cgd  *  Carnegie Mellon University
     24  1.1  cgd  *  Pittsburgh PA 15213-3890
     25  1.1  cgd  *
     26  1.1  cgd  * any improvements or extensions that they make and grant Carnegie the
     27  1.1  cgd  * rights to redistribute these changes.
     28  1.1  cgd  */
     29  1.1  cgd 
     30  1.1  cgd #include <sys/param.h>
     31  1.1  cgd #include <sys/systm.h>
     32  1.1  cgd #include <sys/signalvar.h>
     33  1.1  cgd #include <sys/kernel.h>
     34  1.1  cgd #include <sys/map.h>
     35  1.1  cgd #include <sys/proc.h>
     36  1.1  cgd #include <sys/buf.h>
     37  1.1  cgd #include <sys/reboot.h>
     38  1.1  cgd #include <sys/conf.h>
     39  1.1  cgd #include <sys/file.h>
     40  1.1  cgd #ifdef REAL_CLISTS
     41  1.1  cgd #include <sys/clist.h>
     42  1.1  cgd #endif
     43  1.1  cgd #include <sys/callout.h>
     44  1.1  cgd #include <sys/malloc.h>
     45  1.1  cgd #include <sys/mbuf.h>
     46  1.1  cgd #include <sys/msgbuf.h>
     47  1.1  cgd #include <sys/ioctl.h>
     48  1.1  cgd #include <sys/tty.h>
     49  1.1  cgd #include <sys/user.h>
     50  1.1  cgd #include <sys/exec.h>
     51  1.1  cgd #include <sys/exec_ecoff.h>
     52  1.1  cgd #include <sys/sysctl.h>
     53  1.1  cgd #ifdef SYSVMSG
     54  1.1  cgd #include <sys/msg.h>
     55  1.1  cgd #endif
     56  1.1  cgd #ifdef SYSVSEM
     57  1.1  cgd #include <sys/sem.h>
     58  1.1  cgd #endif
     59  1.1  cgd #ifdef SYSVSHM
     60  1.1  cgd #include <sys/shm.h>
     61  1.1  cgd #endif
     62  1.1  cgd 
     63  1.1  cgd #include <sys/mount.h>
     64  1.1  cgd #include <sys/syscallargs.h>
     65  1.1  cgd 
     66  1.1  cgd #include <vm/vm_kern.h>
     67  1.1  cgd 
     68  1.1  cgd #include <dev/cons.h>
     69  1.1  cgd 
     70  1.1  cgd #include <machine/cpu.h>
     71  1.1  cgd #include <machine/reg.h>
     72  1.1  cgd #include <machine/rpb.h>
     73  1.1  cgd #include <machine/prom.h>
     74  1.1  cgd 
     75  1.1  cgd #include <net/netisr.h>
     76  1.1  cgd #include "ether.h"
     77  1.1  cgd 
     78  1.1  cgd #include "le.h"			/* XXX for le_iomem creation */
     79  1.1  cgd #include "esp.h"		/* XXX for esp_iomem creation */
     80  1.1  cgd 
     81  1.1  cgd vm_map_t buffer_map;
     82  1.1  cgd 
     83  1.1  cgd /*
     84  1.1  cgd  * Declare these as initialized data so we can patch them.
     85  1.1  cgd  */
     86  1.1  cgd int	nswbuf = 0;
     87  1.1  cgd #ifdef	NBUF
     88  1.1  cgd int	nbuf = NBUF;
     89  1.1  cgd #else
     90  1.1  cgd int	nbuf = 0;
     91  1.1  cgd #endif
     92  1.1  cgd #ifdef	BUFPAGES
     93  1.1  cgd int	bufpages = BUFPAGES;
     94  1.1  cgd #else
     95  1.1  cgd int	bufpages = 0;
     96  1.1  cgd #endif
     97  1.1  cgd int	msgbufmapped = 0;	/* set when safe to use msgbuf */
     98  1.1  cgd int	maxmem;			/* max memory per process */
     99  1.1  cgd int	physmem;		/* amount of physical memory in system */
    100  1.1  cgd int	resvmem;		/* amount of memory reserved for PROM */
    101  1.1  cgd 
    102  1.1  cgd int	cputype;		/* system type, from the RPB */
    103  1.1  cgd 
    104  1.1  cgd /*
    105  1.1  cgd  * XXX We need an address to which we can assign things so that they
    106  1.1  cgd  * won't be optimized away because we didn't use the value.
    107  1.1  cgd  */
    108  1.1  cgd u_int32_t no_optimize;
    109  1.1  cgd 
    110  1.1  cgd /* the following is used externally (sysctl_hw) */
    111  1.1  cgd char	machine[] = "alpha";
    112  1.2  cgd char	*cpu_model;
    113  1.1  cgd char	*model_names[] = {
    114  1.2  cgd 	"UNKNOWN (0)",
    115  1.2  cgd 	"Alpha Demonstration Unit",
    116  1.2  cgd 	"DEC 4000 (\"Cobra\")",
    117  1.2  cgd 	"DEC 7000 (\"Ruby\")",
    118  1.2  cgd 	"DEC 3000/500 (\"Flamingo\") family",
    119  1.2  cgd 	"UNKNOWN (5)",
    120  1.2  cgd 	"DEC 2000/300 (\"Jensen\")",
    121  1.2  cgd 	"DEC 3000/300 (\"Pelican\")",
    122  1.2  cgd 	"UNKNOWN (8)",
    123  1.2  cgd 	"DEC 2100/A500 (\"Sable\")",
    124  1.2  cgd 	"AXPvme 64",
    125  1.2  cgd 	"AXPpci 33 (\"NoName\")",
    126  1.2  cgd 	"UNKNOWN (12)",
    127  1.2  cgd 	"DEC 2100/A50 (\"Avanti\")",
    128  1.2  cgd 	"Mustang",
    129  1.2  cgd 	"DEC 1000 (\"Mikasa\")",
    130  1.1  cgd };
    131  1.1  cgd int	nmodel_names = sizeof model_names/sizeof model_names[0];
    132  1.1  cgd 
    133  1.1  cgd struct	user *proc0paddr;
    134  1.1  cgd 
    135  1.1  cgd /* Number of machine cycles per microsecond */
    136  1.1  cgd u_int64_t	cycles_per_usec;
    137  1.1  cgd 
    138  1.1  cgd /* some memory areas for device DMA.  "ick." */
    139  1.1  cgd caddr_t		le_iomem;		/* XXX iomem for LANCE DMA */
    140  1.1  cgd caddr_t		esp_iomem;		/* XXX iomem for SCSI DMA */
    141  1.1  cgd 
    142  1.1  cgd /* Interrupt vectors (in locore) */
    143  1.1  cgd extern int XentInt(), XentArith(), XentMM(), XentIF(), XentUna(), XentSys();
    144  1.1  cgd 
    145  1.1  cgd int
    146  1.1  cgd alpha_init(pfn, ptb, argc, argv, envp)
    147  1.1  cgd 	u_long pfn;		/* first free PFN number */
    148  1.1  cgd 	u_long ptb;		/* PFN of current level 1 page table */
    149  1.1  cgd 	u_long argc;
    150  1.1  cgd 	char *argv[], *envp[];
    151  1.1  cgd {
    152  1.2  cgd 	extern char _end[];
    153  1.1  cgd 	caddr_t start, v;
    154  1.1  cgd 	struct mddt *mddtp;
    155  1.1  cgd 	int i;
    156  1.1  cgd 	char *p;
    157  1.1  cgd 
    158  1.1  cgd 	/*
    159  1.1  cgd 	 * Turn off interrupts and floating point.
    160  1.1  cgd 	 * Make sure the instruction and data streams are consistent.
    161  1.1  cgd 	 */
    162  1.1  cgd 	(void)splhigh();
    163  1.1  cgd 	pal_wrfen(0);
    164  1.1  cgd 	TBIA();
    165  1.1  cgd 	IMB();
    166  1.1  cgd 
    167  1.1  cgd 	/*
    168  1.1  cgd 	 * get address of the restart block, while we the bootstrap
    169  1.1  cgd 	 * mapping is still around.
    170  1.1  cgd 	 */
    171  1.1  cgd 	hwrpb = (struct rpb *) phystok0seg(*(struct rpb **)HWRPB_ADDR);
    172  1.1  cgd 
    173  1.1  cgd 	/*
    174  1.1  cgd 	 * Remember how many cycles there are per microsecond,
    175  1.1  cgd 	 * so that we can use delay()
    176  1.1  cgd 	 */
    177  1.1  cgd 	cycles_per_usec = hwrpb->rpb_cc_freq / 1000000;
    178  1.1  cgd 
    179  1.1  cgd 	/*
    180  1.1  cgd 	 * Init the PROM interface, so we can use printf
    181  1.1  cgd 	 * until PROM mappings go away in consinit.
    182  1.1  cgd 	 */
    183  1.1  cgd 	init_prom_interface();
    184  1.1  cgd 
    185  1.1  cgd 	/*
    186  1.1  cgd 	 * Point interrupt/exception vectors to our own.
    187  1.1  cgd 	 */
    188  1.1  cgd 	pal_wrent(XentInt, 0);
    189  1.1  cgd 	pal_wrent(XentArith, 1);
    190  1.1  cgd 	pal_wrent(XentMM, 2);
    191  1.1  cgd 	pal_wrent(XentIF, 3);
    192  1.1  cgd 	pal_wrent(XentUna, 4);
    193  1.1  cgd 	pal_wrent(XentSys, 5);
    194  1.1  cgd 
    195  1.1  cgd 	/*
    196  1.1  cgd 	 * Find out how much memory is available, by looking at
    197  1.1  cgd 	 * the memory cluster descriptors.
    198  1.1  cgd 	 * XXX Assumes that the first "system" cluster is the
    199  1.1  cgd 	 * only one we can use.  Can there be more than two clusters?
    200  1.1  cgd 	 * Is the second (etc.) system cluster guaranteed to be
    201  1.1  cgd 	 * discontiguous?
    202  1.1  cgd 	 */
    203  1.1  cgd 	mddtp = (struct mddt *)(((caddr_t)hwrpb) + hwrpb->rpb_memdat_off);
    204  1.1  cgd 	physmem = 0;
    205  1.2  cgd 	if (mddtp->mddt_cluster_cnt != 2) {
    206  1.1  cgd 		printf("warning: strange number of memory clusters (%d).\n",
    207  1.1  cgd 		    mddtp->mddt_cluster_cnt);
    208  1.2  cgd 		printf("memory cluster information:\n");
    209  1.2  cgd 		for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    210  1.2  cgd 			printf("mddt %d:\n", i);
    211  1.2  cgd 			printf("\tpfn %lx\n",
    212  1.2  cgd 			    mddtp->mddt_clusters[i].mddt_pfn);
    213  1.2  cgd 			printf("\tcnt %lx\n",
    214  1.2  cgd 			    mddtp->mddt_clusters[i].mddt_pg_cnt);
    215  1.2  cgd 			printf("\ttest %lx\n",
    216  1.2  cgd 			    mddtp->mddt_clusters[i].mddt_pg_test);
    217  1.2  cgd 			printf("\tbva %lx\n",
    218  1.2  cgd 			    mddtp->mddt_clusters[i].mddt_v_bitaddr);
    219  1.2  cgd 			printf("\tbpa %lx\n",
    220  1.2  cgd 			    mddtp->mddt_clusters[i].mddt_p_bitaddr);
    221  1.2  cgd 			printf("\tbcksum %lx\n",
    222  1.2  cgd 			    mddtp->mddt_clusters[i].mddt_bit_cksum);
    223  1.2  cgd 			printf("\tusage %lx\n",
    224  1.2  cgd 			    mddtp->mddt_clusters[i].mddt_usage);
    225  1.2  cgd 		}
    226  1.2  cgd 	}
    227  1.2  cgd 
    228  1.1  cgd 	physmem = 0;
    229  1.1  cgd 	for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
    230  1.1  cgd 		/* add up physmem, stopping on first OS-available space. */
    231  1.1  cgd 		physmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    232  1.1  cgd 		if ((mddtp->mddt_clusters[i].mddt_usage & 0x01) == 0)
    233  1.1  cgd 			break;
    234  1.1  cgd 		else
    235  1.1  cgd 			resvmem += mddtp->mddt_clusters[i].mddt_pg_cnt;
    236  1.1  cgd 	}
    237  1.1  cgd 	if (physmem == 0)
    238  1.1  cgd 		panic("can't happen: system seems to have no memory!");
    239  1.1  cgd 	maxmem = physmem;
    240  1.1  cgd 
    241  1.1  cgd 	/*
    242  1.1  cgd 	 * find out this CPU's page size
    243  1.1  cgd 	 */
    244  1.1  cgd 	PAGE_SIZE = hwrpb->rpb_page_size;
    245  1.1  cgd 
    246  1.2  cgd 	v = (caddr_t)alpha_round_page(_end);
    247  1.1  cgd 	/*
    248  1.1  cgd 	 * Init mapping for u page(s) for proc 0
    249  1.1  cgd 	 */
    250  1.1  cgd 	start = v;
    251  1.1  cgd 	curproc->p_addr = proc0paddr = (struct user *)v;
    252  1.1  cgd 	v += UPAGES * NBPG;
    253  1.1  cgd 
    254  1.1  cgd 	/*
    255  1.1  cgd 	 * Find out what hardware we're on, and remember its type name.
    256  1.1  cgd 	 * XXX and start dealing with config?
    257  1.1  cgd 	 */
    258  1.1  cgd 	cputype = hwrpb->rpb_type;
    259  1.1  cgd 	switch (cputype) {
    260  1.1  cgd #ifdef ADU
    261  1.1  cgd 	case ST_ADU:
    262  1.1  cgd 		THIS SYSTEM NOT SUPPORTED
    263  1.2  cgd #endif
    264  1.2  cgd 
    265  1.1  cgd #ifdef DEC_4000
    266  1.1  cgd 	case ST_DEC_4000:
    267  1.1  cgd 		THIS SYSTEM NOT SUPPORTED
    268  1.2  cgd #endif
    269  1.2  cgd 
    270  1.1  cgd #ifdef DEC_7000
    271  1.1  cgd 	case ST_DEC_7000:
    272  1.1  cgd 		THIS SYSTEM NOT SUPPORTED
    273  1.2  cgd #endif
    274  1.2  cgd 
    275  1.2  cgd #ifdef DEC_3000_500				/* and 400, [6-9]00 */
    276  1.1  cgd 	case ST_DEC_3000_500:
    277  1.2  cgd 		switch (hwrpb->rpb_variation & SV_ST_MASK) {
    278  1.2  cgd 		case SV_ST_SANDPIPER:
    279  1.2  cgd systype_sandpiper:
    280  1.2  cgd 			cpu_model = "DEC 3000/400 (\"Sandpiper\")";
    281  1.2  cgd 			break;
    282  1.2  cgd 
    283  1.2  cgd 		case SV_ST_FLAMINGO:
    284  1.2  cgd systype_flamingo:
    285  1.2  cgd 			cpu_model = "DEC 3000/500 (\"Flamingo\")";
    286  1.2  cgd 			break;
    287  1.2  cgd 
    288  1.2  cgd 		case SV_ST_HOTPINK:
    289  1.2  cgd 			cpu_model = "DEC 3000/500X (\"Hot Pink\")";
    290  1.2  cgd 			break;
    291  1.2  cgd 
    292  1.2  cgd 		case SV_ST_FLAMINGOPLUS:
    293  1.2  cgd 		case SV_ST_ULTRA:
    294  1.2  cgd 			cpu_model = "DEC 3000/800 (\"Flamingo+\")";
    295  1.2  cgd 			break;
    296  1.2  cgd 
    297  1.2  cgd 		case SV_ST_SANDPLUS:
    298  1.2  cgd 			cpu_model = "DEC 3000/600 (\"Sandpiper+\")";
    299  1.2  cgd 			break;
    300  1.2  cgd 
    301  1.2  cgd 		case SV_ST_SANDPIPER45:
    302  1.2  cgd 			cpu_model = "DEC 3000/700 (\"Sandpiper45\")";
    303  1.2  cgd 			break;
    304  1.2  cgd 
    305  1.2  cgd 		case SV_ST_FLAMINGO45:
    306  1.2  cgd 			cpu_model = "DEC 3000/900 (\"Flamingo45\")";
    307  1.2  cgd 			break;
    308  1.2  cgd 
    309  1.2  cgd 		case SV_ST_RESERVED: /* this is how things used to be done */
    310  1.2  cgd 			if (hwrpb->rpb_variation & SV_GRAPHICS)
    311  1.2  cgd 				goto systype_flamingo;
    312  1.2  cgd 			else
    313  1.2  cgd 				goto systype_sandpiper;
    314  1.2  cgd 			/* NOTREACHED */
    315  1.2  cgd 
    316  1.2  cgd 		default:
    317  1.2  cgd 			printf("unknown system variation %lx\n",
    318  1.2  cgd 			    hwrpb->rpb_variation & SV_ST_MASK);
    319  1.2  cgd 		}
    320  1.1  cgd 		break;
    321  1.2  cgd #endif
    322  1.2  cgd 
    323  1.1  cgd #ifdef DEC_2000_300
    324  1.1  cgd 	case ST_DEC_2000_300:
    325  1.2  cgd 		/* XXX XXX XXX */
    326  1.2  cgd 		break;
    327  1.2  cgd #endif
    328  1.2  cgd 
    329  1.2  cgd #ifdef DEC_3000_300
    330  1.2  cgd 	case ST_DEC_3000_300:
    331  1.2  cgd 		switch (hwrpb->rpb_variation & SV_ST_MASK) {
    332  1.2  cgd 		case SV_ST_PELICAN:
    333  1.2  cgd 			cpu_model = "DEC 3000/300 (\"Pelican\")";
    334  1.2  cgd 			break;
    335  1.2  cgd 
    336  1.3  cgd 		case SV_ST_PELICA:
    337  1.3  cgd 			cpu_model = "DEC 3000/300L (\"Pelica\")";
    338  1.2  cgd 			break;
    339  1.2  cgd 
    340  1.3  cgd 		case SV_ST_PELICANPLUS:
    341  1.3  cgd 			cpu_model = "DEC 3000/300X (\"Pelican+\")";
    342  1.2  cgd 			break;
    343  1.2  cgd 
    344  1.3  cgd 		case SV_ST_PELICAPLUS:
    345  1.3  cgd 			cpu_model = "DEC 3000/300LX (\"Pelica+\")";
    346  1.2  cgd 			break;
    347  1.2  cgd 
    348  1.2  cgd 		default:
    349  1.2  cgd 			printf("unknown system variation %lx\n",
    350  1.2  cgd 			    hwrpb->rpb_variation & SV_ST_MASK);
    351  1.2  cgd 		}
    352  1.2  cgd 		break;
    353  1.2  cgd #endif
    354  1.2  cgd 
    355  1.2  cgd #ifdef DEC_2100_A500
    356  1.2  cgd 	case ST_DEC_2100_A500:
    357  1.2  cgd 		THIS SYSTEM NOT SUPPORTED
    358  1.2  cgd #endif
    359  1.2  cgd 
    360  1.2  cgd #ifdef DEC_AXPVME_64
    361  1.2  cgd 	case ST_DEC_AXPVME_64:
    362  1.1  cgd 		THIS SYSTEM NOT SUPPORTED
    363  1.2  cgd #endif
    364  1.2  cgd 
    365  1.2  cgd #ifdef DEC_AXPPCI_33
    366  1.2  cgd 	case ST_DEC_AXPPCI_33:
    367  1.2  cgd 		THIS SYSTEM NOT SUPPORTED
    368  1.2  cgd #endif
    369  1.2  cgd 
    370  1.2  cgd #ifdef DEC_2100_A50
    371  1.2  cgd 	case ST_DEC_2100_A50:
    372  1.2  cgd 		/* XXX */
    373  1.2  cgd 		printf("unknown system variation %lx\n",
    374  1.2  cgd 		    hwrpb->rpb_variation & SV_ST_MASK);
    375  1.2  cgd 		break;
    376  1.2  cgd #endif
    377  1.2  cgd 
    378  1.2  cgd #ifdef DEC_MUSTANG
    379  1.2  cgd 	case ST_DEC_MUSTANG:
    380  1.2  cgd 		THIS SYSTEM NOT SUPPORTED
    381  1.2  cgd #endif
    382  1.2  cgd 
    383  1.2  cgd #ifdef DEC_1000
    384  1.2  cgd 	case ST_DEC_1000:
    385  1.1  cgd 		THIS SYSTEM NOT SUPPORTED
    386  1.2  cgd #endif
    387  1.2  cgd 
    388  1.1  cgd 	default:
    389  1.1  cgd 		if (cputype > nmodel_names)
    390  1.1  cgd 			panic("Unknown system type %d", cputype);
    391  1.1  cgd 		else
    392  1.1  cgd 			panic("Support for %s system type not in kernel.",
    393  1.1  cgd 			    model_names[cputype]);
    394  1.1  cgd 	}
    395  1.2  cgd 	if (cpu_model == NULL)
    396  1.2  cgd 		cpu_model = model_names[cputype];
    397  1.1  cgd 
    398  1.1  cgd #if NLE > 0
    399  1.1  cgd 	/*
    400  1.1  cgd 	 * Grab 128K at the top of physical memory for the lance chip
    401  1.1  cgd 	 * on machines where it does dma through the I/O ASIC.
    402  1.1  cgd 	 * It must be physically contiguous and aligned on a 128K boundary.
    403  1.1  cgd 	 */
    404  1.1  cgd 	if (cputype == ST_DEC_3000_500 ||
    405  1.1  cgd 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    406  1.1  cgd 		maxmem -= btoc(128 * 1024);
    407  1.1  cgd 		le_iomem = (caddr_t)phystok0seg(maxmem << PGSHIFT);
    408  1.1  cgd 	}
    409  1.1  cgd #endif /* NLE */
    410  1.1  cgd #if NESP > 0
    411  1.1  cgd 	/*
    412  1.1  cgd 	 * Ditto for the scsi chip. There is probably a way to make esp.c
    413  1.1  cgd 	 * do dma without these buffers, but it would require major
    414  1.1  cgd 	 * re-engineering of the esp driver.
    415  1.1  cgd 	 * They must be 8K in size and page aligned.
    416  1.1  cgd 	 */
    417  1.1  cgd 	if (cputype == ST_DEC_3000_500 ||
    418  1.1  cgd 	    cputype == ST_DEC_3000_300) {	/* XXX possibly others? */
    419  1.1  cgd 		maxmem -= btoc(NESP * 8192);
    420  1.1  cgd 		esp_iomem = (caddr_t)phystok0seg(maxmem << PGSHIFT);
    421  1.1  cgd 	}
    422  1.1  cgd #endif /* NESP */
    423  1.1  cgd 
    424  1.1  cgd 	/*
    425  1.1  cgd 	 * Initialize error message buffer (at end of core).
    426  1.1  cgd 	 */
    427  1.1  cgd 	maxmem -= btoc(sizeof (struct msgbuf));
    428  1.1  cgd 	msgbufp = (struct msgbuf *)phystok0seg(maxmem << PGSHIFT);
    429  1.1  cgd 	msgbufmapped = 1;
    430  1.1  cgd 
    431  1.1  cgd 	/*
    432  1.1  cgd 	 * Allocate space for system data structures.
    433  1.1  cgd 	 * The first available kernel virtual address is in "v".
    434  1.1  cgd 	 * As pages of kernel virtual memory are allocated, "v" is incremented.
    435  1.1  cgd 	 *
    436  1.1  cgd 	 * These data structures are allocated here instead of cpu_startup()
    437  1.1  cgd 	 * because physical memory is directly addressable. We don't have
    438  1.1  cgd 	 * to map these into virtual address space.
    439  1.1  cgd 	 */
    440  1.1  cgd #define valloc(name, type, num) \
    441  1.1  cgd 	    (name) = (type *)v; v = (caddr_t)((name)+(num))
    442  1.1  cgd #define valloclim(name, type, num, lim) \
    443  1.1  cgd 	    (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
    444  1.1  cgd #ifdef REAL_CLISTS
    445  1.1  cgd 	valloc(cfree, struct cblock, nclist);
    446  1.1  cgd #endif
    447  1.1  cgd 	valloc(callout, struct callout, ncallout);
    448  1.1  cgd 	valloc(swapmap, struct map, nswapmap = maxproc * 2);
    449  1.1  cgd #ifdef SYSVSHM
    450  1.1  cgd 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    451  1.1  cgd #endif
    452  1.1  cgd #ifdef SYSVSEM
    453  1.1  cgd 	valloc(sema, struct semid_ds, seminfo.semmni);
    454  1.1  cgd 	valloc(sem, struct sem, seminfo.semmns);
    455  1.1  cgd 	/* This is pretty disgusting! */
    456  1.1  cgd 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    457  1.1  cgd #endif
    458  1.1  cgd #ifdef SYSVMSG
    459  1.1  cgd 	valloc(msgpool, char, msginfo.msgmax);
    460  1.1  cgd 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    461  1.1  cgd 	valloc(msghdrs, struct msg, msginfo.msgtql);
    462  1.1  cgd 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    463  1.1  cgd #endif
    464  1.1  cgd 
    465  1.1  cgd 	/*
    466  1.1  cgd 	 * Determine how many buffers to allocate.
    467  1.1  cgd 	 * We allocate the BSD standard of 10% of memory for the first
    468  1.1  cgd 	 * 2 Meg, and 5% of remaining memory for buffer space.  Insure a
    469  1.1  cgd 	 * minimum of 16 buffers.  We allocate 1/2 as many swap buffer
    470  1.1  cgd 	 * headers as file i/o buffers.
    471  1.1  cgd 	 */
    472  1.1  cgd 	if (bufpages == 0)
    473  1.1  cgd 		bufpages = (btoc(2 * 1024 * 1024) + (physmem - resvmem)) /
    474  1.1  cgd 		    (20 * CLSIZE);
    475  1.1  cgd 	if (nbuf == 0) {
    476  1.1  cgd 		nbuf = bufpages;
    477  1.1  cgd 		if (nbuf < 16)
    478  1.1  cgd 			nbuf = 16;
    479  1.1  cgd 	}
    480  1.1  cgd 	if (nswbuf == 0) {
    481  1.1  cgd 		nswbuf = (nbuf / 2) &~ 1;	/* force even */
    482  1.1  cgd 		if (nswbuf > 256)
    483  1.1  cgd 			nswbuf = 256;		/* sanity */
    484  1.1  cgd 	}
    485  1.1  cgd 	valloc(swbuf, struct buf, nswbuf);
    486  1.1  cgd 	valloc(buf, struct buf, nbuf);
    487  1.1  cgd 
    488  1.1  cgd 	/*
    489  1.1  cgd 	 * Clear allocated memory.
    490  1.1  cgd 	 */
    491  1.1  cgd 	bzero(start, v - start);
    492  1.1  cgd 
    493  1.1  cgd 	/*
    494  1.1  cgd 	 * Initialize the virtual memory system, and set the
    495  1.1  cgd 	 * page table base register in proc 0's PCB.
    496  1.1  cgd 	 */
    497  1.1  cgd 	pmap_bootstrap((vm_offset_t)v, phystok0seg(ptb << PGSHIFT));
    498  1.1  cgd 
    499  1.1  cgd 	/*
    500  1.3  cgd 	 * Initialize the rest of proc 0's PCB, and cache its physical
    501  1.3  cgd 	 * address.
    502  1.3  cgd 	 */
    503  1.3  cgd 	proc0.p_md.md_pcbpaddr =
    504  1.3  cgd 	    (struct pcb *)k0segtophys(&proc0paddr->u_pcb);
    505  1.3  cgd 
    506  1.3  cgd 	/*
    507  1.3  cgd 	 * Set the kernel sp, reserving space for an (empty) trapframe,
    508  1.3  cgd 	 * and make proc0's trapframe pointer point to it for sanity.
    509  1.3  cgd 	 */
    510  1.3  cgd 	proc0paddr->u_pcb.pcb_ksp =
    511  1.3  cgd 	    (u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
    512  1.3  cgd 	proc0.p_md.md_tf = (struct trapframe *)proc0paddr->u_pcb.pcb_ksp;
    513  1.1  cgd 
    514  1.1  cgd 	/*
    515  1.1  cgd 	 * Look at arguments and compute bootdev.
    516  1.1  cgd 	 *
    517  1.1  cgd 	 * XXX
    518  1.1  cgd 	 * Boot currently doesn't pass any arguments concerning booting
    519  1.1  cgd 	 * or the root device.
    520  1.1  cgd 	 */
    521  1.1  cgd 	{ extern dev_t bootdev;
    522  1.1  cgd 	bootdev = MAKEBOOTDEV(8, 0, 0, 0, 0);	/* sd0a. XXX */
    523  1.1  cgd 	}
    524  1.1  cgd 
    525  1.1  cgd 	/*
    526  1.1  cgd 	 * Look at arguments passed to us and compute boothowto.
    527  1.1  cgd 	 */
    528  1.1  cgd #ifdef GENERIC
    529  1.1  cgd 	boothowto = RB_SINGLE | RB_ASKNAME;
    530  1.1  cgd #else
    531  1.1  cgd 	boothowto = RB_SINGLE;
    532  1.1  cgd #endif
    533  1.1  cgd #ifdef KADB
    534  1.1  cgd 	boothowto |= RB_KDB;
    535  1.1  cgd #endif
    536  1.1  cgd 
    537  1.1  cgd 	printf("argc = %d\n", argc);
    538  1.1  cgd 	printf("argv = %lx\n", argv);
    539  1.1  cgd 	for (i = 0; i < argc; i++)
    540  1.1  cgd 		printf("argv[%d] = (%lx) \"%s\"\n", i, argv[i], argv[i]);
    541  1.1  cgd 
    542  1.1  cgd 	if (argc > 1) {
    543  1.1  cgd 		/* we have arguments. argv[1] is the flags. */
    544  1.1  cgd 		for (p = argv[1]; *p != '\0'; p++) {
    545  1.1  cgd 			switch (*p) {
    546  1.1  cgd 			case 'a': /* autoboot */
    547  1.1  cgd 			case 'A': /* DEC's notion of autoboot */
    548  1.1  cgd 				boothowto &= ~RB_SINGLE;
    549  1.1  cgd 				break;
    550  1.1  cgd 
    551  1.1  cgd 			case 'd': /* use compiled in default root */
    552  1.1  cgd 				boothowto |= RB_DFLTROOT;
    553  1.1  cgd 				break;
    554  1.1  cgd 
    555  1.1  cgd 			case 'm': /* mini root present in memory */
    556  1.1  cgd 				boothowto |= RB_MINIROOT;
    557  1.1  cgd 				break;
    558  1.1  cgd 
    559  1.1  cgd 			case 'n': /* ask for names */
    560  1.1  cgd 				boothowto |= RB_ASKNAME;
    561  1.1  cgd 				break;
    562  1.1  cgd 
    563  1.1  cgd 			case 'N': /* don't ask for names */
    564  1.1  cgd 				boothowto &= ~RB_ASKNAME;
    565  1.1  cgd 			}
    566  1.1  cgd 		}
    567  1.1  cgd 	}
    568  1.1  cgd 
    569  1.1  cgd 	return (0);
    570  1.1  cgd }
    571  1.1  cgd 
    572  1.1  cgd /* for cons.c */
    573  1.1  cgd struct  consdev constab[] = {
    574  1.1  cgd 	{ 0 },
    575  1.1  cgd };
    576  1.1  cgd 
    577  1.1  cgd consinit()
    578  1.1  cgd {
    579  1.1  cgd 	/* XXX SET UP THE CONSOLE TAB TO HAVE REASONABLE ENTRIES */
    580  1.1  cgd 	/* XXX */
    581  1.1  cgd 
    582  1.1  cgd 	/* XXX PICK A NEW CONSOLE DEVICE */
    583  1.1  cgd 	/* cninit(); */
    584  1.1  cgd 
    585  1.1  cgd 	pmap_unmap_prom();
    586  1.1  cgd }
    587  1.1  cgd 
    588  1.1  cgd cpu_startup()
    589  1.1  cgd {
    590  1.1  cgd 	register unsigned i;
    591  1.1  cgd 	register caddr_t v;
    592  1.1  cgd 	int base, residual;
    593  1.1  cgd 	vm_offset_t minaddr, maxaddr;
    594  1.1  cgd 	vm_size_t size;
    595  1.1  cgd #ifdef DEBUG
    596  1.1  cgd 	extern int pmapdebug;
    597  1.1  cgd 	int opmapdebug = pmapdebug;
    598  1.1  cgd 
    599  1.1  cgd 	pmapdebug = 0;
    600  1.1  cgd #endif
    601  1.1  cgd 
    602  1.1  cgd 	/*
    603  1.1  cgd 	 * Good {morning,afternoon,evening,night}.
    604  1.1  cgd 	 */
    605  1.1  cgd 	printf(version);
    606  1.1  cgd 	identifycpu();
    607  1.1  cgd 	printf("real mem = %d (%d reserved for PROM)\n", ctob(physmem),
    608  1.1  cgd 	    ctob(resvmem));
    609  1.1  cgd 
    610  1.1  cgd 	/*
    611  1.1  cgd 	 * Allocate virtual address space for file I/O buffers.
    612  1.1  cgd 	 * Note they are different than the array of headers, 'buf',
    613  1.1  cgd 	 * and usually occupy more virtual memory than physical.
    614  1.1  cgd 	 */
    615  1.1  cgd 	size = MAXBSIZE * nbuf;
    616  1.1  cgd 	buffer_map = kmem_suballoc(kernel_map, (vm_offset_t *)&buffers,
    617  1.1  cgd 	    &maxaddr, size, TRUE);
    618  1.1  cgd 	minaddr = (vm_offset_t)buffers;
    619  1.1  cgd 	if (vm_map_find(buffer_map, vm_object_allocate(size), (vm_offset_t)0,
    620  1.1  cgd 			&minaddr, size, FALSE) != KERN_SUCCESS)
    621  1.1  cgd 		panic("startup: cannot allocate buffers");
    622  1.1  cgd 	base = bufpages / nbuf;
    623  1.1  cgd 	residual = bufpages % nbuf;
    624  1.1  cgd 	for (i = 0; i < nbuf; i++) {
    625  1.1  cgd 		vm_size_t curbufsize;
    626  1.1  cgd 		vm_offset_t curbuf;
    627  1.1  cgd 
    628  1.1  cgd 		/*
    629  1.1  cgd 		 * First <residual> buffers get (base+1) physical pages
    630  1.1  cgd 		 * allocated for them.  The rest get (base) physical pages.
    631  1.1  cgd 		 *
    632  1.1  cgd 		 * The rest of each buffer occupies virtual space,
    633  1.1  cgd 		 * but has no physical memory allocated for it.
    634  1.1  cgd 		 */
    635  1.1  cgd 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    636  1.1  cgd 		curbufsize = CLBYTES * (i < residual ? base+1 : base);
    637  1.1  cgd 		vm_map_pageable(buffer_map, curbuf, curbuf+curbufsize, FALSE);
    638  1.1  cgd 		vm_map_simplify(buffer_map, curbuf);
    639  1.1  cgd 	}
    640  1.1  cgd 	/*
    641  1.1  cgd 	 * Allocate a submap for exec arguments.  This map effectively
    642  1.1  cgd 	 * limits the number of processes exec'ing at any time.
    643  1.1  cgd 	 */
    644  1.1  cgd 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    645  1.1  cgd 				 16 * NCARGS, TRUE);
    646  1.1  cgd 
    647  1.1  cgd 	/*
    648  1.1  cgd 	 * Allocate a submap for physio
    649  1.1  cgd 	 */
    650  1.1  cgd 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    651  1.1  cgd 				 VM_PHYS_SIZE, TRUE);
    652  1.1  cgd 
    653  1.1  cgd 	/*
    654  1.1  cgd 	 * Finally, allocate mbuf pool.  Since mclrefcnt is an off-size
    655  1.1  cgd 	 * we use the more space efficient malloc in place of kmem_alloc.
    656  1.1  cgd 	 */
    657  1.1  cgd 	mclrefcnt = (char *)malloc(NMBCLUSTERS+CLBYTES/MCLBYTES,
    658  1.1  cgd 	    M_MBUF, M_NOWAIT);
    659  1.1  cgd 	bzero(mclrefcnt, NMBCLUSTERS+CLBYTES/MCLBYTES);
    660  1.1  cgd 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    661  1.1  cgd 	    VM_MBUF_SIZE, FALSE);
    662  1.1  cgd 	/*
    663  1.1  cgd 	 * Initialize callouts
    664  1.1  cgd 	 */
    665  1.1  cgd 	callfree = callout;
    666  1.1  cgd 	for (i = 1; i < ncallout; i++)
    667  1.1  cgd 		callout[i-1].c_next = &callout[i];
    668  1.1  cgd 	callout[i-1].c_next = NULL;
    669  1.1  cgd 
    670  1.1  cgd #ifdef DEBUG
    671  1.1  cgd 	pmapdebug = opmapdebug;
    672  1.1  cgd #endif
    673  1.1  cgd 	printf("avail mem = %ld\n", (long)ptoa(cnt.v_free_count));
    674  1.1  cgd 	printf("using %ld buffers containing %ld bytes of memory\n",
    675  1.1  cgd 		(long)nbuf, (long)(bufpages * CLBYTES));
    676  1.1  cgd 
    677  1.1  cgd 	/*
    678  1.1  cgd 	 * Set up buffers, so they can be used to read disk labels.
    679  1.1  cgd 	 */
    680  1.1  cgd 	bufinit();
    681  1.1  cgd 
    682  1.1  cgd 	/*
    683  1.1  cgd 	 * Configure the system.
    684  1.1  cgd 	 */
    685  1.1  cgd 	configure();
    686  1.1  cgd }
    687  1.1  cgd 
    688  1.1  cgd identifycpu()
    689  1.1  cgd {
    690  1.1  cgd 
    691  1.1  cgd 	/* most of the work here is taken care of in alpha_init(). */
    692  1.1  cgd 	printf("%s, serial number 0x%lx 0x%lx\n", cpu_model,
    693  1.1  cgd 	    ((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
    694  1.1  cgd 	printf("variation: 0x%lx, revision 0x%lx\n",
    695  1.1  cgd 	    hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
    696  1.1  cgd 	printf("%d byte page size, %d processor%s.\n", hwrpb->rpb_page_size,
    697  1.1  cgd 	    hwrpb->rpb_pcs_cnt, hwrpb->rpb_pcs_cnt == 1 ? "" : "s");
    698  1.1  cgd }
    699  1.1  cgd 
    700  1.1  cgd int	waittime = -1;
    701  1.1  cgd 
    702  1.1  cgd boot(howto)
    703  1.1  cgd 	int howto;
    704  1.1  cgd {
    705  1.1  cgd 	extern int cold;
    706  1.1  cgd 
    707  1.1  cgd 	/* Take a snapshot before clobbering any registers. */
    708  1.1  cgd 	if (curproc)
    709  1.1  cgd 		savectx(curproc->p_addr, 0);
    710  1.4  cgd 
    711  1.4  cgd #ifdef HALTLOOP
    712  1.4  cgd 	while (1)
    713  1.4  cgd 		;
    714  1.4  cgd #endif
    715  1.1  cgd 
    716  1.1  cgd 	/* If system is cold, just halt. */
    717  1.1  cgd 	if (cold) {
    718  1.1  cgd 		howto |= RB_HALT;
    719  1.1  cgd 		goto haltsys;
    720  1.1  cgd 	}
    721  1.1  cgd 
    722  1.1  cgd 	/* Sync the disks, if appropriate */
    723  1.1  cgd 	if ((howto & RB_NOSYNC) == 0 && waittime < 0 && 0 /* XXX */) {
    724  1.1  cgd 		register struct buf *bp;
    725  1.1  cgd 		int iter, nbusy;
    726  1.1  cgd 
    727  1.1  cgd 		waittime = 0;
    728  1.1  cgd 		(void) spl0();
    729  1.1  cgd 		printf("syncing disks... ");
    730  1.1  cgd #ifdef notdef /* XXX */
    731  1.1  cgd 		/*
    732  1.1  cgd 		 * Release vnodes held by texts before sync.
    733  1.1  cgd 		 */
    734  1.1  cgd 		if (panicstr == 0)
    735  1.1  cgd 			vnode_pager_umount(NULL);
    736  1.1  cgd 
    737  1.1  cgd 		sync(&proc0, (void *)NULL, (int *)NULL);
    738  1.1  cgd 
    739  1.1  cgd 		for (iter = 0; iter < 20; iter++) {
    740  1.1  cgd 			nbusy = 0;
    741  1.1  cgd 			for (bp = &buf[nbuf]; --bp >= buf; )
    742  1.1  cgd 				if ((bp->b_flags & (B_BUSY|B_INVAL)) == B_BUSY)
    743  1.1  cgd 					nbusy++;
    744  1.1  cgd 			if (nbusy == 0)
    745  1.1  cgd 				break;
    746  1.1  cgd 			printf("%d ", nbusy);
    747  1.1  cgd 			DELAY(40000 * iter);
    748  1.1  cgd 		}
    749  1.1  cgd 		if (nbusy)
    750  1.1  cgd 			printf("giving up\n");
    751  1.1  cgd 		else
    752  1.1  cgd #endif
    753  1.1  cgd 			printf("done\n");
    754  1.1  cgd #ifdef notdef /* XXX */
    755  1.1  cgd 		/*
    756  1.1  cgd 		 * If we've been adjusting the clock, the todr
    757  1.1  cgd 		 * will be out of synch; adjust it now.
    758  1.1  cgd 		 */
    759  1.1  cgd 		resettodr();
    760  1.1  cgd #endif
    761  1.1  cgd 	}
    762  1.1  cgd 
    763  1.1  cgd 	/* Disable interrupts. */
    764  1.1  cgd 	splhigh();
    765  1.1  cgd 
    766  1.1  cgd #ifdef notdef /* XXX */
    767  1.1  cgd 	/* If rebooting and a dump is requested do the dump. */
    768  1.1  cgd 	if ((howto & (RB_DUMP|RB_HALT)) == RB_DUMP)
    769  1.1  cgd 		dumpsys();
    770  1.1  cgd #endif
    771  1.1  cgd 
    772  1.1  cgd haltsys:
    773  1.1  cgd 	/* Finally, halt/reboot the system. */
    774  1.1  cgd 	printf("%s\n\n", howto & RB_HALT ? "halted." : "rebooting...");
    775  1.1  cgd 	prom_halt(howto & RB_HALT);
    776  1.1  cgd 	/*NOTREACHED*/
    777  1.1  cgd }
    778  1.1  cgd 
    779  1.1  cgd void
    780  1.1  cgd frametoreg(framep, regp)
    781  1.1  cgd 	struct trapframe *framep;
    782  1.1  cgd 	struct reg *regp;
    783  1.1  cgd {
    784  1.1  cgd 
    785  1.1  cgd 	regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
    786  1.1  cgd 	regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
    787  1.1  cgd 	regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
    788  1.1  cgd 	regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
    789  1.1  cgd 	regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
    790  1.1  cgd 	regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
    791  1.1  cgd 	regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
    792  1.1  cgd 	regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
    793  1.1  cgd 	regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
    794  1.1  cgd 	regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
    795  1.1  cgd 	regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
    796  1.1  cgd 	regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
    797  1.1  cgd 	regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
    798  1.1  cgd 	regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
    799  1.1  cgd 	regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
    800  1.1  cgd 	regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
    801  1.1  cgd 	regp->r_regs[R_A0] = framep->tf_a0;
    802  1.1  cgd 	regp->r_regs[R_A1] = framep->tf_a1;
    803  1.1  cgd 	regp->r_regs[R_A2] = framep->tf_a2;
    804  1.1  cgd 	regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
    805  1.1  cgd 	regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
    806  1.1  cgd 	regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
    807  1.1  cgd 	regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
    808  1.1  cgd 	regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
    809  1.1  cgd 	regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
    810  1.1  cgd 	regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
    811  1.1  cgd 	regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
    812  1.1  cgd 	regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
    813  1.1  cgd 	regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
    814  1.1  cgd 	regp->r_regs[R_GP] = framep->tf_gp;
    815  1.1  cgd 	regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP];
    816  1.1  cgd 	regp->r_regs[R_ZERO] = 0;
    817  1.1  cgd }
    818  1.1  cgd 
    819  1.1  cgd void
    820  1.1  cgd regtoframe(regp, framep)
    821  1.1  cgd 	struct reg *regp;
    822  1.1  cgd 	struct trapframe *framep;
    823  1.1  cgd {
    824  1.1  cgd 
    825  1.1  cgd 	framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
    826  1.1  cgd 	framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
    827  1.1  cgd 	framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
    828  1.1  cgd 	framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
    829  1.1  cgd 	framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
    830  1.1  cgd 	framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
    831  1.1  cgd 	framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
    832  1.1  cgd 	framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
    833  1.1  cgd 	framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
    834  1.1  cgd 	framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
    835  1.1  cgd 	framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
    836  1.1  cgd 	framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
    837  1.1  cgd 	framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
    838  1.1  cgd 	framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
    839  1.1  cgd 	framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
    840  1.1  cgd 	framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
    841  1.1  cgd 	framep->tf_a0 = regp->r_regs[R_A0];
    842  1.1  cgd 	framep->tf_a1 = regp->r_regs[R_A1];
    843  1.1  cgd 	framep->tf_a2 = regp->r_regs[R_A2];
    844  1.1  cgd 	framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
    845  1.1  cgd 	framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
    846  1.1  cgd 	framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
    847  1.1  cgd 	framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
    848  1.1  cgd 	framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
    849  1.1  cgd 	framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
    850  1.1  cgd 	framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
    851  1.1  cgd 	framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
    852  1.1  cgd 	framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
    853  1.1  cgd 	framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
    854  1.1  cgd 	framep->tf_gp = regp->r_regs[R_GP];
    855  1.1  cgd 	framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP];
    856  1.1  cgd 	/* ??? = regp->r_regs[R_ZERO]; */
    857  1.1  cgd }
    858  1.1  cgd 
    859  1.1  cgd void
    860  1.1  cgd printregs(regp)
    861  1.1  cgd 	struct reg *regp;
    862  1.1  cgd {
    863  1.1  cgd 	int i;
    864  1.1  cgd 
    865  1.1  cgd 	for (i = 0; i < 32; i++)
    866  1.1  cgd 		printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
    867  1.1  cgd 		   i & 1 ? "\n" : "\t");
    868  1.1  cgd }
    869  1.1  cgd 
    870  1.1  cgd void
    871  1.1  cgd regdump(framep)
    872  1.1  cgd 	struct trapframe *framep;
    873  1.1  cgd {
    874  1.1  cgd 	struct reg reg;
    875  1.1  cgd 
    876  1.1  cgd 	frametoreg(framep, &reg);
    877  1.1  cgd 	printf("REGISTERS:\n");
    878  1.1  cgd 	printregs(&reg);
    879  1.1  cgd }
    880  1.1  cgd 
    881  1.1  cgd #ifdef DEBUG
    882  1.1  cgd int sigdebug = 0;
    883  1.1  cgd int sigpid = 0;
    884  1.1  cgd #define	SDB_FOLLOW	0x01
    885  1.1  cgd #define	SDB_KSTACK	0x02
    886  1.1  cgd #endif
    887  1.1  cgd 
    888  1.1  cgd /*
    889  1.1  cgd  * Send an interrupt to process.
    890  1.1  cgd  */
    891  1.1  cgd void
    892  1.1  cgd sendsig(catcher, sig, mask, code)
    893  1.1  cgd 	sig_t catcher;
    894  1.1  cgd 	int sig, mask;
    895  1.1  cgd 	u_long code;
    896  1.1  cgd {
    897  1.1  cgd 	struct proc *p = curproc;
    898  1.1  cgd 	struct sigcontext *scp, ksc;
    899  1.1  cgd 	struct trapframe *frame;
    900  1.1  cgd 	struct sigacts *psp = p->p_sigacts;
    901  1.1  cgd 	int oonstack, fsize, rndfsize;
    902  1.1  cgd 	extern char sigcode[], esigcode[];
    903  1.1  cgd 	extern struct proc *fpcurproc;
    904  1.1  cgd 
    905  1.1  cgd 	frame = p->p_md.md_tf;
    906  1.1  cgd 	oonstack = psp->ps_sigstk.ss_flags & SA_ONSTACK;
    907  1.1  cgd 	fsize = sizeof ksc;
    908  1.1  cgd 	rndfsize = ((fsize + 15) / 16) * 16;
    909  1.1  cgd 	/*
    910  1.1  cgd 	 * Allocate and validate space for the signal handler
    911  1.1  cgd 	 * context. Note that if the stack is in P0 space, the
    912  1.1  cgd 	 * call to grow() is a nop, and the useracc() check
    913  1.1  cgd 	 * will fail if the process has not already allocated
    914  1.1  cgd 	 * the space with a `brk'.
    915  1.1  cgd 	 */
    916  1.1  cgd 	if ((psp->ps_flags & SAS_ALTSTACK) && !oonstack &&
    917  1.1  cgd 	    (psp->ps_sigonstack & sigmask(sig))) {
    918  1.1  cgd 		scp = (struct sigcontext *)(psp->ps_sigstk.ss_base +
    919  1.1  cgd 		    psp->ps_sigstk.ss_size - rndfsize);
    920  1.1  cgd 		psp->ps_sigstk.ss_flags |= SA_ONSTACK;
    921  1.1  cgd 	} else
    922  1.1  cgd 		scp = (struct sigcontext *)(frame->tf_regs[FRAME_SP] -
    923  1.1  cgd 		    rndfsize);
    924  1.1  cgd 	if ((u_long)scp <= USRSTACK - ctob(p->p_vmspace->vm_ssize))
    925  1.1  cgd 		(void)grow(p, (u_long)scp);
    926  1.1  cgd #ifdef DEBUG
    927  1.1  cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
    928  1.1  cgd 		printf("sendsig(%d): sig %d ssp %lx usp %lx\n", p->p_pid,
    929  1.1  cgd 		    sig, &oonstack, scp);
    930  1.1  cgd #endif
    931  1.1  cgd 	if (useracc((caddr_t)scp, fsize, B_WRITE) == 0) {
    932  1.1  cgd #ifdef DEBUG
    933  1.1  cgd 		if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
    934  1.1  cgd 			printf("sendsig(%d): useracc failed on sig %d\n",
    935  1.1  cgd 			    p->p_pid, sig);
    936  1.1  cgd #endif
    937  1.1  cgd 		/*
    938  1.1  cgd 		 * Process has trashed its stack; give it an illegal
    939  1.1  cgd 		 * instruction to halt it in its tracks.
    940  1.1  cgd 		 */
    941  1.1  cgd 		SIGACTION(p, SIGILL) = SIG_DFL;
    942  1.1  cgd 		sig = sigmask(SIGILL);
    943  1.1  cgd 		p->p_sigignore &= ~sig;
    944  1.1  cgd 		p->p_sigcatch &= ~sig;
    945  1.1  cgd 		p->p_sigmask &= ~sig;
    946  1.1  cgd 		psignal(p, SIGILL);
    947  1.1  cgd 		return;
    948  1.1  cgd 	}
    949  1.1  cgd 
    950  1.1  cgd 	/*
    951  1.1  cgd 	 * Build the signal context to be used by sigreturn.
    952  1.1  cgd 	 */
    953  1.1  cgd 	ksc.sc_onstack = oonstack;
    954  1.1  cgd 	ksc.sc_mask = mask;
    955  1.1  cgd 	ksc.sc_pc = frame->tf_pc;
    956  1.1  cgd 	ksc.sc_ps = frame->tf_ps;
    957  1.1  cgd 
    958  1.1  cgd 	/* copy the registers. */
    959  1.1  cgd 	frametoreg(frame, (struct reg *)ksc.sc_regs);
    960  1.1  cgd 	ksc.sc_regs[R_ZERO] = 0xACEDBADE;		/* magic number */
    961  1.1  cgd 
    962  1.1  cgd 	/* save the floating-point state, if necessary, then copy it. */
    963  1.1  cgd 	if (p == fpcurproc) {
    964  1.1  cgd 		pal_wrfen(1);
    965  1.1  cgd 		savefpstate(&p->p_addr->u_pcb.pcb_fp);
    966  1.1  cgd 		pal_wrfen(0);
    967  1.1  cgd 		fpcurproc = NULL;
    968  1.1  cgd 	}
    969  1.1  cgd 	ksc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED;
    970  1.1  cgd 	bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksc.sc_fpregs,
    971  1.1  cgd 	    sizeof(struct fpreg));
    972  1.1  cgd 	ksc.sc_fp_control = 0;					/* XXX ? */
    973  1.1  cgd 	bzero(ksc.sc_reserved, sizeof ksc.sc_reserved);		/* XXX */
    974  1.1  cgd 	bzero(ksc.sc_xxx, sizeof ksc.sc_xxx);			/* XXX */
    975  1.1  cgd 
    976  1.1  cgd 
    977  1.1  cgd #ifdef COMPAT_OSF1
    978  1.1  cgd 	/*
    979  1.1  cgd 	 * XXX Create an OSF/1-style sigcontext and associated goo.
    980  1.1  cgd 	 */
    981  1.1  cgd #endif
    982  1.1  cgd 
    983  1.1  cgd 	/*
    984  1.1  cgd 	 * copy the frame out to userland.
    985  1.1  cgd 	 */
    986  1.1  cgd 	(void) copyout((caddr_t)&ksc, (caddr_t)scp, fsize);
    987  1.1  cgd #ifdef DEBUG
    988  1.1  cgd 	if (sigdebug & SDB_FOLLOW)
    989  1.1  cgd 		printf("sendsig(%d): sig %d scp %lx code %lx\n", p->p_pid, sig,
    990  1.1  cgd 		    scp, code);
    991  1.1  cgd #endif
    992  1.1  cgd 
    993  1.1  cgd 	/*
    994  1.1  cgd 	 * Set up the registers to return to sigcode.
    995  1.1  cgd 	 */
    996  1.1  cgd 	frame->tf_pc = (u_int64_t)PS_STRINGS - (esigcode - sigcode);
    997  1.1  cgd 	frame->tf_regs[FRAME_SP] = (u_int64_t)scp;
    998  1.1  cgd 	frame->tf_a0 = sig;
    999  1.1  cgd 	frame->tf_a1 = code;
   1000  1.1  cgd 	frame->tf_a2 = (u_int64_t)scp;
   1001  1.1  cgd 	frame->tf_regs[FRAME_T12] = (u_int64_t)catcher;		/* t12 is pv */
   1002  1.1  cgd 
   1003  1.1  cgd #ifdef DEBUG
   1004  1.1  cgd 	if (sigdebug & SDB_FOLLOW)
   1005  1.1  cgd 		printf("sendsig(%d): pc %lx, catcher %lx\n", p->p_pid,
   1006  1.1  cgd 		    frame->tf_pc, frame->tf_regs[FRAME_A3]);
   1007  1.1  cgd 	if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
   1008  1.1  cgd 		printf("sendsig(%d): sig %d returns\n",
   1009  1.1  cgd 		    p->p_pid, sig);
   1010  1.1  cgd #endif
   1011  1.1  cgd }
   1012  1.1  cgd 
   1013  1.1  cgd /*
   1014  1.1  cgd  * System call to cleanup state after a signal
   1015  1.1  cgd  * has been taken.  Reset signal mask and
   1016  1.1  cgd  * stack state from context left by sendsig (above).
   1017  1.1  cgd  * Return to previous pc and psl as specified by
   1018  1.1  cgd  * context left by sendsig. Check carefully to
   1019  1.1  cgd  * make sure that the user has not modified the
   1020  1.1  cgd  * psl to gain improper priviledges or to cause
   1021  1.1  cgd  * a machine fault.
   1022  1.1  cgd  */
   1023  1.1  cgd /* ARGSUSED */
   1024  1.1  cgd sigreturn(p, uap, retval)
   1025  1.1  cgd 	struct proc *p;
   1026  1.1  cgd 	struct sigreturn_args /* {
   1027  1.1  cgd 		syscallarg(struct sigcontext *) sigcntxp;
   1028  1.1  cgd 	} */ *uap;
   1029  1.1  cgd 	register_t *retval;
   1030  1.1  cgd {
   1031  1.1  cgd 	struct sigcontext *scp, ksc;
   1032  1.1  cgd 	extern struct proc *fpcurproc;
   1033  1.1  cgd 
   1034  1.1  cgd 	scp = SCARG(uap, sigcntxp);
   1035  1.1  cgd #ifdef DEBUG
   1036  1.1  cgd 	if (sigdebug & SDB_FOLLOW)
   1037  1.1  cgd 	    printf("sigreturn: pid %d, scp %lx\n", p->p_pid, scp);
   1038  1.1  cgd #endif
   1039  1.1  cgd 
   1040  1.1  cgd 	if (ALIGN(scp) != (u_int64_t)scp)
   1041  1.1  cgd 		return (EINVAL);
   1042  1.1  cgd 
   1043  1.1  cgd 	/*
   1044  1.1  cgd 	 * Test and fetch the context structure.
   1045  1.1  cgd 	 * We grab it all at once for speed.
   1046  1.1  cgd 	 */
   1047  1.1  cgd 	if (useracc((caddr_t)scp, sizeof (*scp), B_WRITE) == 0 ||
   1048  1.1  cgd 	    copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc))
   1049  1.1  cgd 		return (EINVAL);
   1050  1.1  cgd 
   1051  1.1  cgd 	if (ksc.sc_regs[R_ZERO] != 0xACEDBADE)		/* magic number */
   1052  1.1  cgd 		return (EINVAL);
   1053  1.1  cgd 	/*
   1054  1.1  cgd 	 * Restore the user-supplied information
   1055  1.1  cgd 	 */
   1056  1.1  cgd 	if (ksc.sc_onstack)
   1057  1.1  cgd 		p->p_sigacts->ps_sigstk.ss_flags |= SA_ONSTACK;
   1058  1.1  cgd 	else
   1059  1.1  cgd 		p->p_sigacts->ps_sigstk.ss_flags &= ~SA_ONSTACK;
   1060  1.1  cgd 	p->p_sigmask = ksc.sc_mask &~ sigcantmask;
   1061  1.1  cgd 
   1062  1.1  cgd 	p->p_md.md_tf->tf_pc = ksc.sc_pc;
   1063  1.1  cgd 	p->p_md.md_tf->tf_ps = (ksc.sc_ps | PSL_USERSET) & ~PSL_USERCLR;
   1064  1.1  cgd 
   1065  1.1  cgd 	regtoframe((struct reg *)ksc.sc_regs, p->p_md.md_tf);
   1066  1.1  cgd 
   1067  1.1  cgd 	/* XXX ksc.sc_ownedfp ? */
   1068  1.1  cgd 	if (p == fpcurproc)
   1069  1.1  cgd 		fpcurproc = NULL;
   1070  1.1  cgd 	bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp,
   1071  1.1  cgd 	    sizeof(struct fpreg));
   1072  1.1  cgd 	/* XXX ksc.sc_fp_control ? */
   1073  1.1  cgd 
   1074  1.1  cgd #ifdef DEBUG
   1075  1.1  cgd 	if (sigdebug & SDB_FOLLOW)
   1076  1.1  cgd 		printf("sigreturn(%d): returns\n", p->p_pid);
   1077  1.1  cgd #endif
   1078  1.1  cgd 	return (EJUSTRETURN);
   1079  1.1  cgd }
   1080  1.1  cgd 
   1081  1.1  cgd /*
   1082  1.1  cgd  * machine dependent system variables.
   1083  1.1  cgd  */
   1084  1.1  cgd cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
   1085  1.1  cgd 	int *name;
   1086  1.1  cgd 	u_int namelen;
   1087  1.1  cgd 	void *oldp;
   1088  1.1  cgd 	size_t *oldlenp;
   1089  1.1  cgd 	void *newp;
   1090  1.1  cgd 	size_t newlen;
   1091  1.1  cgd 	struct proc *p;
   1092  1.1  cgd {
   1093  1.1  cgd 	dev_t consdev;
   1094  1.1  cgd 
   1095  1.1  cgd 	/* all sysctl names at this level are terminal */
   1096  1.1  cgd 	if (namelen != 1)
   1097  1.1  cgd 		return (ENOTDIR);		/* overloaded */
   1098  1.1  cgd 
   1099  1.1  cgd 	switch (name[0]) {
   1100  1.1  cgd 	case CPU_CONSDEV:
   1101  1.1  cgd 		if (cn_tab != NULL)
   1102  1.1  cgd 			consdev = cn_tab->cn_dev;
   1103  1.1  cgd 		else
   1104  1.1  cgd 			consdev = NODEV;
   1105  1.1  cgd 		return (sysctl_rdstruct(oldp, oldlenp, newp, &consdev,
   1106  1.1  cgd 			sizeof consdev));
   1107  1.1  cgd 	default:
   1108  1.1  cgd 		return (EOPNOTSUPP);
   1109  1.1  cgd 	}
   1110  1.1  cgd 	/* NOTREACHED */
   1111  1.1  cgd }
   1112  1.1  cgd 
   1113  1.1  cgd /*
   1114  1.1  cgd  * Set registers on exec.
   1115  1.1  cgd  */
   1116  1.1  cgd void
   1117  1.1  cgd setregs(p, entry, stack, retval)
   1118  1.1  cgd 	register struct proc *p;
   1119  1.1  cgd 	u_long entry;
   1120  1.1  cgd 	u_long stack;
   1121  1.1  cgd 	register_t *retval;
   1122  1.1  cgd {
   1123  1.1  cgd 	struct trapframe *tfp = p->p_md.md_tf;
   1124  1.1  cgd 	int i;
   1125  1.1  cgd 	extern struct proc *fpcurproc;
   1126  1.1  cgd 
   1127  1.1  cgd #ifdef DEBUG
   1128  1.1  cgd 	for (i = 0; i < FRAME_NSAVEREGS; i++)
   1129  1.1  cgd 		tfp->tf_regs[i] = 0xbabefacedeadbeef;
   1130  1.1  cgd 	tfp->tf_gp = 0xbabefacedeadbeef;
   1131  1.1  cgd 	tfp->tf_a0 = 0xbabefacedeadbeef;
   1132  1.1  cgd 	tfp->tf_a1 = 0xbabefacedeadbeef;
   1133  1.1  cgd 	tfp->tf_a2 = 0xbabefacedeadbeef;
   1134  1.1  cgd #else
   1135  1.1  cgd 	bzero(tfp->tf_regs, FRAME_NSAVEREGS * sizeof tfp->tf_regs[0]);
   1136  1.1  cgd 	tfp->tf_gp = 0;
   1137  1.1  cgd 	tfp->tf_a0 = 0;
   1138  1.1  cgd 	tfp->tf_a1 = 0;
   1139  1.1  cgd 	tfp->tf_a2 = 0;
   1140  1.1  cgd #endif
   1141  1.1  cgd 	bzero(&p->p_addr->u_pcb.pcb_fp, sizeof p->p_addr->u_pcb.pcb_fp);
   1142  1.1  cgd 
   1143  1.1  cgd 	tfp->tf_regs[FRAME_SP] = stack;	/* restored to usp in trap return */
   1144  1.1  cgd 	tfp->tf_ps = PSL_USERSET;
   1145  1.1  cgd 	tfp->tf_pc = entry & ~3;
   1146  1.1  cgd 
   1147  1.1  cgd 	p->p_md.md_flags & ~MDP_FPUSED;
   1148  1.1  cgd 	if (fpcurproc == p)
   1149  1.1  cgd 		fpcurproc = NULL;
   1150  1.1  cgd 
   1151  1.1  cgd 	retval[0] = retval[1] = 0;
   1152  1.1  cgd }
   1153  1.1  cgd 
   1154  1.1  cgd void
   1155  1.1  cgd netintr()
   1156  1.1  cgd {
   1157  1.1  cgd #ifdef INET
   1158  1.1  cgd #if NETHER > 0
   1159  1.1  cgd 	if (netisr & (1 << NETISR_ARP)) {
   1160  1.1  cgd 		netisr &= ~(1 << NETISR_ARP);
   1161  1.1  cgd 		arpintr();
   1162  1.1  cgd 	}
   1163  1.1  cgd #endif
   1164  1.1  cgd 	if (netisr & (1 << NETISR_IP)) {
   1165  1.1  cgd 		netisr &= ~(1 << NETISR_IP);
   1166  1.1  cgd 		ipintr();
   1167  1.1  cgd 	}
   1168  1.1  cgd #endif
   1169  1.1  cgd #ifdef NS
   1170  1.1  cgd 	if (netisr & (1 << NETISR_NS)) {
   1171  1.1  cgd 		netisr &= ~(1 << NETISR_NS);
   1172  1.1  cgd 		nsintr();
   1173  1.1  cgd 	}
   1174  1.1  cgd #endif
   1175  1.1  cgd #ifdef ISO
   1176  1.1  cgd 	if (netisr & (1 << NETISR_ISO)) {
   1177  1.1  cgd 		netisr &= ~(1 << NETISR_ISO);
   1178  1.1  cgd 		clnlintr();
   1179  1.1  cgd 	}
   1180  1.1  cgd #endif
   1181  1.1  cgd #ifdef CCITT
   1182  1.1  cgd 	if (netisr & (1 << NETISR_CCITT)) {
   1183  1.1  cgd 		netisr &= ~(1 << NETISR_CCITT);
   1184  1.1  cgd 		ccittintr();
   1185  1.1  cgd 	}
   1186  1.1  cgd #endif
   1187  1.1  cgd }
   1188  1.1  cgd 
   1189  1.1  cgd void
   1190  1.1  cgd do_sir()
   1191  1.1  cgd {
   1192  1.1  cgd 
   1193  1.1  cgd 	if (ssir & SIR_NET) {
   1194  1.1  cgd 		siroff(SIR_NET);
   1195  1.1  cgd 		cnt.v_soft++;
   1196  1.1  cgd 		netintr();
   1197  1.1  cgd 	}
   1198  1.1  cgd 	if (ssir & SIR_CLOCK) {
   1199  1.1  cgd 		siroff(SIR_CLOCK);
   1200  1.1  cgd 		cnt.v_soft++;
   1201  1.1  cgd 		softclock();
   1202  1.1  cgd 	}
   1203  1.1  cgd }
   1204  1.1  cgd 
   1205  1.1  cgd int
   1206  1.1  cgd spl0()
   1207  1.1  cgd {
   1208  1.1  cgd 
   1209  1.1  cgd 	if (ssir) {
   1210  1.1  cgd 		splsoft();
   1211  1.1  cgd 		do_sir();
   1212  1.1  cgd 	}
   1213  1.1  cgd 
   1214  1.1  cgd 	return (pal_swpipl(PSL_IPL_0));
   1215  1.1  cgd }
   1216  1.1  cgd 
   1217  1.1  cgd /*
   1218  1.1  cgd  * The following primitives manipulate the run queues.  _whichqs tells which
   1219  1.1  cgd  * of the 32 queues _qs have processes in them.  Setrunqueue puts processes
   1220  1.1  cgd  * into queues, Remrq removes them from queues.  The running process is on
   1221  1.1  cgd  * no queue, other processes are on a queue related to p->p_priority, divided
   1222  1.1  cgd  * by 4 actually to shrink the 0-127 range of priorities into the 32 available
   1223  1.1  cgd  * queues.
   1224  1.1  cgd  */
   1225  1.1  cgd /*
   1226  1.1  cgd  * setrunqueue(p)
   1227  1.1  cgd  *	proc *p;
   1228  1.1  cgd  *
   1229  1.1  cgd  * Call should be made at splclock(), and p->p_stat should be SRUN.
   1230  1.1  cgd  */
   1231  1.1  cgd 
   1232  1.1  cgd void
   1233  1.1  cgd setrunqueue(p)
   1234  1.1  cgd 	struct proc *p;
   1235  1.1  cgd {
   1236  1.1  cgd 	int bit;
   1237  1.1  cgd 
   1238  1.1  cgd 	/* firewall: p->p_back must be NULL */
   1239  1.1  cgd 	if (p->p_back != NULL)
   1240  1.1  cgd 		panic("setrunqueue");
   1241  1.1  cgd 
   1242  1.1  cgd 	bit = p->p_priority >> 2;
   1243  1.1  cgd 	whichqs |= (1 << bit);
   1244  1.1  cgd 	p->p_forw = (struct proc *)&qs[bit];
   1245  1.1  cgd 	p->p_back = qs[bit].ph_rlink;
   1246  1.1  cgd 	p->p_back->p_forw = p;
   1247  1.1  cgd 	qs[bit].ph_rlink = p;
   1248  1.1  cgd }
   1249  1.1  cgd 
   1250  1.1  cgd /*
   1251  1.1  cgd  * Remrq(p)
   1252  1.1  cgd  *
   1253  1.1  cgd  * Call should be made at splclock().
   1254  1.1  cgd  */
   1255  1.1  cgd void
   1256  1.1  cgd remrq(p)
   1257  1.1  cgd 	struct proc *p;
   1258  1.1  cgd {
   1259  1.1  cgd 	int bit;
   1260  1.1  cgd 
   1261  1.1  cgd 	bit = p->p_priority >> 2;
   1262  1.1  cgd 	if ((whichqs & (1 << bit)) == 0)
   1263  1.1  cgd 		panic("remrq");
   1264  1.1  cgd 
   1265  1.1  cgd 	p->p_back->p_forw = p->p_forw;
   1266  1.1  cgd 	p->p_forw->p_back = p->p_back;
   1267  1.1  cgd 	p->p_back = NULL;	/* for firewall checking. */
   1268  1.1  cgd 
   1269  1.1  cgd 	if ((struct proc *)&qs[bit] == qs[bit].ph_link)
   1270  1.1  cgd 		whichqs &= ~(1 << bit);
   1271  1.1  cgd }
   1272  1.1  cgd 
   1273  1.1  cgd /*
   1274  1.1  cgd  * Return the best possible estimate of the time in the timeval
   1275  1.1  cgd  * to which tvp points.  Unfortunately, we can't read the hardware registers.
   1276  1.1  cgd  * We guarantee that the time will be greater than the value obtained by a
   1277  1.1  cgd  * previous call.
   1278  1.1  cgd  */
   1279  1.1  cgd void
   1280  1.1  cgd microtime(tvp)
   1281  1.1  cgd 	register struct timeval *tvp;
   1282  1.1  cgd {
   1283  1.1  cgd 	int s = splclock();
   1284  1.1  cgd 	static struct timeval lasttime;
   1285  1.1  cgd 
   1286  1.1  cgd 	*tvp = time;
   1287  1.1  cgd #ifdef notdef
   1288  1.1  cgd 	tvp->tv_usec += clkread();
   1289  1.1  cgd 	while (tvp->tv_usec > 1000000) {
   1290  1.1  cgd 		tvp->tv_sec++;
   1291  1.1  cgd 		tvp->tv_usec -= 1000000;
   1292  1.1  cgd 	}
   1293  1.1  cgd #endif
   1294  1.1  cgd 	if (tvp->tv_sec == lasttime.tv_sec &&
   1295  1.1  cgd 	    tvp->tv_usec <= lasttime.tv_usec &&
   1296  1.1  cgd 	    (tvp->tv_usec = lasttime.tv_usec + 1) > 1000000) {
   1297  1.1  cgd 		tvp->tv_sec++;
   1298  1.1  cgd 		tvp->tv_usec -= 1000000;
   1299  1.1  cgd 	}
   1300  1.1  cgd 	lasttime = *tvp;
   1301  1.1  cgd 	splx(s);
   1302  1.1  cgd }
   1303  1.1  cgd 
   1304  1.1  cgd #ifdef COMPAT_OSF1
   1305  1.1  cgd void
   1306  1.1  cgd cpu_exec_ecoff_setup(cmd, p, epp, sp)
   1307  1.1  cgd 	int cmd;
   1308  1.1  cgd 	struct proc *p;
   1309  1.1  cgd 	struct exec_package *epp;
   1310  1.1  cgd 	void *sp;
   1311  1.1  cgd {
   1312  1.1  cgd 	struct ecoff_aouthdr *eap;
   1313  1.1  cgd 
   1314  1.1  cgd 	if (cmd != EXEC_SETUP_FINISH)
   1315  1.1  cgd 		return;
   1316  1.1  cgd 
   1317  1.1  cgd 	eap = (struct ecoff_aouthdr *)
   1318  1.1  cgd 	    ((caddr_t)epp->ep_hdr + sizeof(struct ecoff_filehdr));
   1319  1.1  cgd 	p->p_md.md_tf->tf_gp = eap->ea_gp_value;
   1320  1.1  cgd }
   1321  1.1  cgd 
   1322  1.1  cgd /*
   1323  1.1  cgd  * cpu_exec_ecoff_hook():
   1324  1.1  cgd  *	cpu-dependent ECOFF format hook for execve().
   1325  1.1  cgd  *
   1326  1.1  cgd  * Do any machine-dependent diddling of the exec package when doing ECOFF.
   1327  1.1  cgd  *
   1328  1.1  cgd  */
   1329  1.1  cgd int
   1330  1.1  cgd cpu_exec_ecoff_hook(p, epp, eap)
   1331  1.1  cgd 	struct proc *p;
   1332  1.1  cgd 	struct exec_package *epp;
   1333  1.1  cgd 	struct ecoff_aouthdr *eap;
   1334  1.1  cgd {
   1335  1.1  cgd 	struct ecoff_filehdr *efp = epp->ep_hdr;
   1336  1.1  cgd 
   1337  1.1  cgd 	switch (efp->ef_magic) {
   1338  1.1  cgd 	case ECOFF_MAGIC_ALPHA:
   1339  1.1  cgd 		epp->ep_emul = EMUL_OSF1;
   1340  1.1  cgd 		break;
   1341  1.1  cgd 
   1342  1.1  cgd 	case ECOFF_MAGIC_NETBSD_ALPHA:
   1343  1.1  cgd 		epp->ep_emul = EMUL_NETBSD;
   1344  1.1  cgd 		break;
   1345  1.1  cgd 
   1346  1.1  cgd #ifdef DIAGNOSTIC
   1347  1.1  cgd 	default:
   1348  1.1  cgd 		panic("cpu_exec_ecoff_hook: can't get here from there.");
   1349  1.1  cgd #endif
   1350  1.1  cgd 	}
   1351  1.1  cgd 	epp->ep_setup = cpu_exec_ecoff_setup;
   1352  1.1  cgd 	return 0;
   1353  1.1  cgd }
   1354  1.1  cgd #endif
   1355